JP2008004832A - 不揮発性半導体メモリ装置及びその製造方法 - Google Patents
不揮発性半導体メモリ装置及びその製造方法 Download PDFInfo
- Publication number
- JP2008004832A JP2008004832A JP2006174172A JP2006174172A JP2008004832A JP 2008004832 A JP2008004832 A JP 2008004832A JP 2006174172 A JP2006174172 A JP 2006174172A JP 2006174172 A JP2006174172 A JP 2006174172A JP 2008004832 A JP2008004832 A JP 2008004832A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- source
- recess
- charge storage
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title description 25
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 238000003860 storage Methods 0.000 claims description 37
- 238000000059 patterning Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 230000003628 erosive effect Effects 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 abstract description 13
- 239000010410 layer Substances 0.000 description 60
- 230000008569 process Effects 0.000 description 7
- 238000009413 insulation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- WNUPENMBHHEARK-UHFFFAOYSA-N silicon tungsten Chemical compound [Si].[W] WNUPENMBHHEARK-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 101100481702 Arabidopsis thaliana TMK1 gene Proteins 0.000 description 1
- 241000293849 Cordylanthus Species 0.000 description 1
- LPQOADBMXVRBNX-UHFFFAOYSA-N ac1ldcw0 Chemical compound Cl.C1CN(C)CCN1C1=C(F)C=C2C(=O)C(C(O)=O)=CN3CCSC1=C32 LPQOADBMXVRBNX-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
Images
Landscapes
- Read Only Memory (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
【課題】書き込み特性や読み込み特性に優れ、かつ製造が容易な不揮発性半導体記憶装置及びその製造方法を提供すること。
【解決手段】ほぼ平行に形成された複数のソース/ドレイン領域11、及び、前記複数のソース/ドレイン領域11の間に凹部12が形成された半導体基板1と、前記半導体基板1の前記凹部12に形成される電荷蓄積ゲート3と、前記複数のソース/ドレイン領域11に交差し、かつ、前記蓄積ゲート3上に絶縁層を介して配置される複数の導電ゲート6と、を有する不揮発性半導体記憶装置とする。
【選択図】図5
