JP3048176B2 - Defect detection apparatus and method - Google Patents

Defect detection apparatus and method

Info

Publication number
JP3048176B2
JP3048176B2 JP2405829A JP40582990A JP3048176B2 JP 3048176 B2 JP3048176 B2 JP 3048176B2 JP 2405829 A JP2405829 A JP 2405829A JP 40582990 A JP40582990 A JP 40582990A JP 3048176 B2 JP3048176 B2 JP 3048176B2
Authority
JP
Japan
Prior art keywords
defect
coil
magnetic field
inspected
squid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2405829A
Other languages
Japanese (ja)
Other versions
JPH04221757A (en
Inventor
正廣 大高
和夫 高久
邦夫 長谷川
貞夫 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2405829A priority Critical patent/JP3048176B2/en
Publication of JPH04221757A publication Critical patent/JPH04221757A/en
Application granted granted Critical
Publication of JP3048176B2 publication Critical patent/JP3048176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、被検査体の亀裂等の欠
陥を非破壊的に検出する欠陥検出装置に係り、特に、電
車,自動車,宇宙機器,航空機などに使用されるアルミ
ニウムやチタンなどの非磁性材料に発生する欠陥等を高
精度に検出するのに好適な欠陥検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect detecting apparatus for non-destructively detecting defects such as cracks in an object to be inspected, and particularly to aluminum and titanium used in trains, automobiles, space equipment, aircrafts, and the like. The present invention relates to a defect detection device suitable for detecting a defect or the like generated in a non-magnetic material such as a non-magnetic material with high accuracy.

【0002】[0002]

【従来の技術】被検査体の欠陥を非破壊的に検出する方
法として、被検査体に印加する磁界を変化させて被検査
体に渦電流を生じさせ、渦電流の流れが欠陥に邪魔され
ているか否かにより、欠陥の有無を検出するものがあ
る。この渦電流探傷のための探傷コイルとして、従来
は、例えば、特開昭50−129090号公報や、ノン
ディストラクティブ,テスティング,ハンドブック:レ
オナルド,プレス,カンパニー(1963年)第36−
1項から第36−21項(NONDESTRUCTIVETESTING HAND
BOOK:THE RONALD PRESS COMPANY(1963) PP36−1〜36
−21)に記載されているように、自己誘導型コイルでは
検知コイルのみの構造が、相互誘導型コイルでは検知コ
イルと励磁コイルのみからなる構造が知られている。
2. Description of the Related Art As a method for non-destructively detecting a defect in a test object, an eddy current is generated in the test object by changing a magnetic field applied to the test object, and the flow of the eddy current is obstructed by the defect. In some cases, the presence or absence of a defect is detected depending on whether or not there is a defect. Conventionally, as a flaw detection coil for this eddy current flaw detection, for example, Japanese Patent Application Laid-Open No. 50-129090, Non-Destructive Testing, Handbook: Leonardo, Press, Company (1963) No. 36-
Items 1 to 36-21 (NONDESTRUCTIVETESTING HAND
BOOK: THE RONALD PRESS COMPANY (1963) PP36-1 ~ 36
As described in -21), a structure in which only a detection coil is used in a self-induction coil and a structure in which only a detection coil and an excitation coil are used in a mutual induction coil are known.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、励
磁コイルによる印加磁界を変化させることで被検査体に
渦電流を発生させ、渦電流が亀裂等によって乱された場
合、この渦電流に起因する磁界に変動が生じ、この変動
を検出コイルで測定し、亀裂等の有無を判定するもので
ある。この種の装置では、励磁コイルと検出コイルを被
検査体に接触させるか、または十分に近接させなくて
は、亀裂が検出できず、感度が低いものである。このた
め、離れた位置からでは被検査体の欠陥等を高精度に検
出できないという問題がある。本発明の目的は、離れた
位置から被検査体の欠陥等を高感度に検出することがで
き、更に、その離れた距離の大きさ(リフトオフ)や被
検査体の材質に検出結果が影響されない欠陥検出装置を
提供することにある。
In the above prior art, an eddy current is generated in a test object by changing a magnetic field applied by an exciting coil, and when the eddy current is disturbed by a crack or the like, the eddy current is caused by the eddy current. The variation of the magnetic field is generated, and the variation is measured by a detection coil to determine the presence or absence of a crack or the like. In this type of apparatus, the crack cannot be detected and the sensitivity is low unless the excitation coil and the detection coil are brought into contact with or sufficiently close to the test object. For this reason, there is a problem that a defect or the like of the inspection object cannot be detected with high accuracy from a distant position. An object of the present invention is to detect a defect or the like of a test object from a distant position with high sensitivity, and furthermore, the detection result is not affected by the size of the distance (lift-off) or the material of the test object. An object of the present invention is to provide a defect detection device.

【0004】[0004]

【課題を解決するための手段】上記目的は、検出コイル
として磁界の直流成分まで測定できるピックアップコイ
ルを有するSQUIDを用い、また被検査体までリフト
オフや被検査体の材質の違いの影響を受けないように励
磁コイルとしてキャンセル型コイルを採用することで、
達成される。
The object of the present invention is to use a SQUID having a pickup coil capable of measuring up to a DC component of a magnetic field as a detection coil, and to be unaffected by a lift-off to a test object and a difference in material of the test object. By adopting a cancel type coil as the exciting coil,
Achieved.

【0005】[0005]

【作用】上記SQUIDのピックアップコイルは、キャ
ンセル型の2つの励磁コイルの近傍で磁界が零のキャン
セル領域に配置するので、リフトオフに無関係に磁気的
なバランスが保持される。しかし、被検査体に亀裂等の
欠陥が存在する場合、誘導される2つの渦電流の一方が
亀裂等により乱されて両渦電流は不平衡状態となって磁
界の零点が移動し、SQUIDは亀裂が存在するときの
み特有の信号を高感度に検出する。さらにSQUIDの
ピックアップコイルを微分型とすることで、周辺ノイズ
をキャンセルししかも指向性を高め、更に一層、欠陥等
の位置を高精度で検出することが可能となる。
The pickup coil of the SQUID is arranged in the cancellation region where the magnetic field is zero near the two excitation coils of the cancellation type, so that the magnetic balance is maintained regardless of the lift-off. However, when a defect such as a crack exists in the inspection object, one of the two induced eddy currents is disturbed by the crack or the like, the two eddy currents become unbalanced, the zero point of the magnetic field moves, and the SQUID is Only when a crack exists, a unique signal is detected with high sensitivity. Further, by making the pickup coil of the SQUID of a differential type, it is possible to cancel the peripheral noise and enhance the directivity, and it is possible to detect the position of a defect or the like with high accuracy.

【0006】[0006]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は、本発明の一実施例に係る欠陥検出装置
の構成図である。この欠陥検出装置は、被検査体10で
ある金属構造部材に発生した疲労などによる亀裂12を
検出するものである。励磁コイル20は、2つの励磁コ
イル20a,20bから成り、励磁コイル20a,20
bは互いに極性が逆になっている。励磁コイル20a,
20bはSQUIDセンサのクライオスタット30の下
部に取り付けてあり、センサのピックアップコイル32
は、励磁コイル20a,20bで発生する磁界の零点領
域に配置してある。従って、励磁電流により励磁コイル
20a,20bの磁界の大きさが変化しても、両磁界の
大きさの絶対値が同じで極性が逆のため、ピックアップ
コイル32には信号が発生しない。ピックアップコイル
32とSQUID31は、クライオスタット30中に納
められており、冷媒33で動作温度まで冷却されてい
る。SQUID31の出力は、アンプ34を介してSQ
UIDコントローラ35に接続されている。励磁コイル
20a,20bへ流す電流は、励磁コントローラ21に
より制御される。SQUIDコントローラ35と励磁コ
ントローラ21はデータ処理装置50に接続されてお
り、SQUID31の検出した信号の大きさとそのとき
励磁コイル20a,20bに流された電流の大きさによ
り、データ処理装置50は亀裂12の位置寸法を演算し
て求める。尚、図1に示す実施例は1チャネル用の検査
装置であり、ハンディータイプ型の実施例である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a defect detection device according to one embodiment of the present invention. This defect detection device detects a crack 12 caused by fatigue or the like generated in a metal structural member which is an inspection object 10. The excitation coil 20 is composed of two excitation coils 20a and 20b.
b have opposite polarities. Exciting coil 20a,
20b is attached to the lower part of the cryostat 30 of the SQUID sensor, and a pickup coil 32 of the sensor is provided.
Are arranged in the zero point region of the magnetic field generated by the excitation coils 20a and 20b. Therefore, even if the magnitude of the magnetic field of the exciting coils 20a and 20b changes due to the exciting current, no signal is generated in the pickup coil 32 because the absolute values of the magnitudes of the two magnetic fields are the same and the polarities are reversed. The pickup coil 32 and the SQUID 31 are contained in the cryostat 30 and are cooled to the operating temperature by the refrigerant 33. The output of the SQUID 31 is sent to the SQ
It is connected to the UID controller 35. The current flowing through the excitation coils 20a and 20b is controlled by the excitation controller 21. The SQUID controller 35 and the excitation controller 21 are connected to the data processing device 50. The data processing device 50 is connected to the data processing device 50 by the magnitude of the signal detected by the SQUID 31 and the magnitude of the current flowing through the excitation coils 20a and 20b at that time. Calculate and calculate the position dimensions of The embodiment shown in FIG. 1 is an inspection apparatus for one channel and is a handy type embodiment.

【0007】次に、図1に示す実施例の各部の動作を図
2〜図5を参照して説明する。図2は、亀裂等の欠陥が
ない被検査体10を検査したときの励磁コイル20a,
20bによる磁界分布を示す図である。図2に示すよう
に、欠陥がない場合には、励磁コイル20a,20bが
被検査体10に印加する磁界は、大きさが同じで逆向き
の磁界であり、この印加磁界を変化させたときに生じる
各々の過電流ie,ie´も大きさが同じである。この
ため、励磁コイル20a,20bの中間に配置されたピ
ックアップコイル32は零磁界領域にあり、励磁コイル
20a,20bと被検査体10との距離(リフトオフ)
が変動しても、センサ3には出力は生じない。
Next, the operation of each part of the embodiment shown in FIG. 1 will be described with reference to FIGS. FIG. 2 shows the excitation coils 20a and 20a when the inspection object 10 having no defects such as cracks is inspected.
It is a figure which shows the magnetic field distribution by 20b. As shown in FIG. 2, when there is no defect, the magnetic fields applied by the exciting coils 20a and 20b to the device under test 10 are the same and opposite magnetic fields. Have the same magnitude. For this reason, the pickup coil 32 arranged between the excitation coils 20a and 20b is in the zero magnetic field region, and the distance (lift-off) between the excitation coils 20a and 20b and the device under test 10 is increased.
Does not produce an output at the sensor 3.

【0008】図3は、被検査体10に亀裂12がある場
合の、励磁コイル20a,20bによる磁界分布を示す
図である。図3に示すように、励磁コイル20bの正面
に亀裂12が存在する場合、図2の場合とは異なり、励
磁コイル20bの印加磁界の変化により生じる過電流i
e´はその流れが乱され、励磁コイル20aの印加磁界
の変化により生じる渦電流ieとは異なってくる。つま
り、ie≠ie´となる。これにより、励磁コイル20
a,20bの磁界にも違いが生じ、センサ3に亀裂12
による信号が得らえる。
FIG. 3 is a diagram showing a magnetic field distribution by the exciting coils 20a and 20b when the inspection object 10 has a crack 12. As shown in FIG. As shown in FIG. 3, when the crack 12 is present in front of the exciting coil 20b, unlike the case of FIG. 2, an overcurrent i caused by a change in the applied magnetic field of the exciting coil 20b is generated.
The flow of e 'is disturbed, and is different from the eddy current ie caused by the change in the applied magnetic field of the exciting coil 20a. That is, ie ≠ ie '. Thereby, the excitation coil 20
a and 20b are different, and the sensor 3 has a crack 12
Signal is obtained.

【0009】図4は、亀裂12を有する被検査体10上
を走査して測定した時のSQUIDセンサの信号出力例
図である。図4(a)は、1回の走査つまり一次元走査
で得られた信号出力波形であり、亀裂12上を通過した
時のみ正と負の信号波形が得られる。図4(b)は、
x,y方向に2次元走査した時に得られた信号出力波形
である。データ処理装置50は、この信号出力波形のデ
ータから、亀裂12の長さや深さを決定する。
FIG. 4 is a diagram showing an example of signal output of the SQUID sensor when scanning and measuring the inspection object 10 having the crack 12. FIG. 4A shows a signal output waveform obtained by one scan, that is, one-dimensional scanning. Positive and negative signal waveforms are obtained only when the signal passes over the crack 12. FIG. 4 (b)
It is a signal output waveform obtained when two-dimensional scanning is performed in the x and y directions. The data processing device 50 determines the length and the depth of the crack 12 from the data of the signal output waveform.

【0010】図5は、亀裂12の深さとSQUIDセン
サ出力の関係を示すグラフである。図5に示すように、
予め、上記と同様の測定により被検査体10の亀裂12
の深さlとSQUIDセンサの信号出力との関係を求め
ておき、この関係を用いて図4(a),(b)の測定デ
ータから亀裂12の長さや深さを決定することができ
る。
FIG. 5 is a graph showing the relationship between the depth of the crack 12 and the output of the SQUID sensor. As shown in FIG.
The crack 12 of the inspection object 10 is determined in advance by the same measurement as described above.
The relationship between the depth 1 of the SQUID sensor and the signal output of the SQUID sensor is obtained in advance, and the length and the depth of the crack 12 can be determined from the measurement data of FIGS. 4A and 4B using this relationship.

【0011】上述した実施例によれば、SQUIDを採
用することで、励磁磁界の直流成分まで検出できるの
で、励磁電流の周波数を低周波にして被検査体への磁界
の浸透深さを大きくとることが可能となり、これにより
深い箇所にある亀裂まで検出することができる。
According to the above-described embodiment, since the SQUID can be used to detect even the DC component of the exciting magnetic field, the frequency of the exciting current is made lower to increase the depth of penetration of the magnetic field into the test object. This makes it possible to detect even deep cracks.

【0012】図6は、本発明による欠陥検出装置を電車
や自動車の車両,航空機の機体等の検査に応用したとこ
ろを示す図である。図6において、車両や機体のAl板
表面にはリベット穴11が多数あいており、これらのリ
ベット穴11に疲労で亀裂12が発生することがある。
そこで、この亀裂12を高速で精度良く測定するため、
SQUIDを用いた欠陥検出装置により非接触で検査す
る。今、図6の測定体10表面にリベット穴11が多数
あり、そのうちのあるリベット穴11には亀裂12が存
在する。この亀裂12を検出するために、交流磁界で測
定体10に渦電流を発生させる励磁コイル対20がクラ
イオスタット30の表面に複数個設けてある。クライオ
スタット30の内部には、励磁コイル対20対応にピッ
クアップコイル32が設けられている。これらの複数の
ピックアップコイル32は、マルチ型SQUID31に
接続されており、SQUID31は多チャネルアンプ3
4を介してSQUIDコントローラ35に接続されてい
る。測定体10表面に吸盤40で固定された走査用バー
42上に市販のモータギヤからなる駆動ギヤボックス4
3が備えてあり、これが駆動制御装置44で制御され、
欠陥検出装置全体が走査移動されるようになっている。
吸盤40は、吸盤脱着レバー41で測定体10に脱着可
能であり、測定したい範囲へ自由に移動できる。励磁コ
イル対20は、励磁コントローラ21で制御され、励磁
コントローラ21とSQUIDコントローラ35と駆動
制御装置44は、データ処理装置50に接続される。斯
かる構成により、電車や自動車の車体や航空機の機体の
検査を行う場合、測定体表面に吸盤40で固定した駆動
機構の駆動制御装置44によって特定の範囲内で欠陥検
出装置を走査し、測定体表面のリベット穴11の亀裂1
2等が、前述した実施例と同様に判定される。本実施例
によれば、車両や機体におけるAl系合金材等の非磁性
材料であっても、その亀裂等の欠陥を非接触でしかも高
速,高感度に検出できる。
FIG. 6 is a diagram showing the application of the defect detection apparatus according to the present invention to inspection of trains, automobiles, aircraft bodies, and the like. In FIG. 6, a large number of rivet holes 11 are formed on the surface of an Al plate of a vehicle or a body, and cracks 12 may be generated in the rivet holes 11 due to fatigue.
Therefore, in order to measure this crack 12 with high speed and high accuracy,
Non-contact inspection is performed by a defect detection device using SQUID. Now, there are a number of rivet holes 11 on the surface of the measuring object 10 in FIG. 6, and a crack 12 is present in one of the rivet holes 11. In order to detect the crack 12, a plurality of exciting coil pairs 20 for generating an eddy current in the measuring body 10 by an AC magnetic field are provided on the surface of the cryostat 30. A pickup coil 32 is provided inside the cryostat 30 so as to correspond to the excitation coil pair 20. The plurality of pickup coils 32 are connected to a multi-type SQUID 31, and the SQUID 31 is a multi-channel amplifier 3
4 is connected to the SQUID controller 35. A drive gear box 4 composed of a commercially available motor gear is mounted on a scanning bar 42 fixed to the surface of the measurement body 10 with a suction cup 40.
3, which is controlled by the drive control device 44,
The entire defect detection device is moved by scanning.
The suction cup 40 can be attached to and detached from the measuring body 10 by a suction cup attachment / detachment lever 41, and can be freely moved to a range to be measured. The excitation coil pair 20 is controlled by an excitation controller 21, and the excitation controller 21, the SQUID controller 35, and the drive control device 44 are connected to a data processing device 50. With such a configuration, when inspecting the body of a train, a car, or the body of an aircraft, the defect detection device is scanned within a specific range by the drive control device 44 of the drive mechanism fixed to the surface of the measurement object by the suction cup 40, and the measurement is performed. Crack 1 in rivet hole 11 on body surface
2 and the like are determined in the same manner as in the above-described embodiment. According to the present embodiment, even in the case of a non-magnetic material such as an Al-based alloy material in a vehicle or a body, a defect such as a crack can be detected in a non-contact manner at high speed and with high sensitivity.

【0013】[0013]

【発明の効果】本発明によれば、被検査体の亀裂等の欠
陥を離れた位置からでもその離間距離に影響されること
なく高感度にしかも検査体材質に依存せずに検出するこ
とが可能になる。しかも、励磁電流の直流成分まで検出
することが可能なため、被検査体の深い所にある欠陥ま
でも高感度に検出することができる。
According to the present invention, it is possible to detect a defect such as a crack in a test object with high sensitivity without being influenced by the distance even from a remote position and without depending on the material of the test object. Will be possible. In addition, since it is possible to detect even the DC component of the exciting current, it is possible to detect even a defect deep in the inspection object with high sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る欠陥検出装置の構成図
である。
FIG. 1 is a configuration diagram of a defect detection device according to an embodiment of the present invention.

【図2】欠陥を持たない被検査体の磁界分布を示す図で
ある。
FIG. 2 is a diagram showing a magnetic field distribution of a test object having no defect.

【図3】欠陥を有する被検査体の磁界分布を示す図であ
る。
FIG. 3 is a diagram showing a magnetic field distribution of a test object having a defect.

【図4】欠陥の1次元走査時の信号出力波形図(a)と
2次元走査時の信号出力波形図(b)である。
4A and 4B are a signal output waveform diagram at the time of one-dimensional scanning of a defect and a signal output waveform diagram at the time of two-dimensional scanning.

【図5】欠陥深さとSQUID出力の関係を示すグラフ
である。
FIG. 5 is a graph showing a relationship between a defect depth and SQUID output.

【図6】電車や自動車の車両,航空機の機体等の検査に
用いた欠陥検出装置の構成図である。
FIG. 6 is a configuration diagram of a defect detection apparatus used for inspection of a train, an automobile, an airframe, and the like.

【符号の説明】[Explanation of symbols]

3…センサ、10…検査体、11…リベット穴、12…
亀裂、20…励磁コイル対、20a,20b…励磁コイ
ル、21…励磁コントローラ、30…クライオスタッ
ト、31…SQUID、32…ピックアップコイル、3
3…冷媒。
3 ... sensor, 10 ... test object, 11 ... rivet hole, 12 ...
Crack, 20: excitation coil pair, 20a, 20b: excitation coil, 21: excitation controller, 30: cryostat, 31: SQUID, 32: pickup coil, 3
3. Refrigerant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 根本 貞夫 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (56)参考文献 特開 平2−78918(JP,A) 特開 昭60−82850(JP,A) 特開 昭60−21445(JP,A) 特開 昭63−293461(JP,A) 実開 昭63−141449(JP,U) 実公 昭60−11493(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) G01N 27/72 - 27/90 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Sadao Nemoto 502 Kandachi-cho, Tsuchiura-shi, Ibaraki Machinery Research Laboratory, Hitachi, Ltd. (56) References JP-A-2-78918 (JP, A) JP-A-60- 82850 (JP, A) JP-A-60-21445 (JP, A) JP-A-63-293461 (JP, A) JP-A-63-141449 (JP, U) JP-A-60-11493 (JP, Y2) (58) Field surveyed (Int. Cl. 7 , DB name) G01N 27/72-27/90

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検査体の欠陥を非破壊的に検出する欠
陥検出装置において、並列に配置される2つの空心の励
磁コイルであって被検査体への印加磁界の大きさが同じ
で極性が反対の2つの励磁コイルと、該2つの励磁コイ
ルによる磁気バランス領域に微分型のピックアップコイ
ルを配置したSQUIDとを備えてなることを特徴とす
る欠陥検出装置。
1. A defect detecting apparatus for non-destructively detecting a defect in an object to be inspected, comprising two air-core exciting coils arranged in parallel, wherein the magnitude of a magnetic field applied to the object to be inspected is the same and the polarity is A defect detection device comprising: two exciting coils opposite to each other; and a SQUID in which a differential pickup coil is arranged in a magnetic balance region formed by the two exciting coils.
【請求項2】 請求項1記載の欠陥検出装置を用いて被
検査体の欠陥の有無を検出する方法において、2つの空
心の励磁コイルに電流を流して各励磁コイルに磁界を発
生させ、この磁界を時間的に変化させることにより被検
査体に生じる励磁コイル対応の渦電流間に差異が生じる
か否かをピックアップコイルにて検出し、差異が生じた
とき欠陥有りとする欠陥検出方法。
2. A method for detecting the presence or absence of a defect in an object to be inspected by using the defect detection device according to claim 1, wherein a current is supplied to two air-core excitation coils to generate magnetic fields in the respective excitation coils. A defect detection method in which a pickup coil detects whether or not there is a difference between eddy currents corresponding to an excitation coil generated in an object to be inspected by changing a magnetic field over time, and determines that there is a defect when the difference occurs.
【請求項3】 請求項2において、被検査体に対し励磁
コイルを二次元的に走査しピックアップコイルの検出し
た信号波形の変化から欠陥の長さ,深さを判定すること
を特徴とする欠陥検出方法。
3. The defect according to claim 2, wherein a length and a depth of the defect are determined from a change in a signal waveform detected by the pickup coil by two-dimensionally scanning the exciting coil with respect to the inspection object. Detection method.
JP2405829A 1990-12-25 1990-12-25 Defect detection apparatus and method Expired - Fee Related JP3048176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2405829A JP3048176B2 (en) 1990-12-25 1990-12-25 Defect detection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2405829A JP3048176B2 (en) 1990-12-25 1990-12-25 Defect detection apparatus and method

Publications (2)

Publication Number Publication Date
JPH04221757A JPH04221757A (en) 1992-08-12
JP3048176B2 true JP3048176B2 (en) 2000-06-05

Family

ID=18515437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2405829A Expired - Fee Related JP3048176B2 (en) 1990-12-25 1990-12-25 Defect detection apparatus and method

Country Status (1)

Country Link
JP (1) JP3048176B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097425A1 (en) * 2001-05-29 2002-12-05 Nihon University Mutual-induction insertion probe
JP4684695B2 (en) * 2004-03-23 2011-05-18 住友軽金属工業株式会社 Non-magnetic metal tube surface defect detector
JP5013363B2 (en) * 2005-10-11 2012-08-29 国立大学法人大阪大学 Nondestructive inspection equipment
JP5946086B2 (en) * 2012-03-19 2016-07-05 株式会社日立製作所 Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
CN103257181B (en) * 2013-05-24 2015-08-26 中国矿业大学 Sheet metal defect detecting device and method under a kind of high-speed motion state
JP2015102513A (en) 2013-11-27 2015-06-04 横河電機株式会社 Metallic foreign matter detection device, and eddy current flaw detector
CN105241951A (en) * 2015-09-22 2016-01-13 天津工业大学 Non-magnetic conductor material electromagnetic eddy current detection apparatus
WO2021156916A1 (en) * 2020-02-03 2021-08-12 株式会社島津製作所 Inspection assistance system and inspection assistance method

Also Published As

Publication number Publication date
JPH04221757A (en) 1992-08-12

Similar Documents

Publication Publication Date Title
Dogaru et al. Giant magnetoresistance-based eddy-current sensor
Mook et al. Electromagnetic imaging using probe arrays
US7696747B2 (en) Electromagnetic induction type inspection device and method
JP4814511B2 (en) Pulsed eddy current sensor probe and inspection method
US6636037B1 (en) Super sensitive eddy-current electromagnetic probe system and method for inspecting anomalies in conducting plates
Rocha et al. Magnetic sensors assessment in velocity induced eddy current testing
RU2606695C2 (en) Differential sensor, control system and method for detecting anomalies in electroconductive materials
CN103163216B (en) A kind of metallic conductor defect recognition based on giant magnetoresistance sensor and method of estimation
KR100218653B1 (en) Electronic induced type test apparatus
Giguère et al. Pulsed eddy current: Finding corrosion independently of transducer lift-off
US4881031A (en) Eddy current method and apparatus for determining structural defects in a metal object without removing surface films or coatings
US4207519A (en) Method and apparatus for detecting defects in workpieces using a core-type magnet with magneto-sensitive detectors
JP3048176B2 (en) Defect detection apparatus and method
EP2963415A1 (en) Apparatus and circuit for an alternatig current field measurement
Bernieri et al. Characterization of an eddy-current-based system for nondestructive testing
US20070247145A1 (en) Device for detecting defects on metals
JP3011090U (en) Spot welding nugget inspection equipment
Porto et al. Design and analysis of a GMR eddy current probe for NDT
Göktepe Investigation of and Components of the Magnetic Flux Leakage in Ferromagnetic Laminated Sample
Nadzri et al. Referencing technique for phase detection in eddy current evaluation
Rifai et al. Fuzzy logic error compensation scheme for eddy current testing measurement on mild steel superficial crack
JP5011056B2 (en) Eddy current inspection probe and eddy current inspection device
Sophian et al. Dual-probe methods using pulsed eddy currents and electromagnetic acoustic transducers for NDT inspection
Bender Barkhausen noise and eddy current microscopy (BEMI): microscope configuration, probes and imaging characteristics
Dogaru et al. Detection of cracks near sharp edges by using giant magneto-resistance-based eddy current probe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees