JP2008019509A - Method of manufacturing aluminum foil for electrolytic capacitor electrode - Google Patents

Method of manufacturing aluminum foil for electrolytic capacitor electrode Download PDF

Info

Publication number
JP2008019509A
JP2008019509A JP2007209094A JP2007209094A JP2008019509A JP 2008019509 A JP2008019509 A JP 2008019509A JP 2007209094 A JP2007209094 A JP 2007209094A JP 2007209094 A JP2007209094 A JP 2007209094A JP 2008019509 A JP2008019509 A JP 2008019509A
Authority
JP
Japan
Prior art keywords
ppm
aluminum foil
electrolytic capacitor
cubic crystal
final annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007209094A
Other languages
Japanese (ja)
Other versions
JP4827103B2 (en
Inventor
Akira Yoshii
章 吉井
Hideo Watanabe
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2007209094A priority Critical patent/JP4827103B2/en
Publication of JP2008019509A publication Critical patent/JP2008019509A/en
Application granted granted Critical
Publication of JP4827103B2 publication Critical patent/JP4827103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize an increased productivity when manufacturing an aluminum foil for an electrolytic capacitor electrode, by eliminating intermediate annealing. <P>SOLUTION: An aluminum material for an electrolytic capacitor electrode comprises, by mass, 5-40 ppm Si, 5-40 ppm Fe, 0.1-3 ppm Pb, 15-150 ppm Ni and the balance being Al and unavoidable impurities, provided that the amount of Cu contained in the unavoidable impurities is <10 ppm and the total amount of the unavoidable impurities other than Cu is ≤100 ppm. The aluminum material is subjected to cold rolling without undergoing any intermediate annealing and subsequently subjected to a final annealing heat treatment to achieve a high cubic crystal rate. A high cubic crystal rate can be achieved at the final annealing, even without performing any intermediate annealing, so that the productivity can be markedly improved without deteriorating the quality. Moreover, a high cubic crystal rate can be achieved over a broad range of thickness of the aluminum foil, just by the final annealing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電解コンデンサの電極に用いられるアルミニウム箔の製造方法に関するものである。   The present invention relates to a method for producing an aluminum foil used for an electrode of an electrolytic capacitor.

電解コンデンサの電極に用いられるアルミニウム箔の製造においては、従来、アルミニウム純度99.9%以上で、Si5〜20ppm、Fe5〜20ppm、Cu10〜80ppm、Pb0.1〜3ppm、その他微量不純物1〜100ppmを含むアルミニウム材が用いられており、これを用いて70〜130μm厚のアルミニウム箔を生産する場合は、図1(b)に示すように、熱間圧延、冷間圧延、中間焼鈍、付加圧延を経て、500℃以上、3時間以上の最終焼鈍を行って95%以上の立方晶率を確保している。このアルミニウムは箔は、その後、表面積の増大を図るために電解エッチングによる粗面化処理をし、さらに化成処理を経て電解コンデンサ電極とされるが、電解エッチングにおける腐食孔(以降ピット)は立方体方位に対し、垂直に成長する。このため、均一にピットを発生させて表面積を増大させるためには、アルミニウム箔として高い立方体方位占有率が必要であり、上記のような複雑な工程を採用している(例えば特許文献1)。   In the production of aluminum foil used for electrodes of electrolytic capacitors, conventionally, aluminum purity of 99.9% or more, Si 5-20 ppm, Fe 5-20 ppm, Cu 10-80 ppm, Pb 0.1-3 ppm, and other trace impurities 1-100 ppm. When the aluminum material containing is used and producing an aluminum foil 70-130 micrometers thick using this, as shown in FIG.1 (b), hot rolling, cold rolling, intermediate annealing, and additional rolling are performed. After that, final annealing at 500 ° C. or more for 3 hours or more is performed to ensure a cubic crystal ratio of 95% or more. The aluminum foil is then roughened by electrolytic etching in order to increase the surface area, and then converted into electrolytic capacitor electrodes through chemical conversion treatment. However, the corrosion holes (hereinafter referred to as pits) in the electrolytic etching have a cubic orientation. On the other hand, it grows vertically. For this reason, in order to generate pits uniformly and increase the surface area, a high cube orientation occupation ratio is required as an aluminum foil, and the above-described complicated process is employed (for example, Patent Document 1).

