JP2007326007A - Exhaust gas treating method and apparatus - Google Patents

Exhaust gas treating method and apparatus Download PDF

Info

Publication number
JP2007326007A
JP2007326007A JP2006157953A JP2006157953A JP2007326007A JP 2007326007 A JP2007326007 A JP 2007326007A JP 2006157953 A JP2006157953 A JP 2006157953A JP 2006157953 A JP2006157953 A JP 2006157953A JP 2007326007 A JP2007326007 A JP 2007326007A
Authority
JP
Japan
Prior art keywords
treatment tank
exhaust gas
micro
water
washing water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006157953A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yamazaki
和幸 山嵜
Shiro Imazu
史郎 今津
Kazumi Nakajo
数美 中條
Masanori Kataoka
正紀 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006157953A priority Critical patent/JP2007326007A/en
Publication of JP2007326007A publication Critical patent/JP2007326007A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treating method and an apparatus absorbing organic compounds into liquid for removing. <P>SOLUTION: Washing water containing microorganisms is circulated and sprayed into a scrubber vessel 2 for passing exhaust gas therethrough by a water spraying means 9 to dissolve the organic compounds in the exhaust gas into the washing water, and the washing water is stored in a primary treatment tank 3 integrally formed at the lower part of the scrubber vessel 2. The microorganisms are activated by introducing micro-nano bubbles to decompose the organic compounds by the microorganisms, and the washing water delivered from the primary treatment tank 3 is stored in a secondary treatment tank 4. The microorganisms are activated by introducing micro-nano bubbles to further decompose remaining organic compounds and decomposed matter thereof by the microorganism to return the washing water to the primary treatment tank 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は排ガス処理方法および排ガス処理装置に関する。   The present invention relates to an exhaust gas treatment method and an exhaust gas treatment apparatus.

従来、有機化合物、特に、揮発性有機化合物(VOC)を含有する排ガスの処理方法として、活性炭による吸着や、排ガスの燃焼による方法が実用化されている。   Conventionally, as a method for treating exhaust gas containing an organic compound, particularly volatile organic compound (VOC), adsorption by activated carbon or combustion by exhaust gas has been put into practical use.

一般的に、環境負荷の少ない排ガス処理方法として、スクラバなどにより、排ガスを水、酸およびアルカリ溶液などの液体に接触させて汚染物質を吸収させる方法があるが、揮発性有機化合物を十分に除去できるものは提供されていなかった。   In general, exhaust gas treatment methods with low environmental impact include a method of contacting exhaust gas with liquids such as water, acid and alkali solutions with a scrubber to absorb pollutants. However, volatile organic compounds are sufficiently removed. Nothing that could be done was provided.

そこで、本発明は、有機化合物を液体に吸収させて除去できる排ガス処理方法および排ガス処理装置を提供することを課題とする。   Therefore, an object of the present invention is to provide an exhaust gas treatment method and an exhaust gas treatment device that can absorb and remove an organic compound in a liquid.

前記課題を解決するために、本発明による排ガス処理方法は、1次処理槽に微生物を含む洗浄水を貯留し、排ガスに前記洗浄水を循環散布して、排ガス中の有機化合物を洗浄水に溶け込ませ、前記1次処理槽にマイクロナノバブルを導入して、前記微生物を活性化して前記洗浄水中の前記有機化合物を分解し、前記1次処理槽の洗浄水を2次処理槽に導入し、前記2次処理槽にマイクロナノバブルを導入して、前記微生物を活性化して前記洗浄水中の前記有機化合物およびその分解物をさらに分解してから前記洗浄水を前記1次処理槽に返送する方法とする。   In order to solve the above problems, an exhaust gas treatment method according to the present invention stores cleaning water containing microorganisms in a primary treatment tank, circulates and sprays the cleaning water on exhaust gas, and converts organic compounds in the exhaust gas into cleaning water. Dissolving, introducing micro-nano bubbles into the primary treatment tank, activating the microorganisms to decompose the organic compound in the wash water, introducing the wash water of the primary treatment tank into the secondary treatment tank, A method of introducing micro-nano bubbles into the secondary treatment tank, activating the microorganism, further decomposing the organic compound and its decomposition product in the wash water, and then returning the wash water to the primary treatment tank; To do.

この方法によれば、1次処理槽において、洗浄水中に溶け込んだ有機化合物を微生物によって分解し、1次処理槽で分解しきれない有機化合物およびその分解物を2次処理槽でさらに分解するので、有機化合物を確実に処理することができる。   According to this method, in the primary treatment tank, the organic compound dissolved in the washing water is decomposed by microorganisms, and the organic compound that cannot be completely decomposed in the primary treatment tank and the decomposition product thereof are further decomposed in the secondary treatment tank. The organic compound can be reliably treated.

さらに、本発明による排ガス処理装置は、排ガスが挿通され、前記排ガスに微生物を含む洗浄水を循環散布して、前記洗浄水に前記排ガス中の有機化合物を溶け込ませる散水手段を備えるスクラバ容器と、前記スクラバ容器の下側に一体に形成され、前記洗浄水を貯留し、貯留した前記洗浄水にマイクロナノバブルを導入する第1のマイクロナノバブル発生装置を備え、前記有機化合物を前記微生物によって分解させる1次処理槽と、前記1次処理槽から導出した前記洗浄水を貯留して、残存する前記有機化合物およびその分解物を前記微生物によってさらに分解してから前記1次処理槽に返送する2次処理槽とを有するものとする。   Furthermore, the exhaust gas treatment apparatus according to the present invention is a scrubber container provided with sprinkling means through which exhaust gas is inserted, circulating cleaning water containing microorganisms into the exhaust gas, and dissolving the organic compound in the exhaust gas into the cleaning water; A first micro / nano bubble generating device that is integrally formed under the scrubber container, stores the cleaning water, and introduces micro / nano bubbles into the stored cleaning water, and decomposes the organic compound by the microorganism 1 A secondary treatment tank and a secondary treatment for storing the wash water derived from the primary treatment tank and further decomposing the remaining organic compound and its decomposition product by the microorganisms and then returning them to the primary treatment tank It shall have a tank.

この構成によれば、1次処理槽において、スクラバ容器で洗浄水中に溶け込んだ有機化合物を、微生物によって分解し、1次処理槽で分解しきれない有機化合物およびその分解物を2次処理槽でさらに分解するので、有機化合物を確実に処理することができる。   According to this configuration, in the primary treatment tank, the organic compound dissolved in the washing water in the scrubber vessel is decomposed by the microorganisms, and the organic compound that cannot be completely decomposed in the primary treatment tank and the decomposition product are decomposed in the secondary treatment tank. Furthermore, since it decomposes | disassembles, an organic compound can be processed reliably.

また、本発明の排水処理装置において、前記1次処理槽は、貯留する前記洗浄水の中に、活性炭を保持してもよい。   Moreover, the waste water treatment apparatus of this invention WHEREIN: The said primary treatment tank may hold | maintain activated carbon in the said wash water to store.

この構成によれば、活性炭上に微生物が繁殖して、有機化合物を活発に分解する。   According to this structure, microorganisms propagate on activated carbon and actively decompose organic compounds.

また、本発明の排水処理装置において、前記第2処理槽は、貯留する前記洗浄水の中に、活性炭を保持してもよい。   Moreover, the waste water treatment apparatus of this invention WHEREIN: The said 2nd processing tank may hold | maintain activated carbon in the said wash water to store.

この構成によれば、活性炭上に微生物が繁殖するので、2次処理槽における有機化合物の分解を促進できる。   According to this configuration, since the microorganisms propagate on the activated carbon, the decomposition of the organic compound in the secondary treatment tank can be promoted.

また、本発明の排水処理装置において、前記2次処理槽は、貯留した前記洗浄水にマイクロナノバブルを導入する第2のマイクロナノバブル発生装置を備えてもよい。   Moreover, the waste water treatment apparatus of this invention WHEREIN: The said secondary treatment tank may be equipped with the 2nd micro nano bubble generator which introduces a micro nano bubble into the stored said wash water.

この構成によれば、2次処理槽マイクロナノバブルによって微生物を活性化させ、有機化合物の分解を促進することができる。   According to this configuration, the microorganisms can be activated by the secondary treatment tank micro-nano bubbles, and the decomposition of the organic compound can be promoted.

また、本発明の排水処理装置において、前記第2のマイクロナノバブル発生装置は、水中ポンプ型マイクルナのバブル発生器を含んでもよい。   In the wastewater treatment apparatus of the present invention, the second micro / nano bubble generating device may include a submerged pump type microluna bubble generator.

この構成によれば、マイクロナノバブル発生装置の設置が容易であり、多量のマイクロナノバブルを導入できる。   According to this configuration, it is easy to install the micro / nano bubble generator, and a large amount of micro / nano bubbles can be introduced.

また、本発明の排水処理装置において、前記1次処理槽は、貯留する前記洗浄水の全有機炭素濃度を測定する第1のTOC測定器を備え、さらに、前記第1のTOC測定器で測定した全有機炭素濃度に応じて、前記1次処理槽から前記2次処理槽に移送する前記洗浄水の流量を調節する移送流量制御手段を有してもよい。   Moreover, the waste water treatment apparatus of this invention WHEREIN: The said primary treatment tank is equipped with the 1st TOC measuring device which measures the total organic carbon density | concentration of the said wash water to store, Furthermore, it measures with the said 1st TOC measuring device. According to the total organic carbon concentration, a transfer flow rate control means for adjusting a flow rate of the washing water transferred from the primary treatment tank to the secondary treatment tank may be provided.

この構成によれば、1次処理槽の全有機炭素濃度が上昇したときだけ洗浄水の一部を2次処理槽に移送して2次処理を行うようにし、2次処理槽におけるエネルギー消費を抑えることができる。また、全有機炭素濃度が高いほど多量の洗浄水を2次処理槽に移送して、その分だけ全有機炭素濃度が低い洗浄水を補給することで排ガスに散布する洗浄水の全有機炭素濃度を一定の濃度以下に保つことができる。これにより、スクラバ容器において排ガス中の有機化合物を残さず洗浄水に溶け込ませることができる。   According to this configuration, only when the total organic carbon concentration in the primary treatment tank increases, a part of the washing water is transferred to the secondary treatment tank to perform the secondary treatment, and energy consumption in the secondary treatment tank is reduced. Can be suppressed. In addition, the higher the total organic carbon concentration, the larger the amount of cleaning water transferred to the secondary treatment tank. Can be kept below a certain concentration. Thereby, in the scrubber container, the organic compound in the exhaust gas can be dissolved in the cleaning water without leaving it.

また、本発明の排水処理装置において、前記移送流量制御手段は、前記1次処理槽から前記2次処理槽へ前記洗浄水を移送する移送流路に設けた自動調節弁の開度を調節する手段であってもよい。   In the wastewater treatment apparatus of the present invention, the transfer flow rate control means adjusts the opening of an automatic control valve provided in a transfer flow path for transferring the wash water from the primary treatment tank to the secondary treatment tank. It may be a means.

この構成によれば、1次処理槽から2次処理槽に移送する洗浄水の流量を自動で調節できる。   According to this structure, the flow volume of the washing water transferred from the primary treatment tank to the secondary treatment tank can be automatically adjusted.

また、本発明の排水処理装置において、前記2次処理槽は、貯留する前記洗浄水の全有機炭素濃度を測定する第2のTOC測定器を備え、さらに、前記第2のTOC測定器で測定した全有機炭素濃度に応じて、前記1次処理槽に返送する前記洗浄水の流量を調節する返送流量制御手段を有してもよい。   Moreover, the waste water treatment apparatus of this invention WHEREIN: The said secondary treatment tank is equipped with the 2nd TOC measuring device which measures the total organic carbon density | concentration of the said wash water to store, and also measures with the said 2nd TOC measuring device. A return flow rate control means for adjusting the flow rate of the washing water to be returned to the primary treatment tank according to the total organic carbon concentration may be provided.

この構成によれば、2次処理槽において、有機化合物を十分に分解処理できないときは、1次処理槽に返送する洗浄水の量を少なくし、1次処理槽に補給水が補給されるようにして、1次処理槽の洗浄水の全有機炭素濃度が上昇することを防止できる。   According to this configuration, when the organic compound cannot be sufficiently decomposed in the secondary treatment tank, the amount of cleaning water returned to the primary treatment tank is reduced so that the primary treatment tank is supplied with makeup water. Thus, it is possible to prevent the total organic carbon concentration of the cleaning water in the primary treatment tank from increasing.

また、本発明の排水処理装置において、前記返送流量制御手段は、前記2次処理槽から前記1次処理槽へ前記洗浄水を返送する返送流路に設けた自動調節弁の開度を調節する手段であってもよい。   Further, in the wastewater treatment apparatus of the present invention, the return flow rate control means adjusts the opening of an automatic control valve provided in a return flow path for returning the wash water from the secondary treatment tank to the primary treatment tank. It may be a means.

この構成によれば、2次処理槽から1次処理槽に返送する洗浄水の流量を自動で調節できる。   According to this configuration, it is possible to automatically adjust the flow rate of the cleaning water returned from the secondary treatment tank to the primary treatment tank.

また、本発明の排水処理装置は、発性有機化合物を洗浄水に溶け込ませて分解することができるので、前記排ガス中に含まれる有機化合物が、揮発性有機化合物を含んでいてもよい。   Moreover, since the wastewater treatment apparatus of the present invention can be decomposed by dissolving the organic organic compound in the washing water, the organic compound contained in the exhaust gas may contain a volatile organic compound.

本発明によれば、排ガス中の有機化合物を溶け込んだ洗浄水に、1次処理槽および2次処理槽において、2段階の微生物処理を施すので、有機化合物の分解が確実であり、連続して排ガス中の有機化合物を除去することができる。   According to the present invention, the washing water in which the organic compound in the exhaust gas is dissolved is subjected to the two-stage microbial treatment in the primary treatment tank and the secondary treatment tank. Organic compounds in the exhaust gas can be removed.

これより、本発明の実施形態について、図面を参照しながら説明する。
図1に、本発明の第1実施形態の排ガス処理装置1を示す。排ガス処理装置1は、スクラバ容器2と、スクラバ容器2の下側に一体に形成された1次処理槽3と、2次処理槽4とからなる。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 shows an exhaust gas treatment apparatus 1 according to a first embodiment of the present invention. The exhaust gas treatment apparatus 1 includes a scrubber container 2, a primary treatment tank 3 formed integrally with the lower side of the scrubber container 2, and a secondary treatment tank 4.

スクラバ容器2は、下端に、多孔板からなる底板5が設けられ、上端に排気管6が設けられた容器である。スクラバ容器2の内部には、底板5の上にプラスチック充填剤7によって充填層8が形成されており、上部に充填層8に上から好気性の微生物を含む洗浄水を散布するスプレーノズルからなる散水手段9が設けられている。   The scrubber container 2 is a container in which a bottom plate 5 made of a porous plate is provided at the lower end and an exhaust pipe 6 is provided at the upper end. Inside the scrubber container 2, a filling layer 8 is formed on the bottom plate 5 with a plastic filler 7, and a spray nozzle for spraying cleaning water containing aerobic microorganisms from above onto the filling layer 8. Watering means 9 is provided.

スクラバ容器2と1次処理槽3との境界部には、排ガス流路10が接続され、排気ファン11によって排ガス処理装置1内に排ガスを送り込んでスクラバ容器3を挿通させるようになっている。   An exhaust gas flow path 10 is connected to the boundary between the scrubber container 2 and the primary treatment tank 3, and exhaust gas is sent into the exhaust gas treatment apparatus 1 by an exhaust fan 11 so that the scrubber container 3 is inserted.

プラスチック充填剤7は、気体を液体洗浄する装置の充填剤用に市販されているものであり、連続する空隙を形成するので、充填層8は流体を大きな圧力損失なく通過させる。このため、排ガス流路10から送り込まれた排ガスは、底板5および充填層8を通過し、排気管6から外部に放出される。   The plastic filler 7 is commercially available as a filler for an apparatus for liquid-cleaning gas, and forms a continuous void, so that the packed bed 8 allows fluid to pass through without significant pressure loss. For this reason, the exhaust gas sent from the exhaust gas flow path 10 passes through the bottom plate 5 and the packed bed 8 and is discharged to the outside from the exhaust pipe 6.

1次処理槽3は、散水手段9から散水される洗浄水を回収して貯留し、貯留する洗浄水を吸い出して循環流路12を介して散水手段9に送出する散水ポンプ13と、貯留する洗浄水にマイクロナノバブルを導入する第1のマイクロナノバブル発生装置14とを有する。また、1次処理槽3は、貯留する洗浄水に水没するように、多孔板15を底とし、側部を網状ネット16で囲うことにより洗浄水が出入り自由な収納室17が形成されており、収納室17の内部に活性炭18が収納されている。さらに、1次処理槽3は、貯留する洗浄水の全有機体炭素濃度を測定する第1のTOC測定器19を有している。   The primary treatment tank 3 collects and stores the wash water sprayed from the water spraying means 9, and stores the water stored in the water spray pump 13 that sucks out the stored wash water and sends it to the water spraying means 9 through the circulation channel 12. And a first micro / nano bubble generator 14 for introducing micro / nano bubbles into the washing water. The primary treatment tank 3 has a perforated plate 15 as a bottom and a side wall surrounded by a net-like net 16 so that the cleaning water can freely enter and leave the storage chamber 17 so as to be submerged in the stored cleaning water. The activated carbon 18 is stored inside the storage chamber 17. Further, the primary treatment tank 3 has a first TOC measuring device 19 that measures the total organic carbon concentration of the stored wash water.

マイクロナノバブル発生装置14は、1次処理槽3内の洗浄水を循環ポンプ20によって吸い出して、マイクロバブル発生器21に注入し、洗浄水の流速により調節弁22を介して自給した空気を剪断してマイクロナノバブル(微細な気泡)を生成し、洗浄水と共に吐出する自給式のマイクロナノバブル発生装置である。   The micro / nano bubble generator 14 sucks out the cleaning water in the primary treatment tank 3 by the circulation pump 20 and injects it into the micro bubble generator 21, and shears the self-supplied air through the control valve 22 by the flow rate of the cleaning water. This is a self-contained micro-nano bubble generator that generates micro-nano bubbles (fine bubbles) and discharges them together with cleaning water.

また、排ガス処理装置1は、循環流路12から分岐して、洗浄水の一部を2次処理槽4に移送する移送流路23と、2次処理槽4から1次処理槽3に洗浄水を返送する返送流路24とを有している。循環流路12および移送流路23には、それぞれ、自動調節弁25,26が設けられ、散水手段9に送られる洗浄水の流量と2次処理槽4に送られる洗浄水の流量とをそれぞれ独立して調節できるようになっている。また、返送流路24にも、自動調節弁27が設けられ、2次処理槽4から1次処理槽3に返送される洗浄水の流量を調節できるようになっている。   Further, the exhaust gas treatment apparatus 1 is branched from the circulation flow path 12 and washed from the secondary treatment tank 4 to the primary treatment tank 3 by a transfer flow path 23 for transferring a part of the washing water to the secondary treatment tank 4. And a return flow path 24 for returning water. The circulation flow path 12 and the transfer flow path 23 are respectively provided with automatic control valves 25 and 26, and the flow rate of the wash water sent to the sprinkling means 9 and the flow rate of the wash water sent to the secondary treatment tank 4 are respectively set. It can be adjusted independently. The return flow path 24 is also provided with an automatic adjustment valve 27 so that the flow rate of the cleaning water returned from the secondary treatment tank 4 to the primary treatment tank 3 can be adjusted.

2次処理槽4は、1次処理槽3から移送された洗浄水を貯留し、貯留する洗浄水に水没するように、多孔板28を底とし、側部を網状ネット29で囲うことにより洗浄水が出入り自由な収納室30が形成されており、収納室30の内部に活性炭31が収納されている。さらに、2次処理槽4は、第2のマイクロナノバブル発生装置32を有し、貯留する洗浄水の全有機体炭素濃度を測定する第2のTOC測定器33を有している。また、2次処理槽4は、洗浄水がオーバーフローする配水管34を備えている。   The secondary treatment tank 4 stores the wash water transferred from the primary treatment tank 3, and is washed by surrounding the side portion with a net-like net 29 so as to be submerged in the stored wash water. A storage chamber 30 in which water can freely enter and exit is formed, and activated carbon 31 is stored inside the storage chamber 30. Further, the secondary treatment tank 4 has a second micro / nano bubble generator 32 and has a second TOC measuring device 33 for measuring the total organic carbon concentration of the stored wash water. Further, the secondary treatment tank 4 includes a water distribution pipe 34 through which the cleaning water overflows.

マイクロナノバブル発生装置33は、強制吸気式の装置であって、2次処理槽4に貯留した洗浄水中に支持された水中ポンプ型マイクロナノバブル発生器35にブロワ36で空気を供給してマイクロナノバブルを発生させるものである。水中ポンプ型マイクロナノバブル発生器35は、設置が容易であり、1台でも多くのマイクロナノバブルを発生させることができる。   The micro / nano bubble generation device 33 is a forced air intake type device, and supplies air to the submersible pump type micro / nano bubble generator 35 supported in the washing water stored in the secondary treatment tank 4 by a blower 36 to generate micro / nano bubbles. Is generated. The submersible pump type micro / nano bubble generator 35 is easy to install and can generate a large number of micro / nano bubbles.

また、排ガス処理装置1は、第1のTOC測定器19で測定した1次処理槽3の洗浄水の全有機体炭素濃度に応じて、自動調節弁25および26の開度を自動調節する移送流量制御手段37と、第2のTOC測定器33で測定した2次処理槽4の洗浄水の全有機体炭素濃度に応じて、自動調節弁27の開度を自動調節する返送流量制御手段38とを有している。   Further, the exhaust gas treatment apparatus 1 automatically transfers the opening degree of the automatic control valves 25 and 26 in accordance with the total organic carbon concentration of the cleaning water in the primary treatment tank 3 measured by the first TOC measuring device 19. The flow rate control means 37 and the return flow rate control means 38 for automatically adjusting the opening degree of the automatic control valve 27 according to the total organic carbon concentration of the wash water in the secondary treatment tank 4 measured by the second TOC measuring device 33. And have.

続いて、以上の構成からなる排ガス処理装置1の作用を説明する。
有機化合物、特に、イソプロピルアルコール、アセトン、酢酸ブチルなどの揮発性有機化合物を含有する排ガスは、排ガス流路10から排ガス処理装置1内に導入され、充填層8のプラスチック充填物7の隙間を縫って上昇する。このとき、散水手段9から散布され、プラスチック充填物7の隙間を縫って下降する洗浄水と接触し、排ガス中に含まれる有機化合物が洗浄水に溶け込む。
Then, the effect | action of the waste gas processing apparatus 1 which consists of the above structure is demonstrated.
Exhaust gas containing organic compounds, particularly volatile organic compounds such as isopropyl alcohol, acetone, butyl acetate, etc., is introduced into the exhaust gas treatment device 1 from the exhaust gas flow path 10 and stitches the gap between the plastic fillers 7 in the packed bed 8. Rise. At this time, the organic compound contained in the exhaust gas is dissolved in the cleaning water by being sprayed from the water spray means 9 and coming into contact with the cleaning water that is sewn through the gap of the plastic filler 7 and descends.

有機化合物が溶け込んだ洗浄水は、1次処理槽3に回収されて貯留される。1次処理槽3に貯留した洗浄水の中には、収納室17に活性炭18が保持されており、充填層8において溶け込んだ有機化合物が活性炭18に吸着される。また、活性炭18には、微生物が繁殖し、吸着されている有機化合物を分解する。さらに、1次処理槽3に貯留された洗浄水には、マイクロナノバブル発生装置14によってマイクロナノバブルが導入され、微生物が活性化して活性炭18に吸着された有機化合物および洗浄水に溶損している有機化合物を分解する。活性炭18は、吸着した有機化合物が分解されると、再び有機化合物を吸着できる状態に再生される。   The washing water in which the organic compound is dissolved is recovered and stored in the primary treatment tank 3. In the cleaning water stored in the primary treatment tank 3, activated carbon 18 is held in the storage chamber 17, and the organic compound dissolved in the packed bed 8 is adsorbed by the activated carbon 18. Moreover, microorganisms propagate on the activated carbon 18 and decompose the adsorbed organic compounds. Furthermore, micro-nano bubbles are introduced into the cleaning water stored in the primary treatment tank 3 by the micro-nano bubble generator 14, and the microorganisms are activated and the organic compounds adsorbed on the activated carbon 18 and the organics dissolved in the cleaning water are damaged. Decomposes the compound. When the adsorbed organic compound is decomposed, the activated carbon 18 is regenerated so that the organic compound can be adsorbed again.

洗浄水中に溶け込んでいる有機化合物の量は、TOC測定器19で測定した全体有機炭素濃度の値として確認することができる。1次処理槽3の洗浄水の全体有機炭素濃度が低い場合、移送流量制御手段37は、自動調節弁26を全閉し、散水ポンプ13から送出された洗浄水を移送流路23に導出させず、循環流路12を介した散水手段9での循環散布のみ行う。また、位相流量制御手段37は、自動調節弁26の開度にかかわらず、散水手段9から散水される洗浄水の量が一定となるように、自動調節弁25の開度をコントロールする。   The amount of the organic compound dissolved in the washing water can be confirmed as the value of the total organic carbon concentration measured by the TOC measuring device 19. When the total organic carbon concentration of the wash water in the primary treatment tank 3 is low, the transfer flow rate control means 37 fully closes the automatic control valve 26 and allows the wash water sent from the water spray pump 13 to be led to the transfer flow path 23. Instead, only circulation spraying by the water spray means 9 through the circulation channel 12 is performed. Further, the phase flow rate control means 37 controls the opening degree of the automatic adjustment valve 25 so that the amount of cleaning water sprayed from the watering means 9 is constant regardless of the opening degree of the automatic adjustment valve 26.

排ガス中の有機化合物の濃度が低い場合は、1次処理槽3において、排ガスから洗浄水に溶け込んだ有機化合物を逐次分解して、全体有機炭素濃度を一定の値以下に維持することができるが、排ガス中の有機化合物の濃度が高くなると有機化合物の分解が追いつかず、1次処理槽3の洗浄水の全有機体炭素濃度が上昇する。   When the concentration of the organic compound in the exhaust gas is low, the organic compound dissolved in the cleaning water from the exhaust gas can be sequentially decomposed in the primary treatment tank 3 to maintain the total organic carbon concentration below a certain value. If the concentration of the organic compound in the exhaust gas increases, the decomposition of the organic compound cannot catch up, and the total organic carbon concentration of the cleaning water in the primary treatment tank 3 increases.

例えば、洗浄水に、多量のイソプロピルアルコールが連続的に溶け込む場合、イソプロピルアルコールはある程度分解されるが、イソプロピルアルコールを1次分解することによって生成される分解物であるアセトンの濃度が著しく上昇し、全体有機炭素濃度を押し上げる。   For example, when a large amount of isopropyl alcohol is continuously dissolved in the washing water, isopropyl alcohol is decomposed to some extent, but the concentration of acetone, which is a decomposition product generated by the primary decomposition of isopropyl alcohol, significantly increases, Increase overall organic carbon concentration.

1次処理槽3の洗浄水の全体有機炭素濃度が上昇すると、移送流量制御装置37は、自動調節弁26を開き、1次処理槽3内の洗浄水の一部を2次処理槽4に送出する。2次処理槽4に1次処理槽3から洗浄水が導入されると、同量の洗浄水が返送流路を介して1次処理槽3に導出される。2次処理槽4から返送される洗浄水は、全有機体炭素濃度が低いので、1次処理槽3の洗浄水を希釈し、洗浄水がスクラバ容器2で排ガスから有機化合物を取り込むことができる全有機体炭素濃度に維持する。   When the total organic carbon concentration of the cleaning water in the primary treatment tank 3 rises, the transfer flow rate control device 37 opens the automatic control valve 26 and part of the cleaning water in the primary treatment tank 3 is transferred to the secondary treatment tank 4. Send it out. When cleaning water is introduced into the secondary processing tank 4 from the primary processing tank 3, the same amount of cleaning water is led out to the primary processing tank 3 through the return channel. Since the washing water returned from the secondary treatment tank 4 has a low total organic carbon concentration, the washing water in the primary treatment tank 3 can be diluted, and the washing water can take in organic compounds from the exhaust gas in the scrubber vessel 2. Maintain total organic carbon concentration.

2次処理槽4は、有機化合物を活性炭31で吸着すると共に、マイクロナノバブル発生装置32が導入したマイクロナノバブルによって活性化した微生物によって有機化合物を分解する。2次処理槽4では、1次処理槽に比して洗浄水の滞留時間が長いので、貯留する洗浄水の全有機体炭素濃度を1次処理槽3の洗浄水に比べて十分に低い値に維持することができる。   The secondary treatment tank 4 adsorbs the organic compound with the activated carbon 31 and decomposes the organic compound with microorganisms activated by the micro / nano bubbles introduced by the micro / nano bubble generator 32. In the secondary treatment tank 4, since the residence time of the washing water is longer than that in the primary treatment tank, the total organic carbon concentration of the stored washing water is sufficiently lower than the washing water in the primary treatment tank 3. Can be maintained.

2次処理槽の洗浄水の全有機体炭素濃度が十分に低いときはマイクロナノバブル発生装置32の運転を停止するようにすれば、1次処理槽3の洗浄水の全有機体炭素濃度が低い場合、1次処理槽3から2次処理槽4に洗浄水が移送されないので、マイクロナノバブル発生装置32の運転が休止されることになり、エネルギー消費を抑えることができる。   If the total organic carbon concentration of the washing water in the secondary treatment tank is sufficiently low, the total organic carbon concentration of the washing water in the primary treatment tank 3 is low if the operation of the micro / nano bubble generator 32 is stopped. In this case, since cleaning water is not transferred from the primary treatment tank 3 to the secondary treatment tank 4, the operation of the micro / nano bubble generating device 32 is suspended, and energy consumption can be suppressed.

逆に、排ガスの有機化合物の濃度が極めて高い場合、1次処理槽3の洗浄水の全有機体炭素濃度が高くなり、2次処理槽4に移送される有機化合物の量も多くなる。返送流量制御手段38は、2次処理槽4において全有機体炭素濃度が高くなると、自動調節弁27の開度を絞り、返送流路24を介して1次処理槽3に返送される洗浄水の流量を少なくする。これによって、2次処理槽4では、配水管34から洗浄水がオーバーフローし、1次処理槽3では、不図示の給水ラインから洗浄水の水量を一定に保つように補給水が補給され、結果として貯留する洗浄水が希釈される。   On the contrary, when the concentration of the organic compound in the exhaust gas is extremely high, the total organic carbon concentration of the cleaning water in the primary treatment tank 3 becomes high, and the amount of the organic compound transferred to the secondary treatment tank 4 also increases. When the total organic carbon concentration in the secondary treatment tank 4 increases, the return flow rate control means 38 throttles the opening of the automatic control valve 27 and returns the cleaning water returned to the primary treatment tank 3 via the return flow path 24. Reduce the flow rate. As a result, in the secondary treatment tank 4, the wash water overflows from the water distribution pipe 34, and in the primary treatment tank 3, makeup water is replenished from the water supply line (not shown) so as to keep the amount of wash water constant. The wash water stored as is diluted.

こうして、1次処理槽3に貯留され、充填層8に循環散布される洗浄水の全有機体炭素濃度が、所定の濃度以下に保たれるので、スクラバ容器2内で排ガス中の有機化合物を残さず、連続的に洗浄水に溶け込ませて除去することができる。   In this way, the total organic carbon concentration of the wash water stored in the primary treatment tank 3 and circulated and sprayed to the packed bed 8 is kept below a predetermined concentration, so that the organic compounds in the exhaust gas are removed from the scrubber vessel 2. It can be removed by continuously dissolving in washing water without leaving.

さらに、図2に、本発明の第2実施形態の排ガス処理装置1を示す。以降の説明において、先に説明した構成要素には同じ符号を付し、説明を省略する。本実施形態の排ガス処理装置1では、充填層8の上に、多孔板39を設置し、多孔板39の上に活性炭40を配置したものである。   Furthermore, FIG. 2 shows an exhaust gas treatment apparatus 1 of a second embodiment of the present invention. In the following description, the same reference numerals are given to the components described above, and description thereof is omitted. In the exhaust gas treatment apparatus 1 of this embodiment, a porous plate 39 is installed on the packed bed 8, and the activated carbon 40 is arranged on the porous plate 39.

活性炭40の表面には、洗浄水中の微生物が付着して繁殖する。活性炭40上に繁殖した微生物は、酸素が豊富に供給されて活性化しており、洗浄水と共に1次処理槽3に回収されて、収容部17に保持された活性炭18に繁殖した微生物の活動をさらに増進する作用がある。また、排ガス中の揮発性有機化合物をその場で分解することもできる。   Microorganisms in the washing water adhere to the surface of the activated carbon 40 and propagate. The microorganisms propagated on the activated carbon 40 are activated by being supplied with abundant oxygen, and are collected in the primary treatment tank 3 together with the washing water, and the activity of the microorganisms propagated on the activated carbon 18 held in the storage unit 17 is observed. There is an action to further improve. It is also possible to decompose volatile organic compounds in the exhaust gas in situ.

図3に、本発明の第3実施形態の排ガス処理装置1を示す。本実施形態の排ガス処理装置1では、2次処理槽4のマイクロナノバブル発生装置32のブロワ36の吸込側に、オゾン発生装置41を接続したものである。   FIG. 3 shows an exhaust gas treatment apparatus 1 according to a third embodiment of the present invention. In the exhaust gas treatment apparatus 1 of the present embodiment, an ozone generator 41 is connected to the suction side of the blower 36 of the micro / nano bubble generator 32 of the secondary treatment tank 4.

これによって、マイクロナノバブル発生装置32は、オゾンを含むオゾンマイクロナノバブルを生成する。オゾンは高い酸化力を有するので、オゾンマイクロナノバブルは、微生物を活性化して有機化合物の分解に利用されるだけでなく、直接、接触した有機化合物を酸化分解する。   Thereby, the micro / nano bubble generating device 32 generates ozone micro / nano bubbles including ozone. Since ozone has a high oxidizing power, the ozone micro-nano bubbles not only activate microorganisms and are used for the decomposition of organic compounds, but also directly oxidize and decompose the contacted organic compounds.

図4に示す本発明の第4実施形態のように、第3実施形態の排ガス処理装置1のスクラバ容器3に、第2実施形態と同様に、活性炭40を配置して1次処理槽3における有機化合物分解を促進することもできる。   As in the fourth embodiment of the present invention shown in FIG. 4, activated carbon 40 is arranged in the primary treatment tank 3 in the scrubber container 3 of the exhaust gas treatment device 1 of the third embodiment, as in the second embodiment. The decomposition of organic compounds can also be promoted.

図5に、本発明の第5実施形態の排ガス処理装置1を示す。本実施形態の排ガス処理装置1は、第1実施形態の排ガス処理装置における強制吸気式のマイクロナノバブル発生装置32に替えて、2次処理槽4に自給式のマイクロナノバブル発生装置42を設けたものである。このマイクロナノバブル発生装置42は、1次処理槽4内の洗浄水を循環ポンプ43によって吸い出して、マイクロバブル発生器44に注入し、洗浄水の流速によって調節弁45を介して自給した空気を剪断することでマイクロナノバブルを生成し、洗浄水と共に吐出する。本実施形態においても、マイクロナノバブルで2次処理槽4内の微生物を活性化して、洗浄水中の有機化合物を分解することができる。   FIG. 5 shows an exhaust gas treatment apparatus 1 according to a fifth embodiment of the present invention. The exhaust gas treatment apparatus 1 of the present embodiment is provided with a self-supplied micro / nano bubble generation apparatus 42 in the secondary treatment tank 4 in place of the forced intake type micro / nano bubble generation apparatus 32 in the exhaust gas treatment apparatus of the first embodiment. It is. The micro / nano bubble generating device 42 sucks out the cleaning water in the primary treatment tank 4 by the circulation pump 43, injects it into the micro bubble generator 44, and shears the self-supplied air through the control valve 45 by the flow rate of the cleaning water. By doing so, micro-nano bubbles are generated and discharged together with cleaning water. Also in this embodiment, the microorganisms in the secondary treatment tank 4 can be activated with micro / nano bubbles to decompose organic compounds in the wash water.

また、図6に示す本発明の第6実施形態のように、第5実施形態のマイクロナノバブル発生装置42の吸気管にオゾン発生装置41を接続して、有機化合物を酸化分解できるようにしてもよい。   Further, as in the sixth embodiment of the present invention shown in FIG. 6, an ozone generator 41 is connected to the intake pipe of the micro / nano bubble generator 42 of the fifth embodiment so that the organic compound can be oxidatively decomposed. Good.

図1に示す本発明の第1実施形態の排ガス処理装置1を用いて、実際の半導体工場の排ガスを処理する実証試験を行った。実証試験に用いた排ガス処理装置1は、スクラバ容器2の容量が2mであり、1次処理槽3および2次処理槽4の容量が共に1mであった。 Using the exhaust gas treatment apparatus 1 according to the first embodiment of the present invention shown in FIG. 1, a verification test for treating exhaust gas from an actual semiconductor factory was conducted. Exhaust gas treatment apparatus 1 using the Test, the capacity of the scrubber vessel 2 is 2m 3, the capacity of the primary treatment tank 3 and the secondary treatment tank 4 was 1 m 3 together.

1次処理槽3の収納室17および2次処理槽4の収納室30に、それぞれ、新しい活性炭18および活性炭31を収容してから1ヶ月間の慣らし運転を行い、微生物が安定してから、半導体工場のイソプロピルアルコールを含有する排ガスを連続して処理する運転を行った。   After accommodating the new activated carbon 18 and the activated carbon 31 in the storage chamber 17 of the primary treatment tank 3 and the storage chamber 30 of the secondary treatment tank 4, respectively, An operation of continuously treating exhaust gas containing isopropyl alcohol at a semiconductor factory was performed.

排ガスの処理を開始してから7日後、イソプロピルアルコールの除去率を測定した結果94%という満足な結果が得られた。   As a result of measuring the removal rate of isopropyl alcohol after 7 days from the start of the treatment of exhaust gas, a satisfactory result of 94% was obtained.

さらに、洗浄水を採取して、除去したイソプロピルアルコールを1次分解することで生じるアセトンの濃度を測定した結果、除去したイソプロピルアルコールから換算される量の18%の濃度であった。つまり、イソプロピルアルコールを1次分解して生じたアセトンは、さらに、逐次分解されて無害化されていることが確認できた。   Furthermore, as a result of measuring the concentration of acetone generated by collecting washing water and firstly decomposing the removed isopropyl alcohol, the concentration was 18% of the amount converted from the removed isopropyl alcohol. That is, it was confirmed that acetone produced by the primary decomposition of isopropyl alcohol was further decomposed and rendered harmless.

本発明の第1実施形態の排水処理装置の概略図。1 is a schematic view of a wastewater treatment apparatus according to a first embodiment of the present invention. 本発明の第2実施形態の排水処理装置の概略図。Schematic of the waste water treatment apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の排水処理装置の概略図。Schematic of the waste water treatment apparatus of 3rd Embodiment of this invention. 本発明の第4実施形態の排水処理装置の概略図。Schematic of the waste water treatment apparatus of 4th Embodiment of this invention. 本発明の第5実施形態の排水処理装置の概略図。Schematic of the waste water treatment apparatus of 5th Embodiment of this invention. 本発明の第6実施形態の排水処理装置の概略図。Schematic of the waste water treatment apparatus of 6th Embodiment of this invention.

符号の説明Explanation of symbols

1 排ガス処理装置
2 スクラバ容器
3 1次処理槽
4 2次処理槽
9 散水手段
12 循環流路
13 散水ポンプ
14 マイクロナノバブル発生装置
18 活性炭
19 TOC測定器
23 移送流路
24 返送流路
25 自動調節弁
26 自動調節弁
27 自動調節弁
28 活性炭
32 マイクロナノバブル発生装置
33 TOC測定器
35 ポンプ型マイクロナノバブル発生器
37 移送流量制御手段
38 返送流量制御手段
42 マイクロナノバブル発生装置
DESCRIPTION OF SYMBOLS 1 Exhaust gas processing apparatus 2 Scrubber container 3 Primary processing tank 4 Secondary processing tank 9 Sprinkling means 12 Circulating flow path 13 Sprinkling pump 14 Micro nano bubble generator 18 Activated carbon 19 TOC measuring instrument 23 Transfer flow path 24 Return flow path 25 Automatic control valve 26 Automatic Control Valve 27 Automatic Control Valve 28 Activated Carbon 32 Micro / Nano Bubble Generator 33 TOC Measuring Device 35 Pump Type Micro / Nano Bubble Generator 37 Transfer Flow Control Unit 38 Return Flow Control Unit 42 Micro Nano Bubble Generator

Claims (11)

1次処理槽に微生物を含む洗浄水を貯留し、
排ガスに前記洗浄水を循環散布して、排ガス中の有機化合物を洗浄水に溶け込ませ、
前記1次処理槽にマイクロナノバブルを導入して、前記微生物を活性化して前記洗浄水中の前記有機化合物を分解し、
前記1次処理槽の洗浄水を2次処理槽に導入し、
前記2次処理槽にマイクロナノバブルを導入して、前記微生物を活性化して前記洗浄水中の前記有機化合物およびその分解物をさらに分解してから前記洗浄水を前記1次処理槽に返送することを特徴とする排ガス処理方法。
Store cleaning water containing microorganisms in the primary treatment tank,
Circulating and spraying the cleaning water to the exhaust gas, so that the organic compound in the exhaust gas is dissolved in the cleaning water,
Introducing micro-nano bubbles into the primary treatment tank, activating the microorganisms and decomposing the organic compounds in the wash water;
Introducing the washing water of the primary treatment tank into the secondary treatment tank,
Introducing micro-nano bubbles into the secondary treatment tank, activating the microorganism, further decomposing the organic compound and its decomposition product in the wash water, and then returning the wash water to the primary treatment tank. A featured exhaust gas treatment method.
排ガスが挿通され、前記排ガスに微生物を含む洗浄水を循環散布して、前記洗浄水に前記排ガス中の有機化合物を溶け込ませる散水手段を備えるスクラバ容器と、
前記スクラバ容器の下側に一体に形成され、前記洗浄水を貯留し、貯留した前記洗浄水にマイクロナノバブルを導入する第1のマイクロナノバブル発生装置を備え、前記有機化合物を前記微生物によって分解させる1次処理槽と、
前記1次処理槽から導出した前記洗浄水を貯留して、残存する前記有機化合物およびその分解物を前記微生物によってさらに分解してから前記1次処理槽に返送する2次処理槽とを有することを特徴とする排ガス処理装置。
A scrubber vessel provided with watering means through which exhaust gas is inserted, circulating cleaning water containing microorganisms into the exhaust gas, and dissolving the organic compound in the exhaust gas into the cleaning water;
A first micro / nano bubble generating device that is integrally formed under the scrubber container, stores the cleaning water, and introduces micro / nano bubbles into the stored cleaning water, and decomposes the organic compound by the microorganism 1 The next treatment tank,
A secondary treatment tank for storing the washing water derived from the primary treatment tank and further decomposing the remaining organic compound and a decomposition product thereof by the microorganism and then returning it to the primary treatment tank. An exhaust gas treatment apparatus characterized by.
前記1次処理槽は、貯留する前記洗浄水の中に、活性炭を保持することを特徴とする請求項2に記載の排ガス処理装置。   The exhaust gas treatment apparatus according to claim 2, wherein the primary treatment tank holds activated carbon in the washing water to be stored. 前記第2処理槽は、貯留する前記洗浄水の中に、活性炭を保持することを特徴とする請求項2または3に記載の排ガス処理装置。   The exhaust gas treatment apparatus according to claim 2 or 3, wherein the second treatment tank holds activated carbon in the washing water to be stored. 前記2次処理槽は、貯留した前記洗浄水にマイクロナノバブルを導入する第2のマイクロナノバブル発生装置を備えることを特徴とする請求項2から4のいずれかに記載の排ガス処理装置。   The exhaust gas treatment apparatus according to any one of claims 2 to 4, wherein the secondary treatment tank includes a second micro / nano bubble generation device that introduces micro / nano bubbles into the stored wash water. 前記第2のマイクロナノバブル発生装置は、水中ポンプ型マイクルナノバブル発生器を含むことを特徴とする請求項5に記載の排ガス処理装置。   The exhaust gas treatment apparatus according to claim 5, wherein the second micro / nano bubble generator includes a submerged pump type micro nano bubble generator. 前記1次処理槽は、貯留する前記洗浄水の全有機炭素濃度を測定する第1のTOC測定器を備え、
さらに、前記第1のTOC測定器で測定した全有機炭素濃度に応じて、前記1次処理槽から前記2次処理槽に移送する前記洗浄水の流量を調節する移送流量制御手段を有することを特徴とする請求項2から6のいずれかに記載の排ガス処理装置。
The primary treatment tank includes a first TOC measuring device that measures the total organic carbon concentration of the washing water to be stored,
Furthermore, it has a transfer flow rate control means for adjusting the flow rate of the washing water transferred from the primary treatment tank to the secondary treatment tank according to the total organic carbon concentration measured by the first TOC measuring device. The exhaust gas treatment apparatus according to any one of claims 2 to 6, characterized in that
前記移送流量制御手段は、前記1次処理槽から前記2次処理槽へ前記洗浄水を移送する移送流路に設けた自動調節弁の開度を調節する手段であることを特徴とする請求項7に記載の排ガス処理装置。   The said transfer flow rate control means is a means to adjust the opening degree of the automatic control valve provided in the transfer flow path which transfers the said wash water from the said primary treatment tank to the said secondary treatment tank. The exhaust gas treatment apparatus according to 7. 前記2次処理槽は、貯留する前記洗浄水の全有機炭素濃度を測定する第2のTOC測定器を備え、
さらに、前記第2のTOC測定器で測定した全有機炭素濃度に応じて、前記1次処理槽に返送する前記洗浄水の流量を調節する返送流量制御手段を有することを特徴とする請求項2から8のいずれかに記載の排ガス処理装置。
The secondary treatment tank includes a second TOC measuring device that measures the total organic carbon concentration of the washing water to be stored,
3. A return flow rate control means for adjusting a flow rate of the washing water to be returned to the primary treatment tank according to the total organic carbon concentration measured by the second TOC measuring device. To 8. The exhaust gas treatment apparatus according to any one of 1 to 8.
前記返送流量制御手段は、前記2次処理槽から前記1次処理槽へ前記洗浄水を返送する返送流路に設けた自動調節弁の開度を調節する手段であることを特徴とする請求項9に記載の排ガス処理装置。   The return flow rate control means is means for adjusting an opening of an automatic adjustment valve provided in a return flow path for returning the washing water from the secondary treatment tank to the primary treatment tank. The exhaust gas treatment apparatus according to 9. 前記排ガス中に含まれる有機化合物が、揮発性有機化合物を含むことを特徴とする請求項2から10のいずれかに記載の排ガス処理装置。   The exhaust gas treatment apparatus according to any one of claims 2 to 10, wherein the organic compound contained in the exhaust gas contains a volatile organic compound.
JP2006157953A 2006-06-07 2006-06-07 Exhaust gas treating method and apparatus Pending JP2007326007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157953A JP2007326007A (en) 2006-06-07 2006-06-07 Exhaust gas treating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157953A JP2007326007A (en) 2006-06-07 2006-06-07 Exhaust gas treating method and apparatus

Publications (1)

Publication Number Publication Date
JP2007326007A true JP2007326007A (en) 2007-12-20

Family

ID=38926869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157953A Pending JP2007326007A (en) 2006-06-07 2006-06-07 Exhaust gas treating method and apparatus

Country Status (1)

Country Link
JP (1) JP2007326007A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233551A (en) * 2008-03-26 2009-10-15 Sharp Corp Water treatment apparatus and method
JP2010063996A (en) * 2008-09-10 2010-03-25 Sharp Corp Treatment apparatus and treatment method
JP2010247090A (en) * 2009-04-16 2010-11-04 Sharp Corp Exhaust gas treatment apparatus
KR20150032321A (en) * 2012-09-19 2015-03-25 카와사키 주코교 카부시키 카이샤 Wet scrubber device, engine system, and ship
KR20170125795A (en) * 2015-03-13 2017-11-15 후지 덴키 가부시키가이샤 Method for treating scrubber effluent, and apparatus for treating scrubber effluent
KR20190106193A (en) * 2018-03-08 2019-09-18 현대종합금속 주식회사 Washing water treatment system of exhaust gas recirculation apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042353A (en) * 1998-07-31 2000-02-15 Japan Steel Works Ltd:The Operation of biological deodorizer and biological deodorizer
JP2001070747A (en) * 1999-09-06 2001-03-21 Ebara Corp Method and apparatus for treating nitrogen compound- containing waste gas
JP2001190929A (en) * 2000-01-12 2001-07-17 Ebara Corp Exhaust gas treatment method
JP2004081907A (en) * 2002-08-23 2004-03-18 Oki Electric Ind Co Ltd Method and apparatus for treating organic exhaust gas
JP2004237144A (en) * 2003-02-03 2004-08-26 Suzuki Sangyo Kk Waste water disposal system
JP2005013885A (en) * 2003-06-26 2005-01-20 Canon Inc Method and apparatus for deodorization processing of exhaust gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042353A (en) * 1998-07-31 2000-02-15 Japan Steel Works Ltd:The Operation of biological deodorizer and biological deodorizer
JP2001070747A (en) * 1999-09-06 2001-03-21 Ebara Corp Method and apparatus for treating nitrogen compound- containing waste gas
JP2001190929A (en) * 2000-01-12 2001-07-17 Ebara Corp Exhaust gas treatment method
JP2004081907A (en) * 2002-08-23 2004-03-18 Oki Electric Ind Co Ltd Method and apparatus for treating organic exhaust gas
JP2004237144A (en) * 2003-02-03 2004-08-26 Suzuki Sangyo Kk Waste water disposal system
JP2005013885A (en) * 2003-06-26 2005-01-20 Canon Inc Method and apparatus for deodorization processing of exhaust gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233551A (en) * 2008-03-26 2009-10-15 Sharp Corp Water treatment apparatus and method
JP2010063996A (en) * 2008-09-10 2010-03-25 Sharp Corp Treatment apparatus and treatment method
JP2010247090A (en) * 2009-04-16 2010-11-04 Sharp Corp Exhaust gas treatment apparatus
KR20150032321A (en) * 2012-09-19 2015-03-25 카와사키 주코교 카부시키 카이샤 Wet scrubber device, engine system, and ship
KR101675445B1 (en) 2012-09-19 2016-11-11 카와사키 주코교 카부시키 카이샤 Wet scrubber device, engine system, and ship
KR20170125795A (en) * 2015-03-13 2017-11-15 후지 덴키 가부시키가이샤 Method for treating scrubber effluent, and apparatus for treating scrubber effluent
KR102417866B1 (en) * 2015-03-13 2022-07-05 후지 덴키 가부시키가이샤 Method for treating scrubber effluent, and apparatus for treating scrubber effluent
KR20190106193A (en) * 2018-03-08 2019-09-18 현대종합금속 주식회사 Washing water treatment system of exhaust gas recirculation apparatus
KR102125504B1 (en) * 2018-03-08 2020-06-23 현대종합금속 주식회사 Washing water treatment system of exhaust gas recirculation apparatus

Similar Documents

Publication Publication Date Title
KR100820845B1 (en) Deodorization tower
JP5330436B2 (en) Biogas biodesulfurization apparatus and cleaning method thereof
KR101001155B1 (en) Multi-stage chemical cleaning apparatus for remove high concentration of complex odor
US8057676B2 (en) Drainage water-treating method
KR101024296B1 (en) Biological deodorization system for removal of highly concentrated odors and volatile organic compounds
JP5106982B2 (en) Odor treatment method, malodor treatment system and breeding system
JP2007326007A (en) Exhaust gas treating method and apparatus
JP2007209922A (en) Exhaust gas treatment method and apparatus
US20090250396A1 (en) Drainage water-treating method and drainage water-treating apparatus
JP2007130612A (en) Flue gas treatment method and flue gas treatment apparatus
KR20190016426A (en) Deodorizing device cleaning water purification system of closed type compost fermenter
JP2007319832A (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2009136748A (en) Deodorization apparatus and deodorization method
JP2012157830A (en) Exhaust gas treatment apparatus
JP2007245118A (en) Exhaust gas treating method and exhaust gas treating system
KR101445907B1 (en) System and Method for Deodorizing Gas
JP2009165992A (en) Exhaust gas treatment apparatus
JP2007136422A (en) Exhaust gas treatment device
JP5276820B2 (en) Exhaust gas treatment device and exhaust gas treatment method
JP2007237042A (en) Waste gas treatment method and waste gas treatment apparatus
JP2007319830A (en) Exhaust gas treatment method and exhaust gas treatment system
JP2007253046A (en) Desulfurization equipment of sulfide-containing gas
JP4619971B2 (en) Waste water treatment method and waste water treatment equipment
JP4619972B2 (en) Waste water treatment method and waste water treatment equipment
KR102221037B1 (en) Deodorizer for cleaning odor-causing components in odor gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417