JP2007522685A - 伝送信号、方法および装置 - Google Patents

伝送信号、方法および装置 Download PDF

Info

Publication number
JP2007522685A
JP2007522685A JP2006524987A JP2006524987A JP2007522685A JP 2007522685 A JP2007522685 A JP 2007522685A JP 2006524987 A JP2006524987 A JP 2006524987A JP 2006524987 A JP2006524987 A JP 2006524987A JP 2007522685 A JP2007522685 A JP 2007522685A
Authority
JP
Japan
Prior art keywords
training sequence
ofdm
data
transmit
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006524987A
Other languages
English (en)
Inventor
サンデル、マグナス
マクナマラ、ダーレン・フィリップ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JP2007522685A publication Critical patent/JP2007522685A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)

Abstract

【課題】本発明は、MIMO OFDM通信システムにおけるチャネル推定の装置、方法、プロセッサ制御コードおよび信号に関する。
【解決手段】OFDM信号が、送信アンテナを用いるOFDM送信機から送信され、周波数領域における窓かけに対応する1つ以上のヌルとされているサブキャリアを有する。OFDM信号は、各アンテナからの信号に直交トレーニングシーケンスデータを含めて、送信アンテナに関連するチャネルでのチャネル推定に適応され、トレーニングシーケンスデータは、送信アンテナごとに直交するトレーニングシーケンスから導出され、トレーニングシーケンスは、値のシーケンスXm k = exp (-j 2π k m /M)に基づいて構築され、但し、kはシーケンス中の値、mは送信アンテナ、Mは送信アンテナの数である。
【選択図】 なし

Description

本発明は、OFDM(直交周波数分割多重)通信システムにおけるチャネル推定の装置、方法、プロセッサ制御コードおよび信号に関する。より詳細には、本発明は、MIMO(多入力多出力)OFDMシステムなど、複数の送信アンテナを備えるシステムにおけるチャネル推定に関する。
Hiperlan/2やIEEE802.11aといった現世代の高速無線ローカルエリアネットワーク(WLAN)規格は、最大54メガビット/秒までのデータ転送速度を提供する。しかしながら、絶えず増大する、より一層高速なインターネット(登録商標)、ビデオ、マルチメディアなどのサービスを求める需要は、次世代の無線LANでの改善された帯域幅効率の必要を生み出している。現在のIEEE802.11a規格は、直交周波数分割多重化(OFDM)および適応変調/復調の帯域幅利用効率の高い方式を用いる。システムは、基本的に、リンクの各終端において単一の送受信アンテナを用いる、単入力単出力(SISO)システムとして設計された。しかしながら、ETSI BRAN内では、改善されたダイバーシチ利得、したがって、リンクの頑強性を得るために、複数のアンテナまたはセクタ化されたアンテナのための規定が研究されてきた。MIMOシステムは、スペクトル占有の増大を伴わずにデータスループットを大幅に増大させる可能性もある。
Hiperlan/2は、5GHz帯で動作する、セキュリティ機能を伴う54Mbps無線ネットワークの欧州規格である。IEEE802.11、特にIEEE802.11aは、異なるネットワークアーキテクチャを定義するが、やはり、5GHz帯を使用し、最大54Mbpsまでのデータ転送速度を提供する米国規格である。Hiperlan(高性能無線ローカルエリアネットワーク)タイプ2規格は、基本データトランスポート機能および無線リンク制御(RLC)副層を備えるデータリンク制御(DLC)層、共通部分定義よびイーサネット(登録商標)サービス特有の収束副層を備えるパケットベースの収束層、物理層定義およびネットワーク管理定義によって規定される。Hiperlan/2のさらなる詳細については、参照により本明細書に組み込まれる、以下の文献を参照することができる。ETSI TS 101761−1(V1.3.1):「広帯域無線アクセスネットワーク(BRAN);HIPERLANタイプ2;データリンク制御(DLC)層;パート1:基本データトランスポート機能(Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data Link Control (DLC) Layer; Part 1: Basic Data Transport Functions)」;ETSI TS 101761−2(V1.2.1):「広帯域無線アクセスネットワーク(BRAN);HIPERLANタイプ2;データリンク制御(DLC)層;パート2:無線リンク制御(RLC)副層(Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data Link Control (DLC) Layer; Part 2: Radio Link Control (RLC) sublayer)」;ETSI TS 101493−1(V1.1.1):「広帯域無線アクセスネットワーク(BRAN);HIPERLANタイプ2;パケットベースの収束層;パート1:共通部分(Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Packet based Convergence Layer; Part
1: Common Part)」;ETSI TS 101493−2(V1.2.1):「広帯域無線アクセスネットワーク(BRAN);HIPERLANタイプ2;パケットベースの収束層;パート2:イーサネットサービス特有の収束副層(SSCS)(Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Packet based Convergence Layer; Part 2: Ethernet (登録商標) Service Specific Convergence Sublayer (SSCS))」;ETSI TS 101475(V1.2.2):「広帯域無線アクセスネットワーク(BRAN);HIPERLANタイプ2;物理(PHY)層(Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical (PHY) Layer)」;ETSI TS 101762(V1.1.1):「広帯域無線アクセスネットワーク(BRAN);HIPERLANタイプ2;ネットワーク管理(Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Network Management)」;以上の文献は、ETSIのWebサイト、www.etsi.orgから入手可能である。
Hiperlan/2システムに基づく典型的な無線LAN(ローカルエリアネットワーク)は、それぞれがネットワークのアクセスポイント(AP)または基地局と無線通信を行う複数の移動端末(MT)を備える。アクセスポイントは、これもやはり、例えば固定イーサネット型のローカルエリアネットワークなど、他のネットワークへのリンクを備えることのできる中央制御装置(CC)とも通信を行う。例えば、ローカルアクセスポイントのないHiperlan/2ネットワークなど、いくつかの例では、移動端末の1つが、直接のMT間リンクを可能にするアクセスポイント/中央制御装置の役割を果たすことができる。しかしながら、本明細書では、「移動端末」および「アクセスポイント」への言及は、Hiperlan/2システム、あるいはアクセスポイント(または基地局)または移動端末のどんな特定の形へのどんな限定を示唆するものと解釈すべきではない。
直交周波数分割多重化は、高速ディジタルデータ信号を伝送する周知の技法である。単一の搬送波を高速データを用いて変調よりもむしろ、データは、多数の低データレートチャンネルに分割され、各チャンネルは別個のサブキャリアに伝送される。このようにして、マルチパスフェージングの影響が緩和される。OFDM信号では、これら別々のサブキャリアは、図1のスペクトル10のサブキャリア12に示すように、これらがオーバーラップするような間隔で配置される。サブキャリア周波数は、搬送波が相互に直交するように選択され、それによりサブキャリア上に変調される別々の信号が受信側で回復できる。1つのOFDMシンボルは、一組のシンボルによって定義され、その1つがサブキャリアに変調され(それ故に複数のデータビットに対応する)。これらのサブキャリアは、これらが1/T(但し、TはOFDMシンボル周期)の周波数間隔で配置される場合、直交する。
OFDMシンボルは、1組の入力シンボルに対して逆フーリエ変換、好ましくは、逆高速フーリエ変換(IFFT)を行うことによって得られる。入力シンボルは、OFDMシンボルに対してフーリエ変換、好ましくは高速フーリエ変換(FFT)を行うことによって回復できる。FFTは、事実上、OFDMシンボルに各サブキャリアを掛け、シンボル周期Tにわたって積分する。所定のサブキャリアについて、この手順によってOFDMシンボルからの1つのサブキャリアだけが抽出されることがわかる。というのは、このOFDMシンボルのこの他のサブキャリアとのオーバーラップが、積分周期Tにわたって平均してゼロになるからである。
しばしば、サブキャリアは、QAM(直交振幅変調)シンボルによって変調されるが、位相偏移変調(PSK)やパルス振幅変調(PAM)といった他の形の変調も使用できる。マルチパスの影響を低減するために、OFDMシンボルは、通常、各シンボルの先頭がガード期間によって拡張される。2つのマルチパス成分の相対遅延がこのガード時間間隔より小さいとすれば、少なくとも一応の推定では、シンボル間干渉(ISI)はないことになる。
図2に、送信機100(ここでは移動端末(MT)にある)、受信機150(ここではアクセスポイント(AP)にある)を含む、従来のSISO(単入力単出力)OFDMシステムの一例を示す。送信機100において、ソース102は、ベースバンドマッピングユニット104にデータを送り、ベースバンドマッピングユニット104は、任意選択で、前方誤り訂正符号化およびインターリービングを施し、QAMシンボルなどの変調されたシンボルを出力する。変調されたシンボルはマルチプレクサ108に送られ、ここでパイロットシンボル発生器106からのパイロットシンボルと組み合わされる。パイロットシンボル発生器106は、受信機における周波数同期およびコヒーレント検出のための基準振幅および位相と、チャネル推定のための既知の(パイロット)データを生成する。ブロックの組み合わせ110は、マルチプレクサ108からのシリアルデータストリームを複数の低速のパラレルデータストリームに変換し、これらのデータストリームにIFFTを施してOFDMシンボルを生成し、次いで、このOFDMシンボルの複数のサブキャリアを単一のシリアルデータストリームに変換する。次いで、このシリアル(ディジタル)データストリームが、ディジタル/アナログコンバータ112によってアナログ時間領域信号に変換され、アップコンバータ114によってアップコンバートされ、フィルタリングし、増幅した(図示せず)後、アンテナ116から出力される。このアンテナは全方向性アンテナ、セクタ化アンテナまたはビームフォーミングを備えるアレイアンテナにより構成できる。
より詳細には、QAMシンボルなど一連の変調データシンボルはベクトルとして配置され、状況に応じて、オーバーサンプリングを導入するためにゼロで埋められる。次いで、この(列)ベクトルに、逆離散フーリエ変換(IDFT)行列が掛けられて1組の値によって構成される出力(列)ベクトルが生成される。これらの値は一度に1つずつディジタル/アナログコンバータに渡されると、1つの波形を定義する。この波形は、事実上、変調シンボルによって変調された1組の直交搬送波により構成され、これがOFDMシンボルと称する。実際には(図2には明示的に示されないが)、例えば、IDFT出力の最後のサンプルのいくつかをOFDMシンボルの先頭にコピーするなどによって、時間領域において周期的プリフィックス(cyclic prefix)などの周期的拡張が付加される。この周期的プリフィックスは、OFDMシンボルを拡張して(シンボルはどちら側でも拡張され得る)、事実上、このガード時間より短いマルチパス遅延でのシンボル間干渉を無くするガード時間を提供する。(復号化するとき、FFT積分時間は、周期的プリフィックスガード時間後まで開始しない)。帯域外サブキャリアの電力を低減するために、(時間領域において)窓かけも適用できる。
送信機100のアンテナ116からの信号は、「チャネル」118を介して受信機150のアンテナ152によって受信される。通常、信号は、複数の異なるチャネルまたは経路を介して伝播された、複数の異なる振幅および位相を有する、複数のマルチパス成分としてアンテナ152に到達する。これらのマルチパス成分は、受信側で結合し、互いに干渉し合って、一般に、(特に送信機または受信機が移動している場合は)時間と共に変化する、通常は、くし形のような、いくつかの深いヌルを持つ全体的チャネル特性を提供する。これについては後でより詳細に論じる。
送信ダイバーシチが用いられる場合、すなわち、例えば、(行列チャネルへの)「入力」が複数の送信アンテナによって提供され、(行列チャネルからの)「出力」が複数の受信アンテナによって提供される、MIMO(多入力多出力)OFDM通信システムなどにおいて、複数の送信アンテナが使用される場合、特有の問題が発生する。このような通信システムでは、異なる送信アンテナからの信号が互いに干渉し合って復号化を困難にすることがある。
受信機150のアンテナ152はダウンコンバータ154に結合され、アナログ/ディジタルコンバータ156に結合される。次いで、ブロック158は、シリアル/パラレル変換、FFT、およびパラレル/シリアル再変換を実行し、デマルチプレクサ160に出力を提供し、デマルチプレクサ160で、データシンボルからパイロットシンボル信号162が分離される。次いで、データシンボルは、ベースバンドデマッピングユニット164によって復調され、デマッピングされて、検出されたデータ出力166が提供される。大まかにいえば、受信機150は、送信機100の鏡像である。送信機と受信機が組み合わされてOFDM送受信機が形成できる。
OFDM技法は、様々な用途で用いることができ、例えば、軍事通信システムや、高精細度テレビ、ならびにHiperlan/2(www.etsi.org/technicalactiv/hiperlan2.htmおよびDTS/BRAN-0023003v0.k)などで使用される。
図2の受信機は、いくぶん簡略化されている。というのは、実際には、非直交性、すなわちISI/ICI(シンボル間干渉/搬送波間干渉)の導入を回避するために、FFT窓を各OFDMシンボルに順に同期させる必要があるからである。これは、OFDMシンボルを、ガード期間にこのシンボルの周期的拡張と自己相関させることによって行うことができるが、一般には、特にパケットデータ伝送では、例えば整合フィルタなどを使って、受信機が正確に識別し、探し出すことのできる、既知のOFDMシンボルを使用することが好ましい。
図3と4に、それぞれ、従来のHIPERLAN2移動端末(MT)OFDM受信機の受信機フロントエンド200と受信機信号処理ブロック250を示す。受信機250には、アナログ/ディジタル変換回路252、同期、チャネル推定および制御回路252、逆パケット化 (de-packetising)、逆インターリービング(de-interleaving)および誤り訂正回路256のいくつかの詳細が示されている。
フロントエンド200は、入力増幅器204と、RF信号をIFに混合するためのIF発振器208からの第2の入力を備える混合器206とに結合された、受信アンテナ202を備える。次いで、IF信号は、帯域通過フィルタ210を介して自動利得制御(AGC)増幅器212に供給され、AGC段は、後で信号量子化を最適化するために、制御回路254から線226によって制御される。AGC212の出力は、2つの混合器214、216に入力を与え、これらに、発振器220およびスプリッタ218からの直交信号も与えられて、直交信号I222、Q224が生成される。次いで、これらのI、Q信号がアナログ/ディジタル回路252によってオーバーサンプリングされ、フィルタリングされ、間引きされる。この信号のオーバーサンプリングはディジタルフィルタリングを助け、この後、信号は所望のサンプリング速度に減速される。
図2および4では、FFTおよびIFFT操作は、フラッシュRAM262で概略的に示すように、例えば、1つ以上のディジタル信号プロセッサ(DSP)および/または1つ以上のASICまたはFPGAなどを使って、少なくとも一部はソフトウェアとして実施できる。ソフトウェア無線で信号がディジタル化される正確なポイントは、一般に、コスト/複雑さ/電力消費のトレードオフ、ならびに適当な高速アナログ/ディジタルコンバータおよびプロセッサの可用性に左右される。
例えば、プリアンブルデータあるいは1つ以上のパイロット信号における知られているシンボルをチャネル推定に使って、伝送チャネルの影響を補償することができる。
図5に、チャネル推定手順270の一種の基本概念を説明するブロック図を示す。後で説明する本発明の実施形態は、この技法を用いた用法だけに限定されず、例えば、1組の全ての可能な受信シーケンスから最も確度の高い受信シーケンスが選択される最尤シーケンス推定法(MLSE)など、他の従来のチャネル推定技法と共に使用することもできる。この手順は、図5で「チャネル推定」278とラベル付けされる、適応ディジタルフィルタの係数を、このフィルタの挙動が、モデル化される伝送チャネル274の挙動に可能な限り近く整合するように変更することを目的とする。
既知のトレーニング信号272が、モデル化される伝送チャネル274と、チャネル推定を提供する適応フィルタ278の両方に適用される。トレーニング信号の受信バージョンは、チャネル274からの出力276に対応し、チャネル204のインパルス応答を反映する。チャネル推定適応フィルタ278からの出力280はチャネルの推定される応答を備え、これが、減算器282での実際の応答から差し引かれて誤差信号284を生成し、これが適応チャネル推定フィルタ278にフィードバックされて適応アルゴリズムに従ってフィルタの係数を更新する。
逐次最小二乗(RLS)アルゴリズムや最小平均二乗(LMS)アルゴリズム、あるいはそれらの変形など、多くの適当な従来のアルゴリズムのいずれか1つを用いることができる。そのようなアルゴリズムは、当業者にはよく知られているであろうが、以下では、完全を期すために、LMSアルゴリズムの概要も示す。また、LeeおよびMesserschmitt、「ディジタル通信」、クルワー学術出版社、1994年(Lee and Messerschmitt, 「Digital Communication」, Kluwer Academic Publishers, 1994)も参照することができる。
入力u(n)(nは、入力ベクトルu(n)にバッファされる入力サンプルの番号またはステップをラベル付けする)、所望のフィルタ応答d(n)、および推定されるフィルタタップ重みのベクトルw(n)を考える。フィルタの出力は、
y(n) = wH(n) u(n)
によって与えられる。式中、wはwのエルミート共役を表す。次いで、LMSアルゴリズムに従って、改善された重み推定が、
w(n+1) = w(n) + μ u(n)[d*(n) - y*(n)]
によって与えられる。式中、は共役複素数を表し、μはこのアルゴリズムの適応ステップサイズである。アルゴリズムの収束は、平均二乗誤差、すなわち
|d(n) - y (n) |2
を使って求めることができ、これは、nが無限大に向かうため、一定の値または0に向かう傾向がある。図5では、トレーニング信号272はu(n)に、受信信号276はd(n)に、チャネル推定適応フィルタ278の出力280はy(n)に対応する。
図4の受信機250では、「Cシンボル」と呼ばれる、既知のプリアンブルシンボルを使って、チャネル推定値が求められる。この受信機は、受信信号に同期し、スイッチ258は、受け取ったCシンボルをチャネル推定器260に渡すように動作する。これは、チャネル応答の逆数(または共役複素数)を掛けることにより、チャネルの影響が補償できるように、既知のCシンボルに対するチャネルの影響(サブキャリアにおけるシンボルの振幅変更および位相シフト)を推定する。代替として、(やはり既知のシンボルを含む)1つ以上のパイロット信号を使ってチャネル推定を求めることもできる。この場合もやはり、受け取ったパイロットを期待されるシンボルに変換するのに必要とされる位相回転および振幅変更を求め、他の受け取られたシンボルに適用することができる。複数の周波数で複数のパイロットが利用可能である場合、異なる周波数パイロット信号を使った他の周波数への内挿/外挿によって、改善されたチャネル補償推定が獲得できる。
図6に、48のデータサブキャリアおよび4つのパイロット(および1つの未使用の中央搬送波チャネル308)を有する、HIPERLAN2でのプリアンブルシーケンス302、パイロット信号304、およびデータ信号306の相対的位置を示す、周波数および時間領域におけるプロット300を示す。図6から分かるように、最初の4つのOFDMシンボルはプリアンブルデータを備え、パイロット信号304はそれらのプリアンブルシンボルを搬送し続ける。しかしながら、残りの(データを搬送する)サブキャリア上では、OFDMシンボル5以降がデータを搬送する。他のOFDM方式では、プリアンブルおよびパイロットの位置は変えてもよい(例えば、パイロットは必ずしも連続信号を備える必要はない)けれども。類似のプロットは描画できる。
当業者は理解するように、一般に、無線LANパケットデータ通信システムでは、パケット長は、1パケットの持続期間にわたって実質上一定のチャネルを想定するのに十分に短かい。このために、プリアンブルパイロットデータ302をトレーニングシンボルに使って、次のパケットまで実質上一定であると想定できるチャネル推定を獲得することができる。4つの連続したパイロットサブキャリアは周波数同期に使用できる。しかしながら、ディジタルオーディオやビデオ放送といった他の種類のOFDM通信システムでは、他のチャネル推定技法も必要となるかもしれない。例えば、チャネル推定のための既知のパイロット値は、時間(すなわち、少数のOFDMシンボルごと)と周波数(すなわち、一部のサブキャリア上)両方で間隔を置いて挿入することができ、2次元内挿を使って、完全な時間および周波数空間での(すなわち、全てのサブキャリアと連続するOFDMシンボルでの)チャネル推定値が獲得される。そのような内挿技法は当分野で十分に確立されている。
最近まで、特に、屋内無線LAN環境において一般に見られる、マルチパス伝播の知覚される有害な影響を緩和するためのシステムの設計に、相当の努力が注がれた。しかしながら、送信側と受信側の両方での複数アンテナアーキテクチャ、いわゆる多入力多出力(MIMO)アーキテクチャを利用することによって、はるかに増大されたチャネル容量が可能であることが分かっている(例えば、G.J.FoschiniおよびM.J.Gans、「複数のアンテナを使用するときのフェージング環境における無線通信の限界について」、無線パーソナル通信第6巻、第3号、311頁から335頁、1998年(G.J. Foschini and M.J. Gans, 「On limits of wireless communications in a fading environment when using multiple antennas」 Wireless Personal Communications vol. 6, no. 3, pp. 311-335, 1998)などを参照)。OFDMベースのシステムにおける時間空間符号化技法の使用(空間領域での冗長を用いた、トレリス符号化変調の一般化)にも注意が向けられている。これは、Y Li、N.Seshadri、S.Ariyavisitakul、「モバイル無線チャネルにおける送信ダイバーシチを用いたOFDMシステムでのチャネル推定」、IEEE JSAC、第17巻、第3号、1999年(Y Li, N. Seshadri & S. Ariyavisitakul, 「Channel Estimation for OFDM Systems with Transmitter Diversity in Mobile Wireless Channels」, IEEE JSAC, Vol. 17, No. 3, 1999)に記載されている。
Liらは、特に、通常、Hiperlan/2やIEEE802.11aなどのトレーニングシーケンスを介して獲得される、チャネル状態またはパラメータ情報(CSI)の推定を対象としている。
図7に、Liらによって論じられているものに類似した時間空間符号化MIMO/OFDM通信システム400を示す。ブロックの要素にラベル付けする送信時刻(またはOFDMシンボルまたはフレーム)n、kにおける入力データのブロック402b[n,k]が、時間空間符号化操作を実行する符号化マシン404によって処理される。入力データは、例えば、ブロック符号器などによってすでに前方誤り訂正されていることもある。時間空間(ST)符号器404は、複数のIFFT(逆高速フーリエ変換)ブロック406を駆動するために、複数の出力信号ブロックt[n,k](Liらは、2つの送信アンテナの事例、i=1、2を考察している)を生成し、次にこれらが、対応するrf段408および送信アンテナ410を駆動する。IFFTブロック406は、時間領域において、送信されるOFDMシンボルに周期的プリフィックスを付加するように構成される。チャネル推定、周波数同期、および位相追跡のための複数のパイロット信号も挿入される(図7には示されていない)。
対応する受信機では、複数の受信アンテナ412がrfフロントエンド414に入力を与え、次にこれらが、それぞれが時間空間復号器418に入力Rx[n,k]を与える、それぞれのFFT(高速フーリエ変換)ブロック416を駆動する。チャネル情報は、CSI(チャネルパラメータ推定器)ブロック420によって、FFTブロック416の出力と、ST符号器421によって供給されるt[n,k]の推定から求められ、この情報は復号器418に供給される。復号器418は、送信機の入力402でのデータシーケンスの推定を備える出力422を生成する。
図7の構成は、事実上、それぞれが、符号器404によって生成された符号語から導出された符号化データシーケンスを送信する、1組の並列OFDM送信機を提供する。大まかにいえば、図7の符号器404およびIFFTブロック406は、単一のOFDM送信機に適用されそうな変更シンボルの長さIのストリングを受け入れ、1組のN個のOFDMシンボルを生成する(但し、Nは、それぞれ同じ長さIの、送信アンテナの数である)。
図7の送信機および受信機(および後で論じる本発明の実施形態)などのOFDMシステムは、便宜上、一般に、ブロック図の形で描かれるが、実際には、rfブロック408、414以外のこれらの送信機および受信機の諸要素は、例えば、ディジタル信号プロセッサ上などで、ソフトウェアとして実施される可能性が高く、あるいは、設計技師によって、例えば、VHDLなどのハードウェア記述言語を使ってソフトウェアで特定化され、次いで、正確なハードウェア実装がハードウェア記述言語コンパイラによって決定されることは、当業者は理解するであろう。
図7の例は、単に、後で説明する本発明の理解に役立つ多少の状況を提供するためのものにすぎず、本発明は、ST符号化など特定の種類の符号化を使ったOFDM送信機にも限定されないことが理解されるであろう。したがって、後で説明する本発明の実施形態は、任意のMIMO/OFDMシステムと共に用いることができ、時間空間符号化MIMO/OFDMだけに限定されるものではない。
前述のように、OFDMにおけるチャネル推定は、通常、既知のシンボルを送信することによって行われる。OFDMは、1組の並列の平坦なチャネルとみなすことができるため、各サブキャリア上の受信信号は、このチャネルを獲得するために送信パイロットシンボルによって分割される。大まかにいえば、シンボルの実際の値は(これの電力を別にして)無関係である。
後で図15を参照してより詳細に説明するように、OFDMシステムにおけるチャネルパラメータ推定は、受け取られたデータを時間領域に変換し、必要に応じてこのデータに窓かけし、次いで、事実上、これをトレーニングデータと相関させることによって、都合よく行える。M個の送信アンテナおよびチャネル長Lを有するMIMO/OFDMシステムでは、LM個のパラメータを推定する必要があるが、異なる送信アンテナから送信される訓練信号間の干渉を回避する必要もある。
複数アンテナのOFDMシステムにおけるチャネル推定の技法は、Tai-Lai Tung、Kung Yao、R.E.Hudson、「複数アンテナOFDMシステムの性能および容量改善のためのチャネル推定および適応電力割り振り」、無線通信における信号処理の進歩に関するIEEEワークショップ(桃園、台湾)、82頁から85頁、2001年3月(Tai-Lai Tung, Kung Yao, R.E. Hudson, 「Channel estimation and adaptive power allocation for performance and capacity improvement of multiple-antenna OFDM systems」, IEEE Workshop on Signal Processing Advances in Wireless Communications (Taoyuan, Taiwan), pp 82-85, Mar 2001)およびI.Barhumi、G.Leus,M.Moonen、「モバイル無線チャネルにおけるMIMO/OFDMシステムのための最適トレーニング設計」、IEEE会報信号処理、第51巻、第6号、2003年6月(I. Barhumi, G. Leus, M. Moonen, 「Optimal training design for MIMO OFDM systems in mobile wireless channels」, IEEE Trans. Signal Processing, vol 51, no 6, Jun 2003)に記載されている。これらは、最小二乗(LS)チャネル推定器を使用するとき最小の誤差を達成するが、全てのサブキャリアが使用されるという仮定の下で機能し、そうでない場合、これらの間の直交性は失われる。
より詳細には、長さK(Tungらの技法では、サブキャリアの数に等しい)のトレーニングシーケンス、およびLサンプル周期のインパルス応答長または「スパン」T(Tはシステムのサンプリング間隔であり、1/TはOFDMシステムの全チャネル帯域幅である)を持つチャネルを考える。このチャネルスパンは、時間の点では、(L−1)Tであり、OFDMフレーム長T=(K+v)Tであり、式中、vは周期的プリフィックスシンボルの数である。ISIを回避するために、通常、v≧L−1であるが、後で説明する本発明の実施形態では、チャネル推定の前には、チャネルの長さが既知でなく、したがって、Lは、周期的プリフィックスの長さに等しいと仮定できる。受信機では、このチャネルは、Lタップおよび、やはりサンプリング間隔Tを有する、FIR(有限インパルス応答)フィルタとしてモデル化される。
OFDMシンボルにおけるMIMOシステムの、送信アンテナ、例えばpから受信アンテナ、例えばqへの時間領域チャネルインパルス応答は、サイズL×1のベクトル、h[n]、またはより単純にh(ここで、h=(h・・・..hL−1)で表すことができる。対応する周波数応答H(サイズK×1)は、H=Fhで与えられ、ここでFは、KポイントDFTシーケンスを生じるLポイントシーケンスのK×L離散フーリエ変換(DFT)行列である。受信アンテナでの受信信号は、それぞれに個々の送信アンテナから受信アンテナへのチャネル応答を掛けた、各送信アンテナからの信号の和である。ベクトルHはL次元の部分空間に存在し、これに投射することによって、Hの推定における雑音が、K/Lだけ低減できる(白色雑音は全次元において等しい電力を持つため)。
Tungら(前掲書)は、実質的に最小限のMSE(平均二乗誤差)を用いて、MIMO/OFDMシステムにおけるトレーニングシーケンスを(各送信/受信アンテナチャネルごとの)チャネル推定値を求めるのに使用し得る条件を導出する。この条件は、直交性条件であることがわかる。すなわち、送信アンテナから送信されるトレーニングシーケンスは、以下の式(1)で定義するように、実質上相互に直交する。これは、異なる送信アンテナから送信されるトレーニングシーケンス間の干渉が緩和されることも保証する。
Figure 2007522685
式(1)中、0は、サイズL×Lのゼロ行列であり、IはサイズL×Lの単位行列であり、cは任意のスカラ定数であり、mとnが共に1とMの間にあり、ここでMは送信アンテナの数である。上付き文字はエルミート共役演算を表す。行列X(m)は、対角行列(すなわち対角要素以外はゼロの行列)であり、対角要素はアンテナmでのトレーニングシーケンスを備え、すなわち、X(m)=diag{X ,..X ,・・・X }であり、X は、長さKのトレーニングシーケンスのK番目の要素である(Tungらの技法では、kはより明確にOFDMサブキャリアを示す)。式(1)は、アンテナmおよびnからのトレーニングシーケンスは、m=nでない限り直交するという条件(OFDMシステムではサブキャリアはいずれにしても相互に直交するため、フーリエ変換の前のトレーニングシーケンスに関する条件)であることが理解されるであろう。MIMOシステムの行列チャネルでの(すなわち、複数の送信アンテナでの)1つの最小二乗チャネル推定法の詳細がTungらによって示されており(例えば、式(7)を参照)、これは参照してここに組み込まれる。
各送信アンテナと各受信アンテナの間の行列チャネルでの1組の完全なチャネル推定値を求めるには、推定すべきLM個のパラメータがあるため、トレーニングシーケンスは(それぞれ)長さLMでなければならず、すなわちK≧LMである。しかしながら、Tungらが導出するシーケンス(式(15))は、これらのチャネル推定値の最小MSEを達成するのにK≧2M−1を必要とする。したがって、必要とされるシーケンス長(またはそれぞれが1つのトレーニングシーケンス要素を搬送するサブキャリアの数)は、送信側アンテナの数に従って指数関数的に増大する。これは、2つを上回る送信アンテナを備え、4および8つの送信アンテナが計画されるMIMO/OFDMシステムでは潜在的に厳しい欠点となり得る。
この問題に対処するために、本発明者らは、以前、2002年9月26日に本発明の出願人によって出願された英国特許出願第0222410.3号に、式1が、以下の式2によって与えられるトレーニングシーケンスによってどのように満たされ得るか記載している。
Figure 2007522685
添字mは送信アンテナにラベル付けし、このアンテナから送信されるトレーニングシーケンス中の値は添字kによってラベル付けされ、Lはサンプル周期におけるチャネル長を近似するように選択される正の整数である(周期的プリフィックスは、通常、このチャネルより長くなるように選択されるため、これはLの推定値を与える)。類似の技法がバルミらの文献にも記載されている(前掲書)。
前述のトレーニングシーケンスは、全てのサブキャリアが使用されるOFDMシステムのために設計されているが、多くの実際のシステム、例えばIEEE802.11aベースのシステムでは、例えば、スペクトルマスクに合わせるために少数のサブキャリアがヌルとされ、すなわち使用されない。そのような場合、プリアンブル設計はもはや最適ではなくなり、場合によっては、性能の実質的な低下を招く可能性がある。即ち、トレーニングシーケンス間の直交性を失う可能性がある。また、チャネル推定器の性能が大幅に低下する可能性があるとき、チャネルが時間制限されない問題も生じる可能性がある。
従来の手法は、データスループットを最大にするために、所定のチャネル長について最大の可能なアンテナ数をサポートすることに集中してきた。例えば、K=64のサブキャリアおよびL=16のチャネル長を持ち、初期の選択が、例えば、2つの送信アンテナであるシステムを考える。図8および9に、式2によるそのようなシステムでの(時間領域)トレーニングシーケンスが示されており、これらの図から、チャネル長がL=16未満である場合、送信アンテナ1からの応答は、送信アンテナ2が送信を開始する前に消滅することがわかる。この状況では、これら2つの信号はオーバーラップせず、したがって、受信側で干渉しない。パルスの分離を最小にすることによって、最大数の送信アンテナが維持できる。サブキャリアの数/OFDMシンボルの長さがK=64であるため、K/L=64/16=4のパルスがあることになり、したがってこの例では、4つの送信アンテナが維持できる。
しかしながら、システムがサブキャリアをヌルとしている場合、これは、周波数領域における窓かけに対応し、したがって、時間領域における畳み込みに対応する。これらのトレーニングシーケンスでの時間領域信号を図10および11に示す。この場合には、シーケンスがオーバーラップしており、受信側で互いに干渉し合うことが分かる。
本発明者らは、これらの問題に対処することを目的とする、ヌルとされているサブキャリアを有するシステムで、性能を大幅に改善し得る既存の技法の改良を記述する。
したがって、本発明の第1の態様によれば、複数の送信アンテナを使用するOFDM送信機から送信されるOFDM信号であって、Xm k = exp (-j 2π k m /M)の値のシーケンス(但し、kはシーケンス中の値を示し、mは送信アンテナを示し、Mは送信アンテナの数である)に基づいて構成される、前記各送信アンテナ毎に長さKの実質的に直交するトレーニングシーケンスから導出される実質上直交するトレーニングシーケンスデータを前記各アンテナからの前記信号に導入することによって前記送信アンテナと関連するチャンネル評価に適応される、OFDM信号が提供される。
本発明者らは、1つ以上のヌルとされている、または欠けているOFDMサブキャリアを有するシステムの実施形態では、チャネル長を参照せずに、送信アンテナの数に基づいてトレーニングシーケンスを構築すれば、特に、所定の数のOFDMサブキャリアによって維持できるチャネル長を最大にするようにトレーニングシーケンスを構築すれば、著しく改善された性能を抵抗できることを認識している。しかしながら、チャネル長(またはパルス分離)Lが規定できる場合、好ましくは、このシーケンス長は少なくとも2ML、例えばn.ML(nは2より大きい正の整数)であり、より詳細には少なくとも2p.ML(pは正の整数)である。好ましい実施形態では、トレーニングシーケンスの長さは、実質上、欠けている、またはヌルとされているサブキャリアを、これらが存在するかのように数えた場合のOFDMサブキャリアの数に等しい。これらの技法の実施形態は、特に、ヌルとされているサブキャリアに対してより耐性あるトレーニングシーケンスを提供する。
直交トレーニングシーケンスの例については、後で、多数のそのようなシーケンスを構築する技法と共に説明する。これらのシーケンスは、直交し、トレーニングシーケンスが、各送信アンテナからOFDM受信機の1つ以上の受信アンテナまでのチャネルでの、実質上最小の平均二乗誤差チャネル推定を提供することができるようにする、式(1)で示される基準を満たす。
各トレーニングシーケンスが、少なくとも1つのチャネル推定値、および、おそらく、複数のマルチパス成分が1つのチャネルに関連付けられる場合には複数のチャネル推定値を提供することができることを、当業者は理解するであろう。
実際にはディジタルデータストリームを備えることになるトレーニングシーケンスは、数学的に厳密に直交する必要はないが、一般に、実質上相互に直交する。
トレーニングシーケンスデータは、トレーニングシーケンスに基づくものであるが、例えば、これらのシーケンスのスクランブルバージョンからも導出できる。トレーニングシーケンスデータは、トレーニングシーケンスに対して逆高速フーリエ変換(IFFT)を実行し、次いで、周期的プリフィックスなどの周期的拡張を付加することによって、1つ以上のOFDMシンボルとしてOFDM信号に含めることができる。したがって、トレーニングシーケンスデータは、事実上、送信アンテナのそれぞれから送信されるOFDMシンボルに組み込まれ得る。
トレーニングシーケンスは、送信アンテナの数と共に直線的に増大する長さを持つため、MIMO/OFDM通信システムにおけるトレーニングシーケンスオーバーヘッドを大幅に低減することができ、事実上、1つ以上のヌルとされているサブキャリアに起因する非直交性から生じる干渉の影響を緩和する、より大きい(時間領域)パルス分離が可能となり、実施形態では、(例えばOFDMシンボル内での)最大パルス分離が許容される。
いくつかの好ましい実施形態では、これらのシーケンスは、送信側電力増幅器での需要を低減するために、実質上均一なピーク対平均電力比を得るためにスクランブルされる。後で説明するように、潜在的に、無数のそのようなスクランブルシーケンスがある。
OFDM信号に組み込まれるトレーニングシーケンスデータの基になるトレーニングシーケンスは、時間および/または周波数空間において分散された値を持ってもよい。すなわち、kはOFDM信号のサブキャリアおよび/またはOFDMシンボルをインデックスしてもよい。したがって、Kは、1つのOFDMトレーニングシンボルが、例えば、トレーニングシーケンス中の各値がトレーニングOFDMシンボルのサブキャリアの1つによって搬送される完全なシーケンスの値のデータを組み込むようにOFDM信号の全てのサブキャリアを超過してもよい。或いは、トレーニングシーケンス値は、例えば、交互サブキャリア上または何らかの他のパターンで配置されてもよく、または、トレーニングシーケンス値は、2つ以上のOFDMトレーニングシンボルにわたって、時間的に間隔をおいてもよい。しかしながら、簡略化された事例では、Kは(ヌルとされたサブキャリアをカウントする)サブキャリアの総数及び、各サブキャリアに配置された1つのトレーニングシーケンス値からのデータと透過にされてもよい。トレーニングシーケンス値、またはスクランブルされたトレーニングシーケンス値、またはそのようなシーケンスまたはスクランブルされたシーケンスから導出されたデータは、これらの値またはデータをリアルタイムで計算する必要をなくすためにルックアップテーブルに格納できる。
関連する一態様では、本発明は、複数の送信アンテナでのチャネル推定のためのトレーニングシーケンスデータを含むOFDM信号も提供し、トレーニングシーケンスデータはexp(−j2πkm/M)の値によって定義される長さKのトレーニングシーケンスに基づくものであり、Mは送信アンテナの数であり、kはシーケンス中の値を指し示し、mは送信アンテナを指し示し、k=nMLであり、Lは正の整数であり、nは1より大きい正の整数であり、より詳細には、nは2の正の整数乗である。
本発明は、さらに、前述のOFDM信号を送信するように構成されたOFDM送信機、および前述のトレーニングシーケンスデータを保持する(以下で説明するような)データキャリアを提供する。
また、本発明は、複数の送信アンテナを備えるOFDM送信機も提供し、このOFDM送信機は、各送信アンテナから、トレーニングシーケンスに基づくトレーニングシーケンスデータを送信するように構成され、各アンテナでのトレーニングシーケンスデータが基にするトレーニングシーケンスは、時間領域において、少なくとも2つのパルスを定義し、i)トレーニングシーケンスは実質上相互に直交し、ii)トレーニングシーケンスは、受信機に、各送信アンテナに関連付けられたチャネルのチャネル推定値を求めさせ、iii)(ii)を満たすのに必要とされる各トレーニングシーケンスの最小の長さは、実質上、送信アンテナの数に直線的に依存し、iv)時間領域におけるパルスの分離は、送信アンテナの数が与えられたものとして最大にされるように構成される。
チャネル推定は最小二乗推定値とすることができる。
同様に、本発明は、複数の送信アンテナを有するOFDM送信機を提供し、このOFDM送信機は、各送信アンテナから、値
Xm k = exp (-j 2π k m /M)
を有するトレーニングシーケンスに基づくトレーニングシーケンスデータを送信するように構成され、但し、kはトレーニングシーケンス中の値を示し、mは送信アンテナを示し、Mは送信アンテナの数である。
本発明は、所定数Mの送信アンテナからOFDM信号を送信するように構成されたOFDM送信機も提供し、このOFDM送信機は、複数のアンテナのそれぞれでのトレーニングシーケンスデータを格納するデータメモリと、プロセッサ実施可能命令を格納する命令メモリと、命令に従ってトレーニングシーケンスデータを読み取り、処理する、データメモリと命令メモリとに結合されたプロセッサとを備え、これらの命令は、各アンテナごとにトレーニングシーケンスデータを読み取り、各アンテナごとにトレーニングシーケンスデータを逆フーリエ変換し、フーリエ変換されたデータに周期的拡張を与えて各アンテナごとの出力データを生成し、この出力データを送信のために少なくとも1つのディジタル/アナログコンバータに提供するようにプロセッサを制御する命令を含み、1つのアンテナでのトレーニングシーケンスデータは、シーケンス値
Xm k = exp (-j 2π k m /M)
から導出されたデータを有し、但し、mはアンテナを示し、kはこのシーケンス中の値を示す。
関連する一態様では、本発明は、所定の数の送信アンテナを備えるOFDM送信機から、これらの送信アンテナのそれぞれについてのチャネル推定値を求めるためのトレーニングシーケンスデータを用いてOFDM信号を生成する方法を提供し、この方法は、OFDM信号に各送信アンテナごとのトレーニングシーケンスデータを挿入することを含み、トレーニングシーケンスデータは各アンテナごとに長さKの直交するトレーニングシーケンスから導出され、直交するトレーニングシーケンスは、各送信アンテナに関連付けられた少なくとも1つのチャネルでのチャネル推定値を求めるのに必要とされる最低限必要なシーケンス長Kが、送信アンテナの数に直線的に依存するように構築され、直交するトレーニングシーケンスのそれぞれは時間領域におけるパルスを定義し、この方法はさらに、これらのシーケンスを、所定の数の送信アンテナについて時間領域におけるパルスの分離を実質上最大にするように構築することも含む。
前述のOFDM送信機および方法を実施する前述のトレーニングシーケンスデータおよび/またはプロセッサ制御コードは、ディスク、CD−ROMまたはDVD−ROM、読取り専用メモリなどのプログラムされたメモリ(ファームウェア)などのデータキャリア、あるいは光または電気信号搬送波などのデータキャリアで提供できる。多くの用途では、前述の送信機の実施形態、および前述の方法に従って機能するように構成された送信機は、DSP(ディジタル信号プロセッサ)、ASIC(特定用途向けIC)またはFPGA(フィールドプログラマブルゲートアレイ)上で実施される。したがって、本発明の実施形態を実施するコード(およびデータ)には、従来のプログラムコード、またはマイクロコード、または、例えば、ASICやFPGAをセットアップし、制御するコードなどを含めることができる。同様に、このコードには、Verilog(登録商標)やVHDL(超高速集積回路ハードウェア記述言語)といったハードウェア記述言語のためのコードも含めることができる。当業者は理解するように、そのようなコードおよび/またはデータは、相互にやりとりする複数の結合されたコンポーネント間で分散できる。
次に、本発明の上記その他の態様について、例としてあげるにすぎないが、添付の図を参照してさらに説明する。
再度前述の式1を参照すると、この式は、所定の数の送信アンテナMについて、時間領域において、式により定義されるパルスの分離が最大化される次式3によって与えられるトレーニングシーケンスによって満たすことができることがわかる。
Figure 2007522685
式3において、mおよびkは、それぞれ、0からM−1および0からK−1まで、あるいは同等に、それぞれ、1からMおよび1からKまでの範囲に及び、Kは事実上1つのトレーニングシーケンスの長さである。添字mは1つの送信アンテナにラベル付けし、このアンテナから送信される1つのトレーニングシーケンス中の値は添字kによってラベル付けされ、1つの送信アンテナによって送信される1つのトレーニングシーケンスは、長さKを有する。添字kは、例えば、各値Xが異なるサブキャリア上で送信される(この場合、Kは、好ましくは、サブキャリアの概念的総数である)ようにラベル付けすることもでき、あるいは、トレーニングシーケンス値は、例えば、kは交互サブキャリアにラベル付けし、トレーニングシーケンスXは、2つのOFDMシンボルにわたって、半分は一方のシンボルに、半分は次のシンボルに分散させるなど、何らかの他のやり方で分散させることもできる。これらの方針に沿って多数の変形形態が可能であることを当業者は理解するであろう。
図12および13に、式3によって求められる、概念上64サブキャリアを有するがいくつかはヌルとされている、2送信アンテナ(M=2)MIMO/OFDMシステムでの時間領域トレーニングシーケンスを示す。図からわかるように、時間領域におけるパルスの分離を最大にすることの効果は、オーバーラップがより小さくなるため、これらの相互干渉が低減されることである。図3のトレーニングシーケンスは、これらのシーケンスをより多く直交させることによってチャネル推定器の誤差を低減し、これが、結果として、改善されたチャネル推定によりビット誤り率およびブロック誤り率の低減をもたらす。
各サブキャリアに1つのトレーニングシーケンス値Xが割り振られる場合、1つのOFDM送信機の1つのアンテナによる送信のための1つのOFDMトレーニングシンボルは、1つのトレーニングシーケンスのKサンプルまたは値の逆フーリエ変換を実行し、次いで、周期的プリフィックスを付加することによって構築できる(ディジタル/アナログコンバータによるアナログ波形への変換が理解される)。トレーニングシーケンスは、例えば、逆フーリエ変換行列をK×K行列からK×2K行列に変更して、長さ2Kの出力データシーケンスを提供することによって、オーバーサンプリングされ得ることを当業者は理解するであろう。式3によって定義されるトレーニングシーケンスは実質上直交し、これらの長さは、送信アンテナの数と共に専ら直線的に増大する。
式3によって定義されるシーケンスを使用する際の1つの潜在的問題は、式3によって定義されるK値のシーケンスの逆フーリエ変換が、時間領域における一連のインパルス関数を備えることである。このスパイク状信号は、ディジタル/アナログコンバータ(DAC)のために大きなダイナミックレンジを必要とし、望ましくないピーク対平均電力比(PAPR)を有する。大まかにいえば、PAPRが低いほど、DACに関する要件は緩やかであり、OFDM送信機はより効率が高い。この問題には、周波数領域において、すなわち逆フーリエ変換を適用する前に、トレーニングシーケンスをスクランブルさせることによって対処することができる。
スクランブル演算は、式4によって定義され、その場合、スクランブルシーケンスは、
Figure 2007522685
であり、但し、kはスクランブルシーケンス中の値を示す。
Figure 2007522685
潜在的に、全てのkの係数値が1である無数のスクランブルシーケンスがある(全てのc=1で元のシーケンスが再現される)。スクランブルコードシーケンスを適当に選択することにより、ピーク対平均電力比を低く保つことができ、これにより、通信システムにおける非線形的影響が低減され、したがって、チャネル推定が改善される。
適当なスクランブルシーケンスは、参照してここに組み込まれる、Leopold BomerおよびMarkus Antweiler、「完全なN相シーケンスおよびアレイ」、IEEE JSAC、第10巻、第4号、782頁から789頁、1992年5月(Leopold Bomer and Markus Antweiler, 「Perfect N-phase sequences and arrays」, IEEE JSAC, vol 10, no 4, pp 782-789, May 1992)に記載されている。BomerおよびAntweilerは、周期的な自己相関関数を持ち、位相外れ値がゼロである、いわゆる「完全な」シーケンスおよびアレイについて記載している。離散時間N層シーケンスおよびアレイは、振幅1の複雑な要素および(2π/N)n(0≦n<N)個の異なる位相値の1つを有する。ボマーおよびアントワイラーは、いくつかの完全なN相シーケンスおよびアレイの構築方法について記載しており、例えば、この論文に記載されているチュー(Chu)シーケンスを使って、実質上均一なピーク対平均電力比を達成することができる。
サイズSのチューシーケンスの構築については、D.C.チュー、「適当な周期的相関特性を有する多相符号」、IEEE会報情報理論、第IT−25巻、720頁から724頁、1979年(D.C. Chu, 「Polyphase codes with good periodic correlation properties」, IEEE Trans. Inform. Theory, vol. IT-25, pp. 720-724, 1979)に記載されている。チューシーケンスは、以下の式を使って構築される。
が偶数の場合、s(x)=exp{j(2π/N)n.x}、
が奇数の場合、s(x)=exp{j(2π/N)n.×(x+1)}、
0≦x≦S−1
式中、nとSとは互いに素である。チューシーケンスの英字Nは、
が偶数の場合、N=2S
が奇数の場合、N=S
によって与えられる。
nを変動させて、この構築により、φ(S)の異なる完全なN相シーケンスが生成され、φ(・)はオイラーのファイ関数を表す。
次に、式3から導出されるトレーニングシーケンスの構築および使用について、簡単な例を用いて示す。
説明のために、(チャネル長1の状況で)M=2送信アンテナ、K=4サブキャリアを備える小規模なOFDMシステムを考える。この場合、
Figure 2007522685
は、
Figure 2007522685
に等しい。4×2FFT行列は、
Figure 2007522685
であり、したがって、
Figure 2007522685
である。
式(1)を適用することにより、以下のように、これらのシーケンスは直交することがわかる。
Figure 2007522685
Figure 2007522685
Figure 2007522685
Figure 2007522685
周波数空間におけるトレーニングシーケンスは、
Figure 2007522685
であり、そのため、送信される信号(すなわち、IFFT後の信号)は、
Figure 2007522685
であり、
Figure 2007522685
および
Figure 2007522685
がもたらされる。これらは、ピーク対平均電力比が劣る(これは4である)ため、これらのシーケンスは、好ましくは、スクランブルされる。チューシーケンス、
Figure 2007522685
を使って、新しいトレーニングシーケンス、
Figure 2007522685
すなわち、
Figure 2007522685
および
Figure 2007522685
を作成することができる。
この場合もやはり、式(1)を使って、これらが直交することを以下のように検証することができる。
Figure 2007522685
Figure 2007522685
Figure 2007522685
Figure 2007522685
周波数空間における(スクランブルされた)トレーニングシーケンスは、
Figure 2007522685
であり、そのため、(IFFT後の)送信信号は、
Figure 2007522685
であり、今度は、
Figure 2007522685
および
Figure 2007522685
がもたらされる。これらのスクランブルシーケンスは、ピーク対平均電力比1を有することがわかる。
次に、図14を参照すると、これには、前述のトレーニングシーケンスと共に使用するのに適したOFDM通信システム800が示されている。したがって、ユーザデータストリーム802は従来のMIMO送信機プロセッサ804に入力され、プロセッサ804は、IFFTブロック810に、それぞれ、1組のOFDMシンボルを送信する1組の送信アンテナ812の1つを駆動する複数の出力を生成する。ブロック806によって、必要に応じて構築され、または格納されているMIMOトレーニングシーケンスが、例えば、ルックアップテーブルとして提供される。このMIMOトレーニングシーケンスが、式3に従ってスクランブルシーケンスを適用するスクランブルブロック808に与えられ、次いで、このスクランブルトレーニングシーケンスが、MIMOプロセッサ804によってOFDMシンボルとして送信されるデータストリームに挿入される。実際には、トレーニングシーケンスおよびスクランブルブロック806、808は、フラッシュRAMやEPROMといった一時的または永続的データ記憶を備え得る。明確にするために2つの別々のブロックが示されているが、実際には、スクランブルトレーニングシーケンスは、事前に計算され、ローカル記憶媒体に格納される可能性が高い。
引き続き図14を参照すると、複数の受信アンテナ814のそれぞれは、送信アンテナ812のそれぞれから信号を受信し、これらの受信信号がFFTブロック816に渡され、次いで、従来方式のMIMO/OFDM受信機プロセッサ818に渡され、これが出力データストリーム822を生成する。プロセッサ818は、MIMOチャネル推定ブロック820から1組のMIMOチャネル推定値も受け取る。MIMOチャネル推定には、任意の従来方式の最小二乗(LS)アルゴリズムを用いることができ、前述のトレーニングシーケンスを使用する本発明の実施形態は、従来方式のMIMO/OFDM受信機に対するどんな変更も必要としない(ただし、例によって、受信機は、使用されるトレーニングシーケンスを知っている必要がある)。したがって、標準の適応フィルタベースのチャネル推定技法を用いて、各送信アンテナごとに(受信アンテナの数に応じて)1つ以上のチャネルを推定することができる。
Liら(前掲書)は、(時間領域における窓かけを用いた)最小二乗チャネル推定技法の一例について記載しており、この技法の概要を図15に示す。このアルゴリズムの詳細については、(参照してここに組み込まれる)Liらの論文を参照することができる。
より詳細には、図15には、図7を参照して前述したものと類似の受信信号およびトレーニングデータ入力を有するチャネルパラメータ推定器900が示されている。したがって、図15では、以下の用語が使用されている。
Rx[n,k] 受信信号
t[n,k] トレーニングシーケンス
Figure 2007522685
図15において、iは送信アンテナにラベル付けし、したがって、乗算器902は、受信信号と各(スクランブルされた)トレーニングシーケンスとの積を形成する。この演算の結果が、各送信アンテナのトレーニングシーケンス(の結合体)について実行され、IFFTブロック906に渡され、ブロック906が、受信信号とそれぞれのトレーニングシーケンスの間の相関行列を備える(各送信アンテナに関連付けられた)これらのトレーニングシーケンスのそれぞれでの時間領域データ出力を提供する。概念上、1組の乗算器904(明確にするためにこのうちの1つだけしか示していない)は、異なる送信アンテナによって送信される1組のトレーニングシーケンスの積を形成し、やはりこれらも、IFFTブロック908によって、1組の出力行列Qijを提供するように、時間領域に変換される。
Figure 2007522685
IFFTブロック906、908からの出力は、MIMOチャネル推定ブロック910に提供され、ブロック910は最小二乗(LS)アルゴリズムに従って
Figure 2007522685
を計算するように動作する。
したがって、チャネル推定ブロック910からの出力は、送信アンテナのそれぞれに1つ、各受信アンテナごとに、1組の(時間領域)チャネル推定値を備え、これらが(明確にするために図15には2つだけしか示していない)FFTブロック912、914の組に提供される。これらのFFTブロックは、時間領域チャネル推定値を周波数領域推定値に、この場合もやはり、各受信アンテナごとに(この送信アンテナの組について)1組の推定値として変換する。
Figure 2007522685
これは、式3を使って導出されるトレーニングシーケンスを用いて達成され得る。したがって、本発明の実施形態は、従来の受信機へのどんな変更も必要としない。
図16に、本発明の実施形態によるトレーニングシーケンスを使用するように構成されたOFDM送信機1000の一例を示す。大まかにいえば、信号処理の大部分は、ディジタル領域で実行され、アナログ信号への変換は、最後のRF段で行われるにすぎない。
図16では、2つの送信アンテナ1002a、bは、通常、アップコンバータ、電力増幅器、および任意選択で窓かけフィルタを備える、それぞれのRF段1004a、bによって駆動される。RF段は、ディジタル信号プロセッサ(DSP)1008から入力を受け取る、それぞれのディジタル/アナログコンバータ1006a、bの出力IおよびQによって駆動される。送信用のディジタルデータは入力1010上でDSP1008に提供される。
DSP1008は、一般に、1つ以上のプロセッサ1008aおよび作業メモリ1008bを含み、DSPを、フラッシュRAMまたはROMなどの永続的プログラムおよびデータメモリ1014に結合するデータ、アドレスおよび制御バス1012を有する。メモリ1014は、OFDM機能を提供するようにDSP1008を制御するプロセッサ制御コード、特に、IFFTコード1014a、周期的プリフィックス付加コード1014b、トレーニングシーケンス挿入コード1014c、およびブロック誤り(例えば、リードソロモン)訂正およびST符号化コード1014dを格納する。メモリ1014は、相補的OFDM受信機によるチャネル推定のためにアンテナ1002a、bから送信されるOFDMシンボルに含めるために、ここではシーケンス挿入コード1014cと共に、トレーニングシーケンスデータも格納する。図示のように、メモリ1014に格納されるデータおよび/またはコードの一部または全部は、取り外し可能記憶媒体1016上で、あるいは何らかの類似のデータキャリア上で提供され得る。図16には、2つの送信アンテナだけしか示されていないが、実際には、4、6または8アンテナなど、より多くの送信アンテナが用いられ得ることを当業者は理解するであろう。
図17に、前述のトレーニングシーケンスの模擬性能と、Barhumiら(前掲書)に従って求められたトレーニングシーケンスとの比較を示すグラフを示す。具体的には、図14には、例えばIEEE802.11aなど、64サブキャリアを有し、このうちの52が使用される、2つの送信アンテナを備えるシステムでの、dB単位の受信信号対雑音比(S/N)に対するy軸上の平均二乗誤差(MSE)のグラフが示されている。受信機は、最小二乗チャネル推定器を備え、16サンプルのチャネル長を想定しているが、このシミュレーションでは、実際のチャネルは平坦(すなわち1サンプル長)である。曲線1100は、Barhumiらに従って求められたトレーニングシーケンスに対応し、曲線1102は、前述の、本発明の一実施形態に従って求められたトレーニングシーケンスに対応する。この例では、本発明の一実施形態に従って求められたトレーニングシーケンスが著しい性能の改善を実現することが分かる。
前述の技術は、MIMOシステムなど、複数の送信アンテナを備えるOFDM通信システムに有用である。この技術は、端末と基地局またはアクセスポイントの両方に適用可能であり、OFDM通信を用いる既存の規格のいずれにも限定されない。
おそらく、当業者には、他の多くの有効な代替形態が想起されるであろう。本発明は、説明した実施形態に限定されず、添付の特許請求の範囲の精神および範囲に含まれる、当業者にとって明らかな変更形態を包含するものであることが理解されるであろう。
OFDM信号スペクトルのサブキャリアを示す図である。 従来のOFDM送信機および受信機を示す図である。 OFDM受信機フロントエンドを示す図である。 OFDM受信機信号プロセッサを示す図である。 チャネル推定手順の概念的説明を示す図である。 プリアンブルおよびパイロット信号位置を示す、Hiperlan2OFDM信号の時間および周波数領域プロットを示す図である。 知られている時間空間符号化MIMO/OFDM通信システムを示す図である。 前述の技法による64サブキャリアを有する4送信アンテナMIMO/OFDMシステムでの時間領域トレーニングシーケンスを示す図である。 前述の技法による64サブキャリアを有する4送信アンテナMIMO/OFDMシステムでの時間領域トレーニングシーケンスを示す図である。 図8の時間領域トレーニングシーケンスに対する周波数領域窓かけ(ヌルとされているサブキャリア)の影響を示す図である。 図9の時間領域トレーニングシーケンスに対する周波数領域窓かけ(ヌルとされているサブキャリア)の影響を示す図である。 本発明の一実施形態による64サブキャリアを有する2送信アンテナMIMO/OFDMシステムでの時間領域トレーニングシーケンスを示す図である。 本発明の一実施形態による64サブキャリアを有する2送信アンテナMIMO/OFDMシステムでの時間領域トレーニングシーケンスを示す図である。 本発明の諸態様を実施するMIMO/OFDM通信システムを示す図である。 MIMO/OFDM受信機でのチャネルパラメータ推定器を示すブロック図である。 本発明の一実施形態によるMIMO/OFDM送信機を示すブロック図である。 本発明の一実施形態の性能を前述の技法と比較する、信号対雑音比に対する平均二乗誤差を示すグラフである。

Claims (30)

  1. 複数の送信アンテナを使用するOFDM送信機から送信されるOFDM信号であって、Xm k = exp (-j 2π k m /M)の値のシーケンス(但し、kはシーケンス中の値を示し、mは送信アンテナを示し、Mは送信アンテナの数である)に基づいて構成される、前記各送信アンテナ毎に長さKの実質的に直交するトレーニングシーケンスから導出される実質上直交するトレーニングシーケンスデータを前記各アンテナからの前記信号に導入することによって前記送信アンテナと関連するチャンネル評価に適応される、OFDM信号。
  2. K=nMLであり、但し、Lは正の整数であり、nは1より大きい正の整数である、請求項1に記載のOFDM信号。
  3. 前記直交するトレーニングシーケンスは、前記値のシーケンスX のスクランブルバージョンに基づくものである、請求項1または2に記載のOFDM信号。
  4. 前記トレーニングシーケンスデータを含む前記OFDM信号の一部は、実質上均一のピーク対平均電力比を有する、請求項3に記載のOFDM信号。
  5. 前記添字kは前記OFDM信号のサブキャリアを示す、請求項1、2、3または4に記載のOFDM信号。
  6. 前記添字kは前記OFDMサブキャリアのOFDMシンボルを示す、請求項1、2、3、4または5に記載のOFDM信号。
  7. Lは、サンプル周期における前記OFDM信号の周期的拡張の長さに等しい、請求項2から6のいずれか1項に記載のOFDM信号。
  8. 複数の送信アンテナのチャネル推定のためのトレーニングシーケンスデータを含むOFDM信号であって、Mが送信アンテナの数、kが前記シーケンス中の値、mが送信アンテナを示し、k=nMLであり、Lが正の整数であり、nが1より大きい正の整数であり、特に、nが2の正の整数乗である場合にexp(−j2πkm/M)の値によって定義される長さKのトレーニングシーケンスに基づくトレーニングシーケンスデータを含むOFDM信号。
  9. 請求項1から8のいずれか1項に記載のOFDM信号を送信するように構成される、OFDM送信機。
  10. 請求項9に記載の送信機と、前記OFDM信号を受信するように構成されるOFDM受信機とを備える、OFDMデータ伝送システム。
  11. 1組の前記送信アンテナでの請求項1から8のいずれか1項で定義されるトレーニングシーケンスデータを保持する、データキャリア。
  12. 複数の送信アンテナを有し、前記各送信アンテナから、トレーニングシーケンスに基づくトレーニングシーケンスデータを送信するように構成されるOFDM送信機であって、前記アンテナの前記トレーニングシーケンスデータが基づいている前記トレーニングシーケンスが、時間領域において、少なくとも2つのパルスを定義し、
    i)前記トレーニングシーケンスは実質上相互に直交し、
    ii)前記トレーニングシーケンスは、受信機に、前記各送信アンテナに関連付けられるチャネルでのチャネル推定値を求めさせ、
    iii)(ii)を満たすのに必要とされる前記各トレーニングシーケンスの最小の長さは、送信アンテナの数に実質上直線的に依存し、
    iv)前記送信アンテナの数が与えられたと仮定して、時間領域における前記パルスの分離が最大にされる、
    ように構成される、OFDM送信機。
  13. Xm k = exp (-j 2π k m /M)の値を持つトレーニングシーケンス(但し、kはシーケンス中の値を示し、mは送信アンテナを示し、Mは送信アンテナの数である)に基づくトレーニングシーケンスデータを前記各送信アンテナから送信するように構成される、OFDM送信機。
  14. 前記トレーニングシーケンスデータは、前記トレーニングシーケンスのスクランブルバージョンに基づくものである、請求項12または13に記載のOFDM送信機。
  15. 前記トレーニングシーケンスの前記スクランブルバージョンは、ほぼ1つの送信電力のピーク対平均比を与えるように選択される、請求項14に記載のOFDM送信機。
  16. 前記トレーニングシーケンスの長さに等しい可能な直交搬送波の総数のうち、1つ以上のサブキャリアが実質上使用されない、請求項12、13、14または15に記載のOFDM送信機。
  17. 実行されると、請求項9および12から16のいずれか1項に記載のOFDM送信機を実施する、プロセッサ制御コードおよびトレーニングシーケンスデータ。
  18. 請求項17に記載のプロセッサ制御コードおよびデータを保持する、キャリア。
  19. 所定数Mの送信アンテナからOFDM信号を送信するように構成されるOFDM送信機であって、
    前記複数のアンテナの各々のトレーニングシーケンスデータを格納するデータメモリと、
    プロセッサ実施可能命令を格納する命令メモリと、
    前記命令に従って前記トレーニングシーケンスデータを読み取り、処理するために前記データメモリおよび前記命令メモリに結合されるプロセッサと、
    を備え、前記命令は、
    各アンテナごとに前記トレーニングシーケンスデータを読み取り、
    各アンテナごとに前記トレーニングシーケンスデータを逆フーリエ変換し、
    前記フーリエ変換データに周期的拡張を提供して各アンテナごとに出力データを生成し、
    送信のために前記出力データを少なくとも1つのディジタル/アナログコンバータに供給する、
    ように前記プロセッサを制御する命令を備え、
    前記トレーニングシーケンスデータがXm k = exp (-j 2π k m /M)の値のシーケンス(但し、mは送信アンテナを示し、kはシーケンス中の値を示す)から導出するデータにより構成される、OFDM送信機。
  20. 前記トレーニングシーケンスデータは、値のスクランブルシーケンスc に基づくものであり、cはkによって指し示されるスクランブルシーケンス中の値を表す、請求項19に記載のOFDM送信機。
  21. 前記逆フーリエ変換は複数のOFDMサブキャリアを生成し、前記OFDM信号は前記サブキャリアの1つ以上を除外する、請求項19または20に記載のOFDM送信機。
  22. 請求項19、20または21に記載の各アンテナごとの前記トレーニングシーケンスデータを保持する、データキャリア。
  23. 前記プロセッサ実施可能命令をさらに備える、請求項22に記載のデータキャリア。
  24. 所定の数の送信アンテナを有するOFDM送信機から、前記送信アンテナのそれぞれでのチャネル推定値を求めるためのトレーニングシーケンスデータを用いて、OFDM信号を提供する方法であって、
    前記各送信アンテナごとのトレーニングシーケンスデータを前記OFDM信号に挿入することを含み、前記トレーニングシーケンスデータは、前記各アンテナごとに長さKの直交トレーニングシーケンスから導出され、前記直交トレーニングシーケンスは、前記各送信アンテナに関連付けられる少なくとも1つのチャネルでのチャネル推定値を求めるのに必要とされる最低限必要なシーケンス長Kが、前記送信アンテナの数に直線的に依存するように構築され、前記直交トレーニングシーケンスのそれぞれは時間領域においてパルスを定義し、
    前記シーケンスを、前記所定の数の送信アンテナでの前記時間領域における前記パルスの分離を実質上最大にするように構築することをさらに含む、方法。
  25. トレーニングシーケンスデータストアから前記トレーニングシーケンスデータを取り出すことをさらに備える、請求項24に記載の方法。
  26. 前記直交トレーニングシーケンスは、Xm k = exp (-j 2π k m /M)の値のシーケンス(但し、kはシーケンス中の値を示し、mは送信アンテナを示し、Mは送信アンテナの数である)に基づいている、請求項24または25に記載の方法。
  27. 前記直交トレーニングシーケンスは、前記値のシーケンスX のスクランブルバージョンに基づくものである、請求項26に記載の方法。
  28. 前記トレーニングシーケンスデータを含む前記OFDM信号の一部は、実質的に均一のピーク対平均電力比を有する、請求項27に記載の方法。
  29. 前記OFDM信号は1つ以上のヌルとされるサブキャリアを備える、請求項24から28のいずれか1項に記載の方法。
  30. 請求項24から29のいずれか1項に記載の前記各送信アンテナごとのトレーニングシーケンスデータを保持する、データキャリア。
JP2006524987A 2004-02-20 2005-02-18 伝送信号、方法および装置 Abandoned JP2007522685A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0403830A GB2411327A (en) 2004-02-20 2004-02-20 Training sequence for MIMO-OFDM which is suitable for use with null sub-carriers
PCT/JP2005/003073 WO2005081487A1 (en) 2004-02-20 2005-02-18 Transmission signals, methods and apparatus

Publications (1)

Publication Number Publication Date
JP2007522685A true JP2007522685A (ja) 2007-08-09

Family

ID=32040105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006524987A Abandoned JP2007522685A (ja) 2004-02-20 2005-02-18 伝送信号、方法および装置

Country Status (6)

Country Link
US (1) US20050195734A1 (ja)
EP (1) EP1566936A1 (ja)
JP (1) JP2007522685A (ja)
CN (1) CN1765097A (ja)
GB (1) GB2411327A (ja)
WO (1) WO2005081487A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172176A (ja) * 2010-02-22 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> 無線通信方法、及び無線通信システム

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030081538A1 (en) * 2001-10-18 2003-05-01 Walton Jay R. Multiple-access hybrid OFDM-CDMA system
US7653415B2 (en) * 2002-08-21 2010-01-26 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
US8027704B2 (en) * 2003-08-21 2011-09-27 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
US7450489B2 (en) * 2003-12-30 2008-11-11 Intel Corporation Multiple-antenna communication systems and methods for communicating in wireless local area networks that include single-antenna communication devices
US7444134B2 (en) * 2004-02-13 2008-10-28 Broadcom Corporation Device and method for transmitting long training sequence for wireless communications
US7970064B2 (en) 2004-08-13 2011-06-28 Agency For Science, Technology And Research Transmitter, method for generating a plurality of long preambles and communication device
US7929563B2 (en) * 2005-01-20 2011-04-19 New Jersey Institute Of Technology System and/or method for channel estimation in communication systems
US7590195B2 (en) * 2005-02-23 2009-09-15 Nec Laboratories America, Inc. Reduced-complexity multiple-input multiple-output (MIMO) channel detection via sequential Monte Carlo
JP4852984B2 (ja) * 2005-11-09 2012-01-11 株式会社日立製作所 複数基地局を用いた伝送路マルチ化システム
FR2894097B1 (fr) * 2005-11-25 2008-01-11 Thales Sa Modem et procede pour transmettre des donnees dans un milieu notamment tel que l'air et l'eau
JP2009517954A (ja) * 2005-12-02 2009-04-30 エヌエックスピー ビー ヴィ 消去された副搬送波周波数のゼロ付加信号法を用いるofdm認知無線
US7526321B2 (en) * 2005-12-08 2009-04-28 Accton Technology Corporation Wireless network apparatus and method of channel allocation for respective radios
JP4406398B2 (ja) * 2005-12-26 2010-01-27 株式会社東芝 Ofdm信号の送信方法と送信装置及びofdm信号の受信装置
JP4445474B2 (ja) 2006-01-16 2010-04-07 株式会社東芝 Ofdm信号の送信方法、ofdm送信機及びofdm受信機
US8130857B2 (en) * 2006-01-20 2012-03-06 Qualcomm Incorporated Method and apparatus for pilot multiplexing in a wireless communication system
JP4892547B2 (ja) * 2006-03-17 2012-03-07 パナソニック株式会社 無線通信基地局装置およびパイロット配置方法
US8032098B2 (en) * 2006-05-05 2011-10-04 Samsung Electronics Co., Ltd. MIMO receiver with pooled adaptive digital filtering
CN100542067C (zh) * 2006-09-15 2009-09-16 北京航空航天大学 多输入多输出系统中基于最优训练序列的信道估计方法
JP4855888B2 (ja) * 2006-10-03 2012-01-18 株式会社エヌ・ティ・ティ・ドコモ 基地局装置
US8265177B2 (en) * 2006-12-04 2012-09-11 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed high definition video data using beambook-constructed beamforming signals
US8040856B2 (en) * 2006-12-04 2011-10-18 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed high definition video data using a beamforming acquisition protocol
US8259836B2 (en) * 2006-12-04 2012-09-04 Samsung Electronics Co., Ltd. Method and system for generating candidate beamforming coefficients for transmission of data over a wireless medium
KR100946928B1 (ko) * 2006-12-12 2010-03-09 삼성전자주식회사 다중 입력 다중 출력 방식을 사용하는 직교 주파수 분할다중 통신 시스템에서 프리앰블 신호 송수신 및 채널 추정장치 및 방법
GB2445000B (en) * 2006-12-20 2009-04-15 Toshiba Res Europ Ltd Wireless communications apparatus
US20080205417A1 (en) * 2007-02-26 2008-08-28 Huamin Li Method and apparatus for bridging wired and wireless communication networks
US9071414B2 (en) 2007-03-23 2015-06-30 Qualcomm Incorporated Method and apparatus for distinguishing broadcast messages in wireless signals
CN101282318B (zh) * 2007-04-03 2012-04-18 中兴通讯股份有限公司 一种新的ofdm系统前缀序列的发送与接收方法
US8345804B2 (en) * 2007-06-14 2013-01-01 Alcatel Lucent Simplified RACH preamble detection receiver
US7852807B2 (en) 2007-06-19 2010-12-14 Panasonic Corporation Channel arrangement method and radio communication base station device
US9048945B2 (en) 2007-08-31 2015-06-02 Intel Corporation Antenna training and tracking protocol
KR101433112B1 (ko) * 2007-12-17 2014-08-25 삼성전자주식회사 단일 반송파 주파수 분할 다중 접속 시스템을 위한 수신장치 및 방법
CN101588335B (zh) * 2008-05-19 2012-07-04 三星电子株式会社 利用信道相关性的mimo检测方法及系统
KR20100019947A (ko) 2008-08-11 2010-02-19 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법
BR112012003728B1 (pt) 2009-08-21 2021-10-13 Blackberry Limited Método para operar um equipamento de usuário em um sistema de comunicação sem fio e dispositivo em um sistema de comunicação sem fio sendo operável em pelo menos um primeiro modo de antena e em um segundo modo de antena
US9814003B2 (en) 2009-11-06 2017-11-07 Blackberry Limited Transmission of information in a wireless communication system
US20110150119A1 (en) * 2009-12-18 2011-06-23 Mark Kent Method and system for channel estimation in an ofdm based mimo system
US9094164B2 (en) 2012-04-17 2015-07-28 Qualcomm Incorporated Methods and apparatus to improve channel estimation in communication systems
CN104363078B (zh) * 2014-12-02 2017-07-18 重庆邮电大学 基于鲁棒竞争聚类的欠定系统实正交空时分组码盲识别方法
JP2021500813A (ja) 2017-10-23 2021-01-07 ノキア テクノロジーズ オサケユイチア 通信システムにおけるエンドツーエンド学習
WO2019135019A1 (en) * 2018-01-02 2019-07-11 Nokia Technologies Oy Channel modelling in a data transmission system
CN109981133B (zh) * 2019-03-26 2020-09-11 四方智能(武汉)控制技术有限公司 一种无人船用无线宽带电台

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7139321B2 (en) * 2001-03-08 2006-11-21 Regents Of The University Of Minnesota Channel estimation for wireless OFDM systems
US7706458B2 (en) * 2001-04-24 2010-04-27 Mody Apurva N Time and frequency synchronization in Multi-Input, Multi-Output (MIMO) systems
GB2393618B (en) * 2002-09-26 2004-12-15 Toshiba Res Europ Ltd Transmission signals methods and apparatus
CN1581740B (zh) * 2003-08-15 2012-10-17 上海贝尔阿尔卡特股份有限公司 Ofdm系统中基于pn序列和导频的反馈型信道估计方法及装置
US7417945B2 (en) * 2003-10-02 2008-08-26 Texas Instruments Incorporated Transmitter and receiver for use with an orthogonal frequency division multiplexing system
US20050169399A1 (en) * 2004-02-04 2005-08-04 Texas Instruments Incorporated Signal field scaler, method of scaling a signal field and communications system employing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172176A (ja) * 2010-02-22 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> 無線通信方法、及び無線通信システム

Also Published As

Publication number Publication date
EP1566936A1 (en) 2005-08-24
US20050195734A1 (en) 2005-09-08
CN1765097A (zh) 2006-04-26
GB2411327A (en) 2005-08-24
WO2005081487A1 (en) 2005-09-01
GB0403830D0 (en) 2004-03-24

Similar Documents

Publication Publication Date Title
JP2007522685A (ja) 伝送信号、方法および装置
US20040131011A1 (en) Transmission signals, method and apparatus
Pancaldi et al. Single-carrier frequency domain equalization
JP4439155B2 (ja) 多重搬送波通信システムにおける同一チャンネルの干渉除去方法
US6937665B1 (en) Method and apparatus for multi-user transmission
US7539259B2 (en) OFDM channel estimation and tracking for multiple transmit antennas
Liu et al. Space-time block-coded multiple access through frequency-selective fading channels
EP1047209A1 (en) A method and apparatus for multiuser transmission
US20040047284A1 (en) Transmit diversity framing structure for multipath channels
Mody et al. Receiver implementation for a MIMO OFDM system
EP2095589A1 (en) Scrambled multicarrier transmission
WO2006076080A2 (en) A ofdm communication and a method of transmitting data therefor
Patil et al. A review on MIMO OFDM technology basics and more
JP2011151803A (ja) 送信機及び受信機を含むネットワークにおいてシンボルを通信するための方法
EP1075093A1 (en) A method and apparatus for multi-user transmission
Rahman et al. Ofdm based wlan systems
GB2425024A (en) Generation of a training sequence in the time domain
GB2423898A (en) Optimising OFDM training data sequences using a cost function
EP1629649B1 (en) Apparatus and method for precoding a multicarrier signal
Kwon et al. Spectral efficient transmit diversity techniques without cyclic prefix for fading relay channels
KR20090061564A (ko) 다중 안테나 무선 통신시스템에서의 채널 추정을 위한 송신기와 수신기 및 이에 적용되는 통신 방법
JP4483218B2 (ja) 時空間送信ダイバーシチマルチキャリアcdma方式による受信装置並びに送信装置及び受信装置を備えた無線通信システム
GB2429612A (en) A method for transmitting MC-CDMA signal with a variable spreading factor
Tonello et al. Synchronization algorithms for multiuser filtered multitone (FMT) systems
Phrompichai et al. A Time-Reversal Space-Time Chip Semiblind Receiver for TR-STBC Downlink MIMO MC-CDMA Systems

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080523