JP2007328975A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2007328975A
JP2007328975A JP2006158129A JP2006158129A JP2007328975A JP 2007328975 A JP2007328975 A JP 2007328975A JP 2006158129 A JP2006158129 A JP 2006158129A JP 2006158129 A JP2006158129 A JP 2006158129A JP 2007328975 A JP2007328975 A JP 2007328975A
Authority
JP
Japan
Prior art keywords
reaction gas
flow path
gas flow
fuel cell
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006158129A
Other languages
English (en)
Inventor
Yasutaka Otake
康貴 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006158129A priority Critical patent/JP2007328975A/ja
Publication of JP2007328975A publication Critical patent/JP2007328975A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】反応ガス流路内に滞留する水によるガス閉塞の発生を抑制する。
【解決手段】ガス流路形成部は、複数の反応ガス排出連通孔の開口に対応する複数の反応ガス排出部位のうち、一部の反応ガス排出部位を含む反応ガス流路閉塞抑制部位を備える。前記反応ガス流路閉塞抑制部位は、前記ガス流路形成部の前記反応ガス流路閉塞抑制部位を除く部位よりも撥水性が高くなるように形成されている。
【選択図】図7

Description

この発明は、燃料電池において、導電性多孔部材によって構成される反応ガス流路内に滞留する水によるガス閉塞の発生を抑制する技術に関する。
近年、水素と酸素の電気化学反応によって発電する燃料電池がエネルギ源として注目されている。このような燃料電池は、一般に、電解質膜と電解質膜上に設けられた電極(酸素極および水素極。酸素極を以下では、カソードと呼び、水素極を以下では、アノードと呼ぶ。)と、を備える単セルを、セパレータにより挟持することにより構成される。そして、電気化学反応に供される反応ガス(燃料ガスまたは酸化ガス)の電極に対しての給排は、例えば、単セルを挟持するセパレータに設けられた貫通孔を介して行うことが提案されている(特許文献1参照)。
ところで、燃料電池では、水素と酸素の電気化学反応によって、水が生成される。この生成水は、上記燃料電池の場合、貫通孔を介して排出される反応ガスとともに外部に排出される。しかし、この貫通孔は、例えば、低温時における水の凍結により閉塞する場合がある。貫通孔が閉塞すると、反応ガスの排出が妨げられ、結果として、燃料電池の発電能力が低下し、さらには、発電停止となる可能性がある。なお、以下では、反応ガスの流れが妨げられることを、簡単に「ガス閉塞」とも呼ぶ。
特に、電解質膜上に設けられた電極に対して反応ガスを給排すると共に、ガス拡散性あるいは集電性を確保するために、電極とセパレータとの間に、多孔質な導電性部材から成る層(以下では、ガス流路形成部とも呼ぶ。)が反応ガス流路として配設される場合には、多孔質な部材の気孔に滞留する生成水が多くなるため、低温時における凍結により、貫通孔が閉塞する可能性がより高くなり、ガス閉塞が発生する可能性が高くなる。
特開2001−148252号公報
本発明は、上述した従来の課題を解決するためになされたものであり、燃料電池において、導電性多孔質部材によって構成される反応ガス流路内に滞留する水によるガス閉塞の発生を抑制する技術を提供することを目的とする。
上記目的の少なくとも一部を達成するために、本発明の燃料電池は、
電解質膜と前記電解質膜上に形成された電極とを備える膜電極接合体と、
導電性多孔質部材によって形成されるとともに、前記膜電極接合体上に積層して配置され、電気化学反応に供される反応ガスを前記電極に供給するための反応ガス流路を構成するガス流路形成部と、
前記ガス流路形成部上に積層して配置されるセパレータと、
前記膜電極接合体と前記ガス流路形成部と前記セパレータの積層方向に沿って形成される反応ガス排出マニホールドと、
を備え、
前記セパレータは、
前記反応ガス流路から前記反応ガス排出マニホールドへ前記反応ガスを排出するために、前記ガス流路形成部に当接する面に開口を有し、前記反応ガス排出マニホールドに連通するための複数の反応ガス排出連通孔を備え、
前記ガス流路形成部は、前記複数の反応ガス排出連通孔の開口に対応する複数の反応ガス排出部位のうち、一部の反応ガス排出部位を含む反応ガス流路閉塞抑制部位を備え、
前記反応ガス流路閉塞抑制部位は、前記ガス流路形成部の前記反応ガス流路閉塞抑制部位を除く部位よりも撥水性が高くなるように形成されている、
ことを特徴とする。
上記構成の燃料電池によれば、電気化学反応による生成水が、反応ガス流路閉塞抑制部位に含まれる一部の反応ガス排出部位へ移動するのを抑制し、さらに、この一部の反応ガス排出部位に対応する開口を有する反応ガス排出連通孔へ移動することを抑制することができる。これによって、例えば、低温時において、生成水が凍結しても、生成水の移動が抑制された一部の反応ガス排出部位およびこの一部の反応ガス排出部位に対応する開口を有する反応ガス排出連通孔の閉塞を抑制することができ、ガス閉塞の発生を抑制することができる。
る。
上記燃料電池において、さらに、
前記積層方向に沿って形成される反応ガス供給マニホールドを備え、
前記セパレータは、さらに、
前記反応ガス供給マニホールドから前記反応ガス流路へ前記反応ガスを供給するために、前記ガス流路形成部に当接する面に開口を有し、前記反応ガス供給マニホールドに連通するための複数の反応ガス供給連通孔を備え、
前記ガス流路形成部の前記反応ガス流路閉塞抑制部位は、前記複数の反応ガス供給連通孔の開口に対応する複数の反応ガス供給部位のうち、一部の反応ガス供給部位と、前記一部の反応ガス排出部位との間を結ぶ前記反応ガス流路の全体に渡って連続するように形成されている構成としてもよい。
このような構成とすれば、反応ガス流路閉塞抑制部位に含まれる、一部の反応ガス供給部位と一部の反応ガス供給部位との間を結ぶ反応ガス流路に、電気化学反応による生成水が滞留するのを抑制することができる。これにより、例えば、生成水が凍結する低温時においても、上記反応ガス流路閉塞抑制部位に含まれる反応ガス流路の閉塞を抑制することができる。
なお、上記燃料電池において、
前記反応ガス流路閉塞抑制部位は、前記反応ガス流路閉塞抑制部位を除く部位に比べて、固体表面における水滴の接触角が大きくなるように撥水化処理がなされているようにしてもよく、あるいは、前記反応ガス流路閉塞抑制部位を除く部位は、前記反応ガス流路閉塞抑制部位に比べて固体表面における水滴の接触角が小さくなるように親水化処理がなされているようにしてもよい。
いずれのようにしても、前記反応ガス流路閉塞抑制部位が、前記ガス流路形成部の前記反応ガス流路閉塞抑制部位を除く部位よりも撥水性が高くなるようにすることが容易に可能である。
また、上記燃料電池において、前記反応ガス流路閉塞抑制部位は、前記反応ガス流路閉塞抑制部位を除く部位に比べて、固体表面における水滴の接触角が大きくなるように撥水化処理がなされているようにし、かつ、前記反応ガス流路閉塞抑制部位を除く部位は、前記反応ガス流路閉塞抑制部位に比べて固体表面における水滴の接触角が小さくなるように親水化処理がなされているようにしてもよい。
このようにすれば、生成水は、反応ガス流路閉塞抑制部位以外の親水化処理がなされた部位に移動しやすくなり、撥水化処理がなされたガス流路閉塞抑制部への移動の抑制効果を高めることが可能である。また、親水化処理がなされた部位による生成水の排出を促進することも可能である。
なお、前記反応ガス流路閉塞抑制部位の固体表面における水滴の接触角は90度以上であることが好ましい。
このようにすれば、高い撥水性が得られるので、反応ガス流路閉塞抑制部位への水の移動の抑制効果を高めることが可能である。
本発明は、種々の態様で実現可能であり、例えば、本発明の燃料電池や、その燃料電池を備える燃料電池システム、その燃料電池システムを備える発電装置、その燃料電池システムを備える電気自動車等の態様で実現することが可能である。
以下では、本発明の実施の形態を実施例に基づいて以下の手順で説明する。
A.実施例:
A1.燃料電池の構成:
A2.燃料電池モジュールの構成:
A3.酸化ガス流路形成部の構成:
B.変形例:
A.実施例:
A1.燃料電池の構成:
図1は、実施例に係る燃料電池100の外観構成を示す説明図である。燃料電池100は、比較的小型で発電効率に優れる固体高分子型燃料電池である。燃料電池100は、スタック110と、エンドプレート300と、テンションプレート310と、インシュレータ330と、ターミナル340とを備えている。スタック110は、モジュール200が、設置面に対して垂直に複数個積層されて構成される。また、スタック110は、インシュレータ330およびターミナル340を挟んで、2枚のエンドプレート300によって挟持される。そして、燃料電池100は、テンションプレート310がボルト320によって各エンドプレート300に結合されることによって、スタック110(各モジュール200)を、積層方向に所定の力で締結する構造となっている。なお、設置面は、鉛直方向に垂直な方向(水平方向)に沿った面(水平面)である。
燃料電池100のカソード(図1には示さず)には、酸化ガス(カソードガス)が供給され、電気化学反応後、酸化排ガスとして燃料電池100外に排出される。燃料電池100のアノード(図1には示さず)には、燃料ガス(アノードガス)が供給され、電気化学反応後、燃料排ガスとして燃料電池100外に排出される。また、燃料電池100には、燃料電池100を冷却するための冷却媒体(水、エチレングリコール等の不凍水、空気等)が供給される。
A2.燃料電池モジュールの構成:
図2は、燃料電池100を構成するモジュール200の概略構成を示す断面模式図である。モジュール200は、図2に示すように、単セル10とセパレータ30とを交互に積層して構成される。なお、以下では、単セル10とセパレータ30とを積層する方向(x方向)を積層方向とも呼び、単セル10のセパレータ30を積層する面に平行な方向(y方向)を面方向とも呼ぶ。また、図2では、面方向は鉛直方向となっており、面方向下向きが重力方向となっている。
単セル10は、MEA(膜電極接合体、Membrance Electrode Assembly)12と、MEA12の外側に配設されたガス流路形成部14,15と、シール部16と、を備える。ここで、MEA12は、電解質膜20と、電解質膜20を間に挟んでその表面に形成された触媒電極であるカソード22およびアノード24と、上記触媒電極のさらに外側に配設されたガス拡散層26,28と、を備えている。
電解質膜20は、固体高分子材料、例えばパーフルオロカーボンスルホン酸を備えるフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。カソード22およびアノード24は、電気化学反応を促進する触媒、例えば、白金、あるいは白金と他の金属から成る合金を備えている。ガス拡散層26,28は、例えばカーボン製の多孔質部材である。なお、ガス拡散層は、触媒電極に対するガス供給効率を向上させるとともに、ガス流路形成部と触媒電極との間の集電性を高め、電解質膜を保護する働きを有するが、ガス流路形成部の構成材料やガス流路形成部の気孔率によっては、ガス拡散層を設けないこととしてもよい。
ガス流路形成部14,15は、発砲金属や金属メッシュなどの金属製多孔質体によって形成されており、本実施例では、チタン(Ti)製の多孔質体を用いている。ガス流路形成部14,15は、MEA12とセパレータ30との間に形成される空間全体を占めるように配設されており、内部に形成される多数の細孔から成る空間は、電気化学反応に供されるガス(反応ガス、すなわち、燃料ガスまたは酸化ガス)が通過する単セル内ガス流路として機能する。記述したガス拡散層においても、内部に形成される空間をガスが通過するが、本実施例では、ガス流路形成部14,15は、単セル10に供給されたガスが通過する主たる空間を形成する。この場合、特に、ガス流路形成部15を酸化ガス流路形成部とも呼び、ガス流路形成部14内に形成される単セル内ガス流路を酸化ガス流路とも呼ぶ。また、ガス流路形成部15を燃料ガス流路形成部とも呼び、ガス流路形成部15内に形成される単セル内ガス流路を燃料ガス流路とも呼ぶ。なお、本実施例の燃料電池100は、このガス流路形成部14の構造に特徴を有しているが、その詳細は後で詳述する。
シール部16は、隣り合うセパレータ30間であって、MEA12およびガス流路形成部14,15の外周部に設けられている。このシール部16は、例えば、シリコンゴム、ブチルゴム、フッ素ゴムなどの絶縁性ゴム材料によって形成されると共に、MEA12およびと一体で形成されている。
図3は、MEAと一体形成されたシール部16の概略構成を表わす平面図である。図3に示すように、シール部16は、略四角形状の薄板状部材であり、外周部に設けられた6つの穴部と、中央部に設けられてMEAが組み込まれている略四角形の穴部とを有している。なお、図3の平面図には表わしていないが、シール部16は実際には図2に示すように所定の凹凸形状を有しており、燃料電池内では、上記6つの穴部および略四角形の穴部を取り囲む位置に設けられた凸部で、隣接するセパレータ30と接触する。シール部16とセパレータ30との接触位置(図2において一点鎖線で示す)を、図3の平面図においてシールラインSLとして示している。シール部16は、弾性を有する樹脂材料から成るため、燃料電池100内で積層方向に平行な方向に押圧力が加えられることにより、上記シールラインSLを形成する。なお、図3では、シール部16と一体化されたMEAにおける外部に露出している部分(以下では、「集電領域」と呼ぶ。)を、ハッチを付して示している。また、図3では、シール部16内部に埋め込まれているMEA12の外周線を、破線で示している。なお、図3では図示を省略するが、ガス流路形成部14,15は上記集電領域と略同一形状に形成されており、集電領域においてシール部16に嵌め込まれている。
セパレータ30は、3枚のプレートから形成され、いわゆる、三層積層セパレータとなっている。セパレータ30は、図2に示すように、ガス流路形成部14と接するカソード側プレート31と、ガス流路形成部15と接するアノード側プレート32と、カソード側プレート31およびアノード側プレート32に挟持される中間プレート33と、を備えている。これら3枚のプレートは、導電性材料、例えばステンレス鋼あるいはチタンやチタン合金といった金属によって形成される薄板状部材であり、図2に示すように、カソード側プレート31、中間プレート33、アノード側プレート32の順に重ね合わされて、例えば拡散接合により接合されている。これら3種のプレートは、いずれも凹凸のない平坦な表面を有すると共に、各々、所定の位置に所定形状の穴部を有している。
図4は、カソード側プレート31の形状を示す説明図である。図5は、アノード側プレート32の形状を示す説明図である。図6は、中間プレート33の形状を示す説明図である。
カソード側プレート31(図4)およびアノード側プレート32(図5)は、同様の位置に、6つの穴部を備えている。これらの6つの穴部は、スタック110を形成するために各々の薄板状部材が積層された際に互いに重なり合って、燃料電池内部において積層方向に平行に流体を導くマニホールドを形成する。穴部40は、燃料電池に対して供給された酸化ガスを各単セル10に分配する酸化ガス供給マニホールドを形成し(図中、O inと表わす)、穴部41は、各単セル10から排出されて集合した酸化排ガスを外部へと導く酸化ガス排出マニホールドを形成する(図中、O outと表わす)。また、穴部42は、燃料電池に対して供給された燃料ガスを各単セル10に分配する燃料ガス供給マニホールドを形成し(図中、H inと表わす)、穴部43は、各単セル10から排出されて集合した燃料排ガスを外部へと導く燃料ガス排出マニホールドを形成する(図中、H outと表わす)。さらに、穴部44は、燃料電池100に供給された冷却媒体を各セパレータ30内に分配する冷媒供給マニホールドを形成し(図中、水 inと表わす)、穴部45は、各セパレータ30から排出されて集合した冷媒を外部へと導く冷媒排出マニホールドを形成する(図中、水 outと表わす)。なお、中間プレート33(図6)は、上記した穴部のうち、穴部40,41,42,43を備えており、また、後述する複数の冷媒孔58が、穴部44,45に対応する位置に重なるように設けられている。
また、カソード側プレート31は、図4に示すように、穴部40の近傍に穴部40に平行に配列する複数の穴部である連通孔50を、穴部41の近傍に穴部41に平行に配列する複数の連通孔51を、それぞれ備えている。アノード側プレート32は、図6に示すように、穴部42の近傍に、穴部42に平行に配列する複数の穴部である連通孔52を、穴部43の近傍に穴部43に平行に配列する複数の連通孔53を、それぞれ備えている。中間プレート33においては、図6に示すように、穴部40の形状が他のプレートとは異なっており、突出する複数の突出部(以下では、連通部54と呼ぶ。)を備える形状となっている。この連通部54は、中間プレート33とカソード側プレート31とが積層されたときに連通孔50と重なり合って、酸化ガス供給マニホールドと連通孔50とが連通するように、各連通孔50に対応して設けられている。中間プレート33では、他の穴部41,42,43においても同様に、連通孔51,52,53に対応して、複数の連通部55,56,57がそれぞれ設けられている。
図2に示すように、燃料電池100(モジュール200)の内部において、各プレートの穴部40が形成する酸化ガス供給マニホールドを流れる酸化ガスは、中間プレート33の連通部54が形成する空間およびカソード側プレート31の連通孔50を介して、ガス流路形成部14内に形成される酸化ガス流路へと流入し、面方向に流れると共に、積層方向へとさらに拡散する。積層方向に拡散した酸化ガスは、ガス流路形成部14から第1ガス拡散層26を介してカソード22に至り、電気化学反応に供される。このように電気化学反応に寄与しつつ酸化ガス流路を通過した酸化ガスは、ガス流路形成部14から、カソード側プレート31の連通孔51および中間プレート33の連通部55が形成する空間を介して、穴部41が形成する酸化ガス排出マニホールドへと排出される。同様に、燃料電池の内部において、穴部42が形成する燃料ガス供給マニホールドを流れる燃料ガスは、中間プレート33の連通部56が形成する空間およびアノード側プレート32の連通孔52を介して、ガス流路形成部15内に形成される燃料ガス流路へと流入し、面方向に流れると共に、積層方向へとさらに拡散する。積層方向に拡散した燃料ガスは、ガス流路形成部15から第1ガス拡散層28を介してアノード24に至り、電気化学反応に供される。このように電気化学反応に寄与しつつ燃料ガス流路を通過した燃料ガスは、ガス流路形成部15から、アノード側プレート32の連通孔53および中間プレート33の連通部57が形成する空間を介して、穴部43が形成する燃料ガス排出マニホールドへと排出される。
なお、連通孔51,53は、請求項における反応ガス排出連通孔に相当し、連通孔50,52は、請求項における反応ガス供給連通孔に相当する。
また、カソード22(図2)では、電気化学反応により水が生成される。この生成水は、ガス流路形成部14の毛管吸引力により酸化ガス流路(ガス流路形成部14)中に拡散し、通過する酸化ガスに押し出されて連通孔51を介して酸化ガス排出マニホールドを形成する穴部41へ排出される。さらに、アノード24(図2)においても、カソード22側から電解質膜20を透過してくるなどして水が生じ、同様に、燃料ガスとともに、連通孔53(図5)を介して燃料ガス排出マニホールドを形成する穴部43へ排出される。
図3ないし図6においてA−A断面の位置を示しているが、このA−A断面の位置は、図2に示した断面図に相当する位置を表わしている。図2に示すように、A−A断面では、穴部40が形成する酸化ガス供給マニホールドから、中間プレート33の連通部54およびカソード側プレート31の連通孔50により形成される酸化ガス供給連通部を介して、ガス流路形成部14内へと酸化ガスが供給される様子が表わされる。さらに、A−A断面では、ガス流路形成部14から、カソード側プレート31の連通孔51および中間プレート33の連通部55を介して、穴部41が形成する酸化ガス排出マニホールドへと酸化ガスが排出される様子が表わされる。
なお、中間プレート33(図6)は、集電領域を含む領域に、互いに平行に形成された細長い複数の冷媒孔58を備えている。これらの冷媒孔58の端部は、中間プレート33を他の薄板状部材と重ね合わせたときに、穴部44,45と重なり合い、冷媒が流れるためのセル間冷媒流路をセパレータ30内で形成する。すなわち、燃料電池の内部において、穴部44が形成する冷媒供給マニホールドを流れる冷媒は、上記冷媒孔58によって形成されるセル間冷媒流路に分配され、セル間冷媒流路から排出される冷媒は、穴部45が形成する冷媒排出マニホールドに排出される。
A3.酸化ガス流路形成部の構成:
図7は、酸化ガス流路としてのガス流路形成部14の構成を示す説明図である。図7(a)は、ガス流路形成部14をカソード側プレート31側からみた概略側面図を表しており、図7(b)は、鉛直上方向(y方向)にみた概略平面図を表している。図7には、酸化ガス供給連通孔に相当する連通孔50の開口に対応する部位14S(以下、「酸化ガス供給部位」と呼ぶ。)および酸化ガス排出連通孔に相当する連通孔51の開口に対応する部位14D(以下、「酸化ガス排出部位」と呼ぶ。)が破線で示されている。
図7に示すように、ガス流路形成部14は、面方向の一端(図では鉛直方向の下端)に配列する複数の酸化ガス排出部位14Dと、複数の酸化ガス排出部位14Dに対向して面方向の他端(図では鉛直方向の上端)に配列する複数の酸化ガス供給部位14Sと、を結ぶ酸化ガス流路の全体に渡って、固体表面(気孔表面を含む)における水滴の接触角が高くなるように(例えば接触角が90度以上となるように)撥水化処理が施された撥水化処理部位14aと、接触角が低くなるように(例えば接触角が45度以下となるように)親水化処理を施した親水化処理部位14bと、を備えている。なお、以下では、撥水化処理部位14aに含まれる酸化ガス排出部位14Dおよび酸化ガス供給部位14Sと、親水化処理部位14bに含まれる酸化ガス排出部位14Dおよび酸化ガス供給部位14Sと、特に区別する場合には、撥水化処理部位14a中の酸化ガス排出部位および酸化ガス供給部位の符号の末尾に(a)を付し、親水化処理部位14b中の酸化ガス排出部位および酸化ガス供給部位の符号の末尾に(b)を付して説明することとする。
撥水化処理部位14aは、テフロン(登録商標)などの撥水化処理部材を、面方向に沿った酸化ガス流路に塗工することにより形成することができる。このとき、接触角が90度以上となるような撥水化処理をすれば、非常に高い撥水性を有することができる。また、親水化処理部位14bは、SiO、TiOなどの親水化水化処理部材を、面方向に沿った酸化ガス流路に塗工することにより形成することができる。このとき、接触角が45度以下となるように親水化処理をすれば、非常に高い親水性を有することができる。なお、撥水化処理および親水化処理後、塗工表面を粗し処理することにより、撥水化処理部位における接触角を大きくして撥水化処理効果を高め、親水化処理部位における接触角を小さくして親水化処理効果を高めることができる。
ここで、上述したように、ガス流路形成部14の毛管吸引力により酸化ガス流路(ガス流路形成部14)中に拡散した水の一部は、排出されずにガス流路形成部14内に保持される。
そして、図7に示すように、連通孔51(酸化ガス排出連通孔)に対応する酸化ガス排出部位14Dが、鉛直方向の下端にある場合には、燃料電池の運転停止後において、ガス流路形成部14内に保持されて滞留する水は鉛直下方向に移動して、ガス流路形成部14の鉛直方向の下端にある酸化ガス排出部位14D付近や連通孔51の開口付近で、低温時に凍結する可能性があり、連通孔51が閉塞する可能性がある。酸化ガス排出部位14D付近や連通孔51の開口付近が凍結して連通孔51が閉塞すると、結果として、酸化ガスのガス閉塞を招くことになる。
しかしながら、撥水化処理部位14a中の酸化ガス流路には水の滞留が抑制されるので、燃料電池の運転停止後において、撥水化処理部位14a中の酸化ガス排出部位14D(a)付近に移動する水の量を抑制することができる。これにより、撥水化処理部位14a中の酸化ガス排出部位14D(a)付近やこの酸化ガス排出部位に対応する連通孔51の開口付近における低温時の凍結を抑制することができる。この結果、燃料電池の運転停止後における低温時凍結により発生する酸化ガスのガス閉塞を抑制することができる。
また、撥水化処理部位14aは、酸化ガス排出部位14D(a)と酸化ガス供給部位14S(a)とを結ぶ酸化ガス流路の全体に渡って形成されているので、撥水化処理部位14aに含まれている酸化ガス流路の低温時凍結を抑制することができ、低温凍結時の燃料電池の起動における酸化ガス流路を確保することが可能となる。この結果、燃料電池の運転停止後における低温時凍結により発生する酸化ガスのガス閉塞を抑制することができる。
ところで、親水化処理部位14bは親水化処理が施されているので、親水化処理部位14b中への水の移動を促進する。これにより、親水化処理部位14bに含まれる酸化ガス排出部位14D(b)に対応する連通孔51を介して酸化ガス排出マニホールドへの水の排出を促進することができるとともに、撥水化処理部位14aへの水の移動の抑制効果をさらに高めることが可能である。
なお、親水化処理部位14bのカソード22側の表面については撥水化処理がなされているようにしてもよい。このようにすれば、カソード22で生成された水がガス流路形成部14へ移動した後、カソード22側へ逆戻りすることを抑制することができる。
以上のように、本実施例の燃料電池100では、ガス流路形成部14は、面方向の一端に配列する複数の酸化ガス排出部位14Dと、複数の酸化ガス排出部位14Dに対向して面方向の他端に配列する複数の酸化ガス供給部位14Sと、を結ぶ酸化ガス流路について、撥水化処理が施された撥水化処理部位14aと、親水化処理を施した親水化処理部位14bと、を備えている。このようにすれば、ガス流路形成部14中において、撥水化処理部位14a中の酸化ガス流路の水の滞留を抑制することが可能となる。これにより、酸化ガス流路に滞留した水が低温時において凍結して、酸化ガス流路が閉塞することを抑制することが可能となる。
なお、ガス流路形成部14の撥水化処理部位14aが、請求項における反応ガス流路閉塞抑制部位に相当する。
B.変形例:
なお、本発明では、上記した実施の形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様にて実施することが可能である。
B1.変形例1:
図8は、ガス流路形成部14の変形例を説明するための模式図である。
上記実施例のガス流路形成部14における撥水化処理部位14aは、図7に示すように、一部の酸化ガス排出部位14D(a)と、この一部の酸化ガス排出部位14D(a)に対向する酸化ガス供給部位14S(a)と、を結ぶ酸化ガス流路の全体に渡って撥水化処理を施すことにより形成されている場合を示しているが、これに限定されるものではない。例えば、図8に示すように、酸化ガス排出部位から酸化ガス供給部位までのガス流路のうちの、酸化ガス排出部位を少なくとも含む一部分を撥水化処理部位14aとするようにしてもよい。このようにしても、撥水化処理部位14a中の水の滞留を抑制することにより、少なくとも、撥水化処理部位14a中の酸化ガス排出部位14D(a)付近やこの酸化ガス排出部位14D(a)に対応する連通孔の開口付近における低温時の凍結を抑制することができ、結果として、燃料電池の運転停止後において、低温時凍結により発生する酸化ガス流路の閉塞を抑制することができる。
ただし、ガス流路形成部14に滞留する水は、燃料電池の運転停止後、鉛直下方向に移動し、通常、ガス流路形成部14の高さの下から1/3〜1/2の高さまでの部分に保持される場合が多い。そこで、撥水化処理部位14aを、酸化ガス排出部位から酸化ガス供給部位までのガス流路のうちの、酸化ガス排出部位を含む部分に形成する場合には、ガス流路形成部14の下端から1/3〜1/2の高さの部分とすれば効果的である。
B2.変形例2:
上記実施例や変形例1のガス流路形成部の構成は、離れた複数の酸化ガス排出部位をそれぞれ1つずつ含む複数の撥水化処理部位14aを備える場合を例に説明したが、これに限定されるものではない。例えば、隣接する複数の酸化ガス排出部位を含む一つの撥水化処理部位を備える構成としてもよい。また、隣接する複数の酸化ガス排出部位を含む撥水化処理部位を複数備える構成としてもよく、この場合、各撥水化処理部位に含まれる複数の酸化ガス排出部位の数は、それぞれ同じでもよいし異なっていてもよい。また、1つの酸化ガス排出部位を含む撥水化処理部位と複数の酸化ガス排出部位を含む撥水化処理部位とを組み合わせて備えるようにしてもよい。
B3.変形例3:
上記実施例において、ガス流路形成部14は、反応ガス流路閉塞抑制部位として、撥水化処理した撥水化処理部位14aを備え、反応ガス流路閉塞抑制部位を除く部位として、親水化処理した親水化処理部位14bを備える構成を例に説明しているが、これに限定されるものではない。例えば、ガス流路形成部14の親水化処理部位14bに対応する部位について親水化処理を行わず、撥水化処理部位14aに対応する部位のみを撥水化処理した構成としてもよい。また、ガス流路形成部14の撥水化処理部位14aに対応する部位について撥水化処理を行わず、親水化処理部位14bに対応する部位のみを親水化処理した構成としてもよい。要するに、反応ガス流路閉塞抑制部位の撥水性が、反応ガス流路閉塞抑制部位を除く部位の撥水性に比べて高くなるように、構成されていればよい。
なお、反応ガス流路閉塞抑制部位の撥水性は接触角が90度未満の状態であってもよいが、反応ガス流路閉塞抑制部位への水の移動を抑制して、滞留を抑制するためには、実施例のように接触角が90度以上の高い撥水性を有する状態とした方が望ましい。また、実施例の反応ガス流路閉塞抑制部位を除く部位の撥水性は接触角が90度未満でより小さくなる状態、すなわち、実施例のように、高い親水性(例えば、接触角が45度以下)を有する状態としたほうが望ましい。このように、反応ガス流路閉塞抑制部位は接触角が大きく高い撥水性を有することにし、反応ガス流路閉塞抑制部位を除く部位は接触角が小さく高い親水性を有するようにすれば、燃料電池の運転時における水の排出を促進して、酸化ガス流路の閉塞を抑制することができるとともに、運転停止時における一部の酸化ガス流路に滞留する水を抑制して、低温凍結によるガス流路の閉塞を抑制することができる。
B4.変形例4:
上記実施例では、酸化ガス流路をなすガス流路形成部14を例に説明しているが、燃料ガス流路をなすガス流路形成部15も、同様の構成とすることにより、ガス流路形成部15に滞留する水による燃料ガスの閉塞を抑制することができる。
実施例に係る燃料電池100の外観構成を示す説明図である。 燃料電池100を構成するモジュール200の概略構成を表す断面模式図である。 MEAと一体形成されたシール部16の概略構成を表わす平面図である。 カソード側プレート31の形状を示す説明図である。 アノード側プレート32の形状を示す説明図である。 中間プレート33の形状を示す説明図である。 ガス流路形成部14の構成を示す説明図である。 ガス流路形成部14の変形例を説明するための模式図である。
符号の説明
10...単セル
14...ガス流路形成部
14a...撥水化処理部
14b...親水化処理部
14S...酸化ガス供給部位
14D...酸化ガス排出部位
15...ガス流路形成部
16...シール部
20...電解質膜
22...カソード
24...アノード
26...ガス拡散層
28...ガス拡散層
30...セパレータ
31...カソード側プレート
32...アノード側プレート
33...中間プレート
100...燃料電池
110...スタック
200...モジュール
300...エンドプレート
310...テンションプレート
320...ボルト
330...インシュレータ
340...ターミナル

Claims (5)

  1. 燃料電池であって、
    電解質膜と前記電解質膜上に形成された電極とを備える膜電極接合体と、
    導電性多孔質部材によって形成されるとともに、前記膜電極接合体上に積層して配置され、電気化学反応に供される反応ガスを前記電極に供給するための反応ガス流路を構成するガス流路形成部と、
    前記ガス流路形成部上に積層して配置されるセパレータと、
    前記膜電極接合体と前記ガス流路形成部と前記セパレータの積層方向に沿って形成される反応ガス排出マニホールドと、
    を備え、
    前記セパレータは、
    前記反応ガス流路から前記反応ガス排出マニホールドへ前記反応ガスを排出するために、前記ガス流路形成部に当接する面に開口を有し、前記反応ガス排出マニホールドに連通するための複数の反応ガス排出連通孔を備え、
    前記ガス流路形成部は、前記複数の反応ガス排出連通孔の開口に対応する複数の反応ガス排出部位のうち、一部の反応ガス排出部位を含む反応ガス流路閉塞抑制部位を備え、
    前記反応ガス流路閉塞抑制部位は、前記ガス流路形成部の前記反応ガス流路閉塞抑制部位を除く部位よりも撥水性が高くなるように形成されている、
    燃料電池。
  2. 請求項1記載の燃料電池であって、さらに、
    前記積層方向に沿って形成される反応ガス供給マニホールドを備え、
    前記セパレータは、さらに、
    前記反応ガス供給マニホールドから前記反応ガス流路へ前記反応ガスを供給するために、前記ガス流路形成部に当接する面に開口を有し、前記反応ガス供給マニホールドに連通するための複数の反応ガス供給連通孔を備え、
    前記ガス流路形成部の前記反応ガス流路閉塞抑制部位は、前記複数の反応ガス供給連通孔の開口に対応する複数の反応ガス供給部位のうち、一部の反応ガス供給部位と、前記一部の反応ガス排出部位との間を結ぶ前記反応ガス流路の全体に渡って連続するように形成されている、
    燃料電池。
  3. 請求項1または請求項2記載の燃料電池であって、
    前記反応ガス流路閉塞抑制部位は、前記反応ガス流路閉塞抑制部位を除く部位に比べて、固体表面における水滴の接触角が大きくなるように撥水化処理がなされている、
    燃料電池。
  4. 請求項3記載の燃料電池であって、
    前記反応ガス流路閉塞抑制部位の前記接触角は90度以上である、
    燃料電池。
  5. 請求項1ないし請求項4のいずれかに記載の燃料電池であって、
    前記反応ガス流路閉塞抑制部位を除く部位は、前記反応ガス流路閉塞抑制部位に比べて固体表面における水滴の接触角が小さくなるように親水化処理がなされている、
    燃料電池。
JP2006158129A 2006-06-07 2006-06-07 燃料電池 Withdrawn JP2007328975A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158129A JP2007328975A (ja) 2006-06-07 2006-06-07 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158129A JP2007328975A (ja) 2006-06-07 2006-06-07 燃料電池

Publications (1)

Publication Number Publication Date
JP2007328975A true JP2007328975A (ja) 2007-12-20

Family

ID=38929301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158129A Withdrawn JP2007328975A (ja) 2006-06-07 2006-06-07 燃料電池

Country Status (1)

Country Link
JP (1) JP2007328975A (ja)

Similar Documents

Publication Publication Date Title
JP5240282B2 (ja) 燃料電池セル
JP5500254B2 (ja) 燃料電池
JP5962847B2 (ja) 燃料電池、燃料電池の配流装置、および燃料電池を備えた車両
JP2007250297A (ja) 燃料電池
JP5321086B2 (ja) 燃料電池
JP2006278247A (ja) 燃料電池
JP4785617B2 (ja) 直接液体燃料電池スタック
JP2008004420A (ja) 燃料電池
JPWO2010113277A1 (ja) 燃料電池
JP2007250432A (ja) 燃料電池
JP5633504B2 (ja) 燃料電池用セパレータ
JP2008277178A (ja) 燃料電池用セル
WO2008142557A2 (en) Separator and fuel cell
JP2011034768A (ja) 燃料電池
JP5733183B2 (ja) 燃料電池用セパレータ、および、燃料電池
JP2007294331A (ja) 燃料電池および燃料電池用ガスセパレータ
JP2007328975A (ja) 燃料電池
JP5092235B2 (ja) 燃料電池
JP6403099B2 (ja) 燃料電池モジュール
JP4935062B2 (ja) 燃料電池
JP2008027804A (ja) 燃料電池
JP5423699B2 (ja) ガス流路形成体および燃料電池セル
JP2007165173A (ja) 燃料電池
JP5336221B2 (ja) 燃料電池スタック
JP2009080943A (ja) 燃料電池用セパレータ及び燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322