【解決手段】ほぼ平行に形成された複数のソース/ドレイン領域11、及び、前記複数のソース/ドレイン領域11の間に凹部12が形成された半導体基板1と、前記半導体基板1の前記凹部12に形成される電荷蓄積ゲート3と、前記複数のソース/ドレイン領域11に交差し、かつ、前記蓄積ゲート3上に絶縁層を介して配置される複数の導電ゲート6と、を有する不揮発性半導体記憶装置とする。
【選択図】図5
Description
本発明は、不揮発性半導体メモリ及びその製造方法に関する。
近年、不揮発性半導体記憶装置において配線の微細化が進んでいる。配線の微細化はゲート長の縮小をももたらし、ゲート長の縮小は書き込み特性の悪化をもたらすといった課題がある。具体的に説明すると、不揮発性半導体記憶装置、例えばNOR型の不揮発性記憶装置においてCHE(Channel Hot Electron)書き込み方式を使用する場合において、HEとして発生した電子がフローティングゲートに注入されるためにはゲート電極(トンネル酸化膜)の障壁を超える程度のエネルギー(最低ドレイン電圧値)が必要である一方、ソース/ドレインの間はその最低ドレイン電圧値に耐えられる程度のゲート長が必要であり、ゲート長の縮小は書き込み特性の悪化につながりうる。
そこで上記課題に対し、シリコン基板との界面にあるスプリットゲート及びフローティングゲートのそれぞれの実効ゲート長を長く確保しようとする技術が下記特許文献1に開示されている。
しかしながら、上記特許文献1に記載の技術は、配線構造が複雑となり、また工程も複雑になるといった課題を有する。また、配線の微細化に伴いビア配線等も微細化されるが、その微細化に伴うコンタクト抵抗の増大も問題となり、この点からの書き込み特性や読み込み特性の悪化については未だ課題を残している。
そこで、本発明は上記課題を鑑み、書き込み特性や読み込み特性に優れ、かつ製造が容易な不揮発性半導体記憶装置及びその製造方法を提供することを目的とする。
本発明の一実施形態によると、ほぼ平行に形成された複数のソース/ドレイン領域、及び、前記複数のソース/ドレイン領域の間に凹部が形成された半導体基板と、前記半導体基板の前記凹部に形成される電荷蓄積ゲートと、前記複数のソース/ドレイン領域に交差して前記蓄積ゲート上に絶縁層を介して配置される複数の導電ゲートと、を有することを特徴とする不揮発性半導体記憶装置が提供される。
本発明の一実施形態によると、書き込み特性や読み込み特性に優れ、かつ製造が容易な不揮発性半導体記憶装置及びその製造方法を提供することができる。
以下、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は多くの異なる態様で実施することが可能であり、以下に示す実施形態に限定されるものではない。なお、本明細書においては同一又は同様の機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
(実施形態1)
図1は、不揮発性半導体記憶装置の一実施形態に係るNOR型フラッシュメモリの概略ブロック図である。本実施形態に係るNOR型フラッシュメモリは、メモリセルアレイ、ローデコーダ、カラムデコーダ、周辺回路部及びパッド部を備えて構成される。
図1は、不揮発性半導体記憶装置の一実施形態に係るNOR型フラッシュメモリの概略ブロック図である。本実施形態に係るNOR型フラッシュメモリは、メモリセルアレイ、ローデコーダ、カラムデコーダ、周辺回路部及びパッド部を備えて構成される。
本実施形態に係るメモリセルアレイは、電気的に書き換え可能な複数のメモリセルをマトリクス状に配置して構成されているが、メモリセルの接続関係の観点から、メモリセルブロック、メモリセルユニット、メモリセルアレイといった概念に分割して考えることができる。そこでまず、図2に本実施形態に係るメモリセルアレイについての概略ブロック図の例を示す。本実施形態に係るメモリセルアレイは、図2で示すとおり、複数の(m個の)メモリセルブロック(BLK0、BLK1、…、BLKm−1)を有して構成されている。ここでは「メモリセルブロック」とは、データ消去の最小単位となっている。
次に、図3に複数のメモリセルブロックのうちの一つ(例えばBLK0)について、より詳細な等価回路の例を示す。図3で示すとおり、各メモリセルブロックは、複数のワード線WL0〜WLiと、このワード線と交差して配置される複数のビット線BL0〜BLjとを有しており、それぞれのワード線においては交差するワード線の間に配置される複数の電荷蓄積ゲートGate0〜Gateiが形成されており、いわゆるNOR型のフラッシュメモリとなっている。
