JPH0489118A - Production of aluminum foil for electrolytic capacitor anode - Google Patents

Production of aluminum foil for electrolytic capacitor anode

Info

Publication number
JPH0489118A
JPH0489118A JP2202587A JP20258790A JPH0489118A JP H0489118 A JPH0489118 A JP H0489118A JP 2202587 A JP2202587 A JP 2202587A JP 20258790 A JP20258790 A JP 20258790A JP H0489118 A JPH0489118 A JP H0489118A
Authority
JP
Japan
Prior art keywords
hot rolling
aluminum
rolling
foil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2202587A
Other languages
Japanese (ja)
Other versions
JP2756861B2 (en
Inventor
Masahiko Katano
雅彦 片野
Hiroshi Matsuoka
洋 松岡
Jun Shimizu
清水 遵
Masashi Mesou
将志 目秦
Yoshinari Ashitaka
善也 足高
Hidehiko Ishii
秀彦 石井
Toshiaki Suzuki
利明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Toyo Aluminum KK
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Nikkei Techno Research Co Ltd, Nippon Light Metal Co Ltd filed Critical Toyo Aluminum KK
Priority to JP2202587A priority Critical patent/JP2756861B2/en
Publication of JPH0489118A publication Critical patent/JPH0489118A/en
Application granted granted Critical
Publication of JP2756861B2 publication Critical patent/JP2756861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a high degree of integration of cube bearings if aluminum having the purity of a base metal for electrolytic capacitors is used by combining the control of recrystallization and temp. at the time of hot rolling and annealing after the hot rolling. CONSTITUTION:After an aluminum cast ingot for electrolytic capacitors is subjected to a homogenization treatment for 4 to 24 hours in a temp. range of 570 to 630 deg.C, the rough hot rolling is started immediately thereafter at about the homogenization treatment temp. The rough hot rolling is ended at 480 to 530 deg.C and the aluminum is rested until the recrystallization is completed. The aluminum is thereafter subjected to finish hot rolling and the hot rolling is ended at <=280 deg.C. Further, the aluminum is subjected to annealing for 1 to 12 hours at 300 to 380 deg.C and is finally subjected to cold rolling, foil rolling and final annealing by the conventional method. The anode foil having good foil characteristics, i.e., the high degree of integration of the cube bearings, high electrostatic capacity and uniform characteristic distribution, is effectively produced by using the aluminum base metal of the purity lower than the purity of the aluminum used heretofore.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主に直流を用いて電解エツチングされる電解
コンデンサ陽極用アルミニウム箔の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing an aluminum foil for an electrolytic capacitor anode, which is electrolytically etched mainly using direct current.

(従来の技術の問題点) 電解コンデンサの電極に使用されるアルミニウム箔には
、有効表面積拡大のためにエツチング処理が施される。
(Problems with conventional technology) Aluminum foils used for electrodes of electrolytic capacitors are etched to increase their effective surface area.

エツチングには、直流によるものと交流によるものとに
大別される。前者は主に150■以上の化成電圧が高い
高圧用陽極箔に、後者は150■未満の化成電圧の低い
低圧用陽極箔および化成処理を行わない陰極箔の電解エ
ツチングに使用される。直流によって電解エツチングさ
れたアルミニウム箔には、直径1.5〜3μmのトンネ
ル状のエッチビットが形成される。トンネル状エッチビ
ットの優先成長方向は、  <100>方向であるので
、 トンネル状の電解エツチングが効率的に行われ、静
電容量の高い電解コンデンサを得るには、電極に用いら
れるアルミニウム箔は箔面に垂直方向に< 100 >
方向を持つ結晶粒方位(以下[立方体方位Jという)の
集積度(立方体方位粒が箔面に占める割合を百分率で表
示した値)が高いことが要求される。また立方体方位が
マクロ的に不均一に分布していても信頼性の高い電解コ
ンデンサの電極用箔には適さない。
Etching can be roughly divided into those using direct current and those using alternating current. The former is mainly used for high-voltage anode foils with a high conversion voltage of 150 Å or more, and the latter is used for electrolytic etching of low-voltage anode foils with a low conversion voltage of less than 150 Å and cathode foils that are not subjected to chemical conversion treatment. Tunnel-shaped etch bits with a diameter of 1.5 to 3 μm are formed in the aluminum foil electrolytically etched by direct current. The preferential growth direction of tunnel-shaped etch bits is the <100> direction, so in order to efficiently perform tunnel-shaped electrolytic etching and obtain an electrolytic capacitor with high capacitance, the aluminum foil used for the electrode should be <100> perpendicular to the plane
It is required that the degree of accumulation of crystal grain orientations having a direction (hereinafter referred to as "cubic orientation J") (value expressed as a percentage of the ratio of cubic orientation grains to the foil surface) is high. Furthermore, even if the cubic orientation is macroscopically non-uniform, it is not suitable as a highly reliable electrode foil for electrolytic capacitors.

通常直流でエツチングされる電解コンデンサ用アルミニ
ウム箔を製造する場合、以下の様な工程を経る。すなわ
ち、鋳造されたスラブに均質化処理を施し、熱間圧延、
冷間圧延および箔圧延を行い、最後に焼鈍を行って電解
コンデンサ用アルミニウム箔を得る。ところで、高い<
 100 >方位集積度を得るため、従来(1) 99
.99%以上の高純度アルミニウムを使用する。(2)
最終焼鈍温度を500℃以上の高温度とする。(3)最
終焼鈍の前に部分焼鈍と付加的圧延を加えるなどの方法
が効果があることが軽金属学会誌、軽金属、 3H19
81)、 675に示されている。99.99%以上の
高純度のアルミニウムを製造するには溶融塩電解精練法
によって生産された99.7%純度の一次地金を、三層
式溶融塩電解精製法によって精製する方法が取られてい
る。この方法は多量の電力を必要とし、  99.99
%以上の高純度アルミニウムの製造コストを著しく高め
、それが電解コンデンサ用アルミニウム箔のコストを高
めていた。近年、凝固時の液体と固体の分離を利用した
偏析法(分別結晶法ともいう)によって、  99.9
5%以上の純度のアルミニウムが従来の三層式溶融塩電
解精製法に比べて安価に製造出来るようになった。さら
に溶融塩電解精練法の向上によって99.90%以上の
純度のアルミニウムも製造出来るようになった。しかし
アルミニウムの純度が下がると高い立方体方位集積度の
箔を、上述の方法だけで得ることは困難であった。
When manufacturing aluminum foil for electrolytic capacitors, which is usually etched with direct current, the following steps are performed. That is, the cast slab is homogenized, hot rolled,
Cold rolling and foil rolling are performed, and finally annealing is performed to obtain an aluminum foil for an electrolytic capacitor. By the way, high
100 > To obtain the degree of azimuth integration, conventional (1) 99
.. Use high purity aluminum of 99% or more. (2)
The final annealing temperature is set to a high temperature of 500°C or higher. (3) Methods such as adding partial annealing and additional rolling before final annealing are effective, according to the Journal of the Japan Institute of Light Metals, Light Metals, 3H19.
81), 675. In order to produce aluminum with a high purity of 99.99% or higher, a method is used in which a 99.7% pure primary metal produced by a molten salt electrolytic refining method is refined by a three-layer molten salt electrolytic refining method. ing. This method requires a large amount of electricity and costs 99.99
% or more, which significantly increased the manufacturing cost of high-purity aluminum, which increased the cost of aluminum foil for electrolytic capacitors. In recent years, 99.9
Aluminum with a purity of 5% or higher can now be produced at a lower cost than the conventional three-layer molten salt electrolytic refining method. Furthermore, improvements in the molten salt electrolytic refining method have made it possible to produce aluminum with a purity of 99.90% or higher. However, when the purity of aluminum decreases, it is difficult to obtain a foil with a high degree of cubic orientation integration using only the above-mentioned method.

(問題点を解決するための手段) 本発明者らはアルミニウムの純度が電解コンデンサ用地
金であれば、高い立方体方位集積度を得られる製造方法
を鋭意研究開発し、熱間圧延時の再結晶と温度の制御と
熱間圧延後の焼鈍との組み合わせによって要求を満たす
ことを見いだし以下のような製造方法を発明する゛に至
った。
(Means for Solving the Problems) The present inventors have diligently researched and developed a manufacturing method that can obtain a high degree of cubic orientation integration when the purity of aluminum is a bare metal for electrolytic capacitors, and recrystallization during hot rolling. They found that the requirements could be met by a combination of temperature control and annealing after hot rolling, and came to invent the following manufacturing method.

すなわち、(1)電解コンデンサ用アルミニウム鋳塊に
570〜630°Cの温度範囲で4〜24時間の均質化
処理を施した後、ただちにほぼ均質化処理温度で粗熱間
圧延に着手し、480〜530℃の温度で粗熱間圧延を
終了し再結晶が完了するまで放置し、その後仕上げ熱間
圧延を行い、280℃以下の温度で終了し、更に300
〜380℃で1〜12時間の焼鈍を行い、最後に常法に
よって冷間圧延、箔圧延および最終焼鈍を行う。(2)
電解コンデンサ用アルミニウム鋳塊に570〜630℃
で4〜24時間の均質化処理を施した後、ただちにほぼ
均質化処理温度で粗熱間圧延に着手し80%以上の圧下
率による粗熱間圧延を行い。
That is, (1) After subjecting an aluminum ingot for electrolytic capacitors to homogenization treatment for 4 to 24 hours at a temperature range of 570 to 630°C, rough hot rolling was immediately started at approximately the homogenization treatment temperature. Rough hot rolling was completed at a temperature of ~530°C, left until recrystallization was completed, and then finish hot rolling was completed at a temperature of 280°C or less, and further rolled at 300°C.
Annealing is performed at ~380°C for 1 to 12 hours, and finally cold rolling, foil rolling and final annealing are performed by conventional methods. (2)
570-630℃ for aluminum ingots for electrolytic capacitors
After performing homogenization treatment for 4 to 24 hours, rough hot rolling is immediately started at approximately the homogenization treatment temperature, and rough hot rolling is performed at a reduction rate of 80% or more.

480〜530℃の温度範囲で粗圧間圧延を終了し。The rough rolling was completed in a temperature range of 480 to 530°C.

100〜200秒放置して再結晶を完了させ、その後仕
上げ熱間圧延を行い、280℃以下の温度で終了し、更
に300〜380℃で1〜12時間の焼鈍を行い、最後
に常法によって冷間圧延7箔圧延および最終焼鈍を行う
Recrystallization is completed by leaving it for 100 to 200 seconds, then finish hot rolling is completed at a temperature of 280°C or less, further annealing is performed at 300 to 380°C for 1 to 12 hours, and finally by a conventional method. Cold rolling 7 Perform foil rolling and final annealing.

(作用) 次に本発明の製造条件を限定した理由について説明する
(Function) Next, the reason for limiting the manufacturing conditions of the present invention will be explained.

本製造方法は、電解コンデンサに使用される純度であれ
ば、使用するアルミニウム地金の純度を制約しないが、
トンネル状エッチビットのより均一な分布を得るために
は、  99.90%A1以上の純度の地金が使用され
ることが望ましい。
This manufacturing method does not restrict the purity of the aluminum base metal used, as long as it is of the purity used for electrolytic capacitors.
In order to obtain a more uniform distribution of tunnel-shaped etch bits, it is desirable to use a metal having a purity of 99.90% A1 or higher.

更に99.90%A1以上、 Fe 300 ppm以
下、 5i300 ppm以下、 Cu 1009pm
以下の地金を使用することによって本発明の製造方法の
効果が−層有効になる。すなわち、 Feは、立方体方
位の成長を阻止する元素であるので300 ppm以下
とすることが望ましい。Siは、 Feの析出を促進す
るのでFeの有害な作用を緩和するが、多(含有される
とSi自身が立方体方位の生成を阻止するので300 
ppm以下とすることが望ましい。Cuは。
Furthermore, 99.90%A1 or more, Fe 300 ppm or less, 5i300 ppm or less, Cu 1009pm
By using the following metals, the effects of the manufacturing method of the present invention become more effective. That is, since Fe is an element that inhibits the growth of cubic orientation, it is desirable that the content be 300 ppm or less. Si promotes the precipitation of Fe and thus alleviates the harmful effects of Fe;
It is desirable to keep it below ppm. Cu is.

エツチングを均一に進行させる効果を有する元素である
が、多く含有されるとエツチングに際し過溶解などの不
具合が生じるので、  100 ppm以下が望ましい
It is an element that has the effect of uniformly progressing etching, but if it is contained in a large amount, problems such as over-dissolution will occur during etching, so the content is preferably 100 ppm or less.

均質化処理を570〜630℃以上で、4〜12時間と
したのは、570℃未満では鋳造時に生成する不純物元
素のミクロ偏析を均一に固溶分布出来ないこと、さらに
570℃以上でも加熱時間が4時間未満であるとやはり
均質化が不十分であり、その結果、最終焼鈍箔の立方体
方位集積度が低り、シかも場所によって変動するからで
ある。一方630℃を超えて加熱すると、鋳造時に生成
する不純物元素のミクロ偏析均一化には都合は良いが、
鋳塊の表面酸化が著しくなるのでエツチングの異常を発
生させる。又この加熱時間を24時間を超えて行っても
その効果が飽和し。
The reason why the homogenization treatment was carried out at 570 to 630°C or higher for 4 to 12 hours is because if it is lower than 570°C, the micro-segregation of impurity elements generated during casting cannot be uniformly distributed in solid solution, and even if it is higher than 570°C, the heating time is too long. If the time is less than 4 hours, homogenization is still insufficient, and as a result, the degree of cubic orientation of the final annealed foil is low, and the density varies from place to place. On the other hand, heating above 630°C is convenient for uniformizing the micro-segregation of impurity elements generated during casting, but
The surface oxidation of the ingot becomes significant, causing abnormal etching. Moreover, even if this heating time exceeds 24 hours, the effect will be saturated.

熱エネルギー的にも不利である。従って570〜630
℃の温度範囲で4〜24時間の均一化処理とする。
It is also disadvantageous in terms of thermal energy. Therefore 570-630
The homogenization treatment is carried out for 4 to 24 hours at a temperature range of .degree.

均質化処理後、温度を下げることなく高温のまま粗熱間
圧延に着手し、80%以上の圧下率で粗熱間圧延し、4
80〜530℃の温度範囲で粗熱間圧延を終了し、再結
晶が完了するまで放置するのは、一般に圧延用スラブは
300〜600mm厚さのものが多(使用されており、
これに80%以上の圧下を加えて、その厚さのままで4
80〜530℃の温度範囲で粗熱間圧延を終了し放置す
ると。
After the homogenization treatment, crude hot rolling was started at a high temperature without lowering the temperature, and crude hot rolling was carried out at a rolling reduction of 80% or more.
The rough hot rolling is completed in the temperature range of 80 to 530°C and left until recrystallization is completed.Generally, rolling slabs have a thickness of 300 to 600 mm (most commonly used).
Add a reduction of 80% or more to this, and keep the same thickness as 4
When the rough hot rolling is finished in the temperature range of 80 to 530°C and left to stand.

100秒以上で粗熱間圧延時に圧延方向に延ばされた鋳
塊の結晶粒が完全に再結晶するからである。この再結晶
粒には立方体方位を有するものが多(含まれている。も
し再結晶の進行が不充分であると局部的に未再結晶域が
残り、最終焼鈍後の箔の立方体方位集積度の低下および
場所による変動を大きくする。80%未満の圧下率また
は480℃未満の温度では完全に再結晶するのに数分以
上を要し著しく生産を阻害し望ましくない。−刃組熱間
圧延が530℃を超えて終了すると再結晶は容易に進行
するが、結晶粒が粗大となり最終焼鈍後の箔における立
方体方位集積度が低下する。又200秒以上放置しても
再結晶は既に完了しており意味がない。なお圧下率の上
限は特に限定する必要がなく 、99.5%程度まで採
用し得る。従って、80%以上の圧下率で粗熱間圧延し
、480〜530℃の温度範囲で粗熱間圧延を終了し、
そのまま完全に再結晶が完了するように100〜200
秒放置し、再結晶させる。
This is because the crystal grains of the ingot stretched in the rolling direction during rough hot rolling are completely recrystallized in 100 seconds or more. Many of these recrystallized grains have a cubic orientation. If the recrystallization progresses insufficiently, unrecrystallized areas will remain locally, and the cubic orientation of the foil after final annealing will increase. A reduction of less than 80% or a temperature of less than 480°C takes several minutes or more for complete recrystallization, which significantly impedes production and is undesirable. - Blade set hot rolling When the temperature exceeds 530°C, recrystallization progresses easily, but the crystal grains become coarse and the degree of cubic orientation in the foil after final annealing decreases.Also, even if left for more than 200 seconds, recrystallization is already completed. It is meaningless.The upper limit of the rolling reduction does not need to be particularly limited, and it can be up to about 99.5%.Therefore, rough hot rolling is performed at a rolling reduction of 80% or more, and a temperature of 480 to 530°C is used. Finish the rough hot rolling in the range,
100 to 200 to complete recrystallization.
Leave for seconds to recrystallize.

次に、仕上げ熱間圧延終了温度を280℃以下とする理
由について説明する。すなわち、60n+m厚さ以下か
ら仕上げ熱間圧延終了厚さ(−船釣には3〜8s+m厚
さである)までは3〜4パスで仕上げ熱間圧延が行われ
るが、仕上げ熱間圧延温度を下げて行くと、歪エネルギ
ーが高く蓄積された領域が、結晶粒界近傍および粒内の
変形遷移帯に形成される。そして歪エネルギーは結晶粒
界近傍の方が変形遷移帯よりも高いので。
Next, the reason why the finish hot rolling end temperature is set to 280° C. or lower will be explained. In other words, finish hot rolling is performed in 3 to 4 passes from a thickness of 60n+m or less to a thickness at the end of finish hot rolling (3 to 8s+m thickness for boat fishing), but the finish hot rolling temperature is As the temperature decreases, regions with high accumulated strain energy are formed near grain boundaries and in deformation transition zones within grains. And the strain energy is higher near the grain boundaries than in the deformation transition zone.

2〜3バスの段階で結晶粒界近傍にランダム方位を有す
る再結晶粒が発生する。その様な状態で最終パスを28
0℃以下、望ましくは250〜280℃で終了させると
9粒内の変形遷移帯域が最も歪エネルギーが高くなる。
At the stage of 2 to 3 baths, recrystallized grains with random orientation are generated near grain boundaries. In such a state, the final pass is 28
If the deformation is completed at 0°C or lower, preferably 250 to 280°C, the strain energy will be highest in the deformation transition zone within the 9 grains.

一方、280℃を越えて仕上げ熱間圧延を終了した場合
は、結晶粒界近傍と変形遷移帯域とで歪エネルギーの蓄
積に差がなくなる。その結果、仕上げ熱間圧延板を焼鈍
した際、280℃以下の温度で仕上げ熱間圧延を終了し
た場合は、変形遷移帯域に立方体方位を有する再結晶核
が生成し、その結果立方体方位粒を多く有する焼鈍板が
得られるが、280℃を越えて仕上げ熱間圧延を終了し
た場合は、結晶粒界近傍と変形遷移帯域の両者に再結晶
核が生成し、立方体方位粒だけでなくランダム方位粒が
生じるのでその分だけ、焼鈍板に含まれる立方体方位粒
の割合が低くなる。その結果、最終焼鈍箔の立方体方位
集積度が低下する。
On the other hand, when finishing hot rolling is completed at a temperature exceeding 280° C., there is no difference in the accumulation of strain energy between the vicinity of grain boundaries and the deformation transition zone. As a result, when finish hot-rolling is finished at a temperature of 280°C or lower when finish hot-rolled plate is annealed, recrystallization nuclei with cubic orientation are generated in the deformation transition zone, resulting in cubic-oriented grains. However, if finish hot rolling is completed at a temperature exceeding 280°C, recrystallization nuclei will be generated both near the grain boundaries and in the deformation transition zone, resulting in not only cubic oriented grains but also randomly oriented grains. Since grains are generated, the proportion of cubic oriented grains contained in the annealed plate is reduced accordingly. As a result, the cubic orientation density of the final annealed foil is reduced.

なおこの仕上げ圧延終了温度の下限については一般的に
は常温程度となるが、これ以下でも差支えがなく、特に
限定する必要がない。
Note that the lower limit of the finish rolling finishing temperature is generally about room temperature, but there is no problem with it being lower than this, and there is no need to specifically limit it.

仕上げ熱間圧延板の焼鈍を、300〜380℃の温度範
囲で1〜12時間としたのは、300℃未満では再結晶
が完了するのに長時間を要し、変形遷移帯域からの優先
的再結晶核の生成が起こり難くなるからであり、また3
00℃以上でも1時間未満では完全に再結晶が完了しな
いからである。なお12時間以内に再結晶は完了するの
で12時間以上焼鈍しても工業的に意味がなく、又焼鈍
温度が380℃を超えると、再結晶は急激に起こり、変
形遷移帯域から優先核生成が得られない。従って焼鈍は
300〜380℃で1〜12時間行う。
The reason why the finish hot-rolled plate was annealed at a temperature range of 300 to 380°C for 1 to 12 hours is because below 300°C, it takes a long time to complete recrystallization, and preferential treatment from the deformation transition zone occurs. This is because the formation of recrystallized nuclei becomes difficult to occur, and 3.
This is because even if the temperature is 00° C. or higher, recrystallization is not completely completed in less than 1 hour. Since recrystallization is completed within 12 hours, there is no industrial meaning in annealing for more than 12 hours, and if the annealing temperature exceeds 380°C, recrystallization occurs rapidly and preferential nucleation occurs from the deformation transition zone. I can't get it. Therefore, annealing is performed at 300 to 380°C for 1 to 12 hours.

仕上げ熱間圧延の焼鈍後に行われる冷間圧延および箔圧
延は、従来から行われている工程でよい。圧下率は95
%以上となるのが普通である。また冷間圧延および箔圧
延の途中に中間焼鈍を入れることも可能で、中間焼鈍は
本発明の効果を阻害するものではない。最後に真空中ま
たは不活性雰囲気中で500℃以上の高温度で最終焼鈍
が行われるが、これも従来から行われているもので特に
特別の工程1条件を規定するものでない。
Cold rolling and foil rolling performed after annealing in finish hot rolling may be conventionally performed steps. The reduction rate is 95
% or more is normal. It is also possible to perform intermediate annealing during cold rolling and foil rolling, and intermediate annealing does not impede the effects of the present invention. Finally, final annealing is performed at a high temperature of 500° C. or higher in vacuum or in an inert atmosphere, but this is also conventionally performed and does not specify any particular conditions for the first step.

(実施例) 通常のDC鋳造によって第1表に示すような化学組成を
有し、厚さが400mm、幅が1000mmのスラブを
得た。
(Example) A slab having a chemical composition shown in Table 1 and having a thickness of 400 mm and a width of 1000 mm was obtained by ordinary DC casting.

第1表 組  成 表1の化学組成を有するDCスラブを使用して、第2表
に示す条件で均質化処理と熱間圧延と焼鈍を行った後、
冷間圧延および箔圧延を施し、供試材A−1からA−1
8については104μm厚さ、B−1からB−4につい
ては90μm厚さの箔地材を作成した。その箔に真空中
で550 ’Cで4時間の最終焼鈍を行い、第3表に示
す条件により電解エツチングおよび化成処理をおこなっ
た後、静電容量および立方体集積度を測定して箔の品質
を評価した。静電容量測定は公知のブリッジ法によって
行った。評価の結果を第2表に示す。○印が合格と判定
された。
Table 1 Composition Using a DC slab having the chemical composition shown in Table 1, after performing homogenization treatment, hot rolling, and annealing under the conditions shown in Table 2,
After cold rolling and foil rolling, test materials A-1 to A-1 were obtained.
Foil base materials were created with a thickness of 104 μm for No. 8 and 90 μm thick for B-1 to B-4. The foil was final annealed in vacuum at 550'C for 4 hours, electrolytically etched and chemically treated according to the conditions shown in Table 3, and the quality of the foil was determined by measuring capacitance and cubic density. evaluated. Capacitance measurement was performed by a known bridge method. The results of the evaluation are shown in Table 2. The mark ○ was judged as passing.

「発明の効果」 以上説明したように本発明に係わる電解コンデンサ陽極
用アルミニウム箔の製造方法によって、従来用いられて
きたよりも低純度のアルミニウム地金を使用して、良好
な箔特性、すなわち高い立方体方位集積度、高い静電容
量並びに均一な特性分布を有する陽極箔を効率的に製造
できるので、工業的に効果の高い発明である。
"Effects of the Invention" As explained above, the method of manufacturing aluminum foil for electrolytic capacitor anodes according to the present invention uses an aluminum base metal of lower purity than conventionally used, and has good foil characteristics, that is, high cubic shape. This invention is industrially highly effective because an anode foil having azimuthal integration, high capacitance, and uniform characteristic distribution can be efficiently manufactured.

特許出願人 日本軽金属株式会社 同      東洋アルミニウム株式会社同     
 株式会社 日 軽 技 研発明者 片 野 雅 彦
Patent applicant Nippon Light Metal Co., Ltd. Toyo Aluminum Co., Ltd.
Nichikei Giken Co., Ltd. Inventor Masahiko Katano

Claims (2)

【特許請求の範囲】[Claims] (1)電解コンデンサ用アルミニウム鋳塊に570〜6
30℃の温度範囲で4〜24時間の均質化処理を施した
後、ただちにほぼ均質化処理温度で粗熱間圧延に着手し
、480〜530℃の温度で粗熱間圧延を終了し再結晶
が完了するまで放置し、その後仕上げ熱間圧延を行い、
280℃以下の温度で終了し、更に300〜380℃で
1〜12時間の焼鈍を行い、最後に常法によって冷間圧
延、箔圧延および最終焼鈍を行うことを特徴とする電解
コンデンサ用アルミニウム箔の製造方法。
(1) 570-6 for aluminum ingots for electrolytic capacitors
After homogenization treatment for 4 to 24 hours at a temperature range of 30°C, rough hot rolling is immediately started at approximately the homogenization treatment temperature, and rough hot rolling is completed at a temperature of 480 to 530°C, followed by recrystallization. Leave it until it is completed, then finish hot rolling,
An aluminum foil for electrolytic capacitors, characterized in that the aluminum foil is finished at a temperature of 280°C or lower, further annealed at 300 to 380°C for 1 to 12 hours, and finally cold rolled, foil rolled and final annealed by conventional methods. manufacturing method.
(2)電解コンデンサ用アルミニウム鋳塊に570〜6
30℃で4〜24時間の均質化処理を施した後、ただち
にほぼ均質化処理温度で粗熱間圧延に着手し、80%以
上の圧下率による粗熱間圧延を行い、480〜530℃
の温度範囲で粗熱間圧延を完了し、100〜200秒放
置して再結晶を完了させ、その後仕上げ熱間圧延を行い
、280℃以下の温度で終了し、更に300〜380℃
で1〜12時間の焼鈍を行い、最後に常法によって冷間
圧延、箔圧延および最終焼鈍を行うことを特徴とする電
解コンデンサ用アルミニウム箔の製造方法。
(2) 570-6 for aluminum ingots for electrolytic capacitors
After homogenizing at 30°C for 4 to 24 hours, immediately begin rough hot rolling at approximately the homogenizing temperature, perform rough hot rolling at a rolling reduction of 80% or more, and heat to 480 to 530°C.
Rough hot rolling is completed at a temperature range of 100 to 200 seconds to complete recrystallization, then finish hot rolling is completed at a temperature of 280°C or lower, and then 300 to 380°C.
1. A method for producing an aluminum foil for an electrolytic capacitor, which comprises annealing the aluminum foil for 1 to 12 hours, and finally cold rolling, foil rolling, and final annealing by conventional methods.
JP2202587A 1990-08-01 1990-08-01 Manufacturing method of aluminum foil for anode of electrolytic capacitor Expired - Fee Related JP2756861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202587A JP2756861B2 (en) 1990-08-01 1990-08-01 Manufacturing method of aluminum foil for anode of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202587A JP2756861B2 (en) 1990-08-01 1990-08-01 Manufacturing method of aluminum foil for anode of electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0489118A true JPH0489118A (en) 1992-03-23
JP2756861B2 JP2756861B2 (en) 1998-05-25

Family

ID=16459956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202587A Expired - Fee Related JP2756861B2 (en) 1990-08-01 1990-08-01 Manufacturing method of aluminum foil for anode of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2756861B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150213A (en) * 1997-07-25 1999-02-23 Furukawa Electric Co Ltd:The Aluminum foil for electrode of electrolytic capacitor
CN102766831A (en) * 2012-08-01 2012-11-07 内蒙古包钢钢联股份有限公司 Method for improving cubic texture occupancy rate of aluminum foil
US8618429B2 (en) 2010-11-26 2013-12-31 Ricoh Company, Ltd. Keypad assembly, and image forming device and data processor incorporating the same
WO2017018029A1 (en) * 2015-07-30 2017-02-02 昭和電工株式会社 Method for producing aluminum material for electrolytic capacitor electrodes, method for producing electrode material for aluminum electrolytic capacitor, and method for producing aluminum electrolytic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918172B2 (en) 1990-08-01 1999-07-12 日本軽金属株式会社 Manufacturing method of aluminum foil for electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150213A (en) * 1997-07-25 1999-02-23 Furukawa Electric Co Ltd:The Aluminum foil for electrode of electrolytic capacitor
US8618429B2 (en) 2010-11-26 2013-12-31 Ricoh Company, Ltd. Keypad assembly, and image forming device and data processor incorporating the same
CN102766831A (en) * 2012-08-01 2012-11-07 内蒙古包钢钢联股份有限公司 Method for improving cubic texture occupancy rate of aluminum foil
WO2017018029A1 (en) * 2015-07-30 2017-02-02 昭和電工株式会社 Method for producing aluminum material for electrolytic capacitor electrodes, method for producing electrode material for aluminum electrolytic capacitor, and method for producing aluminum electrolytic capacitor
CN107849671A (en) * 2015-07-30 2018-03-27 昭和电工株式会社 Manufacture method, the manufacture method of aluminium electrolutic capacitor electrode material and the manufacture method of aluminium electrolutic capacitor of ALuminum material for electrode of electrolytic capacitor

Also Published As

Publication number Publication date
JP2756861B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
JP3293081B2 (en) Aluminum foil for anode of electrolytic capacitor and method for producing the same
JPH07235457A (en) Aluminum foil for forming electrode of electrolytic capacitor and etching method therefor
JPH0489118A (en) Production of aluminum foil for electrolytic capacitor anode
JPS58221265A (en) Manufacture of aluminum foil material for anode of electrolytic capacitor
JPH02240245A (en) Production of aluminum alloy foil for electrolytic capacitor cathode
JP2803762B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JP2918172B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JPH0361333B2 (en)
JP4916605B2 (en) Aluminum material for electrolytic capacitor electrode, aluminum foil, and method for producing aluminum foil
JPH0251210A (en) Aluminum alloy for electrolytic capacitor cathode and its production
JP2006219742A (en) Aluminum alloy foil for cathode of electrolytic capacitor and its production method
JPS63265416A (en) Aluminum alloy foil for electrolytic capacitor electrode
JP2003193260A (en) Aluminum foil for electrolytic capacitor electrode having excellent etching property, production method therefor, and method of producing aluminum etched foil for electrolytic capacitor electrode
JPH04179110A (en) Aluminum alloy foil for electrolytic capacitor electrode
JP3594858B2 (en) Aluminum foil for electrolytic capacitor electrodes
JPH04124806A (en) Aluminum alloy for electrolytic capacitor electrode foil
JPH0567695B2 (en)
JPH05311360A (en) Manufacture of aluminum alloy foil for electrode of electrolytic capacitor
JP3203666B2 (en) Manufacturing method of aluminum alloy foil for anode of electrolytic capacitor
JP3293241B2 (en) Aluminum foil material for electrodes of electrolytic capacitors with excellent surface area expansion effect
JPH0372703B2 (en)
JPS6037185B2 (en) Aluminum electrolytic capacitor - manufacturing method of aluminum foil for cathode
JPH09125214A (en) Production of aluminum alloy foil for electrolytic capacitor cathode
JP2005175112A (en) Aluminium foil for electrolytic capacitor electrode and its manufacturing method
JPH04318154A (en) Manufacture of aluminum alloy foil for electrolytic condenser cathode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees