JP2008010284A - 親水性多孔質金属部材とその製造方法 - Google Patents

親水性多孔質金属部材とその製造方法 Download PDF

Info

Publication number
JP2008010284A
JP2008010284A JP2006178834A JP2006178834A JP2008010284A JP 2008010284 A JP2008010284 A JP 2008010284A JP 2006178834 A JP2006178834 A JP 2006178834A JP 2006178834 A JP2006178834 A JP 2006178834A JP 2008010284 A JP2008010284 A JP 2008010284A
Authority
JP
Japan
Prior art keywords
porous metal
metal member
hydrophilic
thiol compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006178834A
Other languages
English (en)
Inventor
Kenji Orito
賢治 織戸
Toshiharu Hayashi
年治 林
Masahiro Wada
正弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006178834A priority Critical patent/JP2008010284A/ja
Publication of JP2008010284A publication Critical patent/JP2008010284A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】貴金属をコーティングした多孔質金属部材について、燃料電池環境下においても親水性を有する親水性多孔質金属部材とその製造方法を提供する。
【解決手段】貴金属がコーティングされた多孔質金属部材を、親水基を有するチオール化合物溶液によって表面処理し、乾燥することによって、燃料電池環境下においても親水性を有することを特徴とする親水性多孔質金属部材とその製造方法であり、例えば、メトキシシリル基、カルボン酸基、またはスルホン酸基を含有するチオール化合物溶液を用いて金コーティングした多孔質ステンレスまたは多孔質チタン等を表面処理してなる親水性多孔質金属部材。
【選択図】図1

Description

本発明は、持続性のある親水性を有する多孔質金属部材とその製造方法に関する。より詳しくは、本発明は、接触抵抗が低く、かつ耐食性を有するように金などの貴金属をコーティングした多孔質金属部材であって、燃料電池環境下においても親水性を有する、持続性のある親水性を有する多孔質金属部材とその製造方法に関する。本発明の多孔質金属部材は燃料電池用材料として好適である。
一般に、固体電解質を用いた燃料電池は、固体電解質の一方の側に空気極(酸素極)が形成され、他方の側に燃料極が形成されており、固体電解質が空気極と燃料極によって挟み込まれた構造単位をなし、この構造単位がセパレータを介して複数段に積層された構造を有している。
燃料電池の空気極は酸素が電解質界面に浸透するように導電性の多孔質体によって形成されており、同様に燃料極は水素やCOなどが電解質界面に浸透するように導電性の多孔質体によって形成されている。この多孔質体としてはカーボン繊維の不織布や多孔質金属が主に用いられており、またセパレータとしてはカーボン板や金属板が用いられている。
最近、燃料電池部材として、低コスト化のために、カーボン部材の代替として耐食性金属部材が用いられる傾向にある。他方、燃料電池部材としては接触抵抗の低いものが要求されるが、一般に耐食性金属は接触抵抗が高いので、接触抵抗を低減するために貴金属をコーティングした燃料電池部材が知られている。例えば、特開2001−06713号公報(特許文献1)には、貴金属または貴金属合金をイオン蒸着、電解メッキなどによって表面にコーティングした燃料電池部材用のステンレス鋼が記載されている。
また、燃料電池部材に親水性を付与することにより燃料電池の発電効率が高くなることが知られている。例えば、特開2002−93433号公報(特許文献2)には親水性層を設けたガス拡散層が記載されている。
特開2001−06713号公報 特開2002−93433号公報
ところが、メッキ、スパッタリング、イオンプレーティングなどによって金などの貴金属コーティングを施した従来の金属部材は、大気中に保持していると次第に親水性が消失すると云う問題があった。
本発明は、金などの貴金属をコーティングした多孔質金属部材について、大気中や燃料電池環境下においても親水性を有する親水性多孔質金属部材とその製造方法を提供する。
本発明によれば、以下の構成を有することによって上記課題を解決した親水性多孔質金属部材が提供される。
(1)貴金属がコーティングされた耐食性の多孔質金属部材であって、持続性のある親水性を有することを特徴とする親水性多孔質金属部材。
(2)貴金属がコーティングされた耐食性の多孔質金属部材であって、燃料電池環境下において親水性を有する上記(1)に記載する親水性多孔質金属部材。
(3)燃料電池用材料として用いられる上記(1)または上記(2)に記載する親水性多孔質金属部材。
(4)多孔質金属部材の材質がステンレス、またはチタンである上記(1)〜上記(3)の何れかに記載する親水性多孔質金属部材。
さらに、本発明によれば、上記親水性多孔質金属部材を製造する以下の構成からなる製造方法が提供される。
(5)貴金属がコーティングされた多孔質金属部材を、親水基を有するチオール化合物溶液によって表面処理し、乾燥することを特徴とする親水性多孔質金属部材の製造方法。
(6)親水基を有するチオール化合物として、メトキシシリル基、カルボン酸基、またはスルホン酸基を含有するチオール化合物を用いる上記(5)に記載する親水性多孔質金属部材の製造方法。
(7)金属粉末と結合剤、発泡剤、気泡剤を含むスラリーを用いて形成した発泡成形体を焼結処理して得た多孔質発泡金属板に金をコーティングした耐食性多孔質金属板を用い、親水基を有するチオール化合物溶液によって上記耐食性多孔質金属板を表面処理し、加熱乾燥することからなる上記(5)または上記(6)に記載する親水性多孔質金属部材の製造方法。
(8)上記(5)〜上記(7)に記載する何れかの方法において、貴金属がコーティングされた多孔質金属部材を、親水基を有するチオール化合物溶液に浸漬し、または親水基を有するチオール化合物の溶液を上記多孔質金属部材表面に噴霧し、乾燥する親水性多孔質金属部材の製造方法。
本発明の親水性金属部材は多孔質体であり、燃料電池の空気極および燃料極などの導電性多孔質体部材として好適に用いることができる。さらに、本発明の多孔質金属部材は、貴金属がコーティングされているので接触抵抗が小さく、かつ燃料電池環境下において親水性を有するので、燃料電池部材として用いた場合に燃料電池の性能を大幅に向上することができる。
また、本発明の製造方法は、親水基を含有するチオール化合物溶液に貴金属コーティング多孔質金属部材を浸漬し、または親水基を含有するチオール化合物溶液を貴金属コーティング多孔質金属部材表面に噴霧して加熱乾燥すると云う簡単な方法であり、また親水基を含有するチオール化合物溶液は一般に入手することができるので容易に実施することができる。
以下、本発明を実施形態に基づいて具体的に説明する。
本発明の親水性多孔質金属部材は、貴金属がコーティングされた耐食性の多孔質金属部材について、親水基を有するチオール化合物溶液を用いて表面処理することによって、持続性のある親水性を有するようにしたものであり、具体的には、例えば、燃料電池環境下においても親水性を有することができる多孔質金属部材である。
多孔質金属部材の材質はステンレス、チタンなどの燃料電池部材として用いられる耐食性の金属材料であり、単体の金属に限らず合金でもよい。また、多孔質金属部材の製造方法は制限されない。例えば、金属粉末に結合剤、発泡剤、気泡剤を加えてスラリーにし、このスラリーを用いてシート状ないし膜状の発泡成形体を形成し、これを焼結処理して得た多孔質発泡金属板などを用いることができる。
本発明の多孔質金属部材は貴金属がコーティングされた耐食性多孔質金属板である。貴金属のコーティング方法は限定されず、メッキ、スパッタリング、イオンプレーティングなどの方法によって貴金属が安定にコーティングされたものであればよい。貴金属の種類は接触抵抗を低減できる金属であればよく、例えば金、銀などである。貴金属のコーティング量は限定されない。
本発明の親水性多孔質金属部材は、貴金属がコーティングされた耐食性多孔質金属部材について、親水基を有するチオール化合物溶液を用いて表面処理したものである。親水基を有するチオール化合物としては、例えば、メトキシシリル基、カルボン酸基、またはスルホン酸基を有するチオール化合物を用いることができる。なお、チオール化合物とはチオール基(メルカプト基:−SH)を有する化合物である。
親水基を有するチオール化合物としては、具体的には例えば、3−メルカプトプロピオン酸、3−メルカプトプロピオンスルホン酸ナトリウムなどを用いることができる。
貴金属がコーティングされた耐食性多孔質金属部材の表面を清浄にした後に、該金属部材を親水基含有チオール化合物溶液によって表面処理する。具体的には、例えば、該金属部材を親水基含有チオール化合物溶液に浸漬し、または該金属部材表面に親水基含有チオール化合物溶液を噴霧して乾燥させる。
親水基含有チオール化合物の濃度は処理条件に応じて調整すればよく、例えば、一般的な処理条件下では0.1〜200mmol/lであればよい。乾燥は自然乾燥してもよく、30〜200℃で加熱乾燥してもよい。
金属部材表面を親水基含有チオール化合物溶液で表面処理することによって、例えば、図1に示すように、親水性のカルボン酸基(-COOH)がチオール基(-SH)を介して貴金属表面に接触し、このチオール基の水素が離脱し、S元素によって強固に貴金属表面に結合するので、親水性のカルボン酸基が安定に保持され、親水性が長期間持続する。同様に、親水性のスルホン酸基、あるいはメトキシシリル基がチオール基(-SH)を介して貴金属表面に接触し、このチオール基の水素が離脱し、S元素によって強固に貴金属表面に結合するので、親水性のスルホン酸基やメトキシシリル基が安定に保持され、親水性が長期間持続する。
本発明を実施例によって具体的に示す。実施例と共に比較例を示す。
〔実施例1〕
原料粉末として平均粒径:10μmのチタン粉末、水溶性樹脂結合剤としてメチルセルロース10%水溶液、可塑剤としてエチレングリコール、気泡剤としてアルキルベンゼンスルホン酸ナトリウム、発泡剤としてネオペンタンを用意した。原料粉末:20質量%、水溶性樹脂結合剤:10質量%、可塑剤:1質量%、気泡剤:1質量%、発泡剤:0.6質量%、残部:水となるように配合し、15分間混練し、発泡スラリーを作製した。得られた発泡スラリーをブレードギャップ:0.5mmでドクターブレード法によりPETフィルム上に成形し、これを恒温恒湿度槽に入れ、温度:35℃、湿度:90%、25分間保持の条件で発泡させた後、温度80℃、20分間保持の条件で温風乾燥を行い、スポンジ状グリーン成形体を作製した。この成形体をPETフィルムから剥がし、アルミナ板状に載せ、Ar雰囲気中、温度:550℃、180分保持の条件で脱脂し、続いて真空焼結炉で、雰囲気:5×10-3Pa、温度1200℃、1時間保持の条件で焼結することによって、気孔率90%、厚さ:1.0mmの多孔質発泡チタン板を作製した。この多孔質発泡チタン板を、縦:30mm、横:30mmの寸法になるように切断して多孔質発泡チタン素材を作製した。この多孔質発泡チタン素材を金イオンプレーティング処理し、厚さ0.1μmの金コーティングを施した。この金コーティングを有する多孔質発泡チタン素材を、濃度2mmol/lの3−メルカプトプロピオン酸に10分間浸漬し、大気中で80℃、10分間の乾燥を行い試料とした。
〔実施例2〕
原料粉末として平均粒径:10μmのSUS316粉末、水溶性樹脂結合剤としてメチルセルロース10%水溶液、可塑剤としてエチレングリコール、気泡剤としてアルキルベンゼンスルホン酸ナトリウム、発泡剤としてネオペンタンを用意した。原料粉末:20質量%、水溶性樹脂結合剤:10質量%、可塑剤:1質量%、気泡剤:1質量%、発泡剤:0.6質量%、残部:水となるように配合し、15分間混練し、発泡スラリーを作製した。得られた発泡スラリーをブレードギャップ:0.5mmでドクターブレード法によりPETフィルム上に成形し、これを恒温恒湿度槽に入れ、温度:35℃、湿度:90%、25分間保持の条件で発泡させた後、温度80℃、20分間保持の条件で温風乾燥を行い、スポンジ状グリーン成形体を作製した。この成形体をPETフィルムから剥がし、アルミナ板状に載せ、Ar雰囲気中、温度:550℃、180分保持の条件で脱脂し、続いて真空焼結炉で、雰囲気:5×10-3Pa、温度1200℃、1時間保持の条件で焼結することによって、気孔率90%、厚さ:1.0mmの多孔質発泡ステンレス板を作製した。この多孔質発泡ステンレス板を、縦:30mm、横:30mmの寸法になるように切断して多孔質発泡ステンレス素材を作製した。この多孔質発泡ステンレス素材を金メッキ処理し、厚さ0.1μmの金メッキを施した。この金メッキを有する多孔質発泡ステンレス素材を、濃度2mmol/lの3−メルカプトプロピオンスルホン酸に10分間浸漬し、大気中で80℃、10分間の乾燥を行い試料とした。
〔比較例1〕
原料粉末として平均粒径:10μmのチタン粉末、水溶性樹脂結合剤としてメチルセルロース10%水溶液、可塑剤としてエチレングリコール、気泡剤としてアルキルベンゼンスルホン酸ナトリウム、発泡剤としてネオペンタンを用意した。原料粉末:20質量%、水溶性樹脂結合剤:10質量%、可塑剤:1質量%、気泡剤:1質量%、発泡剤:0.6質量%、残部:水となるように配合し、15分間混練し、発泡スラリーを作製した。得られた発泡スラリーをブレードギャップ:0.5mmでドクターブレード法によりPETフィルム上に成形し、これを恒温恒湿度槽に入れ、温度:35℃、湿度:90%、25分間保持の条件で発泡させた後、温度80℃、20分間保持の条件で温風乾燥を行い、スポンジ状グリーン成形体を作製した。この成形体をPETフィルムから剥がし、アルミナ板状に載せ、Ar雰囲気中、温度:550℃、180分保持の条件で脱脂し、続いて真空焼結炉で、雰囲気:5×10-3Pa、温度1200℃、1時間保持の条件で焼結することによって、気孔率90%、厚さ:1.0mmの多孔質発泡チタン板を作製した。この多孔質発泡チタン板を、縦:30mm、横:30mmの寸法になるように切断して多孔質発泡チタン素材を作製した。この多孔質発泡チタン素材を金イオンプレーティング処理し、厚さ0.1μmの金コーティングを施した。
〔比較例2,3〕
比較例1で得た金イオンプレーティングした多孔質発泡チタン素材について、親水基を有しないチオール化合物(ドデカンチオール)を用い、上記試料をこの化合物溶液(濃度2mmol/l)に10分間浸漬し、大気中で80℃、10分間の乾燥を行い試料とした(比較例2)。
また、比較例1で得た金イオンプレーティングした多孔質発泡チタン素材について、親水基を有するチオール以外の化合物(ドデシルベンゼンスルホン酸ナトリウム)を用い、上記試料をこの化合物溶液(濃度2mmol/l)に10分間浸漬し、大気中で80℃、10分間の乾燥を行い試料とした(比較例3)。
〔親水性確認試験〕
スポイトにて蒸留水0.005mlを試料表面に滴下して親水性を判断した。判断方法は液滴が試料表面に吸い込まれるものは親水性を有し、液滴のまま残るものは親水性がないものとし、親水性がなくなるまでの日数を調べた。この結果を表1に示す。
〔燃料電池環境通電後の親水性確認試験〕
試料を温度:50℃、pH=2に保持された硫酸水溶液中に浸漬し、電位:1000mV(対水素基準)を印加しながら100時間保持したの後に試料を取出し、蒸留水で十分に洗浄して大気中で乾燥した。この試料を用い、スポイトにて蒸留水0.005mlを試料表面に滴下して親水性を判断した。判断方法は液滴が試料表面に吸い込まれるものは親水性を有し、液滴のまま残るものは親水性がないものとし、燃料電池環境通電試験後、親水性がなくなるまでの日数を調べた。この結果を表1に示す。
Figure 2008010284
親水基含有チオール化合物による表面処理の状態を示す模式図

Claims (8)

  1. 貴金属がコーティングされた耐食性の多孔質金属部材であって、持続性のある親水性を有することを特徴とする親水性多孔質金属部材。
  2. 貴金属がコーティングされた耐食性の多孔質金属部材であって、燃料電池環境下において親水性を有する請求項1に記載する親水性多孔質金属部材。
  3. 燃料電池用材料として用いられる請求項1または2に記載する親水性多孔質金属部材。
  4. 多孔質金属部材の材質がステンレス、またはチタンである請求項1〜3の何れかに記載する親水性多孔質金属部材。
  5. 貴金属がコーティングされた多孔質金属部材を、親水基を有するチオール化合物溶液によって表面処理し、乾燥することを特徴とする親水性多孔質金属部材の製造方法。
  6. 親水基を有するチオール化合物として、メトキシシリル基、カルボン酸基、またはスルホン酸基を含有するチオール化合物を用いる請求項5に記載する親水性多孔質金属部材の製造方法。
  7. 金属粉末と結合剤、発泡剤、気泡剤を含むスラリーを用いて形成した発泡成形体を焼結処理して得た多孔質発泡金属板に金をコーティングした耐食性多孔質金属板を用い、親水基を有するチオール化合物溶液によって上記耐食性多孔質金属板を表面処理し、加熱乾燥することからなる請求項5または6に記載する親水性多孔質金属部材の製造方法。
  8. 請求項5〜7に記載する何れかの方法において、貴金属がコーティングされた多孔質金属部材を、親水基を有するチオール化合物溶液に浸漬し、または親水基を有するチオール化合物の溶液を上記多孔質金属部材表面に噴霧し、乾燥する親水性多孔質金属部材の製造方法。




JP2006178834A 2006-06-28 2006-06-28 親水性多孔質金属部材とその製造方法 Pending JP2008010284A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006178834A JP2008010284A (ja) 2006-06-28 2006-06-28 親水性多孔質金属部材とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006178834A JP2008010284A (ja) 2006-06-28 2006-06-28 親水性多孔質金属部材とその製造方法

Publications (1)

Publication Number Publication Date
JP2008010284A true JP2008010284A (ja) 2008-01-17

Family

ID=39068301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006178834A Pending JP2008010284A (ja) 2006-06-28 2006-06-28 親水性多孔質金属部材とその製造方法

Country Status (1)

Country Link
JP (1) JP2008010284A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106355A (ja) * 2006-09-27 2008-05-08 Mitsubishi Materials Corp 親水性多孔質金属部材とその製造方法
JP2008210799A (ja) * 2007-01-31 2008-09-11 Hitachi Metals Ltd 燃料電池用導電部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006713A (ja) * 1999-06-16 2001-01-12 Nippon Steel Corp 固体高分子型燃料電池部材用低接触抵抗ステンレス鋼、チタンおよび炭素材料
JP2002093433A (ja) * 2000-09-12 2002-03-29 Toto Ltd 固体高分子型燃料電池
JP2006164947A (ja) * 2004-11-15 2006-06-22 Seiko Instruments Inc 高分子電解質型燃料電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006713A (ja) * 1999-06-16 2001-01-12 Nippon Steel Corp 固体高分子型燃料電池部材用低接触抵抗ステンレス鋼、チタンおよび炭素材料
JP2002093433A (ja) * 2000-09-12 2002-03-29 Toto Ltd 固体高分子型燃料電池
JP2006164947A (ja) * 2004-11-15 2006-06-22 Seiko Instruments Inc 高分子電解質型燃料電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106355A (ja) * 2006-09-27 2008-05-08 Mitsubishi Materials Corp 親水性多孔質金属部材とその製造方法
JP2008210799A (ja) * 2007-01-31 2008-09-11 Hitachi Metals Ltd 燃料電池用導電部材
JP2013239453A (ja) * 2007-01-31 2013-11-28 Hitachi Metals Ltd 燃料電池用導電部材

Similar Documents

Publication Publication Date Title
CN103328693B (zh) 具有高耐腐蚀性的多孔金属体及其制造方法
JP5058818B2 (ja) 製造方法と集電体
US8211495B2 (en) Noble metal plating of titanium components
JP6282113B2 (ja) 触媒
JP2004296381A (ja) 燃料電池用金属製セパレータおよびその製造方法
JPWO2003079477A1 (ja) 固体高分子電解質型燃料電池のセルユニット
CA2701227C (en) Method of manufacture of an electrode for a fuel cell
WO2014208176A1 (ja) 金属多孔体、金属多孔体の製造方法、及び燃料電池
JP5206932B2 (ja) 親水性多孔質金属部材とその製造方法
JP5590008B2 (ja) 燃料電池用集電板及びその製造方法
WO2007145377A1 (ja) 純チタンまたはチタン合金製固体高分子型燃料電池用セパレータおよびその製造方法
JP4895012B2 (ja) 接触抵抗の小さい多孔質チタンおよびその製造方法
JP2008010284A (ja) 親水性多孔質金属部材とその製造方法
JPWO2020049815A1 (ja) 金属多孔体、燃料電池および金属多孔体の製造方法
JP2010159472A (ja) アンモニア分解素子
JP2008108715A (ja) 親水性多孔質金属部材とその製造方法
JP4873140B2 (ja) 親水性多孔質金属部材とその製造方法
JP2003128409A (ja) 多孔質炭素膜構造体、触媒担持体、燃料電池用電極、電極接合体、及び燃料電池
WO2019217805A1 (en) Biofouling-resistant nanoporous alloys
CN105413679A (zh) 一种石墨烯-二维贵金属原子簇复合材料的制备方法
WO2020217668A1 (ja) 金属多孔体、電解用電極、水素製造装置、燃料電池および金属多孔体の製造方法
JP5099467B2 (ja) 骨格表面に炭窒化チタン層を有する水溶系電気化学セル用多孔質発泡チタン電極
JP2001329380A (ja) 多孔質板材の製造方法
JP5248792B2 (ja) 除湿素子およびその製造方法
CN109417172A (zh) 金属多孔质体的制造方法和电极催化剂的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120229