JP2001070747A - Method and apparatus for treating nitrogen compound- containing waste gas - Google Patents
Method and apparatus for treating nitrogen compound- containing waste gasInfo
- Publication number
- JP2001070747A JP2001070747A JP25202899A JP25202899A JP2001070747A JP 2001070747 A JP2001070747 A JP 2001070747A JP 25202899 A JP25202899 A JP 25202899A JP 25202899 A JP25202899 A JP 25202899A JP 2001070747 A JP2001070747 A JP 2001070747A
- Authority
- JP
- Japan
- Prior art keywords
- water
- exhaust gas
- tank
- nitrogen compound
- circulating water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技桁分野】本発明は、排ガスの処理に係
り、特に分子内に窒素を含む揮発性有機化合物(VO
C)又はアンモニア等の窒素化合物を含む排ガスを微生
物担体充填層を通して処理する方法と装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of exhaust gas, and more particularly to a volatile organic compound (VO) containing nitrogen in a molecule.
The present invention relates to a method and an apparatus for treating an exhaust gas containing a nitrogen compound such as C) or ammonia through a microorganism carrier packed bed.
【0002】[0002]
【従来の技術】化学工場などで発生するVOCのうち、
分子内に窒素を含むもの(アクリロニトリル、ジメチル
ホルムアミドなど)を成分とする排ガス、及びし尿処理
場、汚泥コンポスト化施設等で発生するアンモニアを含
む排ガスを生物学的に処理することは、従来から知られ
た方法である。この方法においては、処理にしたがっ
て、装置内、特に散水のために用いる循環水のなかにア
ンモニアが蓄積する。アンモニアはpHを上昇させ、処
理性能を低下させるだけでなく、それ自身が悪臭の原因
となる。また、アンモニアは条件によって、主に硝酸に
酸化されるが、これはpHを低下させ、やはり処理能力
を低下させる。そのため、これら窒素成分を系外に排出
させる必要がある。循環水を入れ替えれば、排出できる
が、多量の水を必要とし、排水処理が必要となる。2. Description of the Related Art Among VOCs generated in chemical factories and the like,
It has been known that biological treatment of exhaust gas containing components containing nitrogen in the molecule (acrylonitrile, dimethylformamide, etc.) and exhaust gas containing ammonia generated in human waste treatment plants, sludge composting facilities, etc. This is the way it was done. In this method, ammonia accumulates in the apparatus, particularly in the circulating water used for watering, according to the treatment. Ammonia not only raises pH and lowers processing performance, but also causes odor itself. Also, depending on the conditions, ammonia is mainly oxidized to nitric acid, which lowers the pH and also lowers the processing capacity. Therefore, it is necessary to discharge these nitrogen components out of the system. If the circulating water is replaced, it can be discharged, but it requires a large amount of water and requires wastewater treatment.
【0003】[0003]
【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、アンモニアを含む循環水を処理系内で処理し
て、多量の水を必要としない窒素化合物を含む排ガスの
生物学的処理方法と装置を提供することを課題とする。DISCLOSURE OF THE INVENTION In view of the above prior art, the present invention provides a biological treatment of exhaust gas containing nitrogen compounds which does not require a large amount of water by treating circulating water containing ammonia in a treatment system. It is an object to provide a method and an apparatus.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、微生物担体充填層に循環散水しつつ窒
素化合物を含む排ガスを通して処理する方法において、
前記生成したアンモニアを含有する循環水を硝化し、該
硝化水を還元して脱窒素し、循環使用することとしたも
のである。前記排ガスの処理方法において、循環水の硝
化は、該アンモニアが蓄積した循環水を、例えば、有機
炭素負荷量0.8kg−C/m3・日の条件下で、pH
調整槽に導き、pH調整を行いながら前記微生物担体充
填層に散水することによって、アンモニアを硝酸に酸化
でき、前記循環水の微生物担体充填層への散水によって
発生する排水のうち、最上流由来の排水を脱窒素槽に導
くことによって、脱窒素を効果的に行うことができる。
最上流由来の排水には、排ガス由来の有機炭素がもっと
も多量に含まれているから、脱窒素の際に必要な有機炭
素を供給する上で効率的であるということである。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a method for treating an exhaust gas containing a nitrogen compound while circulating and sprinkling water on a microorganism carrier-packed layer.
The circulating water containing the produced ammonia is nitrified, the nitrifying water is reduced and denitrified, and the circulating water is recycled. In the method for treating exhaust gas, nitrification of the circulating water is performed by converting the circulating water in which the ammonia is accumulated into a pH value of, for example, an organic carbon load of 0.8 kg-C / m 3 · day.
By guiding to the adjusting tank and spraying water on the microorganism carrier packed bed while performing pH adjustment, ammonia can be oxidized to nitric acid. By guiding the wastewater to the denitrification tank, denitrification can be effectively performed.
Since the wastewater derived from the uppermost stream contains the largest amount of organic carbon derived from exhaust gas, it is efficient in supplying the organic carbon required for denitrification.
【0005】また、本発明では、窒素化合物を含む排ガ
スを通す循環散水機構を有する微生物担体充填層を有す
る排ガス処理槽と、該循環水を貯留する循環水貯槽と、
該循環水を硝化する硝化機構と、該硝化水を還元して脱
窒素する脱窒素槽とを有し、各槽を経路で接続したこと
を特徴とする窒素化合物を含む排ガスの処理装置とした
ものである。前記排ガスの処理装置において、循環散水
機構を有する微生物担体充填層は、直列に複数配備さ
れ、最上流の充填層の循環散水機構に、前記循環水の循
環経路を接続して、硝化水を得る前記硝化機構とを兼ね
て構成することができる。さらに、硝化機構のために専
用の硝化槽を設けることにより、有機炭素負荷量0.8
kg−C/m3・日以上の条件下でも硝化水を得ること
が可能である。Further, according to the present invention, there is provided an exhaust gas treatment tank having a microorganism carrier packed bed having a circulation watering mechanism for passing exhaust gas containing nitrogen compounds, a circulating water storage tank for storing the circulating water,
A nitrification mechanism for nitrifying the circulating water, a denitrification tank for reducing and denitrifying the nitrification water, and an exhaust gas treatment apparatus containing a nitrogen compound, wherein each tank is connected by a path. Things. In the exhaust gas treatment device, a plurality of microorganism carrier packed beds having a circulating sprinkling mechanism are arranged in series, and the circulation path of the circulating water is connected to a circulating sprinkling mechanism of the most upstream packed bed to obtain nitrified water. It can be configured also as the nitrification mechanism. Furthermore, by providing a dedicated nitrification tank for the nitrification mechanism, the organic carbon load 0.8
Nitrified water can be obtained even under the condition of kg-C / m 3 · day or more.
【0006】[0006]
【発明の実施の形態】次に、本発明を詳細に説明する。
本発明では、生物学的処理法を用いて排ガス中の窒素を
含む揮発性有機化合物又はアンモニアを除去する方法に
おいて、微生物を保持する充填材を充填した充填層を備
えた充填塔を処理槽として設け、前記充填材に微生物を
保持させ、前記充填材に散水して湿潤状態に維持させな
がら排ガスを通気する。散水は、循環水貯槽の循環水を
繰り返し汲み上げて、充填層上部から行い、散水排水を
排水貯槽に戻して繰り返し散水する。排ガスの処理に伴
い、循環水中にはアンモニアが蓄積するが、これを硝酸
に酸化(硝化)した後、還元状態で脱窒素する。このと
き、アンモニアが溶解した循環水は高いpHを示すた
め、pHが7.5以下になるように塩酸などの酸を用い
て調整する。一方、硝化に伴って生成した硝酸はpHを
低下させるため、水酸化ナトリウム等の塩基を用いて、
pHが6.5以上となるように調整する。Next, the present invention will be described in detail.
In the present invention, in a method for removing a volatile organic compound containing nitrogen or ammonia in an exhaust gas using a biological treatment method, a packed tower having a packed bed filled with a filler holding microorganisms is used as a treatment tank. The exhaust gas is ventilated while keeping the microorganisms in the filler and spraying water on the filler to maintain the wet state. Sprinkling is performed by repeatedly pumping out the circulating water in the circulating water storage tank and from the upper portion of the packed bed, returning the sprinkling drainage to the drainage storage tank and repeatedly spraying water. Ammonia accumulates in the circulating water during the treatment of exhaust gas, which is oxidized (nitrified) to nitric acid and then denitrified in a reduced state. At this time, since the circulating water in which the ammonia is dissolved has a high pH, the pH is adjusted using an acid such as hydrochloric acid so that the pH becomes 7.5 or less. On the other hand, nitric acid generated with nitrification lowers the pH, so using a base such as sodium hydroxide,
Adjust so that pH becomes 6.5 or more.
【0007】アンモニアの硝化は専用の生物反応槽(硝
化槽)を設けて、その中で行わせることができるが、排
ガスの生物学的処理装置では、充填層に散水することに
よって硝化反応を起こさせることができる。ただし、充
填層容積当りの有機炭素負荷量を0.8kg−C/m3
・日以下とすることが望ましい。その値を超えると、充
填層内において硝化反応が十分に行われず、循環水中に
アンモニアが残留する。従って、その場合、充填層を大
きくするか、あるいは硝化槽を設けることによって硝化
反応を完結させる。以上の様にして生成した硝酸を脱窒
素反応(2NO3→N2+3O2)によって系外に排出す
る。脱窒素反応は、酸素の侵入を防止した脱窒素槽を設
け、その中で嫌気的に行わせる。脱窒素処理水は、脱窒
素によって硝酸が失われて、pHが上昇する。そこで、
硝化によってpHが低下した循環水、あるいは塩酸など
の酸を用いてpHを7.5以下に調整する。[0007] Nitrification of ammonia can be performed in a dedicated biological reaction tank (nitrification tank) provided therein, but in a biological treatment apparatus for exhaust gas, the nitrification reaction occurs by spraying water on a packed bed. Can be done. However, the organic carbon load per packed bed volume is 0.8 kg-C / m 3
・ It is desirable to keep the number of days or less. If the value is exceeded, the nitrification reaction is not sufficiently performed in the packed bed, and ammonia remains in the circulating water. Therefore, in that case, the nitrification reaction is completed by enlarging the packed bed or providing a nitrification tank. The nitric acid generated as described above is discharged out of the system by a denitrification reaction (2NO 3 → N 2 + 3O 2 ). The denitrification reaction is performed anaerobically in a denitrification tank in which entry of oxygen is prevented. In the denitrification-treated water, nitric acid is lost by denitrification, and the pH rises. Therefore,
The pH is adjusted to 7.5 or less using circulating water whose pH has been lowered by nitrification or an acid such as hydrochloric acid.
【0008】脱窒素反応には、硝酸性窒素1モルに対し
て、3モルの有機性炭素が必要である。この割合が十分
であるか否かは、脱窒素槽流入水中の硝酸性窒素濃度及
びTOC濃度を測定することで確認できる。処理対象の
有機物分子内に窒素を含有する場合、あるいは窒素成分
を含む有機物と含まない有機物が共存する場合、有機炭
素を脱窒素のために効果的に利用するため、充填層を2
つ以上に区切り、最も排ガス流入口側の充填層を通過し
た散水排水を脱窒素槽に流入させ、散水排水中の有機物
をできるだけ多く脱窒素槽に流入させる。また、排ガス
流入口側の散水量を、下流側の散水量より低くすること
によって、脱窒素槽に流入する有機炭素濃度を高くする
ことができ、有機炭素の脱窒素への利用率を向上でき
る。それでも、有機炭素が不足する場合、及び処理対象
ガス中に有機炭素が含まれていない場合には、メタノー
ル等の有機物を脱窒素槽に添加することによって、脱窒
素反応を行わせる。[0008] The denitrification reaction requires 3 moles of organic carbon per mole of nitrate nitrogen. Whether this ratio is sufficient or not can be confirmed by measuring the nitrate nitrogen concentration and the TOC concentration in the inflow water of the denitrification tank. When nitrogen is contained in the organic substance molecule to be treated, or when an organic substance containing a nitrogen component and an organic substance not containing coexist, the packed layer is formed in order to effectively use organic carbon for denitrification.
The sprinkling wastewater that has passed through the packed bed closest to the exhaust gas inlet is made to flow into the denitrification tank, and the organic matter in the sprinkling wastewater is made to flow into the denitrification tank as much as possible. Further, by lowering the amount of water sprayed on the exhaust gas inlet side than the amount of water sprayed on the downstream side, the concentration of organic carbon flowing into the denitrification tank can be increased, and the utilization rate of organic carbon for denitrification can be improved. . Still, when the organic carbon is insufficient, or when the organic carbon is not contained in the gas to be treated, the denitrification reaction is performed by adding an organic substance such as methanol to the denitrification tank.
【0009】[0009]
【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 実験は、図1に示す装置を用いて行い、分子内に窒素を
含む揮発性有機化合物であるアクリロニトリルを含む模
擬排ガスを長期間、連続的に処理した。その際、生物処
理に伴って生成し、循環水に溶解したアンモニアを生物
学的に硝化・脱窒素することによって取り除くことによ
り、循環水へのアンモニアの蓄積を防止し、低い水使用
量で処理できる方法を確立した。図1の装置は、生物担
体充填層2を有する排ガス処理槽4と5、pH調整槽
7、汚泥沈殿槽8、循環水貯槽9及び脱窒素槽6で構成
した。The present invention will be described below in more detail with reference to examples. Example 1 The experiment was performed using the apparatus shown in FIG. 1, and a simulated exhaust gas containing acrylonitrile, which is a volatile organic compound containing nitrogen in the molecule, was continuously treated for a long time. At that time, the ammonia generated in the biological treatment and dissolved in the circulating water is removed by biological nitrification and denitrification, preventing the accumulation of ammonia in the circulating water and treating with low water consumption. Established a way to do it. The apparatus shown in FIG. 1 was composed of exhaust gas treatment tanks 4 and 5 having a biological carrier packed bed 2, a pH adjustment tank 7, a sludge sedimentation tank 8, a circulating water storage tank 9, and a denitrification tank 6.
【0010】生物担体充填層には、発泡性ポリプロピレ
ン製担体を1mの高さに充填し、該充填した処理槽を2
台直列4と5に連結し、流入口側から第1槽4と第2槽
5とした。充填層には、VOC分解微生物接種源として
工場排水処理場の活性汚泥液を添加した。散水は連続的
に行った。一方、アクリロニトリル含有模擬排ガス1
は、市販のアクリロニトリルに窒素ガスをばっ気して、
アクリロニトリル含有ガスを発生させ、コンプレッサー
で供給し、ほぼ飽和の水蒸気を添加した空気と混合し
て、約200ppmに調製した。このガス1を充填層上
部から空塔速度50h (6L/min)の流速で供給
した。流入ガス1及び処理ガス3を採取し、アクリロニ
トリル濃度をガスクロマトグラフで分析し、除去性能を
明らかにした。[0010] The biological carrier-filled layer is filled with a foamable polypropylene carrier to a height of 1 m, and the filled processing tank is filled with 2 m.
The first and second tanks 4 and 5 were connected to form a first tank 4 and a second tank 5 from the inlet side. Activated sludge from a factory wastewater treatment plant was added to the packed bed as a source of VOC-degrading microorganisms. Watering was performed continuously. On the other hand, simulated exhaust gas containing acrylonitrile 1
Aerial nitrogen gas to commercially available acrylonitrile,
An acrylonitrile-containing gas was generated, supplied by a compressor, and mixed with substantially saturated steam-added air to adjust to about 200 ppm. The gas 1 was supplied from the upper portion of the packed bed at a flow rate of 50 h (6 L / min). The inflow gas 1 and the processing gas 3 were collected, and the acrylonitrile concentration was analyzed by gas chromatography to clarify the removal performance.
【0011】第1槽4の散水は、流量60ml/min
で散水排水貯槽9から汲み上げて散水した。第1槽4の
散水排水を全量、脱窒素槽6(容量15L)に供給し
た。その下流にpH調整槽7を設け、その下流に汚泥沈
殿槽8を設け、流量5ml/minで汚泥を脱窒素槽6
に返送した。沈殿池下流に循環水貯槽を設けた。第2槽
5の散水は、循環水貯槽9から流量150ml/min
で汲み上げ、排水はpH調整槽7に流入させた。また、
pH調整槽7では、pHを6.5から7.5に保つた
め、pHをpHセンサー12でモニターし、その結果に
基づいて、水酸化ナトリウム水溶液又は塩酸水溶液13
を添加した。さらに、補給水10を供給した。補給水1
0は水道水にりん酸水素ニカリウム15mg/L、硫酸
第一鉄5.4mg/L及び酵素エキス2mg/Lを添加
して調製した。循環水貯槽9からオーバーフローした水
11を排水として採取し、硝酸性窒素及びアンモニア性
窒素濃度を測定した。The water in the first tank 4 has a flow rate of 60 ml / min.
The water was pumped up from the watering and drainage storage tank 9 to spray water. The whole amount of the sprinkling wastewater from the first tank 4 was supplied to the denitrification tank 6 (capacity: 15 L). A pH adjusting tank 7 is provided downstream thereof, and a sludge sedimentation tank 8 is provided downstream thereof.
Sent back. A circulating water storage tank was installed downstream of the sedimentation basin. Watering of the second tank 5 is performed at a flow rate of 150 ml / min from the circulating water storage tank 9.
And the wastewater was allowed to flow into the pH adjusting tank 7. Also,
In the pH adjusting tank 7, the pH is monitored by a pH sensor 12 in order to maintain the pH at 6.5 to 7.5, and based on the result, an aqueous sodium hydroxide solution or an aqueous hydrochloric acid solution 13 is used.
Was added. Further, make-up water 10 was supplied. Makeup water 1
Sample No. 0 was prepared by adding 15 mg / L of dipotassium hydrogen phosphate, 5.4 mg / L of ferrous sulfate and 2 mg / L of an enzyme extract to tap water. Water 11 overflowing from the circulating water storage tank 9 was collected as waste water, and the concentrations of nitrate nitrogen and ammonia nitrogen were measured.
【0012】表1に実験を行った4条件を示す。Table 1 shows four conditions under which the experiment was conducted.
【表1】 [Table 1]
【0013】表1の4条件下での排ガス中のアクリロニ
トリル除去性能及び排水中のアンモニア性窒素、及び硝
酸性窒素濃度を明らかにした試験の結果を、表2に示
す。Table 2 shows the results of a test in which the acrylonitrile removal performance in the exhaust gas and the concentrations of ammonia nitrogen and nitrate nitrogen in the wastewater were clarified under the four conditions shown in Table 1.
【表2】 [Table 2]
【0014】上記の結果から、脱窒素を行わないと条件
3及び条体4の様に排水中にアンモニア性窒素が蓄積し
た。さらに、補給水量を低減すると除去性能も低下し
た。一方、pH調整及び脱窒素槽への通水を行って、硝
化及び脱窒素を行うと、アンモニア性窒素が低下し、高
いアクリロニトリル除去率が得られた。また、硝酸性窒
素濃度が上昇し、低い補給水量の条件下では、123m
g/Lに達した。そこで、脱窒素槽6に濃度10g/L
のメタノール溶液14を流速20ml/dで添加した。
その結果、硝酸性窒素の濃度は9mg/Lに低下した。
このことから、脱窒素反応のための有機炭素が不足して
いた場合、他の有機物を添加することによって、脱窒素
反応を起こさせることができた。From the above results, unless denitrification was carried out, ammonia nitrogen was accumulated in the waste water as in condition 3 and strip 4. Furthermore, when the amount of makeup water was reduced, the removal performance also decreased. On the other hand, when nitrification and denitrification were performed by performing pH adjustment and passing water through the denitrification tank, ammonia nitrogen was reduced, and a high acrylonitrile removal rate was obtained. In addition, under the condition that the concentration of nitrate nitrogen increases and the amount of makeup water is low, 123 m
g / L. Therefore, the concentration of 10 g / L is stored in the denitrification tank 6.
Was added at a flow rate of 20 ml / d.
As a result, the concentration of nitrate nitrogen was reduced to 9 mg / L.
From this, when the organic carbon for the denitrification reaction was insufficient, the denitrification reaction could be caused by adding another organic substance.
【0015】[0015]
【発明の効果】以上の方法に従って、窒素成分を含む排
ガスを処理すると、循環水中へのアンモニアの蓄積を防
止できる。従って、水の使用量を大幅に低減でき、アン
モニアによる処理能力の低下及び処理ガス等へのアンモ
ニアガスの発生による二次的な悪臭の発生も防止でき
る。排ガスの生物学的処理装置では、充填層が硝化槽と
して利用できるので、排水処理で必要とされる硝化槽が
不要となる。According to the above method, when the exhaust gas containing the nitrogen component is treated, the accumulation of ammonia in the circulating water can be prevented. Therefore, the amount of water used can be significantly reduced, and the reduction of the processing capacity due to ammonia and the generation of secondary odor due to the generation of ammonia gas in the processing gas and the like can be prevented. Since the packed bed can be used as a nitrification tank in the biological treatment apparatus for exhaust gas, a nitrification tank required for wastewater treatment is not required.
【図1】本発明の排ガスの処理方法を実施するための一
例を示すフロー構成図。FIG. 1 is a flow diagram showing an example for implementing an exhaust gas treatment method of the present invention.
1:排ガス、2:充填層、3:処理ガス、4:第1排ガ
ス処理槽、5:第2排ガス処理槽、6:脱窒素槽、7:
pH調整槽、8:汚泥沈殿槽、9:循環水貯槽、10:
補給水、11:排水、12:pHセンサー、13:水酸
化ナトリウム水又は塩酸水溶液、14:メタノール水溶
液1: exhaust gas, 2: packed bed, 3: processing gas, 4: first exhaust gas treatment tank, 5: second exhaust gas treatment tank, 6: denitrification tank, 7:
pH adjustment tank, 8: Sludge settling tank, 9: Circulating water storage tank, 10:
Makeup water, 11: drainage, 12: pH sensor, 13: aqueous sodium hydroxide or hydrochloric acid, 14: aqueous methanol
フロントページの続き Fターム(参考) 4D002 AA13 AA16 AA40 AB02 AB03 AC07 BA02 BA05 BA06 BA17 CA01 CA07 DA59 EA02 GA01 GA02 GA03 GB01 GB02 GB09Continuation of the front page F term (reference) 4D002 AA13 AA16 AA40 AB02 AB03 AC07 BA02 BA05 BA06 BA17 CA01 CA07 DA59 EA02 GA01 GA02 GA03 GB01 GB02 GB09
Claims (4)
化合物を含む排ガスを通して処理する方法において、前
記生成したアンモニアを含有する循環水を硝化し、該硝
化水を還元して脱窒素し、循環使用することを特徴とす
る窒素化合物を含む排ガスの処理方法。1. A method for treating a waste gas containing a nitrogen compound while circulating and spraying water on a microorganism carrier-packed bed, wherein the produced circulating water containing ammonia is nitrified, and the nitrified water is reduced and denitrified. A method for treating an exhaust gas containing a nitrogen compound, which is used.
積した循環水を前記微生物担体充填層に散水して行うこ
とを特徴とする請求項1記載の窒素化合物を含む排ガス
の処理方法。2. The method for treating an exhaust gas containing a nitrogen compound according to claim 1, wherein the nitrification of the circulating water is performed by spraying the circulating water in which the ammonia is accumulated on the microorganism carrier packed bed.
機構を有する微生物担体充填層を有する排ガス処理槽
と、該循環水を貯留する循環水貯槽と、該循環水を硝化
する硝化機構と、該硝化水を還元して脱窒素する脱窒素
槽とを有し、各槽を経路で接続したことを特徴とする窒
素化合物を含む排ガスの処理装置。3. An exhaust gas treatment tank having a microbial carrier packed bed having a circulating water spray mechanism for passing an exhaust gas containing a nitrogen compound, a circulating water storage tank for storing the circulating water, a nitrification mechanism for nitrifying the circulating water, An apparatus for treating exhaust gas containing a nitrogen compound, comprising: a denitrification tank for reducing and denitrifying nitrified water, wherein each tank is connected by a path.
填層は、直列に複数配備され、最上流の充填層の循環散
水機構に、前記循環水の循環経路を接続して、硝化水を
得る前記硝化機構を構成したことを特徴とする請求項3
記載の窒素化合物を含む排ガスの処理装置。4. The microorganism carrier packed bed having the circulating sprinkling mechanism is provided in a plurality in series, and the circulating water circulation path is connected to the circulating sprinkling mechanism of the most upstream packed bed to obtain nitrified water. 4. A nitrification mechanism is configured.
An exhaust gas treatment apparatus containing the nitrogen compound according to claim 1.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25202899A JP3985886B2 (en) | 1999-09-06 | 1999-09-06 | Method and apparatus for treating exhaust gas containing nitrogen compounds |
DE10043176A DE10043176A1 (en) | 1999-09-06 | 2000-09-01 | Bio-treatment of nitride (e.g. acrylonitrile)-containing off-gases to prevent ammonia build-up in circulating spray water by including nitration and denitration steps |
US09/655,303 US6468486B1 (en) | 1999-09-06 | 2000-09-05 | Process for treating exhaust gases containing nitrides |
KR1020000052749A KR20010067159A (en) | 1999-09-06 | 2000-09-06 | Process and apparatus for treating exhaust gases containing nitrides |
CNB001268503A CN1147347C (en) | 1999-09-06 | 2000-09-06 | Treating method and equipment for waste gas containing nitride |
US10/200,753 US20030003037A1 (en) | 1999-09-06 | 2002-07-24 | Apparatus for treating exhaust gases containing nitrides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25202899A JP3985886B2 (en) | 1999-09-06 | 1999-09-06 | Method and apparatus for treating exhaust gas containing nitrogen compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001070747A true JP2001070747A (en) | 2001-03-21 |
JP3985886B2 JP3985886B2 (en) | 2007-10-03 |
Family
ID=17231591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25202899A Expired - Fee Related JP3985886B2 (en) | 1999-09-06 | 1999-09-06 | Method and apparatus for treating exhaust gas containing nitrogen compounds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3985886B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007326007A (en) * | 2006-06-07 | 2007-12-20 | Sharp Corp | Exhaust gas treating method and apparatus |
JP2011520610A (en) * | 2008-05-20 | 2011-07-21 | 玉川大学 農学部 | Purification and deodorization methods for malodorous and odorous gas substances originating in structures related to biological production |
CN101898084B (en) * | 2009-05-25 | 2013-10-09 | 中国石油化工股份有限公司 | Multi-component stink exhaust gas biological purifying method |
CN103768925A (en) * | 2014-02-26 | 2014-05-07 | 武汉科技大学 | Treatment device for sulfur and nitrogen-containing waste gas |
CN112156633A (en) * | 2020-08-17 | 2021-01-01 | 周悦先 | Low temperature pyrolysis domestic waste exhaust-gas treatment system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112892201A (en) * | 2021-01-22 | 2021-06-04 | 广州市绿之环生物净化科技有限公司 | System and method for treating organic waste gas by biological method |
-
1999
- 1999-09-06 JP JP25202899A patent/JP3985886B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007326007A (en) * | 2006-06-07 | 2007-12-20 | Sharp Corp | Exhaust gas treating method and apparatus |
JP2011520610A (en) * | 2008-05-20 | 2011-07-21 | 玉川大学 農学部 | Purification and deodorization methods for malodorous and odorous gas substances originating in structures related to biological production |
CN101898084B (en) * | 2009-05-25 | 2013-10-09 | 中国石油化工股份有限公司 | Multi-component stink exhaust gas biological purifying method |
CN103768925A (en) * | 2014-02-26 | 2014-05-07 | 武汉科技大学 | Treatment device for sulfur and nitrogen-containing waste gas |
CN112156633A (en) * | 2020-08-17 | 2021-01-01 | 周悦先 | Low temperature pyrolysis domestic waste exhaust-gas treatment system |
Also Published As
Publication number | Publication date |
---|---|
JP3985886B2 (en) | 2007-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000005795A (en) | Water treatment device having denitrogen performance | |
JP5424789B2 (en) | Nitrous oxide emission control method for nitrogen-containing wastewater treatment | |
JP3460745B2 (en) | Biological nitrification denitrification method and apparatus | |
JP2006122771A (en) | Fluid treatment method and fluid treatment system | |
Vidal et al. | A comparison of organic and inorganic carbon controls over biological denitrification in aquaria | |
JP2005211832A (en) | Method for removing ammonia nitrogen from waste water | |
KR20010067159A (en) | Process and apparatus for treating exhaust gases containing nitrides | |
JP3985886B2 (en) | Method and apparatus for treating exhaust gas containing nitrogen compounds | |
JP2005161258A (en) | Nitrite-formation method for high concentration ammonia-containing gas and device therefor | |
KR100243729B1 (en) | Method for treating wastewater biologically by continuously cycling and regenerating powdered zeolite in the bioreactor | |
JP2000189995A (en) | Method and device for removing nitrogen in waste water | |
JP3942331B2 (en) | Exhaust gas treatment method and equipment | |
JPH05228493A (en) | Method for treating waste water using sulfur bacterium and apparatus therefor | |
JP2003071490A (en) | Method for removing nitrogen from wastewater | |
JP2003094096A (en) | Method for treating organic waste, apparatus therefor, and sludge | |
JP4671928B2 (en) | Wastewater treatment method | |
KR102052163B1 (en) | Wastewater treatment apparatus and method | |
JP3288097B2 (en) | Purification method of nitrogen-containing polluted water | |
JP2005034726A (en) | Deodorization method and apparatus | |
JPH01228593A (en) | Purification of sewage | |
JP2005161257A (en) | Treatment method for ammonia-containing gas and device | |
JPH0938694A (en) | Treatment of waste water of flue gas desulfurization | |
JPS586558B2 (en) | Sewage treatment method | |
JPH0871591A (en) | Biological treatment of waste water containing ammonia nitrogen | |
KR200286507Y1 (en) | Sulfur Denitrification reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070704 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100720 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100720 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110720 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110720 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120720 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120720 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130720 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |