JP2008046470A - 照明装置、照明方法、及び走査型光学顕微鏡 - Google Patents

照明装置、照明方法、及び走査型光学顕微鏡 Download PDF

Info

Publication number
JP2008046470A
JP2008046470A JP2006223193A JP2006223193A JP2008046470A JP 2008046470 A JP2008046470 A JP 2008046470A JP 2006223193 A JP2006223193 A JP 2006223193A JP 2006223193 A JP2006223193 A JP 2006223193A JP 2008046470 A JP2008046470 A JP 2008046470A
Authority
JP
Japan
Prior art keywords
light
light emitter
wavelength
negative refraction
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006223193A
Other languages
English (en)
Inventor
Hironari Fukuyama
宏也 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006223193A priority Critical patent/JP2008046470A/ja
Priority to US12/310,127 priority patent/US8119960B2/en
Priority to PCT/JP2007/065146 priority patent/WO2008020548A1/ja
Publication of JP2008046470A publication Critical patent/JP2008046470A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/007Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of negative effective refractive index materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/082Condensers for incident illumination only

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】負屈折レンズにおけるエバネッセント波による高周波成分に適合した、高い空間分解能を有する照明装置、照明方法、走査型光学顕微鏡を提供する。
【解決手段】光源101を発した波長λの発光体励起光108は集光レンズ102によって発光体107に集光される。発光体107は、基板104上に保持され、波長λの発光体励起光108が照射されると、波長λの蛍光を発する。発光体107の直径aは波長λより小さく構成されているため、この蛍光はエバネッセント波を含み、発光体107を点光源とする物体照明光109として基板104中を進行する。負屈折レンズ105は物体106の表面に発光体107の像を結ぶように配置され、これにより物体照明光109に含まれる伝搬光成分だけでなくエバネッセント波成分も同時に集光され、物体106の表面には発光体107とほぼ同じ大きさの微小なビームスポットが形成される。
【選択図】 図1

