JP2008039562A - Method and device for detecting position of mobile - Google Patents

Method and device for detecting position of mobile Download PDF

Info

Publication number
JP2008039562A
JP2008039562A JP2006213382A JP2006213382A JP2008039562A JP 2008039562 A JP2008039562 A JP 2008039562A JP 2006213382 A JP2006213382 A JP 2006213382A JP 2006213382 A JP2006213382 A JP 2006213382A JP 2008039562 A JP2008039562 A JP 2008039562A
Authority
JP
Japan
Prior art keywords
moving body
coil
transmission coil
receiving
mobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006213382A
Other languages
Japanese (ja)
Inventor
Koji Shibata
耕志 柴田
Osamu Nara
修 奈良
Yukihisa Ikeda
幸寿 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP2006213382A priority Critical patent/JP2008039562A/en
Publication of JP2008039562A publication Critical patent/JP2008039562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To safely and precisely detect the position of a mobile by clearly distinguishing a region of which the mobile has already completed inspection from a non-inspected region. <P>SOLUTION: A position detection device includes: a transmission coil 5 for transmitting magnetism provided at the mobile A; the reference tool 6, where a plurality of reception coils 61, 62 for receiving magnetism transmitted from the transmission coil 5 are arranged discretely in the same plane shape; and a computing means for computing the distance from respective reception coils 61, 62 to the transmission coil 5 based on magnetic information received by the reception coils 61, 62, and determining and outputting the coordinates position of the transmission coil 5 based on each obtained distance information. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、移動体の位置検出方法及び装置に関する。   The present invention relates to a position detection method and apparatus for a moving body.

人・車など移動体の位置検知システムは複数の無線LANシステムから構成されている。無線LAN端末から複数の無線LAN端末に達する無線信号の到達時間または到達時間差を用いて三角測量を行うことにより端末の位置を検出する方法が知られている(特許文献1)。   A position detection system for a moving object such as a person or a vehicle is composed of a plurality of wireless LAN systems. A method of detecting the position of a terminal by performing triangulation using arrival times or arrival time differences of radio signals reaching a plurality of wireless LAN terminals from a wireless LAN terminal is known (Patent Document 1).

また、無線によらない移動体の位置検出手段として、自律走行ロボットや無人搬送車などの分野においてモーターエンコーダやジャイロスコープ等の走行計が知られている(特許文献2)。
特開2005−274364号公報 特開平8−211936号公報
Further, as a position detection means for a moving body that does not depend on radio, a travel meter such as a motor encoder or a gyroscope is known in the field of autonomous traveling robots, automatic guided vehicles, and the like (Patent Document 2).
JP 2005-274364 A Japanese Patent Laid-Open No. 8-21936

埋設物探知や建物壁面や床の鉄骨等を調査する非破壊検査の分野においては、検査すべき領域全てを網羅するために検知センサーを備えた移動体を移動をしながら検査する必要がある。未検査領域への移動には検査者の危険を伴う場合があり、検査者の精神的及び肉体的ストレスを軽減するために使用する機材は薄型且つ軽量である必要性と、木材・土・コンクリート・水分等の検査精度を乱す物質に影響を受けにくくする必要性がある。   In the field of non-destructive inspection in which buried objects are detected and steel frames on the walls of buildings and floors are investigated, it is necessary to inspect a moving body equipped with a detection sensor while moving in order to cover all areas to be inspected. Moving to an uninspected area may involve the risk of the inspector, and the equipment used to reduce the inspector's mental and physical stress must be thin and light, and wood, earth and concrete -There is a need to make it less susceptible to substances that disturb inspection accuracy, such as moisture.

本発明の目的は、このような従来の問題を解決するためになされたもので、移動体が既に検査を終了した領域と、未検査領域との区別が明確に行え安全かつ高精度に移動体の位置を検知できる移動体の位置検出方法及び検出装置を提供しようとするものである。   An object of the present invention is to solve such a conventional problem, and it is possible to clearly distinguish the area where the moving body has already been inspected from the uninspected area, and to move the moving body safely and accurately. It is an object of the present invention to provide a position detection method and a detection apparatus for a moving body that can detect the position of the moving body.

本発明の目的を実現する移動体の位置検出方法は、基準具に離隔して配置した複数の受信コイルにより、移動体側の送信コイルより発信する磁気信号を受信し、各受信コイルが受信した磁束密度に基づく距離情報により前記移動体の位置を特定することを特徴とする。   A moving body position detection method that realizes the object of the present invention is to receive a magnetic signal transmitted from a transmitting coil on a moving body side by a plurality of receiving coils that are spaced apart from a reference device, and to receive the magnetic flux received by each receiving coil. The position of the moving body is specified by distance information based on density.

本発明の目的を実現する移動体の位置検出装置の第1の構成は、移動体に設けた磁気を発信する送信コイルと、前記送信コイルが発信する磁気を受信する複数の受信コイルを同一平面状において離隔配置した基準具と、前記複数の受信コイルで受信した磁気情報に基づいて当該各受信コイルから前記発信コイルまでの距離を演算し、得られた各距離情報に基づいて発信コイルの座標位置を決定し、出力する演算手段と、を有することを特徴とする。   A first configuration of a moving body position detecting device that realizes the object of the present invention is such that a transmitting coil that transmits magnetism provided on a moving body and a plurality of receiving coils that receive magnetism transmitted by the transmitting coil are coplanar. The distance from each receiving coil to the transmitting coil is calculated on the basis of magnetic information received by the plurality of receiving coils and the reference tool spaced apart in the shape, and the coordinates of the transmitting coil based on the obtained distance information And calculating means for determining and outputting the position.

本発明の目的を実現する移動体の位置検出装置の第2の構成は、前記送信コイルは、プリント板にて形成したことを特徴とする。   A second configuration of the position detection apparatus for a moving body that realizes the object of the present invention is characterized in that the transmission coil is formed of a printed board.

上記した発明において、第一に、未検査領域への移動も伴う危険回避のために、検査領域又は安全な領域を識別するために、複数の受信コイルを棒形状をした機材である基準具に設け、この基準具を境界として安全である検査済領域と危険性がある未検査領域を区切るようにして使用することができる。   In the above-described invention, first, in order to avoid a risk associated with movement to an uninspected area, in order to identify an inspection area or a safe area, a plurality of receiving coils are used as a reference tool which is a rod-shaped device. It is possible to use the reference tool as a boundary between the inspected area that is safe and the uninspected area that is dangerous.

第二に、金属以外の物質からは影響を受けにくい磁気に注目し、基準具には複数の受信コイルを基準具内部に配置し、これを検査領域に置くようにする。   Second, pay attention to magnetism that is not easily affected by substances other than metal, and a plurality of receiving coils are arranged in the reference tool and placed in the inspection area.

第三に、移動体には軽量な送信コイルを配置し、検査領域に非接触となるように走査することにより、送信コイルが照射した磁気を基準具で受信し、基準具に内蔵する受信コイルで検出された複数の信号の強度を予め用意した参照テーブルから距離に換算して三角測量の計算により移動体の位置を特定することができる。   Third, a light transmitting coil is placed on the moving body, and the magnetic field irradiated by the transmitting coil is received by the reference tool by scanning so as not to contact the inspection area, and the receiving coil built in the reference tool The position of the moving body can be specified by calculating the triangulation by converting the intensities of the plurality of signals detected in step 1 into a distance from a reference table prepared in advance.

本発明によれば、磁気を用いた位置検知方法とすることにより、木材・土・コンクリート・水分等・水面等の非金属材質による影響を受けにくく、且つ、薄型且つ軽量で実現できる。   According to the present invention, the position detection method using magnetism is less affected by non-metallic materials such as wood, soil, concrete, moisture, water surface, etc., and can be realized thinly and lightly.

また、基準具により検査実施領域又は安全領域と検査未実施領域の区別を視覚的に判断することが検査者にとって容易であり、また、精神的・肉体的なストレスを軽減する効果が得られる。   In addition, it is easy for the inspector to visually determine the distinction between the examination execution area or the safety area and the non-inspection area with the reference tool, and an effect of reducing mental and physical stress can be obtained.

以下本発明を図面に示す実施形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

図1から図4は本発明による移動体の位置検出システムの一実施形態を示す。図1はシステム全体の概略構成を示すブロック図、図2は図1における受信コイルで受信した信号を距離に換算するための参照テーブルとその補足図を示し、図3はそしてシステムの信号処理を説明するフローチャートである。   1 to 4 show an embodiment of a moving body position detection system according to the present invention. FIG. 1 is a block diagram showing a schematic configuration of the entire system, FIG. 2 shows a reference table for converting a signal received by the receiving coil in FIG. 1 into a distance and a supplementary diagram thereof, and FIG. 3 shows signal processing of the system It is a flowchart to explain.

図1において、コントローラ1はD/A変換器2が1kHzの正弦波を発生するように制御信号を送信する。D/A変換器2はコントローラ1から制御信号を受信し、増幅器3に正弦波の電気信号を送信する。増幅器3はD/A変換器2より正弦波の電気信号を受信して増幅した後にLPF4で高周波成分を抑圧し、送信ケーブル21を介して例えば操作者により手持ち操作される移動体Aに設けた送信コイル5に増幅された正弦波の電気信号を送信する。   In FIG. 1, the controller 1 transmits a control signal so that the D / A converter 2 generates a 1 kHz sine wave. The D / A converter 2 receives a control signal from the controller 1 and transmits a sine wave electric signal to the amplifier 3. The amplifier 3 receives the sine wave electric signal from the D / A converter 2 and amplifies it, and then suppresses the high-frequency component by the LPF 4 and is provided in the moving body A that is hand-held by the operator via the transmission cable 21. The amplified sinusoidal electric signal is transmitted to the transmission coil 5.

送信コイル5は増幅された正弦波の電気信号をLPF4から受信することにより電流が流れて、水平面内無指向で交流磁界を発生する。   The transmission coil 5 receives an amplified sine wave electrical signal from the LPF 4, so that a current flows and generates an AC magnetic field omnidirectionally in a horizontal plane.

基準具6は例えば筒状に形成された例えば80cm程度の長さを有する筒体63内に一定の間隔を有して2つの受信コイル61,62を内蔵した構成とし、送信コイル5から送信された交流磁界を筒体63に内蔵する2個の受信コイル61及び62で各々受信する。   The reference tool 6 has a configuration in which two receiving coils 61 and 62 are built in a cylindrical body 63 formed in a cylindrical shape having a length of, for example, about 80 cm and having a constant interval, and is transmitted from the transmitting coil 5. The AC magnetic field received by the two receiving coils 61 and 62 incorporated in the cylinder 63 is received.

2個の受信コイル61,62は、受信した磁界を電気信号に変換した後に増幅器7及び8へ電圧値に変換された受信信号を送信する。増幅器7及び8は基準具6の各受信コイル61,62から受信した正弦波の電気信号を増幅してLPF9及び10に送信する。   The two receiving coils 61 and 62 transmit the received signals converted into voltage values to the amplifiers 7 and 8 after converting the received magnetic field into electric signals. The amplifiers 7 and 8 amplify the sine wave electrical signals received from the receiving coils 61 and 62 of the reference tool 6 and transmit them to the LPFs 9 and 10.

LPF9及びLPF10は、増幅器7及び8から受信した正弦波の電気信号の高周波数成分(ノイズ)を抑圧した後にA/D変換器11及び12へ受信信号を送信する。   The LPF 9 and the LPF 10 transmit received signals to the A / D converters 11 and 12 after suppressing high frequency components (noise) of the sine wave electrical signals received from the amplifiers 7 and 8.

A/D変換器11及び12は、LPF9及び10から正弦波の電気信号を受信し、電気信号を16kHzのサンプリング間隔で信号をとらえてアナログ信号値からディジタル信号値に変換を行い、コントローラ1にデータ送信する。   The A / D converters 11 and 12 receive sine wave electrical signals from the LPFs 9 and 10, capture the electrical signals at a sampling interval of 16 kHz, convert them from analog signal values to digital signal values, and send them to the controller 1. Send data.

ここまでの流れは図3のフローチャートにおいてステップ(以降、Sと称する)1で示される。   The flow up to this point is indicated by step (hereinafter referred to as S) 1 in the flowchart of FIG.

A/D変換器11,12によりA/D変換した信号について、コントローラ1は、1波当たり16点をデータ点とし、8波分のデータ(データ量:16点×8波)を内部メモリ(不図示)に蓄積し、これらを直交検波演算する(S2)。直交検波演算の式は正弦波の周期をTとすると、式(1)及び式(2)のように示される。   For signals A / D converted by the A / D converters 11 and 12, the controller 1 uses 16 points per wave as data points and stores data for 8 waves (data amount: 16 points × 8 waves) in an internal memory ( (Not shown) and these are subjected to quadrature detection calculation (S2). The equation for the quadrature detection calculation is expressed as Equation (1) and Equation (2), where T is the period of the sine wave.


ここで、Tは正弦波の周期を示す。コントローラ1は、直交検波演算したデータを演算器13に送信する。演算器13はコントローラ1から送信されたデータを受信し、式(3)に示される平方2乗処理を行う(S3)。   Here, T indicates the period of the sine wave. The controller 1 transmits the data subjected to the quadrature detection calculation to the calculator 13. The computing unit 13 receives the data transmitted from the controller 1 and performs a square-square process shown in Expression (3) (S3).


演算器13は、受信コイル61,62で受信した信号を距離に換算するための参照テーブル(図2で説明)を用いて、受信コイル61及び62の中心から送信コイル5の中心までの距離r1及びr2を算出する(S4)。   The computing unit 13 uses a reference table (described in FIG. 2) for converting signals received by the receiving coils 61 and 62 into distances, and a distance r1 from the center of the receiving coils 61 and 62 to the center of the transmitting coil 5. And r2 are calculated (S4).

距離r1及びr2から送信コイル5の中心位置(xo、yo)は、受信コイル51及び52間の距離(基線長)をd、そして受信コイル61の中心を座標原点とした場合に以下のように求められる(S5)。   The center position (xo, yo) of the transmission coil 5 from the distances r1 and r2 is as follows when the distance (base line length) between the reception coils 51 and 52 is d and the center of the reception coil 61 is the coordinate origin: It is calculated (S5).

演算部13は、式(4)及び式(5)で算出されたデータを表示器15に送信する(S6)。   The calculating part 13 transmits the data calculated by Formula (4) and Formula (5) to the display 15 (S6).

表示器14は、演算器13から受信したデータを後述する図4で示すように座標表示し、移動体Aの操作者に移動体の位置情報を伝達する。   The display 14 displays the coordinates of the data received from the calculator 13 as shown in FIG. 4 to be described later, and transmits the position information of the moving body to the operator of the moving body A.

図2について説明する。図2において、横軸は受信コイル61,62が送信コイル5の発信する磁気を空中で受信した場合の磁束密度Bs(単位T「テスラ」)であり、縦軸は距離r(cm)である。図2において、磁束密度と距離との関係を示す特性線は右下がりの傾向を示し、磁束密度Bsが大きくなると距離rは小さくなる。この特性は送信コイル5を矩形ABCD、受信コイル61(又は62)の位置を点Pとした場合に以下の計算式で求められる。   With reference to FIG. In FIG. 2, the horizontal axis represents the magnetic flux density Bs (unit T “Tesla”) when the receiving coils 61 and 62 receive the magnetism transmitted from the transmitting coil 5 in the air, and the vertical axis represents the distance r (cm). . In FIG. 2, the characteristic line indicating the relationship between the magnetic flux density and the distance shows a downward trend, and the distance r decreases as the magnetic flux density Bs increases. This characteristic is obtained by the following calculation formula when the transmission coil 5 is a rectangular ABCD and the position of the reception coil 61 (or 62) is a point P.

図2において、送信コイル5のA−B線分Lに電流Iが流れる場合の磁界Hは、図2(c)で示されるように、PA及び線分Lのなす角度をθ1、PB及び線分Lのなす角度をθ2とすると、式(6)のように求められる。   In FIG. 2, the magnetic field H in the case where the current I flows through the AB line segment L of the transmission coil 5 has an angle formed by PA and the line segment L as θ1, PB, and line as shown in FIG. When the angle formed by the minute L is θ2, it is obtained as shown in Equation (6).

ここで、点Pの座標を(x、y)=(xo、yo)とした場合に、点Pが線分LABから受ける磁界HABは式(7)のように求められる。
Here, when the coordinates of the point P are (x, y) = (xo, yo), the magnetic field H AB that the point P receives from the line segment L AB is obtained as shown in Expression (7).

同様に、線分BCからの磁界HBCについて同様に式(8)求められる。
Similarly, the equation (8) is similarly obtained for the magnetic field HBC from the line segment BC.


同様に、線分CDからの磁界HCDについて同様に式(9)求められる。
Similarly, the equation (9) is similarly obtained for the magnetic field HCD from the line segment CD.

同様に、線分DAからの磁界HDAについて同様に式(10)で求められる。
Similarly, the magnetic field HDA from the line segment DA is similarly obtained by the equation (10).

これより、観測点P(xo、yo)における磁界HPは式(11)で示される。
Thus, the magnetic field HP at the observation point P (xo, yo) is expressed by the equation (11).


よって、算出される磁束密度BPは式(12)で示される。 Therefore, the calculated magnetic flux density BP is expressed by Expression (12).

但し、μoは真空の比透磁率(4π×10−7)、tは送信コイルのコイル巻数である。 Where μo is the relative permeability of vacuum (4π × 10 −7 ), and t is the number of turns of the transmission coil.

この計算は計測範囲に対するコイルの寸法及び巻数を設計により決定するためのものでもあり、本実施形態では、この計測範囲を操作者の手が届く範囲を(x,y)=(−100mm〜1100mm,0mm〜400mm)と想定し、表1に示す通りの設定となっている。   This calculation is also for determining the dimensions and the number of turns of the coil with respect to the measurement range by design. In this embodiment, the range within which the operator can reach the measurement range is (x, y) = (− 100 mm to 1100 mm). , 0 mm to 400 mm), and the settings are as shown in Table 1.

表1の設定は、表2に示す受信コイルの設定値及び表3に示す本実施形態のシステムの設定値より、式(13)から計算される熱雑音BNは3.3×10−12(T)であり、式(12)で計算される送信コイルからの磁束密度BPの強度は十分大きく(図2(a))、十分な信号対雑音比S/N(=BS/BN)が確保されるようになっている。
The setting of Table 1 is based on the setting value of the receiving coil shown in Table 2 and the setting value of the system of this embodiment shown in Table 3, and the thermal noise BN calculated from Expression (13) is 3.3 × 10 −12 ( T), and the intensity of the magnetic flux density BP from the transmission coil calculated by the equation (12) is sufficiently large (FIG. 2A), and a sufficient signal-to-noise ratio S / N (= BS / BN) is ensured. It has come to be.


ここで、kはボルツマン定数(=1.38×10−23(J/K))、Bは受信機の帯域幅(=10kHz)、Tは温度(=300K)を示す。 Here, k is the Boltzmann constant (= 1.38 × 10 −23 (J / K)), B is the bandwidth of the receiver (= 10 kHz), and T is the temperature (= 300 K).

図2(a)で示される参照テーブルは、製造精度や送信コイル5の形状による変換誤差がある。そこで、本発明では変換補正係数αを設けて式(14)で示される変換式に従い演算部12にて計算値BSと実測値VPの整合をとって参照テーブルを柔軟に使用している。   The reference table shown in FIG. 2A has a conversion error due to manufacturing accuracy and the shape of the transmission coil 5. Therefore, in the present invention, the conversion correction coefficient α is provided, and the calculation unit 12 matches the calculated value BS and the actually measured value VP according to the conversion formula shown by the formula (14), and the reference table is used flexibly.


また、送信コイルと受信コイルの位置関係によって磁束密度BP及び実測値VPの強度が逐次変化する。距離r1及びr2に置き換えるためには近似関数による方法と内挿関数による方法が挙げられるが、本実施形態ではシステム調整の容易さを考慮して内挿関数による方法を採用している。   Further, the strength of the magnetic flux density BP and the actually measured value VP sequentially change depending on the positional relationship between the transmission coil and the reception coil. In order to replace the distances r1 and r2, a method using an approximation function and a method using an interpolation function can be mentioned. In this embodiment, a method using an interpolation function is adopted in consideration of the ease of system adjustment.

上記した手法により送信コイル5の座標位置が求められ、表示器14にデータが表示される。   The coordinate position of the transmission coil 5 is obtained by the above-described method, and the data is displayed on the display 14.

本実施形態において、操作者は基準具6を自身の前にその受信コイル61を左側、受信コイル62を右側となるように配置する。そして、移動体Aを手に持って手前側から左右方向に移動体Aを移動させ、この基準具6の長さに合わせた1走査が終了すると、移動体Aを前方に所定の長さずらして今度は右から左へ移動させる。このような操作を例えば操作者の手が一杯に伸びるまで繰り返し行う。   In this embodiment, the operator arranges the reference tool 6 in front of him so that the receiving coil 61 is on the left side and the receiving coil 62 is on the right side. Then, holding the moving body A in the hand, the moving body A is moved in the left-right direction from the front side, and when one scan corresponding to the length of the reference tool 6 is completed, the moving body A is shifted forward by a predetermined length. Now move from right to left. Such an operation is repeated until, for example, the operator's hand is fully extended.

図4は、上述した操作者により移動体Aをジクザグ状に走査した場合の移動軌跡を示し、実線示す軌跡が実際の移動軌跡(コース)、*マークで示す軌跡は受信コイルで受信したデータに基づいて演算した位置を示す。   FIG. 4 shows the movement trajectory when the above-mentioned operator scans the moving object A in a zigzag shape. The trajectory indicated by the solid line is the actual movement trajectory (course), and the trajectory indicated by the * mark is the data received by the receiving coil. The calculated position is shown.

本発明の有効性を確認するために、埋設物の探知を想定して平らな砂地に対地高度30mmで基準具6(図1)を設置し、その前方に対地高度5cmで送信コイル5(図1)を設置した。   In order to confirm the effectiveness of the present invention, a reference tool 6 (FIG. 1) is installed at a ground altitude of 30 mm on a flat sand ground assuming detection of a buried object, and a transmission coil 5 (FIG. 1) at a ground altitude of 5 cm in front of it. 1) was installed.

そして、送信コイル5の対地高度を一定に保った状態で左右(走査方向)及び前後(進行方向)に移動体Aを移動し、移動体(この実験では送信コイル5)の位置を演算により求める試験を行った。   Then, the moving body A is moved left and right (scanning direction) and back and forth (traveling direction) while the ground altitude of the transmission coil 5 is kept constant, and the position of the moving body (in this experiment, the transmission coil 5) is obtained by calculation. A test was conducted.

図中、横軸は走査方向x(mm)、縦軸は進行方向y(mm)である。図中の実線は送信コイルを動かす際の試験コースであり、*で示したデータは検出した位置を示す。検出した位置は試験コースに対して良好に追従しており、その位置精度は誤差3cm以内に収まっている。埋設物探知や建物壁面や床の鉄骨等を調査する非破壊検査の分野において3cm以内の誤差は許容されると考えられ、本発明は検査領域全てを移動しながら検査することを可能としている。   In the figure, the horizontal axis represents the scanning direction x (mm), and the vertical axis represents the traveling direction y (mm). The solid line in the figure is a test course when moving the transmission coil, and the data indicated by * indicates the detected position. The detected position follows the test course well, and the positional accuracy is within 3 cm. In the field of non-destructive inspection for investigating buried objects, building walls and floor steel frames, etc., it is considered that an error of 3 cm or less is allowed, and the present invention enables inspection while moving the entire inspection area.

また、送信コイルは多層プリント板で製作することにより、薄型且つ軽量(本実施例では約300g)であり、走査者の精神的及び肉体的にもストレスを軽減し、さらに走査者自身が安全を確認しながら基準具を境として進行できるので、未検査領域に伴う危険を回避できるようになっている。   In addition, the transmission coil is made of a multilayer printed board, so that it is thin and light (about 300 g in this embodiment), reduces the mental and physical stress of the scanner, and makes the scanner safe. Since it can proceed with the reference tool as a boundary while checking, the danger associated with the uninspected area can be avoided.

さらに送信コイル5(図1)と受信コイル61及び62(図1)間の伝達媒体には磁気を用いることにより、木材・土・コンクリート・水分等の金属以外の影響は受けにくくするようになっている。   Furthermore, the use of magnetism as the transmission medium between the transmission coil 5 (FIG. 1) and the reception coils 61 and 62 (FIG. 1) makes it less susceptible to influences other than metals such as wood, earth, concrete and moisture. ing.

システム系統図。System diagram. 受信コイルで受信した信号を距離に換算するための参照テーブルとその補足図。The reference table for converting the signal received with the receiving coil into distance, and its supplementary figure. システムの信号処理を説明するフローチャート。The flowchart explaining the signal processing of a system. 試験コースに対する検出位置を示す図Diagram showing the detection position for the test course

符号の説明Explanation of symbols

1…コントローラ
2…D/A変換器
3、7,8…増幅器
4、9、10…ローパスフィルター(LPF)
5…送信コイル
6…基準具
61、62…受信コイル
11、12…A/D変換器
13…演算器
14…表示器
DESCRIPTION OF SYMBOLS 1 ... Controller 2 ... D / A converter 3, 7, 8 ... Amplifier 4, 9, 10 ... Low pass filter (LPF)
5 ... Transmitting coil 6 ... Reference tool 61, 62 ... Receiving coil 11, 12 ... A / D converter 13 ... Calculator 14 ... Display

Claims (3)

基準具に離隔して配置した複数の受信コイルにより、移動体側の送信コイルより発信する磁気信号を受信し、各受信コイルが受信した磁束密度に基づく距離情報により前記移動体の位置を特定することを特徴とする移動体の位置検出方法。   Receiving magnetic signals transmitted from the transmitting coil on the moving body by a plurality of receiving coils arranged apart from the reference tool, and specifying the position of the moving body based on distance information based on the magnetic flux density received by each receiving coil. The position detection method of the moving body characterized by these. 移動体に設けた磁気を発信する送信コイルと、
前記送信コイルが発信する磁気を受信する複数の受信コイルを同一平面状において離隔配置した基準具と、
前記複数の受信コイルで受信した磁気情報に基づいて当該各受信コイルから前記発信コイルまでの距離を演算し、得られた各距離情報に基づいて発信コイルの座標位置を決定し、出力する演算手段と、
を有することを特徴とする移動体の位置検出装置。
A transmission coil for transmitting magnetism provided on the moving body;
A reference tool in which a plurality of receiving coils that receive magnetism transmitted by the transmitting coil are arranged in the same plane;
Calculation means for calculating the distance from each receiving coil to the transmitting coil based on the magnetic information received by the plurality of receiving coils, determining the coordinate position of the transmitting coil based on the obtained distance information, and outputting it When,
A position detection apparatus for a moving body, comprising:
前記送信コイルは、プリント板にて形成したことを特徴とする請求項2に記載の移動体の位置検出装置。   The position detector for a moving body according to claim 2, wherein the transmission coil is formed of a printed board.
JP2006213382A 2006-08-04 2006-08-04 Method and device for detecting position of mobile Pending JP2008039562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213382A JP2008039562A (en) 2006-08-04 2006-08-04 Method and device for detecting position of mobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213382A JP2008039562A (en) 2006-08-04 2006-08-04 Method and device for detecting position of mobile

Publications (1)

Publication Number Publication Date
JP2008039562A true JP2008039562A (en) 2008-02-21

Family

ID=39174744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213382A Pending JP2008039562A (en) 2006-08-04 2006-08-04 Method and device for detecting position of mobile

Country Status (1)

Country Link
JP (1) JP2008039562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052958A (en) * 2017-09-15 2019-04-04 株式会社東芝 Positioning system and device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500441A (en) * 1992-08-14 1996-01-16 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Positioning system
JPH08136211A (en) * 1994-09-16 1996-05-31 Yaskawa Electric Corp Rotary-transformer type resolver
JPH08211936A (en) * 1995-02-02 1996-08-20 Mitsubishi Heavy Ind Ltd Guiding device for traveling object
JPH10260002A (en) * 1997-03-19 1998-09-29 Kawasaki Heavy Ind Ltd Non-contact type two-dimensional position measuring device and its method
JPH112092A (en) * 1997-06-12 1999-01-06 Kubota Corp Propelling device
JP2000055994A (en) * 1998-08-03 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Magnetic field detector
JP2000097736A (en) * 1998-09-22 2000-04-07 Reideikku:Kk Displacement measuring apparatus
JP2000175862A (en) * 1998-12-17 2000-06-27 Olympus Optical Co Ltd Endoscope inserted shape detecting device
JP2003014408A (en) * 2001-06-29 2003-01-15 Matsushita Electric Works Ltd Position sensor
JP2005513450A (en) * 2001-12-20 2005-05-12 カリプソー メディカル テクノロジーズ インコーポレイテッド Lead-free small marker excitation system
JP2005274364A (en) * 2004-03-25 2005-10-06 Hitachi Ltd Mobile location detection system
JP2007532872A (en) * 2004-04-09 2007-11-15 ケイエスアール インターナショナル カンパニー Inductive position sensor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500441A (en) * 1992-08-14 1996-01-16 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Positioning system
JPH08136211A (en) * 1994-09-16 1996-05-31 Yaskawa Electric Corp Rotary-transformer type resolver
JPH08211936A (en) * 1995-02-02 1996-08-20 Mitsubishi Heavy Ind Ltd Guiding device for traveling object
JPH10260002A (en) * 1997-03-19 1998-09-29 Kawasaki Heavy Ind Ltd Non-contact type two-dimensional position measuring device and its method
JPH112092A (en) * 1997-06-12 1999-01-06 Kubota Corp Propelling device
JP2000055994A (en) * 1998-08-03 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Magnetic field detector
JP2000097736A (en) * 1998-09-22 2000-04-07 Reideikku:Kk Displacement measuring apparatus
JP2000175862A (en) * 1998-12-17 2000-06-27 Olympus Optical Co Ltd Endoscope inserted shape detecting device
JP2003014408A (en) * 2001-06-29 2003-01-15 Matsushita Electric Works Ltd Position sensor
JP2005513450A (en) * 2001-12-20 2005-05-12 カリプソー メディカル テクノロジーズ インコーポレイテッド Lead-free small marker excitation system
JP2005274364A (en) * 2004-03-25 2005-10-06 Hitachi Ltd Mobile location detection system
JP2007532872A (en) * 2004-04-09 2007-11-15 ケイエスアール インターナショナル カンパニー Inductive position sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052958A (en) * 2017-09-15 2019-04-04 株式会社東芝 Positioning system and device

Similar Documents

Publication Publication Date Title
EP2506003B1 (en) Methods And Apparatus For The Inspection Of Plates And Pipe Walls
EP3321671B1 (en) Rail inspection device and rail inspection system
JP2012527603A5 (en)
JP2001516053A (en) Eddy current pipeline inspection apparatus and method
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
Avila et al. A multi-frequency NDT system for imaging and detection of cracks
JP6058343B2 (en) Eddy current flaw detector and eddy current flaw detection method
JP2010048552A (en) Nondestructive inspecting device and method
CN113093289B (en) High-resolution nondestructive testing device for metal body parameters embedded in structure
JP6843430B2 (en) Reinforcing bar diameter and fog measuring device for reinforced concrete
US20110057646A1 (en) Apparatus and method for sensing position of non-orbital movable truck
JP2008039562A (en) Method and device for detecting position of mobile
KR102008105B1 (en) APPARATUS FOR DETECTING RAIL DEFECT BY USING MULTI-CHANNEL EDDY CURRENT SENSOR AND Sensor calibrating METHOD THEREOF AND RAIL DEFECT DETECTING METHOD
WO2012021034A2 (en) Conductor thickness detecting device using a double core
JP3048176B2 (en) Defect detection apparatus and method
CN102590327A (en) Multi-channel magnetic flaw detector
JP5013363B2 (en) Nondestructive inspection equipment
JP2018009862A (en) Iron based material position detector
JP5020285B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
KR102052849B1 (en) APPARATUS FOR DETECTING RAIL DEFECT BY USING MULTI-CHANNEL EDDY CURRENT SENSOR AND Sensor calibrating METHOD THEREOF AND RAIL DEFECT DETECTING METHOD
JP6058436B2 (en) Eddy current flaw detector and eddy current flaw detection method
CN111044604B (en) ACFM single-axis magnetic signal evaluation method
JP4118487B2 (en) Steel pipe corrosion diagnosis method
RU145435U1 (en) DEVICE OF ULTRASONIC CONTROL OF LARGE-SIZED PRODUCTS
JPH0833374B2 (en) Method and apparatus for detecting foreign layer in metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419