次に、図4に、本実施形態に係る不揮発性半導体記憶装置の上面図を、図5に図4におけるA−A’断面図を、図6に図4におけるB−B’断面図をそれぞれ示す。図4乃至図6で示されるとおり、本実施形態に係る不揮発性半導体記憶装置は、ソース/ドレイン領域11が形成された半導体基板1と、この半導体基板1上に形成される第一の絶縁層2と、第一の絶縁層2上に形成される複数の電荷蓄積ゲート3及び第二の絶縁層4と、電荷蓄積ゲート3及び第二の絶縁層4の上に形成される第三の絶縁層5、導電ゲート6及び保護層7と、を有している。また、本実施形態の半導体基板1には電荷蓄積ゲート3が形成される領域に凹部12が形成されており、この凹部12はソース/ドレイン領域11に挟まれている。なお、図3におけるビット線はソース/ドレイン領域11に相当し、ワード線は導電ゲート6に相当する。本実施形態に係る不揮発性半導体記憶装置はこの構成により、いわゆるVirtural Ground型のメモリセルアレイ構造となっている。
なお本実施形態において、半導体基板1としては特に限定無く周知な物を使用することができるが、例えばシリコン基板等が好適である。また、上述のとおり本半導体基板1にはソース/ドレイン領域11が形成されており、このソース/ドレイン領域の間には窪んだ凹部12が形成されている。なおこの凹部12は、ソース/ドレイン領域と平行な方向に延びている。ここでソース/ドレイン領域とは、As(砒素)やP(燐)等の不純物を多く含んでなる領域であり、半導体基板1の凹部以外の領域、例えば平坦な部分に形成されているほうが望ましい。なお、本実施形態において凹部12は実効的なゲート長を確保するために用いられるものであるため、凹部の深さはソース/ドレイン領域の深さよりも深いことが望ましい。
第一の絶縁層2としては、この上に形成される電荷蓄積ゲート3と絶縁性を確保する一方、ソース/ドレイン領域11を介して電荷を蓄積できる機能(CHE書き込みで可能なバリアハイト)を有する限り限定されることはないが、例えば半導体基板1を酸化することにより形成できる酸化膜や酸化膜系を含む絶縁層が好ましい。
本実施形態に係る電荷蓄積ゲート3は、上記のとおり半導体基板1に形成された凹部12に形成されている。この電荷蓄積ゲート3としては、ソース/ドレイン領域11を介して電荷を蓄積する限りにおいて限定は無く、例えばフローティングゲートやMONOSを好適に用いることができ、より具体的には例えば燐(P)がドープされたポリシリコン層やタングステン(W)やポリサイド等を好適に用いることができる。また図4乃至図6で明らかなとおり、本実施形態に係る電荷蓄積ゲート3は、絶縁膜4のパターニング形状によって規定され、半導体基板凹部分と電荷蓄積ゲートの形状の関係はどのメモリセルにおいてもほぼ同じとなる、いわゆる自己整合的に形成される。なおここで「自己整合的に形成される」をより具体的に説明すると、例えば図7で表すように、半導体基板1の表面に対する凹部12の傾きが最大となる点における接線121と電荷蓄積ゲート3のエッジの接線31が半導体基板1の表面より高い位置で交差し、その交差点32の位置が半導体基板1の表面から同じ高さにあることをいう。これにより本実施形態に係る電荷蓄積ゲート3は凹部12全体を確実に覆うよう形成され、理想的には導電ゲート6が延伸する方向に沿った断面(図5で示す断面と同じ断面)において、凹部12の最深部を中心軸として左右対称となるよう形成される。これは図8で示すような配置が左または右に偏ることで凹部が露出するようなゲートが形成されてしまうことが殆どないことを意味し、これによりゲート配置の偏りによる書き込み特性、読み出し特性の悪化を防止することができる。
また、本実施形態に係る不揮発性半導体記憶装置は、電荷蓄積ゲート3が半導体基板1における平坦部にも形成されているため、ソース/ドレイン領域から電荷蓄積ゲート3への電子の注入をより効率よく行うことができる。図9に、本不揮発性半導体記憶装置のメモリセルにおける電子の移動のイメージを示す。例えば図9のメモリセルの導電ゲートに10V、ドレイン領域に5V(ソース領域、Well領域には0V)印加した場合、電子はソース領域からチャネル領域へ注入され、チャネル領域に沿ってドレイン領域へ向かう。ドレイン領域へ向かう電子はドレイン電界でさらに加速されるためHEとして向かう成分が多くなる。そしてこの場合、効率よくHEを電荷蓄積ゲートへ注入するためには、HEが向かう先に電荷蓄積ゲートがしっかり存在することが重要となる。本実施形態におけるメモリセルでは、半導体基板1に凹部12を設け、またこの凹部の側縁近傍において電荷蓄積ゲートを配置しているため、電子の移動方向を基板の平坦部に対しある程度の角度をもたせて電荷蓄積ゲートに注入することができる(ドレイン領域に向かう電子を効率良くキャッチできることになる)。従って、本実施形態において、電荷蓄積ゲートが半導体基板1における平坦部にも形成されていることが望ましい。なお、「平坦部」とは、半導体基板1断面において凹部12と重ならない部分であり、図7では凹部12の両脇の平らな部分を意味するものとする。本実施形態では、図7に示すように、電荷蓄積ゲート3が半導体基板1の凹部12両脇にある平坦部上にも重なるように形成されており、凹部12における接線121と電荷蓄積ゲート3のエッジの接線31の交点32は、基板表面の凹部12の上ではなく、平坦部に位置する。換言すれば、本実施形態においては、電荷蓄積ゲート3の幅は凹部12の幅より広く、電荷蓄積ゲート3の周縁は凹部12の周縁より外側にあって半導体基板1を鉛直方向下向きで見た場合、凹部12の周辺は電荷蓄積ゲート3の内側に位置している。
また、本実施形態において、複数の電荷蓄積ゲート3の間には第二の絶縁層4が配置されており、電荷蓄積ゲート3同士の絶縁性が確保されている。第二の絶縁層4の材質としては上記機能を奏する限りにおいて限定されるわけではないが、例えば酸化膜またはTEOS膜等を好適に用いることができる。
更に、上記電荷蓄積ゲート3及び第二の絶縁層4の上には第三の絶縁層5が形成されているが、これは電荷蓄積ゲートとこの上に形成される導電性ゲートとの間を絶縁することができる限りにおいて特段に限定されないが、例えばONO層(酸化膜/窒化膜/酸化膜の組み合わせからなる層)やONO層の窒化膜の代わりにさらに高い誘電率をもつ膜を使用した絶縁膜等(Hf等)を好適に用いることができる。
また、導電ゲート6は、導電性を有するゲートであって、図3におけるワード線として機能するものであり、限定されるわけではないが、例えば燐がドープされたポリシリコン層とこの上に形成されたタングステンシリコン層の組み合わせや、タングステン(W)やポリサイドが好適である。
保護層7は、この下に形成される各層を保護するための保護膜であって、例えば酸化膜、TEOS膜を好適に採用することができる。
本実施形態に係る不揮発性半導体記憶装置は、以上の構成を採用するが、消去、書き込み、読み込みの各動作は以下のように行う。なお、下記の動作においては説明の観点から具体的な電圧値を用いて説明しているがこれに狭く限定されるものではない。
(消去動作)
まず全てのメモリセルを最初に“1”の状態にする。即ち、電荷蓄積ゲート3から電子の引抜を行う。なおこの電子を引き抜く方法としては、ワード線とビット線との間で電子の引抜を行いワード線単位で引き抜く方法、ワード線と半導体基板との間で電子の引抜を行い、アレイ単位で消去を行う(Block消去)ことも可能である。これは一般のNOR型メモリセルの消去動作と同様である。
まず全てのメモリセルを最初に“1”の状態にする。即ち、電荷蓄積ゲート3から電子の引抜を行う。なおこの電子を引き抜く方法としては、ワード線とビット線との間で電子の引抜を行いワード線単位で引き抜く方法、ワード線と半導体基板との間で電子の引抜を行い、アレイ単位で消去を行う(Block消去)ことも可能である。これは一般のNOR型メモリセルの消去動作と同様である。
(書き込み動作)
あるメモリセルを選択して“0”の状態にする場合、そのメモリセルの電荷蓄積ゲートに電子を注入する。この場合、例えば選択するセルにかかるワード線の電圧を10V、他のワード線の電圧を全て0Vにし、選択するメモリセル(以下「選択メモリセル」という。)の一方のソース/ドレイン領域に接続するビット線とこれより前段のビット線(例えば選択メモリセルの一方のソース/ドレイン領域に接続するビット線がBL2であった場合、BL2以前のビット線)すべてを5V、選択メモリセルの他方のソース/ドレイン領域に接続するビット線とこれより後段のビット線(例えば選択メモリセルの他方のソース/ドレイン領域に接続するビット線がBL3であった場合、BL3以降のビット線)すべてを0Vとする。このようにすることで、隣接するワード線に存在するメモリセルや、隣接するビット線に存在する選択メモリセル以外のメモリセルにおいて電子の注入は行われず、所望のメモリセルのみへ確実に電子を注入させることができる(図10参照。図中点線の丸で囲まれたメモリセルが選択メモリセルである。)。なお、上記のような隣接するビット線電位の印加方法が望ましいが、所望のメモリセルの前段のビット線の電圧については、フローティングであってもよい。
あるメモリセルを選択して“0”の状態にする場合、そのメモリセルの電荷蓄積ゲートに電子を注入する。この場合、例えば選択するセルにかかるワード線の電圧を10V、他のワード線の電圧を全て0Vにし、選択するメモリセル(以下「選択メモリセル」という。)の一方のソース/ドレイン領域に接続するビット線とこれより前段のビット線(例えば選択メモリセルの一方のソース/ドレイン領域に接続するビット線がBL2であった場合、BL2以前のビット線)すべてを5V、選択メモリセルの他方のソース/ドレイン領域に接続するビット線とこれより後段のビット線(例えば選択メモリセルの他方のソース/ドレイン領域に接続するビット線がBL3であった場合、BL3以降のビット線)すべてを0Vとする。このようにすることで、隣接するワード線に存在するメモリセルや、隣接するビット線に存在する選択メモリセル以外のメモリセルにおいて電子の注入は行われず、所望のメモリセルのみへ確実に電子を注入させることができる(図10参照。図中点線の丸で囲まれたメモリセルが選択メモリセルである。)。なお、上記のような隣接するビット線電位の印加方法が望ましいが、所望のメモリセルの前段のビット線の電圧については、フローティングであってもよい。
(読み込み動作)
あるメモリを読み出す場合、そのメモリセルに対応して配置されるワード線の電圧を5V、他のワード線の電圧を全て0Vにし、選択メモリセルの一方のソース/ドレイン領域に接続されるビット線とこれより前段のビット線を1V、選択メモリセルの他方のソース/ドレイン領域に接続されるビット線とそれ以降のビット線0Vとする。この場合に当該一方のビット線に流れる電流又は電圧をセンスし、電流が流れる又は電圧が上がれば“0”とし、電流が流れなければ又は電圧が上がらなければ“1”と判断する(図11参照。図中点線の丸で囲まれたメモリセルが選択メモリセルである)。
あるメモリを読み出す場合、そのメモリセルに対応して配置されるワード線の電圧を5V、他のワード線の電圧を全て0Vにし、選択メモリセルの一方のソース/ドレイン領域に接続されるビット線とこれより前段のビット線を1V、選択メモリセルの他方のソース/ドレイン領域に接続されるビット線とそれ以降のビット線0Vとする。この場合に当該一方のビット線に流れる電流又は電圧をセンスし、電流が流れる又は電圧が上がれば“0”とし、電流が流れなければ又は電圧が上がらなければ“1”と判断する(図11参照。図中点線の丸で囲まれたメモリセルが選択メモリセルである)。
以上のとおり、本実施形態に係る不揮発性半導体装置によれば、ソース/ドレインの間に凹部12を設けているため、凹部を設けていない場合に比べ、ゲート長を長くすることができるため、通常よりも最低ドレイン耐圧に耐えることが可能となり、より微細化に対応できるものとなる。また、本実施形態では、いわゆるVirtural Ground型のメモリセル構造となっているため、ビア配線を設ける必要がなくなりビア配線のプロセスを省略することができるだけでなく、微細化に伴うビア配線のコンタクト抵抗の増大を考慮する必要も無くなり、更に微細化が可能となる。
次に、本実施形態に係る不揮発性半導体記憶装置の製造方法について図12及び図13を用いて説明する。なお図12及び図13は図4におけるA−A’断面に対応するものである。
まず半導体基板1に凹部12及び第一の絶縁層2を形成する(図12参照)。
上記の工程をより具体的に説明すると、まず半導体基板1の上に絶縁層13を形成し、Well領域やチャネル領域にイオン注入を行い、マスク層8を堆積する。そしてマスク層8を堆積した後この層をパターニングする(図12(A))。絶縁層13としては、後述するように、成長させて半導体基板1に凹部12を形成することができる限りにおいて限定されないが、酸化物であることが望ましく、特に半導体基板1を酸化することで形成するのが望ましい。マスク層8としては、これに限定されるわけではないが、例えばSiNが好適である。またマスク層8をパターニングする方法としては、限定されるものではないが、フォトリソグラフィ技術やドライエッチング技術等を好適に用いることができる。
次に、露出した部分の絶縁層13を成長させて半導体基板1を侵食させ(図12(B))、その後絶縁膜13を取り除いて凹部12を形成する(図12(C))。ここで絶縁層13を成長させる方法としては、限定されるわけではないが、絶縁層13を酸化物とし、この酸化物の絶縁層13にBOX酸化を施してLOCOS131を形成することができる。LOCOS131(絶縁膜13)を取り除く方法としては、限定されるわけではないが、例えば、WET工程が好適である。なお、この工程においてはLOCOS131を除去する際にマスク層8の一部も後退させることができる。これによって電荷蓄積ゲート3が重畳する平坦部分(図12(C)中の点線で囲まれた領域)を形成することができる。なお、絶縁層13を成長させる場合において、酸化膜13がマスク層8の下にバーズビークとして食い込んだ場合は、マスク層を選択除去した後にTEOSを堆積し、異方性エッチング(RIE)を行って側壁を形成し、その後にBOX酸化を行う方法等ができる。
そして凹部12を形成した後、この露出した半導体基板1の凹部12に第一の絶縁層2を形成する(図12(D))。なお第一の絶縁層2は、最初に形成した絶縁層13と同じであってもよく、異なっていてもよい。
そして凹部12及び第一の絶縁層2を形成した後、電荷蓄積ゲート3及びソース/ドレイン領域12を形成する(図13参照)。
この工程を具体的に説明すると、まず、上記凹部12と第一の絶縁層2が形成された半導体基板1の上のマスク層8の間に不純物を含む半導体層を堆積し、CMP等により平坦化する(図13(A))。不純物を含む半導体層としては、上記したとおり、電荷を蓄積することができる限りにおいて限定されず、例えば燐を含むポリシリコン層とすることができる。
そして次にマスク層8を除去し、ソース/ドレイン領域11を形成する(図13(B))。マスク層の除去工程としては、特段に限定されないが、例えばWET工程を用いることができ、ソース/ドレイン領域11の形成方法としては限定されないが、イオンを注入することにより行うことができる。なおこのイオンの注入については、限定されるわけではないが、例えば砒素を数〜50keVで1×1014〜1×1016個/cm2程度であることが好適である。
そしてソース/ドレイン領域11を形成した後、第二の絶縁層4の堆積及び平坦化を行い、更にその上に第三の絶縁層5を形成する(図13(D))。第二の絶縁層4の平坦化は、特段限定されるわけではないが、例えばCMP等の研磨やエッチバック等を好適に用いることができる。
そして最後に、導電ゲート6及び保護膜7を形成することで本実施形態に係る不揮発性半導体記憶装置を製造することができる。なお導電ゲート6は、上記のとおり限定されるものではないが、例えば燐がドープされたポリシリコンを堆積した後、この上に電極材料としてタングステンシリコン層を堆積し、パターニングすることで形成できる。このパターニングする方法としては、周知の方法を採用できるが、例えばリソグラフィー技術やドライエッチング等を好適に用いることができる。
以上のとおり、本実施形態の製造方法によると、絶縁層とマスク層を堆積し、マスク層を始めにパターニングし、露出した絶縁層を成長させることで凹部を形成する領域を確保することができるとともに、しかもそのまま電荷蓄積ゲートのマスクとしても用いることができる。これにより容易にいわゆる自己整合的にゲートを作成することができ、図8で示したように凹部と電荷蓄積ゲートとがずれて配置されることが殆どない。しかも本実施形態ではこの工程の後、導電性ゲート及び保護膜をソース/ドレイン領域に交差するように形成するだけでNOR型の不揮発性半導体記憶装置とすることができ、例えばビア配線等の工程を省略することができ、より微細化に対応した信頼性の高い製造方法となっている。
以上、本実施形態の不揮発性半導体記憶装置及びその製造方法は、書き込み特性や読み込み特性に優れ、かつ製造が容易となっている。
なお、本実施形態においては、凹部12の形成に、絶縁膜13を成長させることにより半導体基板1を侵食させることとしているが、この例のほか、例えばエッチングにより凹部12を形成することが可能である。エッチングは、微細化を行う場合により効果的であることから、好適に使用できる。
図14は、本実施形態の変形例に係るメモリセルの断面図である。この変形例は、凹部12´がエッチングにより形成され底部が平坦になっている点で、図7に示したメモリセルと異なる。この例でも、電荷蓄積ゲート3´は自己整合的に形成されている。すなわち、半導体基板1の表面に対する凹部12´の傾きが最大となる点における接線121´と電荷蓄積ゲート3´の接線31は、半導体基板1の表面より高い位置で交差し、その交差点32´の位置は半導体基板1の表面からほぼ同じ高さに位置するように形成されている。また、凹部12´は図14に示すように底部の中央を通る線を軸として左右対称であることが好ましく、これにより凹部12´の側縁が露出することが防止でき、ゲート配置の偏りを防止できる。
1…半導体基板、2…第一の絶縁層、3…電荷蓄積ゲート、4…第二の絶縁層、5…第三の絶縁層、6…導電ゲート、7…保護層、8…マスク層、11…ソース/ドレイン領域、12…凹部、13…絶縁層、131…LOCOS
Claims (5)
- ほぼ平行に形成された複数のソース/ドレイン領域、及び、前記複数のソース/ドレイン領域の間に凹部が形成された半導体基板と、
前記半導体基板の前記凹部に形成される電荷蓄積ゲートと、
前記複数のソース/ドレイン領域に交差し、かつ、前記蓄積ゲート上に絶縁層を介して配置される複数の導電ゲートと、を有する不揮発性半導体記憶装置。 - 前記電荷蓄積ゲートは、前記半導体基板における平坦部にも形成されている請求項1記載の不揮発性半導体記憶装置。
- 半導体基板上にマスク層を堆積する工程と、
前記マスク層をパターニングする工程と、
前記半導体基板を侵食して凹部を形成する工程と、
前記半導体基板の前記凹部に電荷蓄積ゲートを形成する工程と、
前記マスク層を除去する工程と、
前記半導体基板にほぼ平行に、かつ、前記電荷蓄積ゲートを挟む複数のソース/ドレイン領域を形成する工程と、
前記複数のソースドレイン領域に交差する複数の導電ゲートを形成する工程と、を有する不揮発性半導体装置の製造方法。 - 半導体基板上に絶縁層及びマスク層を堆積する工程と、
前記マスク層をパターニングする工程と、
前記絶縁層を成長させて半導体基板を侵食し、成長した前記絶縁層を除去することで凹部を形成する工程と、
前記半導体基板の前記凹部に電荷蓄積ゲートを形成する工程と、
前記マスク層を除去する工程と、
前記半導体基板にほぼ平行に、かつ、前記電荷蓄積ゲートを挟む複数のソース/ドレイン領域を形成する工程と、
前記複数のソースドレイン領域に交差する複数の導電ゲートを形成する工程と、を有する不揮発性半導体装置の製造方法。 - 前記絶縁層は酸化膜であり、酸化により前記絶縁層を成長させ、
前記半導体基板の前記凹部に電荷蓄積ゲートを形成する工程において、前記マスク層を用いて前記電荷蓄積ゲートを自己整合的に形成する請求項4記載の不揮発性半導体記憶装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006174172A JP2008004832A (ja) | 2006-06-23 | 2006-06-23 | 不揮発性半導体メモリ装置及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006174172A JP2008004832A (ja) | 2006-06-23 | 2006-06-23 | 不揮発性半導体メモリ装置及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008004832A true JP2008004832A (ja) | 2008-01-10 |
Family
ID=39008961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006174172A Pending JP2008004832A (ja) | 2006-06-23 | 2006-06-23 | 不揮発性半導体メモリ装置及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008004832A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008288588A (ja) * | 2007-05-17 | 2008-11-27 | Samsung Electronics Co Ltd | フラッシュメモリ素子、その製造方法及び動作方法 |
-
2006
- 2006-06-23 JP JP2006174172A patent/JP2008004832A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008288588A (ja) * | 2007-05-17 | 2008-11-27 | Samsung Electronics Co Ltd | フラッシュメモリ素子、その製造方法及び動作方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4904631B2 (ja) | 不揮発性半導体記憶装置およびその製造方法 | |
US6891262B2 (en) | Semiconductor device and method of producing the same | |
KR100937896B1 (ko) | 자기 정렬된 얕은 트렌치 분리를 통한 이이피롬 어레이 | |
US9847343B2 (en) | Charge trapping nonvolatile memory devices, methods of fabricating the same, and methods of operating the same | |
US20070252192A1 (en) | Pillar cell flash memory technology | |
JP2006191049A (ja) | 不揮発性記憶素子、その製造方法及び動作方法 | |
JP2006332640A (ja) | 双方向分割ゲートnandフラッシュメモリ構造及びアレイ、そのプログラミング方法、消去方法及び読み出し方法、並びに、製造方法 | |
JP2006216957A (ja) | 垂直なゲート電極のトランジスタを備える半導体装置及びその製造方法 | |
JP2007173821A (ja) | プログラミング速度を改善したeeprom、その製造方法及びその駆動方法 | |
US20070257307A1 (en) | NAND non-volatile two-bit memory and fabrication method | |
US7180788B2 (en) | Nonvolatile semiconductor memory device | |
JP3941517B2 (ja) | 半導体装置およびその製造方法 | |
KR100598108B1 (ko) | 측벽 트랜지스터를 가지는 비휘발성 메모리 소자 및 그제조방법 | |
JP2007184466A (ja) | 半導体装置およびその製造方法 | |
JP3762385B2 (ja) | 不揮発性半導体記憶装置 | |
CN114335185A (zh) | 具有设置在字线栅上方的擦除栅的分裂栅双位非易失性存储器单元及其制备方法 | |
KR20070078692A (ko) | 반도체 장치 | |
JP2010050357A (ja) | 不揮発性半導体記憶装置およびその製造方法 | |
JP2006019570A (ja) | 不揮発性半導体記憶装置およびその製造方法 | |
US9318497B2 (en) | Nonvolatile memory devices having single-layered floating gates | |
JP2008091900A (ja) | 不揮発性メモリーとその製造方法および操作方法 | |
JP3249811B1 (ja) | 半導体記憶装置、その製造方法及び半導体記憶装置の駆動方法 | |
JP2008004832A (ja) | 不揮発性半導体メモリ装置及びその製造方法 | |
US6392927B2 (en) | Cell array, operating method of the same and manufacturing method of the same | |
JP5001578B2 (ja) | 半導体記憶装置及び半導体記憶装置の製造方法 |