Description

本発明は、顕微鏡、カメラ、内視鏡などの光学像検出装置、光ディスク用ピックアップなどの光学的情報書き込み・読み出し装置、およびステッパー等のリソグラフィー装置に適用できる照明装置、照明方法、更には走査型光学顕微鏡に関するものである。
近年、顕微鏡、カメラ、内視鏡などの撮像光学系を用いた画像検出装置の解像能力が向上している。特に顕微鏡や光記録の分野では、ほぼ無収差の光学系が実現し、撮像光学系としての解像能力は主に可視光の回折限界によって制約されている。一方、以下の非特許文献に開示されているように、屈折率が負の値をとる光学材料(以下、適宜「負屈折材料」と呼ぶ。)が実現されている。負屈折材料を利用すれば回折限界を超える超高解像の結像(以下、適宜「完全結像」と呼ぶ。)が可能であるという提案がなされている。
非特許文献3に開示されているように、屈折率が負の値をとる場合以外でも、誘電率または透磁率の実数部が負の値であれば、特定の偏光状態の電磁波に対して負屈折的な現象が観測される。また、非特許文献5に開示されているように、フォトニック結晶のような周期構造体においては、逆格子空間でフォトニックバンドが折り返される結果、屈折率、誘電率及び透磁率が全て正の材料であるにもかかわらず、特定の波長、特定の偏光状態の電磁波に対して負屈折的な現象が観測される。
上記の事情を鑑みて、本明細書では、特定の電磁波に対して負屈折的な応答を示す材料を「負屈折を示す材料」と呼ぶことにする。「負屈折を示す材料」という表現は、負屈折材料よりも広義の概念であることは言うまでもない。
負屈折を示す材料としては、上述のフォトニック結晶の他にも、金属薄膜、カイラル物質、フォトニック結晶、メタマテリアル、左手系物質、バックワード波材料、負位相速度媒質等が知られている。
非特許文献1によれば、誘電率と透磁率の両方が負の値をとる材料は、屈折率も負の値となる。さらに、このような材料は、後述するような、いわば拡張されたスネルの法則を満足することが示されている。
図16は、正の屈折率を有する通常の光学材料(以下、適宜「通常光学材料」と呼ぶ。)における光の屈折の様子を示している。光が媒質1から媒質2へ伝搬するとき、両媒質の境界面で屈折する。このとき、次式(1)で示すスネルの法則を満足する。
(1) nsinθ=nsinθ
ここで、θは入射角、θは屈折角、nは媒質1の屈折率、nは媒質2の屈折率をそれぞれ示している。
これに対して、図17は、媒質2の屈折率nが負の値をとるときの光の屈折の様子を示している。図17に示すように、入射した光は、境界面の法線に対して図16で示す屈折方向とは反対側へ屈折されている。このとき、屈折角θを負の値とすれば上述のスネルの法則を満足している。
図18は、通常光学材料を用いた凸レンズ13による結像関係を示している。物体面11上の物点11Aからの光は、凸レンズ13により、像面12上の像点12Aへ集光される。レンズの屈折率が正のとき、結像(集光)するためにはレンズ表面が有限の曲率を有することが必要である。
一方、負屈折を示す材料で作られた平板(以後、適宜「負屈折レンズ」と呼ぶ。)は曲率が無限大であるにもかかわらず光を集めることができる。図19は、負屈折レンズ14による結像関係を示している。物体面11上の物点11Bからの光は、負屈折レンズ14により、像面12上の像点12Bへ集光される。
非特許文献11には、負屈折を示す材料で曲面形状のレンズを構成し、非等倍結像を実現する方法が示されている。しかしながら、完全結像となるための条件が非常に厳しく、負屈折を示す上に所定の屈折率勾配を有する材料が必要なため、現実的ではない。現に、世の中で実現している負屈折レンズは全て、空間的にはほぼ一様な屈折率をもち、光(電磁波)が通過する表面は平面となっている。そこで、負屈折を示す材料で作られた、空間的に一様な平板を、以後、適宜「負屈折レンズ」と呼ぶ。
ここで言う「空間的に一様」とは、電磁波の波長より大きなスケールで一様という意味である。したがって、フォトニック結晶やメタマテリアルのように人工的な構造材料で負屈折を実現する場合には、構造に起因する有効屈折率(あるいは有効誘電率、あるいは有効透磁率)が空間的に一様であることを意味する。
顕微鏡などの結像光学系において、理論的な解像度の上限値は、回折限界によって決まる。光学の教科書(例えば非特許文献2)に記載されているように、レイリーの基準によれば、分解可能な2点間の最小距離はλ/NA程度である。ここで、λは使用波長、NAは開口数である。そして、回折限界よりも小さな構造は、光学系によって解像することができない。
また、液浸、油浸または固体浸の対物レンズを利用して解像度を向上させる顕微鏡や光ピックアップも提案されている。これらは実効的なNAを増大させている。これにより、回折限界に相当するλ/NAの値を小さくしている。ここで、開口数NAは、物体面が配置される媒質の屈折率より大きくすることはできない。このため、開口数NAは、1.5〜2.0程度が上限である。
物体面11上の物点11Aを発した光は、遠方まで到達する放射光と、物点11Aから波長程度の距離で減衰してしまうエバネッセント波との2つの光波で構成されている。放射光は、物体面11上の情報のうち低周波成分に対応する。一方のエバネッセント波は、物体面11上の情報のうち高周波成分に対応する。
放射光とエバネッセント波との境界は、1/λに相当する空間周波数である。特にエバネッセント波は、物体面内の周波数が1/λより大きい。このため、エバネッセント波は、それと垂直な光波伝搬方向の波数成分が虚数となる。このため、物体面11から遠ざかるにつれて急速に減衰してしまう。
一方の放射光も全ての成分が光学系へ進行するわけではない。放射光の一部は、光学系内の開口によって蹴られてしまう。このため、物体面11上の空間周波数がNA/λより小さな成分のみが像面12へ到達する。結局、結像点12Aへ到達する情報では、物点11Aが持っていた情報から高周波成分が欠落してしまう。これにより、回折による点像の広がりとなって解像度を制約する。
近年開示された非特許文献3には、負屈折材料中では上述のエバネッセント波が増幅されることが開示されている。このため、図19に示す負屈折レンズ14による結像において、像面12上ではエバネッセント波の振幅が物体面11上と同等の水準に回復されることが示されている。つまり、図19に示す光学系では、放射光とエバネッセント波との双方が物体面11から像面12へ伝搬する。このため、物点11Bの情報が結像点12Bに完全に再現されることになる。このことは、負屈折レンズ14を用いた結像光学系を用いれば、回折限界に制約されない完全結像が可能であることを意味する。
上述の完全結像は、理論上だけの話ではない。実際に負屈折レンズが作製され、実験の報告もされている。例えば非特許文献4では、波長より小さな金属性のコイルとロッドとを周期配列したメタマテリアルを作製している。そして、このようなメタマテリアルがマイクロ波領域で負屈折レンズとして機能することが報告されている。
また、非特許文献5には、フォトニック結晶を用いて負屈折材料を作製する方法が開示されている。誘電体中に空気ロッドを六方格子状に配列したフォトニック結晶では、実効的な屈折率が等方的かつ負になるフォトニックバンドが存在する。そして、フォトニック結晶は、フォトニックバンドに適合する周波数帯の電磁波に対して2次元の一様な負屈折材料とみなすことができる。
負屈折レンズによる完全結像に対しては、例えば非特許文献6に記載されているような理論的反論もある。このため、論争を生じた。しかしながら、近年では、非特許文献3に開示されている負屈折レンズの理論が一般に認められている。
通常光学材料を用いた光学系では、アプラナティックポイント、つまり球面収差とコマ収差が同時にゼロとなる点を作ることができる。この光学系による像は、必ず虚像になってしまう。ここで、負屈折材料を用いると、アプラナティックポイントに物体面を配置し、実像を形成することができる(例えば、非特許文献7参照)。このように、負屈折材料を用いることで、従来にないユニークな光学設計が可能となる。
また、多くの金属は、可視光に対して誘電率の実数部が負となることが知られている。例えば非特許文献9によれば、銀は波長330〜900nmの光に対して負の誘電率を示す。さらに、非特許文献10によれば、らせん状の構造をもつカイラル物質にも、負屈折を示すフォトニックバンドが存在する。
負屈折の現象では、屈折角が負であること、位相速度と群速度が逆向きであること、電場、磁場、ポインティングベクトルがこの順に左手系を形成すること等、通常光学材料とは異なるユニークな特徴がある。
負屈折を示す材料の呼称は世間一般でもまだ確立していない。このため、上述のような特徴を冠して、負位相速度媒質(Negative Phase Velocity Material(Medium))、左手系物質(Left Handed Material)、バックワード波材料(Backward Wave Material)、負屈折材料などと呼ばれることもある。本明細書では、これらを負屈折を示す材料の一種とみなして扱う。このような扱いは、上述の負屈折を示す材料の定義からいってなんら矛盾しない。
また、現象を冠した名称は、材料や構造を冠した名称と重複するものも多数存在する。例えば、金属共振器アレイからなるメタマテリアルは、左手系物質、あるいは左手系メタマテリアルなどと呼ばれることもある。これらも負屈折を示す材料に含むものとする。
このように、負屈折材料で構成される負屈折レンズを利用すれば、回折限界に拘束されない超高解像(完全結像)の結像光学系を実現できる可能性がある(例えば、非特許文献3参照)。さらに、また放射光だけを結像させる場合でもユニークな光学設計が可能である(例えば、非特許文献7参照)。
V.G.Veselago et al., Sov.Phys.Usp.10,509(1968) E.Hecht,"Optics", 4th ed. (Addison−Wesley, Reading, MA, 2002) J.B.Pendry, Phys.Rev.Lett.85, 3966(2000) D.R.Smith et al., Phys.Rev.Lett.84, 4184(2000) M.Notomi, Phys.Rev.B62, 10696(2000) P.M.Valanju et al., Phys.Rev.Lett.88, 187401(2002) D.Schurig et al., Phys.Rev.E70, 065601(2004) D.R.Smith et al., Appl.Phys.Lett.82, 1506(2003) 「最新光学技術ハンドブック」辻内順平ら(朝倉書店) J.B.Pendry, Science 306, 1353(2004) S.A.Ramakrishna et al., Phys.Rev.B69, 115115(2004)
前述のように、負屈折レンズ自体はエバネッセント波を伝達することによって高周波成分が保たれた像を形成する。しかしながら、実際に、負屈折レンズを用いて高周波成分を有する何らかの光学像を任意に生成させたり、あるいは負屈折レンズによって物体等から生成した光学像から高周波成分を検出するためには、照明方法および検出方法に関する以下のような課題がある。
まず、負屈折レンズによって物体等から生成した光学像より、所望の高周波成分を検出しようとする場合について考えてみる。負屈折レンズの完全結像は、常に等倍結像である。そして、仮にその等倍像を通常の拡大光学系によって拡大しても、その拡大像にエバネッセント波は伝達されない。したがって、高周波成分は失われ、これを拡大像から検出することは出来ない。
すなわち、ある所望の高周波成分の情報を検出するためには、検出器は負屈折レンズによる等倍像面上に直接置かれ、かつその検出器は前記所望の高周波成分以上の検出帯域(空間分解能)を有している必要がある。
この種の問題は、負屈折レンズを用いて所望の高周波成分を有する何らかの光学像を物体上に任意に生成させようとする場合においても同様に存在する。すなわち、負屈折レンズによる等倍結像面(対象とする物体の共役面)上において照明光が空間的に変調され、かつその光源(照明光源)は前記所望の高周波成分以上の変調帯域(空間分解能)を有している必要がある。
以下に、負屈折レンズによる光学像の高周波成分を検出する場合の、検出器および光源における具体的な問題を、顕微鏡を例にして説明する。通常の水浸対物レンズを有する顕微鏡の2点分解能は、約0.3μmである。なお、波長0.5μm、開口数0.75、水の屈折率1.333とする。
これに対して、対物レンズとして負屈折レンズを有する顕微鏡が、上記通常の顕微鏡の10倍、すなわち0.03μmの2点分解能を有するためには、検出器または光源はそれ以上の分解能を有している必要がある。これは、検出器としてCCDやCMOS素子のような二次元撮像素子を用いる場合、その画素間隔(画素寸法)は0.03μmの半分、すなわち0.015μm以下でなければならないことを意味する。
また、1個または複数個の検出器あるいは光源を、物体と相対的に動かす走査によって像の信号を検出する走査型顕微鏡の場合も、それらの検出器や光源の大きさは、上記イメージセンサーの場合と同様に、0.015μm以下でなければならない。
しかしながら、そのような極めて小さな検出器や光源の製作は容易でない。例えば、現在実用化されているCCDにおける最も小さな画素間隔は、約2μmである。したがって、CCDが上記例に示した分解能、すなわち画素間隔0.015μm以下を達成するためには、今後130倍以上の高密度化が必要である。この技術的難易度は極めて高い。
また、現在実用化されている超解像の光学顕微鏡としてはSNOM(Scanning Near field Optical Microscope)がある。このSNOMにおいて検出器および光源として用いられている探針先端の開口部にしても、その直径は約0.05〜0.1μmである。これは、上記例に示した条件、すなわち検出器および光源の直径0.015μm以下に対して3倍以上大きい。
本発明は、上記課題に鑑みてなされたものであって、負屈折レンズにおけるエバネッセント波による高周波成分に適合した、高い空間分解能を有する照明装置、照明方法、走査型光学顕微鏡を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明では、
エネルギーが印加されることによって光を発する発光性材料を含む発光体と、負屈折を示す材料で構成された光学素子とを含み、前記発光体から発した光を物体に投影するための光学系とを有し、前記発光体は前記発光体が発する光の波長よりも小さいことを特徴とする照明装置を提供する。
前記発光体は、膜形状を有する発光層中に分散していることを特徴とすることができる。
前記発光体は、所定の波長λの励起光を照射すると前記波長λとは異なる波長λの光を発する発光性材料を含むことができる。
前記発光体は、蛍光体、燐光体、非線形光学材料、レーザー媒質などの能動材料、のうち少なくともいずれか一つを含むことができる。
前記発光体は、量子ドットレーザーを含み、前記エネルギーはキャリア電流とすることができる。
また、本発明は、光を発する発光性材料を含み、前記光の波長より小さな発光体に、エネルギーを印加することによって光を放射させる発光ステップと、負屈折を示す材料で構成された光学素子を含む光学系を介して前記発光体からの光を物体に投影する投影ステップと、を有することを特徴とする照明方法を提供する。
また、本発明は、上述した本発明に係る照明装置と、前記物体に照射されるのと同じ波長の光を検出可能な光検出器と、を含むことを特徴とする走査型光学顕微鏡を提供する。
本発明によれば、負屈折レンズにおけるエバネッセント波による高周波成分に適合した、高い空間分解能を有する照明装置、照明方法、走査型光学顕微鏡を提供することができる。
以下に、本発明に係る実施例を、添付の図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
図1は、本実施例にまつわる照明装置の構成を表している。光源101はハロゲンランプや発光ダイオード(LED)、スーパールミネッセントダイオード(SLD/SuperLuminescent Diode)、レーザー発振器などの照明光源であるが、レーザー光は空間的コヒーレンスに優れていることから、よりエネルギー密度の高いビームスポットを形成できる点でより好ましい。光源101を発した波長λの発光体励起光108は集光レンズ102によって発光体107に集光される。発光体107は、励起光を照射されることによって励起光よりも長い波長の光を発する蛍光性物質や燐光性物質よりなる微小粒子であり、その大きさは発光体107が発する蛍光や燐光の波長よりも小さい。
発光体107としては、例えばポリスチレン等のプラスチック粒子をベース材とし、これに蛍光色素を含有させた所謂蛍光ビーズを用いることが出来る。また、半導体材料よりなる大きさ数nmの粒子である所謂量子ドットを用いることも出来る。この量子ドットとしては特に、CdSe(セレン化カドミウム)よりなる数nmの粒子が、紫外光や青色光の照射によって蛍光を発することが知られている。量子ドットは通常の蛍光色素に比較して高い効率で蛍光を発し、かつ退色を生じないという長所がある。さらに、粒子の製作時にその大きさを2〜5nm程度の間で調整することにより、470〜610nmの間で蛍光の波長を自由に制御することが出来るという長所がある。
発光体107はガラスやプラスチックなどの光学材料からなる基板104上に保持されている。波長λの発光体励起光108が照射されると、発光体107は波長λの蛍光を発する。発光体107の直径aは波長λより小さく構成されているため、この蛍光はエバネッセント波を含み、発光体107を点光源とする物体照明光109として基板104中を進行する。
負屈折レンズ105は物体106の表面に発光体107の像を結ぶように配置されている。負屈折レンズおよび外部媒質(空気)の屈折率を、それぞれnおよびnとして、n+n=0といういわゆる完全結像条件が満たされているものとする。つまり、物体照明光109に含まれる伝搬光成分だけでなくエバネッセント波成分も同時に集光され、物体106の表面には発光体107とほぼ同じ大きさのビームスポットが形成される。
本実施例においては、スポット状の照明を必要とする種々の対象を物体106として適用することが可能である。しかし、適用する分野によっては、発光体励起光108の物体106への到達が好ましくない場合がある。例えば適用分野がフォトリソグラフィであり、物体106が感光性レジストである場合、物体106には物体照明光109のみが照射されるべきであり、発光体励起光108は照射されるべきではない。なぜならば、物体照明光109が物体106上で形成するビームスポットに対して、発光体励起光108が物体106上で形成するビームスポットはより大きく、このために発光体励起光108はリソグラフィとしての分解能を損なうからである。したがってこのような場合は、基板104と物体106の間のいずれかの位置に、発光体励起光108を遮断するバンドパスフィルタを配置するのが好ましい。また、基板104として発光体励起光108を遮断するバンドパスフィルタを用いても良い。
図1において発光体107および基板104を拡大図示したのが図2である。集光レンズ102の球面収差がよく補正されている場合、その焦点におけるビームウエスト径wはλ/NA程度である(NAは集光レンズ102の開口数を表す)。それに比べて発光体107の直径aが小さければ、回折限界を超える微小なビームスポットを物体106上に形成することができる。このとき、発光体107の直径aがあまり小さすぎると蛍光強度が弱くなってしまうため、w/100より大きいことが好ましく、w/10より大きいことがより好ましい。ただし、より微小なビームスポットを得るという観点からはaが小さいほど好ましく、特にa≧wの場合には本発明の効果が失われるのは言うまでもない。
次に、本発明の実施例2について説明する。上記実施例と同一の部分には同一の符号を付し、重複する説明は省略する。図3は、本実施例にかかる照明装置の構成を表している。本実施例2の構成は基本的には前記実施例1と同じであるが、発光層201を有する点が異なる。発光層201は、透明物質に複数の発光体107が空間的に分散して配置され、基板104上に形成された膜である。
図3において発光層201および基板104を拡大図示したのが図4である。発光層201は、複数の発光体107を透明な材料よりなる膜中に分散させることによって形成している。
発光体107は非常に小さいので、前記実施例1(図1および図2)のように基板104上に保持された発光体が一つだけである場合は、発光体励起光108の集光位置に発光体107を一致させることが難しくなる。これに対して本実施例(図3および図4)は、発光層201が複数の発光体107を含むので、照明装置の光軸合わせが容易になる上に、基板104による発光体107の保持が容易になり好ましい。なぜなら、放射線硬化樹脂中に所定の密度で発光体を分散させ、これを順次基板104上にコーティングし、放射線を照射して樹脂を硬化させればよいからである。ただし、発光体ができるだけ均一となるように攪拌する必要がある。なおこの時、ひとつの発光体励起光108のビームスポット内に複数の発光体が存在すると、物体106における物体照明光109のビームスポットが大きくなり、空間分解能を損なうことになる。これを防ぐために、発光体107同士の平均間隔dmeanはビームウエスト径wより大きいことが好ましい。さらに、発光体107同士の最小間隔dminがビームウエスト径wより大きいならば、さらに好ましい。
図5は、本実施例2における発光層201のさらに好ましい構成を表している。この図において203は、発光体107と、透明体よりなる球体でその中心部に前記発光体107を保持する透明体ビーズ202とよりなる発光体入り透明体ビーズである。この図における発光層201は、複数の発光体入り透明体ビーズ203を透明な材料よりなる膜中に分散させることによって形成している。
前記図4のように発光体107を発光層201中に直接分散させる場合、それらの間隔dを正確に制御することは容易でなく、特に複数の発光体107が互いに付着し、一つの大きなかたまりとなる現象がしばしば生じる。これに対して図5に示す本構成においては、発光体107同士の最小間隔dminは透明体ビーズの直径Aに等しい。すなわち、直径Aをビームウエスト径wよりも大きくすることにより、ひとつの発光体励起光108のビームスポット内に複数の発光体が存在することを常に防ぐことが出来る。
次に、本発明の実施例3について説明する。上記実施例と同一の部分には同一の符号を付し、重複する説明は省略する。前記実施例1(図1)および実施例2(図3)において、発光体107を発した蛍光は基板104中を通過するため、基板内部での散乱や吸収、あるいは基板表面での散乱や反射を経験し、物体106に形成されるビームスポットがボケてしまう可能性がある。そこで図6に示されるように、基板104の(光源側からみて)裏側に発光体107を保持すれば、前記のボケが生じないようにできる。また、同じ効果を得るために、図7に示したように、基板104を用いず、発光体107を負屈折レンズ105が保持する構成も可能である。
次に、本発明の実施例4について説明する。上記実施例と同一の部分には同一の符号を付し、重複する説明は省略する。図8は、本実施例における照明装置の構成を表す。
本図において、401は、発光体107の発光波長帯域および励起感度を有する波長帯域とは異なる波長の光を発するトラップ光光源である。402は、前記トラップ光光源から発するトラップ光である。403は、発光体励起光108と前記トラップ光402とを、1つのビームに重ねるダイクロイックミラーである。なおここで、励起光光源101とトラップ光光源401は、共焦点をなす位置関係に配置される。409は、一本に重ねられた上記ビームを光軸と直交する方向にスキャンするスキャナーである。404は、透明材料よりなり、内部に透明液体405および蛍光体入り透明体ビーズ203を封入した透明容器である。407は、透明容器404の物体側に位置し、発光体励起光108を遮断する発光体励起光カットフィルタである。408は、透明容器404の物体側に位置し、トラップ光402を遮断するトラップ光カットフィルタである。
本実施例において、発光体入り透明体ビーズ203は、普段は透明液体404中を浮遊しているが、これに一旦トラップ光402が照射されると、透明体ビーズ202に対する所謂光トラップ効果(あるいは光ピンセット効果)により、発光体入り透明体ビーズ203はトラップ光402が最も強く集まる場所、すなわちビーム中心軸411とビームウエスト位置410の交わる位置に引き寄せられる(図9参照)。その結果、発光体107もまた、発光体励起光108が最も強く集まる場所に位置することになる。なぜならば、発光体107は透明体ビーズ202の中心に位置するからであり、さらにまた、トラップ光402と発光体励起光108とは共焦点の関係にあるからである。
本実施例は、発光体と発光体励起光との位置合わせが容易であるという特徴を有する。すなわち、物体照明光109の出力を高める必要から、発光体107は発光体励起光108が最も強く集まる位置に置かれる必要があるが、前記実施例1、2の場合、これを実現するためには手動調整または何らかのアクチュエーターを用いた能動制御の手段を必要とした。これに対して本実施例においては、それが光トラップ効果によって自動的に実現する。
本実施例において、ビームスポットの照射位置をスキャナー409によって動かすと、発光体入り透明ビーズ203も照射位置を追って移動し、その結果物体照明光109も例えば109’のように移動する。すなわち、発光体励起光およびトラップ光のスキャンにより、物体照明光109をスキャンすることが可能である。さらに本実施例は、トラップ光光源401を励起光光源101から独立させて備えているので、発光体励起光108を止めている状態においても、トラップ光402によって発光体入り透明体ビーズ203を所望の位置に保持し続けることが可能である。さらに本実施例においては、物体106に向かう3種類の光、つまりトラップ光401、発光体励起光108、および物体照明光109のうち、トラップ光401はトラップ光カットフィルタ408で、発光体励起光108は発光体励起光カットフィルタ407でそれぞれ遮断されるため、物体106に到達するのは物体照明光109のみである。これらの作用は、物体照明光109の強度および物体106上のスキャンを互いに独立して制御することを可能にするものであり、かつその制御手段である発光体励起光108およびトラップ光402は物体106に到達しないので、物体照明光109の作用を妨げないという特徴を有する。
次に、本発明の実施例5について説明する。上記実施例と同一の部分には同一の符号を付し、重複する説明は省略する。図10は、本実施例の照明装置の構成を示している。本図において、901は電子を放出する陰極(カソード)、902は放出された電子からなる電子ビーム、903は放出された電子に加速電圧を印加する陽極(加速電極)、904は電子ビームを収束させる電子レンズ、905は電子ビームの照射によって発光する材料よりなる発光体、104は光学的に透明な材料よりなる光学窓として機能する基板、906は電子ビームの経路の気圧を低く保つための真空チャンバー、109は発光体905より発した物体照明光、105は負屈折材料よりなる負屈折レンズ、106は光を照射する対象となる物体である。
発光体905の材料としては、電子ビームの照射によって光を発する所謂カソードルミネッセンスを示す物質ならば何でも良い。カソードルミネッセンスを示す材料としては、蛍光物質と燐光物質とがある。
基板104の形態としては、電子ビーム902の照射による発光体905の帯電を防ぐために、図上の上側、すなわち電子ビームの照射を受ける側の面に透明導電薄膜を形成し、真空チャンバー906および陽極903と同電位に保つことが望ましい。
基板104、負屈折レンズ105、および物体106における物体照明光109の作用は、前記実施例1と同様である。
本実施例においては、発光体905の励起手段として、励起光でなく電子ビームを用いるため、前記実施例1のように物体106が発光体励起光108の照射を受けることがない。したがって発光体励起光108の物体106への照射が分解能を損なうフォトリソグラフィのような分野に適用する場合であっても、本実施例は前記実施例1の場合のような発光体励起光を遮断するバンドパスフィルタを用いる必要がない、という特徴を有する。
次に、本発明の実施例6について説明する。上記実施例と同一の部分には同一の符号を付し、重複する説明は省略する。発光層として量子ドットレーザーを用いる場合の構成を、図11に示す。発光層601を発した物体照明光109は基板602を通ったのち、負屈折レンズ105によって物体106の表面に集光される。発光層601および基板602を拡大図示したのが図12である。発光層601には量子ドットレーザー603が形成されており、図中に黒色で示した電極604からキャリア電流が注入されることによって、図中に斜線で示した発光領域(活性層)からレーザー光が射出される。発光領域の大きさaがレーザー波長λより小さい場合、エバネッセント波を含むレーザー光が、負屈折レンズ105によって物体106の表面に集光され、回折限界を超える微小なビームスポットの形成が可能となる。
発光層として量子ドットレーザーを用いる場合には、電流注入によって発光するため、図1の光源101および集光レンズ102が不要となり、装置を小型化できるという利点がある。また、前記実施例5と同様に、励起光を用いないため、リソグラフィのように励起光が装置の分解能を損なうような適用分野であっても、励起光遮断フィルタが不要である、という利点がある。その他、量子ドットレーザーを複数配列させる場合や、発光層を基板の裏側もしくは負屈折レンズ上に形成する、などの変形例についても、実施例2および実施例3と同様に適用できる。
次に、本発明の実施例7について説明する。上記実施例と同一の部分には同一の符号を付し、重複する説明は省略する。本発明に係る照明装置を走査型蛍光顕微鏡用の光源として利用する場合の構成を図13に示す。光源101から物体106までの光路に関しては実施例1に記載されているので、ここでは説明を省略する。物体106は可動式のステージ108上に設置されており、光軸と直交する方向の面内で2次元的に移動させることで所定の領域を走査できるようになっている。なお、ここでの物体106は、蛍光顕微鏡用の標本である。また、基板104は蛍光体励起光カットフィルタ407としての機能を兼ねている。
発光層201から発した物体照明光109は物体106を励起照明し、これにより物体106は物体光(蛍光)701を発する。なお、蛍光体励起光108は、基板104と一体に作られた蛍光体励起光カットフィルタ407によって遮断されるので、物体106には到達しない。
前記物体光(蛍光)701の一部を物体光集光レンズ702で集め、光検出器704で検出することによって、物体106の蛍光情報が検出される。なお、物体照明光109は、物体照明光カットフィルタ703によって遮断されるので、光検出器704には到達しない。
以上の検出動作を、ステージ108を動作させて繰り返すことにより、蛍光顕微鏡像が観察される。実施例1で説明されているように、物体106に照射されるビームスポットは回折限界を超える微小なものなので、前記計測によって超解像イメージングが可能である。ここで、蛍光体励起光カットフィルタ407および物体照明光カットフィルタ703としては、例えば色ガラスによる吸収フィルタや誘電体多層膜フィルタ、あるいは回折格子などを用いることができる。また、光検出器704としては光電子増倍管、フォトダイオード、アバランシェフォトダイオード(APD/Avalanche Photodiode)、電荷結合素子(CCD)などのデバイスを用いることができる。
次に、本発明の実施例8について説明する。上記実施例と同一の部分には同一の符号を付し、重複する説明は省略する。本発明に係る照明装置を走査型反射暗視野顕微鏡用の光源として利用する場合の構成を図14に示す。この中で、光源101から物体106までの光路に関しては前記実施例1と同様である。発光層201を基板104の物体側面(図上で下側)に形成する構成については、本質的に前記実施例3(図6)と同様である。ステージ108の作用については前記実施例7と同様である。したがって、これら要素の個別の作用については説明を省略する。
発光層201から発した物体照明光109は物体106を照明し、物体の表面や内部における散乱作用により、物体106は物体光(散乱光)801を発する。なお、本実施例において照明の段階では発光体励起光108は遮断されず、したがって物体106は物体光(散乱光)801と共に発光体励起光108の散乱光も同時に生じる。上記物体光を物体光集光レンズ702で集め、発光体励起光カットフィルタ407で散乱光中の発光体励起光108の成分を遮断し、光検出器704で検出することにより、反射暗視野情報が検出される。
負屈折レンズは一般に強い屈折率分散を持つので、発光体励起光108の波長λと物体照明光109の波長λとを適切に選ぶことによって、負屈折レンズ自身に分光フィルタの機能を持たせることもできる。λに対して完全結像条件が満たされている場合、λの光は物体106とは異なる位置に結像するとともに大きな収差を持つことになる。そこで、仮に発光体励起光カットフィルタ407がない場合でも、このフィルタの位置にピンホールを配置するか、あるいは光検出器704の光検出面積を十分小さくすることによって、λの成分、すなわち物体光(散乱光)801のみを効率よく検出することができる。
次に、本発明の実施例9について説明する。上記実施例と同一の部分には同一の符号を付し、重複する説明は省略する。本発明に係る照明装置を走査型蛍光顕微鏡用の光源として利用する場合の構成を図15に示す。この中で、陰極(カソード)901、電子ビーム902、陽極(加速電極)903、電子レンズ904、発光体905、および真空チャンバー906は、前記実施例5(図10)と同様である。発光体905を負屈折レンズ105の電子ビーム照射面(図上で上側)に形成する構成については、本質的に前記実施例3(図7)と同様である。物体106、ステージ108、物体光集光レンズ702、物体照明光カットフィルタ703、および光検出器704は、前記実施例7(図13)と同様である。したがって、これら要素の個別の作用については説明を省略する。
本実施例の特徴は、発光体905を電子ビーム902で励起するために、発光体励起光カットフィルタが不要であること、および発光体905が負屈折レンズ105上に直接保持されているので、基板による吸収、散乱、反射等が生じないことである。
上記実施例7〜9では、実施例2の光励起型発光層または実施例5の電子ビーム励起型発光体を用いた照明装置で走査顕微鏡を構成する方法について説明したが、実施例6の量子ドットレーザーを用いた照明装置でも全く同様にして走査顕微鏡を構成することができる。
以上のように、本発明は、負屈折レンズにおけるエバネッセント波による高周波成分に適合した高い空間分解能を実現することが可能であり、特に、照明装置、照明方法、走査型光学顕微鏡などの光源として有用である。
本発明の実施例1に係る照明装置の構成例を示す図である。 同上実施例の発光体および基板の拡大図である。 本発明の実施例2に係る照明装置の構成例を示す図である。 同上実施例の発光層および基板の拡大図である。 同上実施例に係る発光層の他の一例を示す図である。 本発明の実施例3に係る照明装置の構成例を示す図である。 同上実施例に係る照明装置の他の構成例を示す図である。 本発明の実施例4に係る照明装置の構成例を示す図である。 同上実施例に係る発光体入り透明体ビーズを拡大して説明する図である。 本発明の実施例5に係る照明装置の構成例を示す図である。 本発明の実施例6に係る照明装置(発光層として量子ドットレーザーを用いる場合)の構成例を示す図である。 同上実施例に係る発光層および基板の拡大図である。 本発明の実施例7に係る走査型蛍光顕微鏡の構成例を示す図である。 本発明の実施例8に係る走査型反射暗視野顕微鏡の構成例を示す図である。 本発明の実施例9に係る走査型蛍光顕微鏡の構成例を示す図である。 通常光学材料における光の屈折を示す図である。 負の屈折率を有する材料における光の屈折の様子を示す図である。 通常光学材料を用いた凸レンズによる結像関係を示す図である。 負屈折レンズによる結像関係を示す図である。
符号の説明
101 光源
102 集光レンズ
104 基板
105 負屈折レンズ
106 物体
107 発光体
108 発光体励起光
109 物体照明光
201 発光層
202 透明体ビーズ
203 発光体入り透明ビーズ
401 トラップ光光源
402 トラップ光
403 ダイクロイックミラー
407 発光体励起光カットフィルタ
408 トラップ光カットフィルタ
901 陰極
902 電子ビーム
903 陽極
904 電子レンズ
905 発光体
906 真空チャンバー
601 発光層
602 基板
603 量子ドットレーザー
604 電極

Claims (7)

  1. エネルギーが印加されることによって光を発する発光性材料を含む発光体と、負屈折を示す材料で構成された光学素子とを含み、前記発光体から発した光を物体に投影するための光学系とを有し、前記発光体は前記発光体が発する光の波長よりも小さいことを特徴とする照明装置。
  2. 前記発光体は、膜形状を有する発光層中に分散していることを特徴とする請求項1に記載の照明装置。
  3. 前記発光体は、所定の波長λの励起光を照射すると前記波長λとは異なる波長λの光を発する発光性材料を含むことを特徴とする請求項1または2に記載の照明装置。
  4. 前記発光体は、蛍光体、燐光体、非線形光学材料、レーザー媒質などの能動材料、のうち少なくともいずれか一つを含むことを特徴とする請求項3に記載の照明装置。
  5. 前記発光体は、量子ドットレーザーを含み、前記エネルギーはキャリア電流であることを特徴とする請求項1〜4のいずれか一項に記載の照明装置。
  6. 光を発する発光性材料を含み、前記光の波長より小さな発光体に、エネルギーを印加することによって光を放射させる発光ステップと、負屈折を示す材料で構成された光学素子を含む光学系を介して前記発光体からの光を物体に投影する投影ステップと、を有することを特徴とする照明方法。
  7. 請求項1〜5のいずれか一項に記載の照明装置と、前記物体に照射されるのと同じ波長の光を検出可能な光検出器と、を含むことを特徴とする走査型光学顕微鏡。
JP2006223193A 2006-08-18 2006-08-18 照明装置、照明方法、及び走査型光学顕微鏡 Pending JP2008046470A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006223193A JP2008046470A (ja) 2006-08-18 2006-08-18 照明装置、照明方法、及び走査型光学顕微鏡
US12/310,127 US8119960B2 (en) 2006-08-18 2007-08-02 Light emitting type lighting system, method of light emitting type lighting, and scanning optical microscope
PCT/JP2007/065146 WO2008020548A1 (fr) 2006-08-18 2007-08-02 Dispositif et procédé d'éclairage et microscope à balayage optique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223193A JP2008046470A (ja) 2006-08-18 2006-08-18 照明装置、照明方法、及び走査型光学顕微鏡

Publications (1)

Publication Number Publication Date
JP2008046470A true JP2008046470A (ja) 2008-02-28

Family

ID=39082074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223193A Pending JP2008046470A (ja) 2006-08-18 2006-08-18 照明装置、照明方法、及び走査型光学顕微鏡

Country Status (3)

Country Link
US (1) US8119960B2 (ja)
JP (1) JP2008046470A (ja)
WO (1) WO2008020548A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522939A (ja) * 2007-03-29 2010-07-08 レイセオン カンパニー 負の屈折率レンズを使用してもつれた状態のキュビットアレイを含む量子計算装置及び方法
JP2017219842A (ja) * 2016-06-03 2017-12-14 ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツングLeica Microsystems CMS GmbH 光学装置における光線の強度を調整するための方法、および対応する光学装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9052771B2 (en) * 2002-11-04 2015-06-09 Neonode Inc. Touch screen calibration and update methods
US9471170B2 (en) * 2002-11-04 2016-10-18 Neonode Inc. Light-based touch screen with shift-aligned emitter and receiver lenses
US9052777B2 (en) 2001-11-02 2015-06-09 Neonode Inc. Optical elements with alternating reflective lens facets
US20100238139A1 (en) * 2009-02-15 2010-09-23 Neonode Inc. Optical touch screen systems using wide light beams
US9213443B2 (en) * 2009-02-15 2015-12-15 Neonode Inc. Optical touch screen systems using reflected light
US9778794B2 (en) 2001-11-02 2017-10-03 Neonode Inc. Light-based touch screen
US8674966B2 (en) 2001-11-02 2014-03-18 Neonode Inc. ASIC controller for light-based touch screen
US8587562B2 (en) * 2002-11-04 2013-11-19 Neonode Inc. Light-based touch screen using elliptical and parabolic reflectors
US8902196B2 (en) * 2002-12-10 2014-12-02 Neonode Inc. Methods for determining a touch location on a touch screen
JP5086567B2 (ja) * 2006-06-23 2012-11-28 オリンパス株式会社 照明装置及び照明方法
WO2009033021A2 (en) * 2007-09-05 2009-03-12 Chroma Technology Corporation Light source with wavelength converting phosphor
JP5317133B2 (ja) * 2008-06-03 2013-10-16 国立大学法人静岡大学 光学顕微鏡
US9063614B2 (en) 2009-02-15 2015-06-23 Neonode Inc. Optical touch screens
US9277933B1 (en) * 2010-07-28 2016-03-08 Lifecell Corporation Method for ultrasonic dissection of tissues
EP2786234A4 (en) * 2011-11-28 2015-08-26 Neonode Inc OPTICAL ELEMENTS WITH ALTERNATIVE REFLECTIVE LENS FACETS
US10282034B2 (en) 2012-10-14 2019-05-07 Neonode Inc. Touch sensitive curved and flexible displays
US9207800B1 (en) 2014-09-23 2015-12-08 Neonode Inc. Integrated light guide and touch screen frame and multi-touch determination method
US9164625B2 (en) 2012-10-14 2015-10-20 Neonode Inc. Proximity sensor for determining two-dimensional coordinates of a proximal object
US9921661B2 (en) 2012-10-14 2018-03-20 Neonode Inc. Optical proximity sensor and associated user interface
US10469777B2 (en) * 2015-03-23 2019-11-05 Techinsights Inc. Methods, systems and devices relating to distortion correction in imaging devices
EP3538941A4 (en) 2016-11-10 2020-06-17 The Trustees of Columbia University in the City of New York METHODS FOR FAST IMAGING OF HIGH RESOLUTION LARGE SAMPLES
DE112017006229T5 (de) * 2016-12-12 2019-09-05 Nippon Electric Glass Co., Ltd. Durchsichtiger Gegenstand
EP4085321A4 (en) 2019-12-31 2024-01-24 Neonode Inc. CONTACTLESS TOUCHLESS INPUT SYSTEM
CN116420125A (zh) 2020-09-30 2023-07-11 内奥诺德公司 光学触摸传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135259A (ja) * 1997-08-25 1999-05-21 Fuji Electric Co Ltd 光照射装置
JP2006072237A (ja) * 2004-09-06 2006-03-16 Olympus Corp レンズ、光学系、並びに光学装置
JP2006112985A (ja) * 2004-10-18 2006-04-27 Canon Inc 光強度検出方法及び該方法を用いたセンシング方法、光強度検出装置及び該装置によって構成したセンシング装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054513B2 (en) * 2003-06-09 2006-05-30 Virginia Tech Intellectual Properties, Inc. Optical fiber with quantum dots
US7358543B2 (en) * 2005-05-27 2008-04-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light emitting device having a layer of photonic crystals and a region of diffusing material and method for fabricating the device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135259A (ja) * 1997-08-25 1999-05-21 Fuji Electric Co Ltd 光照射装置
JP2006072237A (ja) * 2004-09-06 2006-03-16 Olympus Corp レンズ、光学系、並びに光学装置
JP2006112985A (ja) * 2004-10-18 2006-04-27 Canon Inc 光強度検出方法及び該方法を用いたセンシング方法、光強度検出装置及び該装置によって構成したセンシング装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522939A (ja) * 2007-03-29 2010-07-08 レイセオン カンパニー 負の屈折率レンズを使用してもつれた状態のキュビットアレイを含む量子計算装置及び方法
JP2017219842A (ja) * 2016-06-03 2017-12-14 ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツングLeica Microsystems CMS GmbH 光学装置における光線の強度を調整するための方法、および対応する光学装置
JP7090406B2 (ja) 2016-06-03 2022-06-24 ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング 光学装置における光線の強度を調整するための方法、および対応する光学装置

Also Published As

Publication number Publication date
WO2008020548A1 (fr) 2008-02-21
US8119960B2 (en) 2012-02-21
US20100002291A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP2008046470A (ja) 照明装置、照明方法、及び走査型光学顕微鏡
WO2017049752A1 (zh) 一种基于一阶贝塞尔光束的sted超分辨显微镜及调节方法
CN106970055B (zh) 一种三维荧光差分超分辨显微方法及装置
JP5086567B2 (ja) 照明装置及び照明方法
So et al. Overcoming diffraction limit: From microscopy to nanoscopy
JP6568646B2 (ja) 電子顕微鏡
US8553733B2 (en) Light source device, observation device, and processing device
US20100014156A1 (en) Microscope
JP2011504613A (ja) マルチモーダルスポットジェネレータとマルチモーダル・マルチスポット・スキャンマイクロスコープ
US9766442B2 (en) Confocal scanner and confocal microscope
US9964749B2 (en) Total internal reflection fluorescence microscope (TIRFM)
US7812967B2 (en) Microscopy method and microscope
JP2006023745A (ja) 位相フィルタ、光学装置及びラスタ顕微鏡
WO2018011583A2 (en) Scanning microsphere lens nanoscope
JP2010015026A (ja) 超解像顕微鏡およびこれに用いる空間変調光学素子
US9304234B2 (en) Plasmonic dark field and fluorescence microscopy
JP2009009139A (ja) 波長特異的位相顕微鏡検査法
CN109557653B (zh) 一种基于算法恢复的差分共聚焦显微成像方法和装置
CN114047619B (zh) 一种三维显微成像的方法及其成像光路结构
CN111886491B (zh) 散射辅助超定位显微术方法及相关装置
KR101710570B1 (ko) 특이 광 투과 현상을 위한 나노홀 어레이 기판 및 이를 이용하는 초고해상도 이미지 시스템
JPWO2017082357A1 (ja) 超解像顕微鏡
JP2003344285A (ja) 環状断面レーザ光ビーム生成器および多光子顕微鏡
CN111157500A (zh) 利用光片晶格阵列照明的瞬态体成像显微系统
KR101637183B1 (ko) 뉴런이 고정된 하이퍼렌즈, 뉴런 고정 장치 및 하이퍼렌즈에 뉴런을 고정하는 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120314