また、冷間圧延途中での焼鈍処理(以降、中間焼鈍)を施さなくとも、高い立方晶率が得られる方法として、熱間加工率、冷間加工率を制御することが提案されている。
また、箔厚が>150μm以上の場合、500℃以上の最終焼鈍を行えば、高い立方晶率が得られることを本願発明者等は知見している。
In addition, it has been proposed to control the hot working rate and the cold working rate as a method for obtaining a high cubic crystal ratio without performing an annealing process (hereinafter, intermediate annealing) during cold rolling.
In addition, when the foil thickness is> 150 μm or more, the present inventors have found that a high cubic rate can be obtained by performing final annealing at 500 ° C. or more.

さらに、材質面からいえば、高い立方晶率が得られる箔として、従来、99.9%以上の高純度アルミニウムを用い、Fe、Si、Cu、Pbを主成分とし、その添加量を制御したものが知られている。Fe、Si、Cuはアルミの再結晶挙動を制御し、最終焼鈍後に高い立方晶率を得るために、制御する必要がある元素である。特に、Cuは再結晶温度を高くするため必要で、15ppm以下では圧延途中で再結晶粒が成長し、非立方晶粒の粗大化が起こり、高い立方晶率が得られない。半面、100ppm以上では、粒成長を阻害するため、高い立方晶率が得られない。実用範囲としては、20〜70ppmである。
さらに材質面から途中工程を簡略化する方法として、CuとNiを適量添加する方法が提案されている(例えば、特許文献2)。
特公昭54−11242号公報 特開昭63−255911号公報
Furthermore, in terms of material, conventionally, high purity aluminum of 99.9% or more is used as a foil that can obtain a high cubic crystal ratio, and Fe, Si, Cu, and Pb are mainly used, and the amount of addition is controlled. Things are known. Fe, Si, and Cu are elements that need to be controlled in order to control the recrystallization behavior of aluminum and to obtain a high cubic rate after final annealing. In particular, Cu is necessary for increasing the recrystallization temperature. If it is 15 ppm or less, recrystallized grains grow during rolling, coarsening of non-cubic grains occurs, and a high cubic rate cannot be obtained. On the other hand, when the concentration is 100 ppm or more, grain growth is inhibited, so that a high cubic rate cannot be obtained. The practical range is 20 to 70 ppm.
Further, as a method of simplifying the intermediate process from the material aspect, a method of adding appropriate amounts of Cu and Ni has been proposed (for example, Patent Document 2).
Japanese Patent Publication No.54-11242 JP-A 63-255911

しかし、前記のように、複雑な工程を経て製造する方法や加工率を制御する方法では、製造効率が悪く、製造コストを上昇させる要因になる。また、上記のように箔厚が厚いものでは、最終焼鈍での加熱温度を高くすることで中間焼鈍を省略することが可能であるが、箔厚が限定されるため、より薄いアルミニウム箔には適用できないという問題がある。
また、Cuの含有は、電解コンデンサ製品中で電解液中に溶解し、通電時に再析出をおこし、スパーク故障の原因になるという問題点を有している。スパーク故障の原因を有しているため、エッチング終了後に、濃硝酸浸漬処理等でエッチング箔表面のCuを除去している。
本発明は、中間焼鈍を施さずとも、広範囲の箔厚全般で高い立方晶率が得られ、さらにCu成分を含まないため、エッチング工程の簡略化が可能な電解コンデンサ用アルミニウム箔の製造方法を提供するものである。
However, as described above, the method of manufacturing through a complicated process and the method of controlling the processing rate are inferior in manufacturing efficiency and increase the manufacturing cost. In addition, in the case where the foil thickness is thick as described above, intermediate annealing can be omitted by increasing the heating temperature in the final annealing, but since the foil thickness is limited, the thinner aluminum foil There is a problem that it cannot be applied.
Further, the inclusion of Cu has a problem in that it dissolves in the electrolytic solution in the electrolytic capacitor product and reprecipitates when energized, causing a spark failure. Since there is a cause of spark failure, Cu on the surface of the etching foil is removed by immersion in concentrated nitric acid or the like after completion of etching.
The present invention provides a method for producing an aluminum foil for electrolytic capacitors, which can achieve a high cubic crystal ratio over a wide range of foil thicknesses and does not contain a Cu component even without intermediate annealing, and can simplify the etching process. It is to provide.

本発明は、主要元素であるCuに注目し、これの代替となる元素を発見したところにある。すなわち、Cuを添加せず、Niを添加することで、中間焼鈍を必要とせず、且つ、先行技術のような熱間圧延等の加工率を特に制御せずとも、高い立方晶率が得られることを見いだしたものである。
一般的に,熱間圧延終了時点ですでに立方晶の核となるCube粒が存在し、冷間圧延途中で、中間焼鈍にて部分再結晶させ、付加的圧延を行うことでCube粒以外の粒に歪を与え、最終焼鈍時にCube粒が優先成長することにより、高い立方晶率を得ている。しかし、Niなどの成分を適量添加した箔は、このような製造条件を用いずとも、Cube粒が十分に成長するため、圧延材を最終焼鈍するだけで、高い立方晶率が得られる。
The present invention focuses on Cu, which is the main element, and has found an element that can replace this element. That is, by adding Ni without adding Cu, a high cubic crystal ratio can be obtained without requiring intermediate annealing and without particularly controlling the processing rate such as hot rolling as in the prior art. I found out.
In general, there are already Cube grains serving as cubic nuclei at the end of hot rolling, and in the middle of cold rolling, partial recrystallization is performed by intermediate annealing, and additional rolling is performed. A high cubic rate is obtained by giving strain to the grains and preferentially growing the Cube grains during the final annealing. However, a foil to which an appropriate amount of a component such as Ni is added does not use such manufacturing conditions, so that the Cube grains are sufficiently grown, so that a high cubic crystal ratio can be obtained only by final annealing of the rolled material.

すなわち、本発明の電解コンデンサ電極用アルミニウム箔の製造方法のうち、第1の発明は、質量比で、Si:5〜40ppm、Fe:5〜40ppm、Pb:0.1〜3ppm、Ni:15〜150ppmを含有し、残部がAlと不回避不純物からなり、該不回避不純物としてのCuが10ppm未満であり、かつ、Cu以外の不回避不純物の総量が100ppm以下である電解コンデンサ電極用アルミニウム材を中間焼鈍することなく冷間圧延し、その後、高立方晶率を得るための最終焼鈍熱処理を行うことを特徴とする。   That is, among the manufacturing methods of the aluminum foil for electrolytic capacitor electrodes of the present invention, the first invention is a mass ratio, Si: 5 to 40 ppm, Fe: 5 to 40 ppm, Pb: 0.1 to 3 ppm, Ni: 15 Aluminum material for electrolytic capacitor electrodes containing ~ 150 ppm, the balance being Al and unavoidable impurities, Cu as the unavoidable impurities being less than 10 ppm, and the total amount of unavoidable impurities other than Cu being 100 ppm or less Is subjected to cold rolling without intermediate annealing, and then a final annealing heat treatment for obtaining a high cubic crystal ratio is performed.

第2の本発明の電解コンデンサ電極用アルミニウム箔の製造方法は、前記第1の本発明において、前記最終焼鈍熱処理は、450〜600℃で2〜8時間の加熱条件で行われることを特徴とする。   The method for producing an aluminum foil for electrolytic capacitor electrodes according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the final annealing heat treatment is performed at 450 to 600 ° C. under heating conditions for 2 to 8 hours. To do.

第3の本発明の電解コンデンサ電極用アルミニウム箔の製造方法は、前記第1または第2の本発明において、前記最終焼鈍熱処理によって立方晶率を95%以上とすることを特徴とする。   The method for producing an aluminum foil for electrolytic capacitor electrodes according to the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the cubic annealing rate is 95% or more by the final annealing heat treatment.

以下に、本発明の各成分による作用および各成分を限定した理由を説明する。なお、以下における成分含有量はいずれも質量比である。   Below, the effect | action by each component of this invention and the reason which limited each component are demonstrated. In addition, all the component content in the following is mass ratio.

Si:5〜40ppm、Fe:5〜40ppm
Si、FeはAlと化合し適度に析出物を生成し、再結晶粒の粗大化を抑制し、Cube粒の優先成長を促進することができる。ただし、各々、5ppm未満の場合精製コストが高くなり、工業的には不向きである。一方、各々40ppm超の場合、析出物の総量が多くなりすぎてCube粒の優先成長まで制御するため、高い立方晶率が得られなくなる。
このため、Si、Feの含有量を上記範囲に定める。なお、望ましい下限は、Si、Feともに10ppmであり、望ましい上限はSi、Feともに20ppmである。
Si: 5 to 40 ppm, Fe: 5 to 40 ppm
Si and Fe combine with Al to produce moderate precipitates, suppress the coarsening of recrystallized grains, and promote the preferential growth of Cube grains. However, if it is less than 5 ppm, the purification cost becomes high, which is unsuitable industrially. On the other hand, in the case where each exceeds 40 ppm, the total amount of precipitates becomes too large to control the preferential growth of Cube grains, so that a high cubic crystal ratio cannot be obtained.
For this reason, the content of Si and Fe is set within the above range. A desirable lower limit is 10 ppm for both Si and Fe, and a desirable upper limit is 20 ppm for both Si and Fe.

Pb:0.1〜3ppm
Pbはエッチングにおける表面溶解を均一にする元素である。ただし、0.1ppm未満ではその効果が期待できず、3ppm超では溶解性が高くなりすぎて過剰溶解を起こす。したがって、Pbの含有量を上記に定める。なお、望ましい下限は、0.2ppmであり、望ましい上限は1ppmである。
Pb: 0.1 to 3 ppm
Pb is an element that makes surface dissolution uniform in etching. However, if it is less than 0.1 ppm, the effect cannot be expected, and if it exceeds 3 ppm, the solubility becomes too high and excessive dissolution occurs. Therefore, the content of Pb is defined above. A desirable lower limit is 0.2 ppm, and a desirable upper limit is 1 ppm.

Ni:15〜150ppm
Niは、Cube粒の優先成長を促す元素であり、広範な厚さのアルミニウム箔において中間焼鈍を施すことなく最終焼鈍のみで高い立方晶率を得ることを可能にする。この作用を十分に得るためには15ppm以上の含有が必要であり、15ppm未満では、Cube粒成長が不十分であるため中間焼鈍なしで所望の立方晶率を得ることが困難になる。一方、Niを150ppm超含有すると、最終焼鈍後のNi表面濃縮量が多くなりすぎ、エッチングにおいて過剰溶解が発生するため、立方晶率は95%以上得られるが、エッチングが困難な箔となる。したがって、Ni含有量を上記に定める。なお、望ましい下限は、20ppm、望ましい上限は100ppmである。
Ni: 15 to 150 ppm
Ni is an element that promotes preferential growth of Cube grains, and makes it possible to obtain a high cubic crystal ratio only by final annealing without performing intermediate annealing on an aluminum foil having a wide range of thickness. In order to obtain this effect sufficiently, it is necessary to contain 15 ppm or more. If it is less than 15 ppm, it is difficult to obtain a desired cubic crystal ratio without intermediate annealing because the Cube grain growth is insufficient. On the other hand, when Ni is contained in excess of 150 ppm, the Ni surface concentration after the final annealing becomes too large, and excessive dissolution occurs in etching, so that a cubic crystal ratio of 95% or more is obtained, but the foil is difficult to etch. Therefore, the Ni content is defined as above. The desirable lower limit is 20 ppm, and the desirable upper limit is 100 ppm.

Cu:10ppm未満
CuはAlの再結晶を抑制する元素であるが、Cube粒の優先成長を抑制するため、多く含有するとNiの添加量を200ppm以上にする必要が生じる。この場合、上記した通り、過剰溶解が発生する。一方、 Ni添加量を過剰溶解の問題ない範囲以下とした場合、95%の立方晶率を得ることは困難になり、中間焼鈍、付加的圧延を適正に行い、Cube粒の優先成長を確保する必要があり、本特許の趣旨である、製造工程の簡略化はできなくなる。このため、Cuはできるだけ含まないのがよいが、地金等に含まれ、不回避なCu以外は無添加とするため、10ppm未満とする。なお、望ましくは、5ppm以下である。
Cu: Less than 10 ppm Cu is an element that suppresses recrystallization of Al. However, in order to suppress the preferential growth of Cube grains, if it is contained in a large amount, it is necessary to make the addition amount of Ni 200 ppm or more. In this case, as described above, excessive dissolution occurs. On the other hand, if the amount of Ni added is less than the range where there is no problem of excessive dissolution, it becomes difficult to obtain a cubic crystal ratio of 95%, and intermediate annealing and additional rolling are appropriately performed to ensure the preferential growth of Cube grains. Therefore, the manufacturing process, which is the gist of this patent, cannot be simplified. For this reason, although it is good not to contain Cu as much as possible, in order not to add other than Cu which is contained in bullion etc. and is inevitable, it shall be less than 10 ppm. Desirably, it is 5 ppm or less.

その他不純物:100ppm以下
この範囲を超えてCu以外の不純物を含むと、不純物とアルミの析出物が多くなり、Ni添加だけでは高い立方晶率が得られにくくなる。望ましくは50ppm以下である。
Other impurities: 100 ppm or less If impurities other than Cu are included exceeding this range, precipitates of impurities and aluminum increase, and it becomes difficult to obtain a high cubic crystal ratio only by adding Ni. Desirably, it is 50 ppm or less.

尚、立方晶率95%以上が現状求められているレベルであるため、本特許内において高い立方晶率とは、95%以上の立方晶率を意味する。   In addition, since the cubic crystal ratio of 95% or more is the level currently required, the high cubic crystal ratio in this patent means a cubic crystal ratio of 95% or more.

以上説明したように本発明の電解コンデンサ電極用アルミニウム箔の製造方法によれば、質量比で、Si:5〜40ppm、Fe:5〜40ppm、Pb:0.1〜3ppm、Ni:15〜150ppmを含有し、残部がAlと不回避不純物からなり、該不回避不純物としてのCuが10ppm未満であり、かつ、Cu以外の不回避不純物の総量が100ppm以下である電解コンデンサ電極用アルミニウム材を中間焼鈍することなく冷間圧延し、その後、高立方晶率を得るための最終焼鈍熱処理を行うので、中間焼鈍を施さなくても最終焼鈍において高い立方晶率が得られ、品質を損なうことなく、その生産性を著しく向上することができる。また、広範囲な箔厚のアルミニウム箔において最終焼鈍のみで高い立方晶率が得られ、特に70〜600μmの広範囲な箔厚で好適に高い立方晶率が得られる。   As described above, according to the method for producing an aluminum foil for electrolytic capacitor electrodes of the present invention, by mass ratio, Si: 5 to 40 ppm, Fe: 5 to 40 ppm, Pb: 0.1 to 3 ppm, Ni: 15 to 150 ppm An aluminum material for electrolytic capacitor electrodes in which the balance is made of Al and unavoidable impurities, Cu as the unavoidable impurities is less than 10 ppm, and the total amount of unavoidable impurities other than Cu is 100 ppm or less Cold rolling without annealing, and then performing a final annealing heat treatment to obtain a high cubic rate, so a high cubic rate can be obtained in the final annealing without intermediate annealing, without losing quality, The productivity can be remarkably improved. Further, a high cubic crystal ratio can be obtained only by final annealing in an aluminum foil having a wide range of foil thicknesses, and a high cubic crystal ratio can be suitably obtained particularly in a wide foil thickness range of 70 to 600 μm.

以下に、本発明の一実施形態について説明する。
本発明の成分となるように調製された高純度アルミニウム材は、常法により得ることができ、本発明としては特にその製造方法が限定されるものではない。例えば、半連続鋳造によって得たスラブを熱間圧延したものを用いることができるし、その他に連続鋳造により得られる高純度アルミニウム材を対象とするものであってもよい。該アルミニウム材は、好適には純度99.95%以上とする。
Hereinafter, an embodiment of the present invention will be described.
The high-purity aluminum material prepared to be a component of the present invention can be obtained by a conventional method, and the production method is not particularly limited as the present invention. For example, a hot-rolled slab obtained by semi-continuous casting can be used, or a high-purity aluminum material obtained by continuous casting can be used. The aluminum material preferably has a purity of 99.95% or more.

高純度アルミニウム材は、図1(a)に示すように、上記熱間圧延または連続鋳造圧延によって例えば数mm厚程度のシート材とする。このシート材に対し冷間圧延を行い、数十μmから100μm程度のアルミニウム合金箔を得る。なお、冷間圧延途中あるいは冷間圧延終了後に適宜脱脂を加えてもよい。また冷間圧延の途中での中間焼鈍を必要としない。ただし、本発明としては、所望により中間焼鈍を加えることを排除するものではない。
最終冷間圧延後には、最終焼鈍熱処理を行う。最終焼鈍の加熱条件は本発明としては特に限定されないが、例えば450〜600℃、2〜8時間の条件を例示することができる。
As shown in FIG. 1A, the high-purity aluminum material is formed into a sheet material having a thickness of, for example, several millimeters by the hot rolling or continuous casting rolling. This sheet material is cold-rolled to obtain an aluminum alloy foil of about several tens of μm to 100 μm. In addition, you may add degreasing suitably in the middle of cold rolling or after completion | finish of cold rolling. Moreover, intermediate annealing in the middle of cold rolling is not required. However, the present invention does not exclude adding intermediate annealing as desired.
After the final cold rolling, a final annealing heat treatment is performed. Although the heating conditions of the final annealing are not particularly limited as the present invention, for example, conditions of 450 to 600 ° C. and 2 to 8 hours can be exemplified.

上記各工程を経て得られたアルミニウム箔には、その後、エッチング処理がなされる。エッチング処理は、塩酸を主体とする電解液を用いた電解エッチング等によって行われる。本発明としてはこのエッチング処理の具体的条件等について特に限定されるものではなく、常法に従って行うことができるが、主として直流エッチングが適用される。
エッチング処理においては、前記成分の設定によって高い立方晶率が得られており、箔にピットが高密度で形成され、高い粗面化率が得られる。この箔を常法により電解コンデンサに電極として組み込むことにより静電容量の高いコンデンサが得られる。
本発明のアルミニウム材によって得られるアルミニウム箔は、中高圧電解コンデンサの陽極として使用するのが好適であるが、本発明としてはこれに限定されるものではなく、より化成電圧の低いコンデンサ用としても使用することができ、また電解コンデンサの陰極用の材料として使用することもできる。
The aluminum foil obtained through the above steps is then subjected to an etching process. The etching process is performed by electrolytic etching using an electrolytic solution mainly composed of hydrochloric acid. The present invention is not particularly limited with respect to specific conditions and the like of this etching treatment, and can be performed according to a conventional method, but DC etching is mainly applied.
In the etching process, a high cubic crystal ratio is obtained by setting the above components, pits are formed at a high density on the foil, and a high roughening ratio is obtained. A capacitor having a high capacitance can be obtained by incorporating this foil as an electrode in an electrolytic capacitor by a conventional method.
The aluminum foil obtained from the aluminum material of the present invention is preferably used as an anode of a medium- and high-voltage electrolytic capacitor, but the present invention is not limited to this and may be used for a capacitor having a lower formation voltage. It can also be used as a material for the cathode of an electrolytic capacitor.

表1に示す成分(残部Al)の鋳塊を作製し、500℃以上、30分以上の均熱処理を行った後、加工率95〜99%の熱間圧延を行った。その際仕上がり温度は250〜400℃とした。熱間圧延後に95%以上の冷間圧延を行い箔厚120μmの試料を作成した。
また、圧延加工率の影響を調べるため、表2中の加工率にて圧延を行った。その際の、均熱処理、熱間圧延仕上がり温度は表1と同じとした。
An ingot of the component (remaining Al) shown in Table 1 was prepared and subjected to soaking treatment at 500 ° C. or higher for 30 minutes or longer, and then hot rolled at a processing rate of 95 to 99%. At that time, the finishing temperature was 250 to 400 ° C. After hot rolling, cold rolling of 95% or more was performed to prepare a sample having a foil thickness of 120 μm.
Moreover, in order to investigate the influence of a rolling rate, it rolled at the rate shown in Table 2. At that time, the soaking and hot rolling finish temperatures were the same as in Table 1.

一方、比較材として、箔厚150μmの冷間圧延材に、200〜260℃、2〜6時間の中間焼鈍を行い、さらに付加圧延を行って箔厚120μmの試料を作成した。   On the other hand, as a comparative material, a cold rolled material having a foil thickness of 150 μm was subjected to intermediate annealing at 200 to 260 ° C. for 2 to 6 hours, and further subjected to additional rolling to prepare a sample having a foil thickness of 120 μm.

Figure 2008019509
Figure 2008019509

Figure 2008019509
Figure 2008019509

これらのアルミニウム箔に、Ar、N、H等の不活性雰囲気中で、500〜570℃、3〜24時間の最終焼鈍を行った。最終焼鈍後のアルミニウム箔を、35%HCl、60%HNO、48%HFを容積比で33:33:1の割合で混合した溶液30℃中に30秒浸漬した後、水洗、乾燥を行い、立方晶と他方位の結晶粒光沢が変化した試料を作製した。
この試料を、画像解析装置に取り込み、立方体方位占有率を評価し、その結果を表1、2に示した。
These aluminum foils were subjected to final annealing at 500 to 570 ° C. for 3 to 24 hours in an inert atmosphere such as Ar, N 2 and H 2 . The aluminum foil after the final annealing was immersed for 30 seconds in a solution of 35% HCl, 60% HNO 3 , 48% HF mixed at a volume ratio of 33: 33: 1 for 30 seconds, then washed and dried. Samples were produced in which the crystal grain luster on the cubic and other positions was changed.
This sample was taken into an image analyzer and the cube orientation occupation ratio was evaluated. The results are shown in Tables 1 and 2.

上記の通り、Cuが10ppm未満で、Niを5〜150ppm範囲で添加した実施例のアルミニウム箔は、中間焼鈍、付加圧延を行わなくとも95%以上の立方晶率が得られており、従来の中間焼鈍、最終圧延を経た箔と同等であった。一方、Cuを10ppmを超えて含有するものでは、中間焼鈍なしでは、Ni量が過小なもの(No.8)、Ni量が適切なもの(No.9)ともに高い立方晶率を得ることができなかった。また、エッチング後にCu除去工程を必要とした。また、Cu量が適切でも、Ni量が過小なもの(No.1)、過大なもの(No.6)では、同じく高い立方晶率を得ることができなかった
又、表2に示すように、本発明の実施例材は、圧延加工率の影響を受けずに、中間焼鈍を行わない工程で高い立方晶率が得られることが確認できた。
As described above, the aluminum foil of the example in which Cu is less than 10 ppm and Ni is added in the range of 5 to 150 ppm has a cubic crystal ratio of 95% or more without performing intermediate annealing and additional rolling. It was equivalent to the foil after intermediate annealing and final rolling. On the other hand, in the case of containing Cu exceeding 10 ppm, it is possible to obtain a high cubic crystal ratio in both cases where the Ni amount is too small (No. 8) and the Ni amount is appropriate (No. 9) without intermediate annealing. could not. Moreover, the Cu removal process was required after the etching. In addition, even when the amount of Cu was appropriate, when the amount of Ni was excessively small (No. 1) or excessively large (No. 6), the same high cubic ratio could not be obtained. It was confirmed that the example materials of the present invention were not affected by the rolling processing rate, and that a high cubic rate was obtained in a process in which intermediate annealing was not performed.

本発明の製造工程(a)および従来のアルミニウム材を用いた製造工程(b)を示すフロー図である。It is a flowchart which shows the manufacturing process (a) of this invention, and the manufacturing process (b) using the conventional aluminum material.

Claims (3)

質量比で、Si:5〜40ppm、Fe:5〜40ppm、Pb:0.1〜3ppm、Ni:15〜150ppmを含有し、残部がAlと不回避不純物からなり、該不回避不純物としてのCuが10ppm未満であり、かつ、Cu以外の不回避不純物の総量が100ppm以下である電解コンデンサ電極用アルミニウム材を中間焼鈍することなく冷間圧延し、その後、高立方晶率を得るための最終焼鈍熱処理を行うことを特徴とする電解コンデンサ電極用アルミニウム箔の製造方法。   In a mass ratio, Si: 5 to 40 ppm, Fe: 5 to 40 ppm, Pb: 0.1 to 3 ppm, Ni: 15 to 150 ppm, the balance is made of Al and unavoidable impurities, and Cu as the unavoidable impurities Is less than 10 ppm, and the total amount of inevitable impurities other than Cu is 100 ppm or less, cold-rolled without intermediate annealing, and then subjected to final annealing to obtain a high cubic rate A method for producing an aluminum foil for an electrolytic capacitor electrode, characterized by performing a heat treatment. 前記最終焼鈍熱処理は、450〜600℃で2〜8時間の加熱条件で行われることを特徴とする請求項1記載の電解コンデンサ電極用アルミニウム箔の製造方法。   The method for producing an aluminum foil for electrolytic capacitor electrodes according to claim 1, wherein the final annealing heat treatment is performed at 450 to 600 ° C under heating conditions for 2 to 8 hours. 前記最終焼鈍熱処理によって立方晶率を95%以上とすることを特徴とする請求項1または2に記載の電解コンデンサ電極用アルミニウム箔の製造方法。   The method for producing an aluminum foil for an electrolytic capacitor electrode according to claim 1 or 2, wherein a cubic crystal ratio is 95% or more by the final annealing heat treatment.
JP2007209094A 2007-08-10 2007-08-10 Method for producing aluminum foil for electrolytic capacitor electrode Expired - Fee Related JP4827103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209094A JP4827103B2 (en) 2007-08-10 2007-08-10 Method for producing aluminum foil for electrolytic capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209094A JP4827103B2 (en) 2007-08-10 2007-08-10 Method for producing aluminum foil for electrolytic capacitor electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005173774A Division JP4521771B2 (en) 2005-06-14 2005-06-14 Aluminum material for electrolytic capacitor electrodes

Publications (2)

Publication Number Publication Date
JP2008019509A true JP2008019509A (en) 2008-01-31
JP4827103B2 JP4827103B2 (en) 2011-11-30

Family

ID=39075685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209094A Expired - Fee Related JP4827103B2 (en) 2007-08-10 2007-08-10 Method for producing aluminum foil for electrolytic capacitor electrode

Country Status (1)

Country Link
JP (1) JP4827103B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150692A (en) * 2006-12-20 2008-07-03 Mitsubishi Alum Co Ltd Aluminum material for electrolytic capacitor electrode
CN112646999A (en) * 2019-10-09 2021-04-13 昭和电工株式会社 Rolled aluminum material for high-voltage electrolytic capacitor anode and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255911A (en) * 1987-04-14 1988-10-24 東洋アルミニウム株式会社 Aluminum foil for electrolytic capacitor
JPH03122239A (en) * 1989-10-05 1991-05-24 Showa Alum Corp Aluminum alloy for cathode foil of electrolytic capacitor
JP2000003836A (en) * 1998-06-16 2000-01-07 Toyo Alum Kk Aluminum alloy foil for electrolytic capacitor anode
JP2000260666A (en) * 1999-03-12 2000-09-22 Nippon Chemicon Corp Aluminum foil for electrolytic capacitor
JP2001294961A (en) * 2000-04-18 2001-10-26 Nippon Foil Mfg Co Ltd Aluminum alloy foil for electrode of electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255911A (en) * 1987-04-14 1988-10-24 東洋アルミニウム株式会社 Aluminum foil for electrolytic capacitor
JPH03122239A (en) * 1989-10-05 1991-05-24 Showa Alum Corp Aluminum alloy for cathode foil of electrolytic capacitor
JP2000003836A (en) * 1998-06-16 2000-01-07 Toyo Alum Kk Aluminum alloy foil for electrolytic capacitor anode
JP2000260666A (en) * 1999-03-12 2000-09-22 Nippon Chemicon Corp Aluminum foil for electrolytic capacitor
JP2001294961A (en) * 2000-04-18 2001-10-26 Nippon Foil Mfg Co Ltd Aluminum alloy foil for electrode of electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150692A (en) * 2006-12-20 2008-07-03 Mitsubishi Alum Co Ltd Aluminum material for electrolytic capacitor electrode
CN112646999A (en) * 2019-10-09 2021-04-13 昭和电工株式会社 Rolled aluminum material for high-voltage electrolytic capacitor anode and method for producing same

Also Published As

Publication number Publication date
JP4827103B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP3689323B2 (en) Aluminum material for electrolytic capacitor electrodes
JP2013124402A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4521771B2 (en) Aluminum material for electrolytic capacitor electrodes
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP4827103B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP4021923B1 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof
JP5019371B2 (en) Aluminum foil material for electrolytic capacitor electrodes
JP4060493B2 (en) Method for producing aluminum alloy foil for electrolytic capacitor cathode
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP2008150692A (en) Aluminum material for electrolytic capacitor electrode
JP3920301B2 (en) Aluminum foil for electrolytic capacitors
JP5396156B2 (en) Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP4021922B1 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP4964437B2 (en) Aluminum alloy material for electrolytic capacitor and method for producing the same, anode material for electrolytic capacitor, method for producing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP3920306B1 (en) Aluminum foil for electrolytic capacitors
JP2008140997A (en) Method of manufacturing aluminum foil for electrolytic capacitor
JP2009270138A (en) Aluminum foil for electrolytic capacitor
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JPH0489118A (en) Production of aluminum foil for electrolytic capacitor anode
JP2010100917A (en) Aluminum foil for electrolytic capacitor electrode
JP2010053395A (en) Intermediate product of aluminum foil for electrolytic capacitor, and method for manufacturing aluminum foil for electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees