JP2008032452A - 角速度・加速度検出センサ - Google Patents

角速度・加速度検出センサ Download PDF

Info

Publication number
JP2008032452A
JP2008032452A JP2006204261A JP2006204261A JP2008032452A JP 2008032452 A JP2008032452 A JP 2008032452A JP 2006204261 A JP2006204261 A JP 2006204261A JP 2006204261 A JP2006204261 A JP 2006204261A JP 2008032452 A JP2008032452 A JP 2008032452A
Authority
JP
Japan
Prior art keywords
tuning
type piezoelectric
fork type
piezoelectric vibrating
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006204261A
Other languages
English (en)
Other versions
JP4961877B2 (ja
Inventor
Jun Watanabe
潤 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006204261A priority Critical patent/JP4961877B2/ja
Publication of JP2008032452A publication Critical patent/JP2008032452A/ja
Application granted granted Critical
Publication of JP4961877B2 publication Critical patent/JP4961877B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

【課題】小型に構成でき、比較的簡単な構成で、感度の良好な角速度・加速度検出センサを提供すること。
【解決手段】発振回路110と、フィルタ回路120と、このフィルタ回路120から出力される信号を整流する整流回路130と、この整流回路130から出力される信号を積分する積分回路140と、を有する角速度・加速度検出センサ100である。ここで、発振回路110は、1つの第1の音叉型圧電振動片111を備えている。また、フィルタ回路120も、1つの第2の音叉型圧電振動片121を備えている。この第2の音叉型圧電振動片121は、発振回路110の第1の音叉型圧電振動片111と構成が同じであるが、発振回路110の第1の音叉型圧電振動片111とは、その振動腕の延びる方向が逆方向であり、第1および第2の各音叉型圧電振動片のうち、少なくとも一方の音叉型圧電振動片が、角速度検出機能を備えている。
【選択図】図1

Description

本発明は、移動体などに作用する加速度と回転角速度を計測する角速度・加速度検出センサに係り、特に比較的簡単な構成で、感度に優れた角速度・加速度検出センサに関する。
従来の加速度センサとしては、所定の質量を有するマス部と、これを支持する梁部などのバネ要素で形成されたものが知られている。
このような加速度センサでは、バネ要素に生じた応力が加速度に対応するので、この応力を検出することにより、加速度を知るようにしている。
具体的には、加速度がマス部に作用すると、該マス部は、該バネ要素に生じた応力がマス部の慣性力とつりあうまで変位する。したがって、この変位から、バネ要素に生じた応力を検出し、加速度を知ることができるものである。
しかしながら、このような方式の加速度センサでは、応力検出に半導体センサなどの特別な検出手段を用いる必要があることや、応力−電圧変換効率の問題などが指摘されている。
そこで、支持基台に平行ビーム振動体を接続して支持し、該平行ビーム振動体をマス部に接続するとともに、平行ビーム振動体を励振する手段、および平行ビーム振動体の振動数を検出する手段を設けた構成の加速度センサも提案されている(特許文献1、図1、図2参照)。
このような構成の加速度センサによれば、加速度により生じるマス部の慣性力によって平行ビーム振動体のビームが撓む。これにより平行ビーム振動体は形状剛性が変化し、その共振振動数が変化する。この振動数変化を検出することで、加速度を検出しようとするものである。
該加速度センサは、上記のような構成であるため、平行ビーム振動体の周波数を周波数カウンタなどの検出手段で検出するため、従来のような半導体センサなどの特別な手段が不要であり、変換効率の問題もない。
特開平9−257830号
しかしながら、特許文献1の加速度センサでは、比較的大きな形状と質量をもつマス部を必要とし、その分小型化が困難である。
また、加速度に対応した応力感度を最適なものにした振動モードが選択されていないなどの問題がある。
この発明は、小型に構成でき、比較的簡単な構成で、感度良く加速度を検出し、しかも角速度も同時に検出することができる角速度・加速度検出センサを提供することを目的とする。
上記発明は、第1の発明にあっては、第1の音叉型圧電振動片として、少なくとも1つの音叉型圧電振動片を備えた発振回路と、前記発振回路が備える第1の音叉型圧電振動片と同数の第2の音叉型圧電振動片を備え、前記発振回路から出力される信号を直接又は他の回路を介して入力されるフィルタ回路とを有し、前記第1および第2の各音叉型圧電振動片が、圧電材料で形成された基部、及び前記基部と一体に形成され前記基部から平行に延びる少なくとも一対の振動腕を具備し、前記発振回路と前記フィルタ回路とに設けられた前記第1の音叉型圧電振動片と、第2の音叉型圧電振動片とでは、各振動腕の延びる方向が互いに逆方向になるように配置されており、加速度が作用した際に、前記発振回路の第1の音叉型圧電振動片の周波数が増加すると、前記フィルタ回路の周波数減衰特性又は周波数位相特性が負の方向に周波数シフトし、前記発振回路の第1の音叉型圧電振動片の周波数が減少すると、前記フィルタ回路の周波数減衰特性又は周波数位相特性が正の方向に周波数シフトする構成とされ、さらに、前記第1および第2の各音叉型圧電振動片のうち、少なくとも一方の音叉型圧電振動片が、角速度検出機能を備えている角速度・加速度検出センサにより、達成される。
第1の発明の構成によれば、音叉型圧電振動片は、その振動腕に対して平行に加速度が加えられた場合、振動腕の長さが、ごく僅かに延びたり縮んだりするが、発振回路が備える第1の音叉型圧電振動片とフィルタ回路が備える第2の音叉型圧電振動片とは、ともに、各振動腕の延びる方向が加速度が作用する方向と一致されている。しかも、発振回路が備える第1の音叉型圧電振動片とフィルタ回路が備える第2の音叉型圧電振動片とは各振動腕の向きが互いに逆向きになるように配置されている。
このため、発振回路が備える第1の音叉型圧電振動片の振動腕が延びれば、フィルタ回路が備える第2の音叉型圧電振動片の振動腕が僅かに縮むし、他方で、発振回路が備える第1の音叉型圧電振動片の振動腕が縮めば、フィルタ回路が備える第2の音叉型圧電振動片の振動腕が僅かに延びることとなる。
ここで、音叉型圧電振動片の振動腕の長さをlとし、振動腕の幅をWとすると、
(周波数)f=W/l・・・・・(式1)。
となる。
つまり、振動腕の長さが長いと、周波数は低くなり、振動腕の長さが短くなると周波数は高く変化する。
このことから、振動腕の方向に対して平行な成分を有する加速度が作用した際に、発振回路が備える第1の音叉型圧電振動片の周波数(「周波数値」、以下、同じ)が増加または減少する。そして、第2の音叉型圧電振動片によって決定されるフィルタ回路のフィルタ特性は、前記第1の音叉型圧電振動片の周波数の変化する方向とは逆方向にシフトする。なお、フィルタ特性としては、例えばフィルタ回路に入力される信号の周波数に対するフィルタ回路の減衰量の特性や、フィルタ回路に入力される信号の周波数に対するフィルタ回路の位相特性などがある。加速度が作用することにより、フィルタ回路のフィルタ特性が変化するとともに、フィルタ回路に入力される信号の周波数も変化するため、フィルタ回路の出力する信号の振幅や位相が大きく変化する。
したがって、ひとつの音叉型圧電振動片に対して加速度が作用した場合における周波数変化分を検出する構成と比較すると、加速度検出の感度を向上させることが可能である。
また、第1の音叉型圧電振動片と第2の音叉型圧電振動片とには、同時に加速度が作用し、周波数変化も同時に、しかも瞬時に生じるので、応答がきわめて早い。
加速度を受けてバネ要素を変形させるマス部を必要としないので、小型に形成することができる。
さらに、前記第1および第2の各音叉型圧電振動片のうち、少なくとも一方の音叉型圧電振動片が、角速度検出機能を備えているので、加速度だけでなく、角速度も同時に検出することができる。
第2の発明は、第1の発明の構成において、前記フィルタ回路から出力される信号を整流する整流回路と、該整流回路から出力される信号を積分する積分回路を有することを特徴とする。
第2の発明の構成によれば、第1の音叉型圧電振動片の振動腕に平行な成分の加速度が加えられた場合、発振回路が備える前記第1の音叉型圧電振動片の振動腕が僅かに延びる。したがって、発振回路が備える音叉型圧電振動片の周波数が減少し(、発振回路から出力される信号の周波数も減少する。なお、第1の音叉型圧電振動片が逆向きに配置されていて、その振動腕に平行な成分の加速度が加えられた場合、該第1の音叉型圧電振動片の振動腕が僅かに縮んだ場合には、周波数は増加する。この点については、以下同じである。
他方で、フィルタ回路においては、加速度の影響により、減衰量−周波数特性が、減衰量が大きくなる方向にシフトする。
したがって、この減衰量−周波数特性のシフトしたフィルタ回路に、発振回路からの周波数が増加した信号が入力されれば、第2の音叉型圧電振動片を備える前記フィルタ回路における減衰量がより大きくなり、フィルタ回路から出力される信号の振幅は大きく変化し、これを整流して積分した値は、第1の音叉型圧電振動片を備える発振回路の出力信号の周波数変化分よりも、加速度の変化を大きく反映することとなる。
よって、第2の発明の構成によれば、積分回路から出力される信号を利用することにより、音叉型圧電振動片の減衰量−周波数特性の変化に基づく加速度検出の感度向上を図ることが可能となる。
また、例えば角速度センサの周囲温度が高くなる場合は次のとおりとなる。すなわち、音叉型圧電振動片の振動腕の周波数は、大きくなり、音叉型圧電振動片の減衰量−周波数特性は減衰量が小さくなる方向にシフトする。したがって、第2の発明の構成において角速度・加速度検出センサの周囲温度が高くなった場合、発振回路が備える音叉型圧電振動片の周波数が大きくなり、発振回路から出力される信号の周波数も大きくなる。
他方で、フィルタ回路においては、減衰量−周波数特性が、その特性波形のグラフ形状を保ったまま、減衰量が小さくなる方向にシフトする。
したがって、発振回路から周波数が増加した信号が、減衰量が小さくなる方向に減衰量−周波数特性がシフトしたフィルタ回路に入力されるため、温度変化によるフィルタ回路における減衰量の変化は打ち消され、フィルタ回路から出力される信号の振幅の変化が抑制される。
よって、第2の発明の構成によれば、周囲温度の変化によって加速度検出値に生じる誤差を抑制できる。
第3の発明は、第1の発明の構成において、前記発振回路から出力される信号の位相を90度シフトさせた信号を前記フィルタ回路に出力する移相回路と、前記フィルタ回路から出力される信号と前記発振回路から出力される信号とを乗算する乗算回路と、前記乗算回路から出力される信号を積分する積分回路とを有することを特徴とする。
第3の発明の構成によれば、加速度が作用していない場合は、発振回路から出力される信号とフィルタ回路から出力される信号は、位相差が90度であるから、これらを乗算して積分すると、その値は0となる。
しかしながら、第3の発明に係る角速度・加速度検出センサにおいて、加速度が作用した場合は、発振回路が備える第1の音叉型圧電振動片の振動腕が僅かに延びる。したがって、発振回路においては、第1の音叉型圧電振動片の周波数が減少し、位相−周波数特性も、その特性を表すグラフ形状を保ったまま、位相が大きくなる方向にシフトする。このため、発振回路から出力される信号は、位相(「位相値」、以下、同じ)が増加する。
他方、フィルタ回路においては、第2の音叉型圧電振動片の振動腕が僅かに縮むから、第2の音叉型圧電振動片の周波数が増加し、位相−周波数特性も、その特性を表すグラフ形状を保ったまま、位相が小さくなる方向にシフトする。したがって、フィルタ回路から出力される信号の位相は減少する。
このため、第3の発明に係る角速度・加速度検出センサにおいては、発振回路から出力される信号の位相が増加する一方で、フィルタ回路から出力される信号の位相が減少することとなって、発振回路から出力される信号における位相とフィルタ回路から出力される信号の位相とが、両者の位相差を大きくする方向に変化する。したがって、これらを乗算して積分した値は、フィルタ回路を備えない場合と比較して大きくなり、加速度検出の感度向上が図られる。
また、音叉型圧電振動片の振動腕の周波数は温度が高くなると大きくなり、音叉型圧電振動片の位相−周波数特性は温度が高くなると位相が大きくなる方向にシフトする。したがって、第3の発明の構成において角速度・加速度検出センサの温度が高くなった場合、発振回路が備える音叉型圧電振動片の周波数が増加し、発振回路から出力される信号の位相は増加する。
他方、フィルタ回路においては、位相−周波数特性が、その特性を表すグラフ形状を保ったまま、位相が大きくなる方向にシフトする。
したがって、発振回路から位相が増加した信号が、位相が大きくなる方向に位相−周波数特性がシフトしたフィルタ回路に入力されるため、温度変化によるフィルタ回路における位相の変化は打ち消され、発振回路から出力される信号とフィルタ回路から出力される信号の位相差は90度のまま変化しない。
よって、第3の発明の構成によれば、加速度が作用していないのに温度の変化によって正確な加速度信号と異なる値が検出されてしまうことを防止できる。
第4の発明は、第1ないし3のいずれかの発明の構成において、前記発振回路を構成する第1の音叉型圧電振動片及び集積回路と、前記フィルタ回路を備える前記第2の音叉型圧電振動片とを収容するパッケージと、該パッケージを気密に封止する蓋体とを有することを特徴とする。
第4の発明の構成によれば、加速度を検出する上で、前記圧電振動片を気密に封止することにより、音叉型圧電振動片の動作環境を安定させることができ、安定した振動とすることができ、安定した加速度検出を行うことができる。
第5の発明は、第4の発明の構成において、前記パッケージが、個々に配線基板を有する2つのキャビティを上下に重ねて形成したものであり、一方のキャビティに前記第1および第2の音叉型圧電振動片を収容し、他方のキャビティに前記集積回路を収容したことを特徴とする。
第5の発明の構成によれば、キャビティを2つ設けて、電子部品を縦2段に収容することで、実装スペースを小さくすることができる。
第6の発明は、第4の発明の構成において、前記パッケージが、共通の配線基板を挟んで、上下に2つのキャビティを形成した所謂H型のパッケージであり、一方のキャビティに前記第1および第2の音叉型圧電振動片を収容し、他方のキャビティに前記集積回路を収容したことを特徴とする。
第6の発明の構成によれば、2つのキャビティに収容される各電子部品に関して、共通の配線基板を設けることで、高さ寸法を低減し、低背化を図ることができる。
以下、この発明の好適な実施形態を添付図面を参照しながら、詳細に説明する。
尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
(第1の実施形態)
図1は、本発明の第1の実施の形態に係る角速度・加速度検出センサ100を示す図である。
符合101は、容器であり、例えば、セラミックス製のパッケージが使用される。パッケージ101は、内部に収容される音叉型圧電振動片の駆動環境を安定させたり、外部からの種々の影響を排除するために適切なものが選択される。好適なパッケージ等の具体的な構成に関しては、後述する実施例で詳しく説明する。
パッケージ101内には、第1の音叉型圧電振動片111と、第2の音叉型圧電振動片121が収容されている。
後述するように、第1の音叉型圧電振動片111は、発振回路の一部を構成するものである。第2の音叉型圧電振動片121は、フィルタ回路の一部を構成するものである。
また、第1および第2の各音叉型圧電振動片111,121のうち、少なくとも一方の音叉型圧電振動片が、後述するように、角速度検出機能を備えている。
第1の音叉型圧電振動片111と第2の音叉型圧電振動片121は、圧電材料で形成された基部51と、この基部51と一体に形成され、該基部51から平行に延びる少なくとも一対の振動腕34,35を備えている。
第1の音叉型圧電振動片111と第2の音叉型圧電振動片121においては、図示のように、各振動腕34,35の延びる方向が、検出すべき加速度が作用する方向Gと一致されているとともに、第1の音叉型圧電振動片111と、第2の音叉型圧電振動片121とでは、各振動腕34,35の向きが互いに逆向きになるように配置されている。
また、第1の音叉型圧電振動片111(211)および第2の各音叉型圧電振動片121(221)のうち、少なくとも一方の音叉型圧電振動片が、角速度検出機能を備えている。
この実施形態では、第1の音叉型圧電振動片111(211)に角速度検出機能を備えた音叉型圧電振動片を用いることとして、以下、説明するが、これに限らず、第2の音叉型圧電振動片だけに、あるいは第2の音叉型圧電振動片にも角速度検出機能を備えるようにしてもよい。
図2および図3は、上述した第2の音叉型圧電振動片121(221)に使用することができる音叉型圧電振動片32(角速度検出機能のないもの)の詳しい構成例を示す図である。
図2において、音叉型圧電振動片32は、圧電材料により形成した例えば矩形もしくは正方形の基部51と、この基部を基端として、同じ方向に延びる一対の振動腕34,35とを有している。
ここで、音叉型圧電振動片32は、例えば、圧電材料のうち、圧電基板として、例えば、音叉型圧電振動片32を複数もしくは多数分離することができる大きさの水晶ウエハを用いて形成されている。この場合、水晶の単結晶から切り出す際、X軸が電気軸、Y軸が機械軸及びZ軸が光学軸となるように、このX軸、Y軸及びZ軸からなる直交座標系において、Z軸を中心に時計回りに0度ないし5度の範囲で回転して切り出した水晶Z板を所定の厚みに切断研磨して得られるものを用いる。
このような水晶ウエハをエッチングすることにより、図2の音叉型圧電振動片32の外形を形成している。
図3は図2のE−E線切断端面図である。図2および図3に示されているように、音叉型圧電振動片32の各振動腕34,35には、それぞれ長さ方向に延びる長い有底の長溝56,57が形成されている。この各長溝56,57は、図3に示されているように、各振動腕34,35の表裏両面に形成されている。
さらに、図2において、音叉型圧電振動片32の基部51の端部(図2では下端部)の幅方向両端付近には、引き出し電極52,53が形成されている。各引き出し電極52,53は、音叉型圧電振動片32の基部51の図示しない裏面にも同様に形成されている。
これらの各引き出し電極52,53は、後述するパッケージ側の電極部と導電性接着剤により接続される部分である。そして、各引き出し電極52,53は、図2および図3に示されているように、各振動腕34,35の上下の面にそれぞれ設けた励振電極54,54、55,55とそれぞれ一体に接続されている。また、各励振電極54,54、55,55は、図3に示されているように各振動腕34,35の両側面にも形成されており、例えば、振動腕34に関しては、上下面の励振電極54と、その側面部の励振電極55とが互いに異極となるようにされている。また、振動腕35に関しては、上下面の励振電極55と、その側面部の励振電極54とが互いに異極となるようにされている。
ここで、引き出し電極52,53に駆動電圧を印加すると、各振動腕34,35の先端部を互いに接近・離間させるようにして水平な屈曲運動を生じる。この屈曲運動による各振動腕34,35の変形により圧電作用として生じる交流電流の周波数は、腕幅をWとし、腕長さをlとしたとき、
(周波数)f=W/lとなる(式1)。
さらに、この音叉型圧電振動片32は、好ましくは、全体として、きわめて小型に形成されていて、図2において、例えば、全長が、1300μm程度、振動腕の長さが1040μm程度、腕幅が40μmないし55μm程度とされたきわめて小型の圧電振動片である。
図4および図5は、上述した第1の音叉型圧電振動片111(211)に使用することができる音叉型圧電振動片32−1であって、角速度検出機能を備えるものの詳しい構成例を示す図である。
図4において、音叉型圧電振動片32−1は、圧電材料により形成した例えば矩形もしくは正方形の基部51と、この基部を基端として、同じ方向に延びる一対の振動腕34−1,35−1とを有しており、その材質などの点は、図2および図3で説明した圧電振動片32と同じであるから、重複する説明は省略する。
音叉型圧電振動片32−1の一方の振動腕34−1は、駆動用の振動腕であり、その上下面と両側面には、駆動用の電極として、励振電極54,54、55,55が形成されている。各励振電極54,54、55,55から引き出された引き出し電極D1,D2は図4に示すように基部の端部に引き回されており、駆動端子として使用できる。
音叉型圧電振動片32−1の他方の振動腕35−1は検出用の振動腕である。この振動腕35−1の内側の側面には、電極56が形成されており、駆動用端子D2と接続されている。また、振動腕35−1の他方の側面には、振動腕の長さ方向に平行に延びる一対の電極57,57が形成されており、基部51に引き回されて、角速度速度の検出端子S1,S2とされている。
音叉型圧電振動片32−1は以上のように構成されており、駆動用端子D1,D2に交流電圧が印加されて、振動腕34−1が屈曲振動されるとともに、該屈曲振動中に、検出用の振動腕35−1にはコリオリの力により電荷が生じ、角速度速度の検出端子S1,S2により角速度信号として検出される。
かくして、音叉型圧電振動片32−1によれば、屈曲振動に基づく周波数の生成と、音叉型圧電振動片32−1に作用した図1の角速度ωに基づく角速度検出とを同時に行うことができる。
図6は、図1の角速度・加速度検出センサ100の電気的構成の一例を示すブロック図である。
図6に示すように、第1の実施の形態に係る角速度・加速度検出センサ100は、発振回路110と、フィルタ回路120と、このフィルタ回路120から出力される信号を整流する整流回路130と、この整流回路130から出力される信号を積分する積分回路140とを有している。
発振回路110は、例えば、図4および図5で説明した音叉型圧電振動片32−1と同一構成の第1の音叉型圧電振動片111を備えている。この第1の音叉型圧電振動片111は、上述したように、圧電材料で形成された基部、及び基部と一体に形成され基部から平行に延びる少なくとも一対の振動腕を具備している。
また、フィルタ回路120は、例えば、図2および図3で説明した音叉型圧電振動片32と同一構成の第2の音叉型圧電振動片121を備えている。
図1で説明したように、この第2の音叉型圧電振動片121は、発振回路110の第1の音叉型圧電振動片111とは、その振動腕の向きが逆である。フィルタ回路120には、発振回路110から出力される信号が直接入力される。
整流回路130は、例えばダイオード131を含んでおり、フィルタ回路120の出力信号を整流して、積分回路140に出力する。
この第1の実施の形態に係る角速度・加速度検出センサ100に加速度が作用した場合、その成分に、発振回路110の第1の音叉型圧電振動片111及びフィルタ回路120の第2の音叉型圧電振動片121の振動腕に平行な成分が含まれていると、次のような物理的な変化がある。
なお、以下の説明は、加速度検出に関するものであり、角速度速度ω(図1参照)については、角速度検出端子S1,S2から加速度とは別に検出される。
すなわち、発振回路110の第1の音叉型圧電振動片111とフィルタ回路120の第2の音叉型圧電振動片121とにおいて振動腕の向きが逆である。このため、発振回路110が備える第1の音叉型圧電振動片111の振動腕の長さが僅かに延びれば、フィルタ回路120が備える第2の音叉型圧電振動片121の振動腕の長さが僅かに縮む。他方、発振回路110が備える第1の音叉型圧電振動片111の振動腕が縮めば、フィルタ回路120が備える第2の音叉型圧電振動片121の振動腕が僅かに延びることとなる。
したがって、発振回路110が備える第1の音叉型圧電振動片111の周波数が増加または減少する一方、フィルタ回路120が備える第2の音叉型圧電振動片121の周波数が減少または増加する(式1参照)。
よって、第1の実施の形態に係る角速度・加速度検出センサ100において、加速度を作用させ、発振回路110が備える第1の音叉型圧電振動片111の周波数とフィルタ回路120が備える第2の音叉型圧電振動片121の周波数との差をとった場合、その絶対値は、発振回路110の第1の音叉型圧電振動片111の周波数変化分よりも大きくなる。
図7は、フィルタ回路120が備える第2の音叉型圧電振動片121の減衰量−周波数特性を示す図(その1)である。
第1の実施の形態に係る角速度・加速度検出センサにおいて、加速度を作用させる前の発振回路110の周波数をf1とすると、フィルタ回路120には、周波数がf1の信号が入力されるから、フィルタ回路120における減衰量はA1となる。
ここで、第1の実施の形態に係る角速度・加速度検出センサに、たとえば図1に示すG1の方向に加速度が作用した場合は、発振回路110が備える第1の音叉型圧電振動片111の振動腕が僅かに縮む。したがって、発振回路110が備える第1の音叉型圧電振動片111の周波数は減少し、発振回路110から出力される信号の周波数も減少して、f2となる。
他方で、フィルタ回路120においては、図7に示すように、減衰量−周波数特性が、その特性を表すグラフ形状を保ったまま、減衰量が小さくなる方向にシフトする(図7では、シフト前の特性を実線(特性1)で示し、シフト後の特性を破線(特性2)で示している)。
したがって、第1の実施の形態に係る角速度・加速度検出センサに、たとえば図1に示すG1の方向に加速度が作用した場合は、フィルタ回路120に発振回路110からの周波数f2の信号が入力され、減衰量はA2となる。
よって、第1の実施の形態に係る角速度・加速度検出センサに、たとえば図1に示すG1の方向に加速度を作用させると、フィルタ回路120の減衰量がA1からA2に変化することとなる。したがって、第1の実施の形態に係る角速度・加速度検出センサ100においては、発振回路110から出力される信号の周波数と、フィルタ回路120の減衰量−周波数特性とが、互いに逆に変化する結果、フィルタ回路120から出力される信号の振幅が大きく変化する。よって、フィルタ回路120から出力される信号を整流して積分した値は、発振回路110から出力される信号の振幅の変化を整流して積分した値よりも大きくなり、加速度の変化を大きく反映することとなる。したがって、第1の実施の形態に係る角速度・加速度検出センサによれば、加速度検出の感度向上を図ることが可能となる。
図8は、フィルタ回路120が備える第2の音叉型圧電振動片121の減衰量−周波数特性を示す図(その2)である。
以下、図8を参照しつつ、第1の実施の形態に係る角速度・加速度検出センサ100によれば、音叉型圧電振動片の周波数−温度特性に影響されずに、正確な加速度が検出できる点について説明する。
第1の実施の形態に係る角速度・加速度検出センサ100において、環境温度の変化によって、例えば、発振回路110が備える第1の音叉型圧電振動片111の周波数が増加し(高くなり)、発振回路110から出力される信号の周波数も増加する(高くなる)(ここでは、f1からf2に増加するものとする)。
他方で、環境温度の変化により、フィルタ回路120においては、減衰量−周波数特性が、そのグラフ形状を保ったまま、減衰量が小さくなる方向にシフトする(図8に、シフト前の特性を実線で示し、シフト後の特性を破線で示した)。
したがって、図8に示すように、発振回路110からf2の周波数が、図8中の破線で示される減衰量−周波数特性を有するフィルタ回路120に入力されるため、減衰量はA1のまま変化せず、温度変化によるフィルタ回路120における減衰量の変化は打ち消され、フィルタ回路120から出力される信号の振幅は変化しない。
よって、第1の実施の形態に係る角速度・加速度検出センサ100によれば、加速度が作用していないのに温度の変化によって正確な加速度信号と異なる値が検出されてしまうことを防止できる。
図9は、図6の回路の動作を説明するタイムチャートである。
図において、信号Aは発振回路110から出力される信号であり、信号Aはフィルタ回路120に入力される。
フィルタ回路120はバンドパスフィルタであり、バンドパスフィルタ120では、第1の音叉型圧電振動片111の伝送特性に対応して、発振回路110が設定した周波数の信号が所定の減衰量で減衰されて出力される。その出力信号がBである。
信号Bは整流回路130に入力されて、Cに示すように整流され、積分回路140によって、直流信号とされる。この電圧レベルが加速度に対応する。
ここで、加速度印加時には、整流回路130の出力信号は図9のC’に示すように、振幅レベルが変化する。
このように、加速度変化による周波数シフトを減衰量変化として、電圧レベルの変化に換算することができる。
(第2の実施形態)
第2の実施形態に係る角速度・加速度検出センサ200に関しては、図1ないし図3で説明した構成に関しては、第1の実施形態と同じであるから重複する説明は省略し、相違点である電気的構成を中心に説明する。
図10は、本発明の第2の実施の形態に係る角速度・加速度検出センサ200の電気的構成を示すブロック図である。
図10に示すように、第2の実施の形態に係る角速度・加速度検出センサ200は、発振回路210と、フィルタ回路220と、発振回路210から出力される信号の位相を90度シフトさせてフィルタ回路220に出力する移相回路230と、フィルタ回路220から出力される信号と発振回路210から出力される信号を乗算する乗算回路240と、乗算回路240から出力される信号を積分する積分回路250とを有している。
発振回路210は、例えば、図4および図5で説明した音叉型圧電振動片32−1と同一構成の第1の音叉型圧電振動片211を備えている。この第1の音叉型圧電振動片211は、上述したように、圧電材料で形成された基部、及び基部と一体に形成され基部から平行に延びる少なくとも一対の振動腕を具備している。
また、フィルタ回路220は、例えば、図2および図3で説明した音叉型圧電振動片32と同一構成の第2の音叉型圧電振動片221を備えている。
なお、以下の説明は、加速度検出に関するものであり、角速度速度ω(図1参照)については、角速度検出端子S1,S2から加速度とは別に検出される。
図1で説明したように、発振回路210の第1の音叉型圧電振動片211とフィルタ回路220の第2の音叉型圧電振動片221とは逆向きに配置されている。このため、角速度・加速度検出センサ200に加速度が作用した場合、その成分に、発振回路210の第1の音叉型圧電振動片211及びフィルタ回路220の第2の音叉型圧電振動片221の振動腕に平行な成分が含まれていれば以下のように検出できる。
すなわち、発振回路210が備える第1の音叉型圧電振動片211の振動腕の長さが僅かに延びれば、フィルタ回路220が備える第2の音叉型圧電振動片221の振動腕の長さが僅かに縮む。
他方、発振回路210が備える第1の音叉型圧電振動片211の振動腕の長さが僅かに縮めば、フィルタ回路220が備える第2の音叉型圧電振動片221の振動腕の長さが僅かに延びる関係である。
したがって、発振回路210が備える第1の音叉型圧電振動片211の周波数が増加または減少する一方、フィルタ回路220が備える第2の音叉型圧電振動片221の周波数が減少または増加する。よって、第2の実施の形態に係る角速度・加速度検出センサ200において、加速度を作用させ、発振回路210が備える第1の音叉型圧電振動片211の周波数とフィルタ回路221が備える第2の音叉型圧電振動片221の周波数との差をとった場合、その絶対値は、発振回路210の第1の音叉型圧電振動片211の周波数変化分よりも大きくなる。
図11は、発振回路210が備える第1の音叉型圧電振動片211の位相差−周波数特性と、フィルタ回路220が備える第2の音叉型圧電振動片221の位相差−周波数特性とを示す図(その1)である。
第2の実施の形態に係る角速度・加速度検出センサ200において、加速度が作用していない場合は、発振回路210から出力される信号とフィルタ回路220から出力される信号は、位相差が90度であるから、これらを乗算して積分すると、その値は0となる(後述)。
しかしながら、第2の実施の形態に係る角速度・加速度検出センサ200において、たとえば図1に示すG1の方向に加速度が作用した場合は、発振回路210が備える第1の音叉型圧電振動片211の振動腕が僅かに縮む。したがって、発振回路210においては、第1の音叉型圧電振動片211の周波数が高くなり、位相−周波数特性も、図11の特性を表すグラフ形状を保ったまま、位相が小さくなる(位相が遅れる)方向にシフトする(図11中、シフト前の特性を実線で示し、シフト後の特性を破線bで示す)。このため、発振回路210から出力される信号は、位相が減少する。
他方、フィルタ回路220においては、第2の音叉型圧電振動片221の振動腕が僅かに延びるから、第2の音叉型圧電振動片221の周波数が増加し、位相−周波数特性も、そのグラフ形状を保ったまま、位相が大きくなる(位相が進む)方向にシフトする(図11中、シフト前の特性を実線で示し、シフト後の特性を破線aで示す)。したがって、フィルタ回路220から出力される信号の位相は増加する。
このため、第2の実施の形態に係る角速度・加速度検出センサ200においては、発振回路210から出力される信号の位相が増加する一方で、フィルタ回路220から出力される信号の位相が減少することとなって、発振回路210から出力される信号における位相とフィルタ回路220から出力される信号の位相とが、両者の位相差を大きくする方向に変化する。したがって、これらを乗算して積分した値は、フィルタ回路220を備えない場合と比較して大きくなり、加速度検出の感度向上が図られる。
図12は、発振回路210が備える第1の音叉型圧電振動片211の位相−周波数特性と、フィルタ回路220が備える第2の音叉型圧電振動片221の位相−周波数特性とを示す図(その2)である。
以下、図12を参照しつつ、第2の実施の形態に係る角速度・加速度検出センサ200によれば、加速度が作用していないのに温度の変化によって正確な加速度信号と異なる値が検出されてしまうことを防止できる点について説明する。
音叉型圧電振動片の置かれた温度環境が変化した場合、発振回路210の第1の音叉型圧電振動片211とフィルタ回路220の第2の音叉型圧電振動片221とは、位相が大きくなる方向に同じだけシフトする(図12中、シフト前の特性を実線で示し、シフト後の特性を破線c)で示す。したがって、第2の実施の形態に係る角速度・加速度検出センサにおいては、温度変化の前後で、発振回路210の第1の音叉型圧電振動片211の屈曲振動とフィルタ回路220の第2の音叉型圧電振動片221の屈曲振動との位相差が変化せず、発振回路210から出力される信号とフィルタ回路220から出力される信号の位相差は90度のまま変化しない。
よって、第2の実施の形態に係る角速度・加速度検出センサ200によれば、加速度が作用していないのに温度の変化によって正確な加速度信号と異なる値が検出されてしまうことを防止できる。
図13は、図10の回路の動作を説明するためのタイムチャートである。
図において、図10で説明した発振回路210から出る矩形波Aに対して、発振回路210から入力されたサイン波が、移相回路230を経て出力されるサイン波Bは90度位相ずれしている。
加速度が働かない状態であれば、これらを乗算回路240で乗算した結果出力されるCの信号を積分回路で積分した結果は、ゼロである。
ここで、位相−周波数特性を示す図11において、上述したように、発振器回路210の第1の音叉型圧電振動片211の共振点であるピーク値を示す0の箇所が符合aで示すように、その周波数のズレとともにずれると、フィルタ回路220の第2の音叉型圧電振動片221は、そのピーク値0が符合bで示すように、逆方向にずれる。
つまり、ピーク値がずれるということは、φだけ位相がずれることであり、上述したように、ピーク値の周波数は互いに逆方向に、「ずれ」を強める方向に変化する。
このため、Bの信号はDのように位相ずれし、乗算回路240を通った信号CはFのようになる。これを積分すると、hが出てくるので、このhが加速度として検出される。
次に、図1の角速度・加速度検出センサ100(200)に関して、発振回路を構成する第1の音叉型圧電振動片及び集積回路と、フィルタ回路の備える第2の音叉型圧電振動片とを収容するパッケージと、該パッケージを気密に封止する蓋体とを有する実施例について、以下、具体的に説明する。
(実施例1)
実施例1は、パッケージが、表裏に導電パターンを形成した共通の配線基板330を挟んで、2つのキャビティを上下に重ねて形成したものであり、一方のキャビティに第1および第2の音叉型圧電振動片を収容し、他方のキャビティに前記集積回路を収容した構成に関するものである。
具体的には、図14の圧電デバイス300は角速度・加速度検出センサを構成するものである。該圧電デバイス300は、発振回路110(210)の第1の音叉型圧電振動片111(211)と、フィルタ回路120(220)の第2の音叉型圧電振動片121(221)とを1つのパッケージに収容している。
図14(a)は、圧電デバイス300の平面図、図14(b)は、図14(a)におけるA−A概略断面図、図14(c)は、図14(a)におけるB−B概略断面図である。
図14において、H型のパッケージ301の一方のキャビティ302に、第1の音叉型圧電振動片111(211)と第2の音叉型圧電振動片121(221)とをマウントし、蓋体304で気密に封止するようにされている。なお、図14(a)の平面図では、説明の便宜のため、蓋体304を図示していない。H型のパッケージ301の他方のキャビティ303には、ICチップ305を取り付けている。
ここで、パッケージ301は、例えば、絶縁材料として、酸化アルミニウム質のセラミックグリーンシートを成形して形成される複数の基板を積層した後、焼結して形成されている。また、蓋体304は、セラミック、金属、ガラスなどの材質を選択して形成されている。蓋体304が、例えば、金属の場合には、一般に他の材料よりも強度が高いという利点がある。蓋体304の材料としては、パッケージ301と熱膨張率が近似したものが適しており、例えば、コバールなどを使用することができる。また、蓋封止後の周波数調整を可能にするために、蓋体304は、例えばガラスなどの光透過材料で形成される。例えば、硼珪酸ガラスなどの板体を使用することができる。
パッケージ301の一方のキャビティ302の一端には、例えば、タングステンメタライズ上にニッケルメッキ及び金メッキで形成した電極部306、307、308、309が設けられている。電極部306、307、308、309は、例えば、配線基板330を貫通してパッケージ301の他方のキャビティ303に形成した電極310、311、312、313にそれぞれ接続されており、電極310、311、312、313は、ICチップ305の端子にワイヤボンディングで接続されている。ICチップ305は、パッケージ301内に設けられたスルーホール314、315を介して、実装端子316、317に接続されている。
パッケージ301の一方のキャビティ302の電極部306、307、308、309の上には、導電性接着剤が塗布され、この導電性接着剤の上に、第1の音叉型圧電振動片111(211)の基部と第2の音叉型圧電振動片121(221)の基部とが載置されて、導電性接着剤が硬化されるようになっている。尚、導電性接着剤としては、接合力を発揮する接着剤成分としての合成樹脂剤に、銀製の細粒等の導電性の粒子を含有させたものが使用でき、シリコーン系や、エポキシ系またはポリイミド系導電性接着剤等を利用することができる。各音叉型圧電振動片の基部をよりリジットに接合固定するためには、エポキシ系導電性接着剤が適している。
ここで、第1の音叉型圧電振動片111(211)と、第2の音叉型圧電振動片121(221)は、ともに図2で説明した音叉型圧電振動片32と同一構造のものを使用できるが、第1の音叉型圧電振動片111(211)と第2の音叉型圧電振動片121(221)として符合を付したのは、図6と図10において発振回路とフィルタ回路に用いた構成と対応させるためである。
すなわち、第1の音叉型圧電振動片111(211)と第2の音叉型圧電振動片121(221)は、圧電材料により形成した例えば矩形もしくは正方形の基部111a(211a)、121a(221a)と、この基部111a(211a)、121a(221a)から延びる一対の振動腕111b(211b)、121b(221b)とを有している。
このような第1の音叉型圧電振動片111(211)と第2の音叉型圧電振動片121(221)は各振動腕111b(211b)、121b(221b)の例えば主面、すなわち、上面と下面に電極を形成し、これらの電極を基部111a(211a)、121a(221a)の引出し電極に引き回す。
この引出し電極に駆動電圧を印加すると、各振動腕111b(211b)、121b(221b)の先端部を互いに接近・離間させるようにして水平な屈曲運動を生じる。
既に説明したように、第1の音叉型圧電振動片111(211)と第2の音叉型圧電振動片121(221)を、検出しようとする加速度Gの作用する方向に対して各振動腕111b(211b)、121b(221b)が平行となるように配置されている。
ここで、加速度がG1方向に作用した場合には、第1の音叉型圧電振動片111(211)の振動腕111b(211b)はごく僅かに延びる。このため、第1の音叉型圧電振動片111(211)の振動腕111b(211b)の屈曲振動による周波数は高く変化する。他方、第2の音叉型圧電振動片121(221)の振動腕121b(221b)はごく僅かに短縮され、このため、第2の音叉型圧電振動片121(221)の振動腕121b(221b)の屈曲振動による周波数は低く変化する。
同様に、図14中で、加速度がG2方向に作用した場合には、第1の音叉型圧電振動片111(211)の振動腕111b(211b)はごく僅かに短縮する。このため、第1の音叉型圧電振動片111(211)の振動腕111b(211b)の屈曲振動による周波数は低く変化する。他方、第2の音叉型圧電振動片121(221)の振動腕121b(221b)はごく僅かに延び、このため、第2の音叉型圧電振動片121(221)の振動腕121b(221b)の屈曲振動による周波数は高く変化する。
以上説明した実施例1の圧電デバイス300によれば、発振回路110(210)の第1の音叉型圧電振動片111(211)と、フィルタ回路120(220)の第2の音叉型圧電振動片121(221)とを1つのパッケージに収容することが可能となり、角速度・加速度検出センサの小型化を図ることができる。
しかも、2つのキャビティ302,303に収容される各電子部品に関して、共通の配線基板330を設けることで、装置全体の高さ寸法を低減し、低背化を図ることができる。
(実施例2)
実施例2は、個々に配線基板431,432を有する2つのキャビティを上下に重ねて形成したものであり、一方のキャビティに第1および第2の音叉型圧電振動片を収容し、他方のキャビティに集積回路を収容した構成に関するものである。
具体的には、図15に示すように、圧電デバイス400も角速度・加速度検出センサを構成するものであり、該圧電デバイス400は、発振回路110(210)の第1の音叉型圧電振動片111(211)と、フィルタ回路120(220)の第2の音叉型圧電振動片121(221)とを1つのパッケージに収容している。
図15(a)は、圧電デバイス400の平面図、図15(b)は、図15(a)におけるC−C概略断面図、図15(c)は、図15(a)におけるD−D概略断面図である。
図15に示す例では、パッケージ401の上段のキャビティ402に、第1の音叉型圧電振動片111(211)と第2の音叉型圧電振動片121(221)とをマウントし、蓋体404で気密に封止するようにされている。なお、図15(a)の平面図では、説明の便宜のため、蓋体404を図示していない。パッケージ401の下段のキャビティ403には、ICチップ405を取り付けている。
パッケージ401は、2つの配線基板431,432を使用して、2つのキャビティ402,403を構成している点が、実施例1と相違するだけで、その材質や形成方法は実施例1と同じであるから重複する説明は省略する。
また、第1の音叉型圧電振動片111(211)と、第2の音叉型圧電振動片121(221)は、ともに図2で説明した音叉型圧電振動片32と同一構造のものを使用できる点も実施例1と同じである。
パッケージ401の上段のキャビティ402を構成するための配線基板432の一端には、例えば、タングステンメタライズ上にニッケルメッキ及び金メッキで形成した電極部406、407、408、409が設けられている。
電極部406、407、408、409は、パッケージ401の下段のキャビティ403を構成するための配線基板431に形成した電極410、411、412、413にそれぞれ接続されており、電極410、411、412、413は、スルーホール414、415、416、417を介して、電極418、419、420、421に接続されている。電極418、419、420、421は、ICチップ405にワイヤボンディングで接続されている。電極418、419、420、421は、実装端子422、423に図示しない導電スルーホールなどにより接続されている。
パッケージ401の上段402の電極部406、407、408、409の上には、導電性接着剤が塗布され、この導電性接着剤の上に、第1の音叉型圧電振動片111(211)の基部と第2の音叉型圧電振動片121(221)の基部とが載置されて、導電性接着剤が硬化されるようになっている。
その他の構成は実施例1と同じである。
以上説明した実施例2の圧電デバイス400によれば、発振回路110(210)の第1の音叉型圧電振動片111(211)と、フィルタ回路120(220)の第2の音叉型圧電振動片121(221)とを1つのパッケージに収容することが可能となり、角速度・加速度検出センサの小型化を図ることができる。
本発明は上述の実施形態に限定されない。各実施形態や各実施例の各構成はこれらを適宜組み合わせたり、省略し、図示しない他の構成と組み合わせることができる。
また、この発明は、音叉型圧電振動片を利用したものであれば、パッケージがなくても適用できるし、また、上述の実施形態では、音叉型圧電振動片のパッケージにセラミックを使用した箱状のものを利用しているが、このような形態に限らず、平板な基板に音叉型圧電振動片を接合し、キャップ状の蓋体で封止する形式の収容容器を用いてもよい。
本発明の実施の形態に係る角速度・加速度検出センサの概略構成を示す概略平面図。 図1の角速度・加速度検出センサに用いる音叉型圧電振動片の詳しい構成例を示す概略斜視図。 図2のE−E線切断端面図。 図1の角速度・加速度検出センサに用いる音叉型圧電振動片の詳しい構成例を示す概略斜視図。 図4のF−F線切断端面図。 図1の角速度・加速度検出センサの第1の実施形態に係る電気的構成例を示すブロック図。 図6の構成を備える角速度・加速度検出センサの減衰量−周波数特性を示すグラフ。 図6の構成を備える角速度・加速度検出センサの減衰量−周波数特性を示すグラフ。 図6の構成を備える角速度・加速度検出センサの動作例におけるタイムチャート。 図1の角速度・加速度検出センサの第2の実施形態に係る電気的構成例を示すブロック図。 図10の構成を備える角速度・加速度検出センサの位相−周波数特性を示すグラフ。 図10の構成を備える角速度・加速度検出センサの位相−周波数特性を示すグラフ。 図10の構成を備える角速度・加速度検出センサの動作例におけるタイムチャート。 本発明の角速度・加速度検出センサの実施例1としての圧電デバイスを示す図。 本発明の角速度・加速度検出センサの実施例2としての圧電デバイスを示す図。
符号の説明
100・・・角速度・加速度検出センサ、110・・・発振回路、120・・・フィルタ回路、130・・・整流回路、140・・・積分回路、111・・・第1の音叉型圧電振動片121・・・第2の音叉型圧電振動片、131・・・ダイオード、200・・・角速度・加速度検出センサ、210・・・発振回路、220・・・フィルタ回路、230・・・移相回路、240・・・乗算回路、250・・・積分回路、211・・・第1の音叉型圧電振動片、221・・・第2の音叉型圧電振動片、300・・・圧電デバイス、301・・・H型のパッケージ、302・・・一方のキャビティ、304・・・蓋体、303・・・他方のキャビティ、305・・・ICチップ、306、307、308、309・・・電極部、310、311、312、313・・・電極、314、315・・・スルーホール、316、317・・・実装端子、330・・・配線基板、111a(211a)、121a(221a)・・・基部、111b(211b)、121b(221b)・・・振動腕、400・・・圧電デバイス、401・・・パッケージ、402・・・上段のキャビティ、404・・・蓋体、403・・・下段のキャビティ、405・・・ICチップ、406、407、408、409・・・電極部、410、411、412、413・・・電極、414、415、416,417・・・スルーホール、422、423・・・実装端子

Claims (6)

  1. 第1の音叉型圧電振動片として、少なくとも1つの音叉型圧電振動片を備えた発振回路と、
    前記発振回路が備える第1の音叉型圧電振動片と同数の第2の音叉型圧電振動片を備え、前記発振回路から出力される信号を直接又は他の回路を介して入力されるフィルタ回路と
    を有し、
    前記第1および第2の各音叉型圧電振動片が、
    圧電材料で形成された基部、及び前記基部と一体に形成され前記基部から平行に延びる少なくとも一対の振動腕を具備し、
    前記発振回路と前記フィルタ回路とに設けられた前記第1の音叉型圧電振動片と、第2の音叉型圧電振動片とでは、各振動腕の延びる方向が互いに逆方向になるように配置されており、
    加速度が作用した際に、前記発振回路の第1の音叉型圧電振動片の周波数が増加すると、前記フィルタ回路の周波数減衰特性又は周波数位相特性が負の方向に周波数シフトし、
    前記発振回路の第1の音叉型圧電振動片の周波数が減少すると、前記フィルタ回路の周波数減衰特性又は周波数位相特性が正の方向に周波数シフトする構成とされ、
    さらに、前記第1および第2の各音叉型圧電振動片のうち、少なくとも一方の音叉型圧電振動片が、角速度検出機能を備えている
    ことを特徴とする角速度・加速度検出センサ。
  2. 前記フィルタ回路から出力される信号を整流する整流回路と、該整流回路から出力される信号を積分する積分回路とを有することを特徴とする請求項1に記載の角速度・加速度検出センサ。
  3. 前記発振回路から出力される信号の位相を90度シフトさせた信号を前記フィルタ回路に出力する移相回路と、前記フィルタ回路から出力される信号と前記発振回路から出力される信号とを乗算する乗算回路と、前記乗算回路から出力される信号を積分する積分回路とを有することを特徴とする請求項1に記載の角速度・加速度検出センサ。
  4. 前記発振回路を構成する第1の音叉型圧電振動片及び集積回路と、前記フィルタ回路を備える前記第2の音叉型圧電振動片とを収容するパッケージと、該パッケージを気密に封止する蓋体とを有することを特徴とする請求項1ないし3のいずれかに記載の角速度・加速度検出センサ。
  5. 前記パッケージが、個々に配線基板を有する2つのキャビティを上下に重ねて形成したものであり、一方のキャビティに前記第1および第2の音叉型圧電振動片を収容し、他方のキャビティに前記集積回路を収容したことを特徴とする請求項4に記載の角速度・加速度検出センサ。
  6. 前記パッケージが、共通の配線基板を挟んで、上下に2つのキャビティを形成したパッケージであり、一方のキャビティに前記第1および第2の音叉型圧電振動片を収容し、他方のキャビティに前記集積回路を収容したことを特徴とする請求項4に記載の角速度・加速度検出センサ。
JP2006204261A 2006-07-27 2006-07-27 角速度・加速度検出センサ Expired - Fee Related JP4961877B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204261A JP4961877B2 (ja) 2006-07-27 2006-07-27 角速度・加速度検出センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204261A JP4961877B2 (ja) 2006-07-27 2006-07-27 角速度・加速度検出センサ

Publications (2)

Publication Number Publication Date
JP2008032452A true JP2008032452A (ja) 2008-02-14
JP4961877B2 JP4961877B2 (ja) 2012-06-27

Family

ID=39122050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204261A Expired - Fee Related JP4961877B2 (ja) 2006-07-27 2006-07-27 角速度・加速度検出センサ

Country Status (1)

Country Link
JP (1) JP4961877B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022445A (ja) * 2000-07-03 2002-01-23 Yoshiro Tomikawa 運動センサ
JP2002107373A (ja) * 2000-09-29 2002-04-10 Murata Mfg Co Ltd 加速度センサ
JP2003042768A (ja) * 2001-07-26 2003-02-13 Microstone Corp 運動センサ
JP2006162313A (ja) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd 複合センサ
JP2008026303A (ja) * 2007-01-24 2008-02-07 Epson Toyocom Corp 加速度センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022445A (ja) * 2000-07-03 2002-01-23 Yoshiro Tomikawa 運動センサ
JP2002107373A (ja) * 2000-09-29 2002-04-10 Murata Mfg Co Ltd 加速度センサ
JP2003042768A (ja) * 2001-07-26 2003-02-13 Microstone Corp 運動センサ
JP2006162313A (ja) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd 複合センサ
JP2008026303A (ja) * 2007-01-24 2008-02-07 Epson Toyocom Corp 加速度センサ

Also Published As

Publication number Publication date
JP4961877B2 (ja) 2012-06-27

Similar Documents

Publication Publication Date Title
US7944132B2 (en) Tuning-fork resonator with grooves on principal surfaces
JP2006148856A (ja) 圧電振動片と圧電デバイスならびにジャイロセンサ
JP2013050321A (ja) 物理量検出器及び電子機器
JP5013250B2 (ja) 加速度センサ
JP2007163244A (ja) 加速度センサ素子、加速度センサ
JP4756426B2 (ja) 水晶振動子と水晶ユニットと水晶発振器の各製造方法
JP5135566B2 (ja) 水晶振動子と水晶ユニットと水晶発振器及びそれらの製造方法
JP4337943B2 (ja) 回転率センサ
JP5347355B2 (ja) 振動片、振動子及び加速度センサ
JP4924934B2 (ja) 加速度センサ
JP2009162778A (ja) 回転率センサ
JP4961877B2 (ja) 角速度・加速度検出センサ
US6437490B1 (en) Vibration gyroscope
JP5982889B2 (ja) 物理量センサーモジュール及び電子機器
JP2008082841A (ja) 角速度センサ素子および角速度センサ
JP2010223666A (ja) 力センサー素子、及び力センサー装置
JP4836016B2 (ja) 水晶振動子と水晶ユニットと水晶発振器の各製造方法及び水晶振動子と水晶ユニットと水晶発振器
JP5838694B2 (ja) 物理量検出器、物理量検出デバイス及び電子機器
JP2008039590A (ja) 加速度センサ
JP2016170074A (ja) 角速度センサ及びセンサ素子
JP6506615B2 (ja) センサ素子、物理センサ、及び外力検出方法
JP5679430B2 (ja) 複合型温度補償水晶発振器
JP2007093400A (ja) 屈曲振動型圧電振動片、音叉型圧電振動子、および角速度検出センサ
JP2008014744A (ja) 加速度センサ
JP4556201B2 (ja) 水晶振動子と水晶ユニットと水晶発振器の各製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees