JP4671928B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP4671928B2
JP4671928B2 JP2006212105A JP2006212105A JP4671928B2 JP 4671928 B2 JP4671928 B2 JP 4671928B2 JP 2006212105 A JP2006212105 A JP 2006212105A JP 2006212105 A JP2006212105 A JP 2006212105A JP 4671928 B2 JP4671928 B2 JP 4671928B2
Authority
JP
Japan
Prior art keywords
drainage
wastewater
tank
waste water
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006212105A
Other languages
Japanese (ja)
Other versions
JP2008036497A (en
Inventor
達司 柏木
悟 三島
良雄 久保渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006212105A priority Critical patent/JP4671928B2/en
Publication of JP2008036497A publication Critical patent/JP2008036497A/en
Application granted granted Critical
Publication of JP4671928B2 publication Critical patent/JP4671928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、排水処理方法に関し、特に石炭火力発電所の復水脱塩装置排水の処理を行う排水処理方法に関するものである。   The present invention relates to a wastewater treatment method, and more particularly to a wastewater treatment method for treating condensate demineralizer drainage of a coal-fired power plant.

石炭火力発電所においては、様々な装置および工程で排水が発生し、それぞれの排水の特徴に合わせて処理をしている。例えば定常的に発生する排水には、脱硫排水、純水装置排水、復水脱塩装置排水、ユニットドレン排水などがあり、非定常的に発生する発生する排水には、各種機器洗浄排水(例えば空気予熱器洗浄排水、電気集塵機洗浄排水)、ボイラ化学洗浄排水、ボイラ系統ブロー排水などがある。脱硫排水は排煙脱硫装置から排出される排水であり、ボイラ排ガス中の煤塵、フッ素や重金属などが含まれているため、これらを処理するため他の排水とは別に単独で処理を行っている。   In coal-fired power plants, wastewater is generated by various devices and processes, and is treated according to the characteristics of each wastewater. For example, drainage generated regularly includes desulfurization drainage, pure water drainage, condensate desalination drainage, unit drain drainage, etc., and wastewater generated non-steadyly includes various equipment washing drains (for example, Air preheater cleaning wastewater, electric dust collector cleaning wastewater), boiler chemical cleaning wastewater, boiler system blow wastewater, etc. Desulfurization effluent is discharged from flue gas desulfurization equipment and contains soot, fluorine, heavy metals, etc. in boiler exhaust gas, and is treated separately from other effluents to treat these. .

これらの排水を処理して発電所外に排出するには、一定の排出基準を満たすように処理を行う必要がある。例えば法によってあるいは公害防止協定によって、化学的酸素要求量(COD)、浮遊物質量、重金属の量、油分などを所定の基準値以下にして排出するように決められている。この排出基準は段々と厳しくなってきており、この排出基準を満たすように様々な排水処理技術が開発されている(例えば、特許文献1、2)。   In order to treat these wastewaters and discharge them outside the power plant, it is necessary to treat them so as to meet certain emission standards. For example, it is determined to discharge chemical oxygen demand (COD), suspended solids, heavy metals, oil, etc. below a predetermined reference value by law or pollution control agreement. This discharge standard is getting stricter, and various wastewater treatment technologies have been developed to satisfy this discharge standard (for example, Patent Documents 1 and 2).

特許文献1には、排水に含まれるアンモニア態窒素を硝酸態窒素に分解する生物処理部を有する水処理装置であって、排水の温度または外気温を検出してその温度が所定温度以下の時には電解処理によってアンモニア態窒素を窒素ガスに変換する電解処理部を備えている水処理装置が開示されている。   Patent Document 1 discloses a water treatment apparatus having a biological treatment unit that decomposes ammonia nitrogen contained in waste water into nitrate nitrogen, and detects the temperature of the waste water or the outside air temperature and when the temperature is equal to or lower than a predetermined temperature. A water treatment apparatus including an electrolytic treatment unit that converts ammonia nitrogen into nitrogen gas by electrolytic treatment is disclosed.

特許文献2には、排煙脱硫排水中に含まれる毒性物質、特に過硫酸の濃度を検知して、その検知結果に応じて活性炭処理工程と硝化脱窒工程の順序を変えて排水を処理する排水処理方法が開示されている。
特開2004−267967号公報 特開2003−136092号公報
In Patent Document 2, the concentration of toxic substances, particularly persulfuric acid, contained in flue gas desulfurization wastewater is detected, and the wastewater is treated by changing the order of the activated carbon treatment step and the nitrification denitrification step according to the detection result. A wastewater treatment method is disclosed.
JP 2004-267967 A JP 2003-136092 A

しかしながら、特許文献1に開示されている装置では、温度が低くなると電解処理を行うので、余分なエネルギーが必要となりエネルギー効率が悪化するとともに排水処理にかかるコストが上昇してしまう。   However, in the apparatus disclosed in Patent Document 1, since the electrolytic treatment is performed when the temperature is low, extra energy is required, the energy efficiency is deteriorated, and the cost for the wastewater treatment is increased.

特許文献2に開示されている方法は、排煙脱硫装置の運転条件の変化に応じて排煙脱硫排水の処理を効率的に行うための方法であり、排煙脱硫排水以外の排水には適用できない。   The method disclosed in Patent Document 2 is a method for efficiently treating flue gas desulfurization drainage according to changes in the operating conditions of the flue gas desulfurization apparatus, and is applicable to wastewater other than flue gas desulfurization drainage. Can not.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、復水脱塩装置排水を効率的に処理する排水処理方法を提供することにある。   This invention is made | formed in view of this point, The place made into the objective is to provide the waste water treatment method which processes a condensate demineralizer waste_water | drain efficiently.

上記の目的を達成するため、本発明の排水処理方法は、石炭火力発電所の復水脱塩装置排水の処理を行う排水処理方法であって、排水タンクに復水脱塩装置排水と脱硫排水とを投入する投入工程と、前記投入工程の後、前記排水タンクを保温しつつ1日以上4日以下保持する保持工程とを含む構成とした。このような構成とすることにより、高温の脱硫排水によって復水脱塩装置排水の温度が上がり、それを1日以上4日以下保温することによって復水脱塩装置排水中のアンモニアが排水タンク内で分解される速度が大きく向上する。   In order to achieve the above object, a wastewater treatment method of the present invention is a wastewater treatment method for treating condensate demineralizer drainage of a coal-fired power plant, wherein the drainage tank is provided with condensate demineralizer drainage and desulfurization drainage. And a holding step for holding the drainage tank for 1 day or more and 4 days or less after the charging step. By adopting such a configuration, the temperature of the condensate demineralizer drainage is raised by the high temperature desulfurization drainage, and the ammonia in the condensate demineralizer drainage is kept in the drainage tank by keeping it warm for 1 day or more and 4 days or less. The speed of decomposition is greatly improved.

前記排水タンクにはさらに空気予熱器洗浄排水が加えられることが好ましい。   It is preferable that air preheater washing waste water is further added to the drain tank.

前記保持工程では前記排水タンク内の排水を30℃以上50℃以下に保温することが好ましい。   In the holding step, it is preferable to keep the temperature of the waste water in the drain tank at 30 ° C. or higher and 50 ° C. or lower.

ある好適な実施形態において、前記保持工程の後に排水に次亜塩素酸ソーダを加える工程をさらに含む。   In a preferred embodiment, the method further includes adding sodium hypochlorite to the waste water after the holding step.

ある好適な実施形態において、前記保持工程の後に排水中の亜硝酸イオンの量を測定し、該亜硝酸イオンの量が所定値を越えているときに排水に次亜塩素酸ソーダを加える。   In a preferred embodiment, the amount of nitrite ions in the waste water is measured after the holding step, and sodium hypochlorite is added to the waste water when the amount of nitrite ions exceeds a predetermined value.

排水タンクに復水脱塩装置排水と脱硫排水とを投入して保温を行うので、復水脱塩装置排水中のアンモニアの処理が促進される。   Since the condensate demineralizer drainage and the desulfurization drainage are put into the drainage tank and the temperature is kept, the treatment of ammonia in the condensate demineralizer drainage is promoted.

実施形態について説明をする前に、本願発明者が本願を発明をするに至った経緯について説明をする。   Before describing the embodiment, the background of how the inventor of the present application came to invent the present application will be described.

上述のように発電所からの排水に対する規制は厳しくなっているとともに排水処理の技術も年とともに様々な技術が開発されており、発電所から発生する全ての排水をどのように処理したら効率的且つ低コストとなるかは、現在も大いに検討が行われている。このような観点から現行の排水処理方法を見てみると、従来は、排煙脱硫装置から排出される脱硫排水にはフッ素や重金属などが含まれておりこれらの処理を行う必要があるため、脱硫排水は単独で処理を行っており他の排水と混合することは全く考えられていなかった。本願発明者は、石炭火力発電所から排出される全ての排水の処理をトータルに考えた結果、現状の排水規制に適合しており且つ全体として最も効率よく低コストで排水処理を行うためには、脱硫排水と他の排水とを混合することがよいとの考えに至った。   As mentioned above, regulations on wastewater from power plants have become stricter, and various technologies for wastewater treatment have been developed over the years. How to treat all wastewater generated from power plants efficiently and Whether the cost is low is still being studied. Looking at the current wastewater treatment method from such a viewpoint, conventionally, the desulfurization wastewater discharged from the flue gas desulfurization equipment contains fluorine and heavy metals, and it is necessary to perform these treatments. The desulfurization effluent was treated alone and was never considered to be mixed with other effluents. As a result of considering the total treatment of all wastewater discharged from coal-fired power plants, the inventor of the present application conforms to the current wastewater regulations and, as a whole, performs wastewater treatment most efficiently and at low cost. It came to the idea that it would be better to mix desulfurization waste water with other waste water.

以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of brevity.

(実施形態1)
実施形態1の排水処理のフローを図1に示す。
(Embodiment 1)
The flow of the waste water treatment of Embodiment 1 is shown in FIG.

本実施形態では、定常的に排出されてくる復水脱塩装置排水および脱硫排水をまず排水タンク11に貯める。排水タンク11はタンク壁に保温材が設置されており、貯められた排水を保温して保持する。排水タンク11は複数存しており(ここでは3つ)、一つの排水タンク11が排水で満たされたら別の排水タンク11に排水を入れるようにしている。   In this embodiment, condensate demineralizer drainage and desulfurization wastewater that are regularly discharged are first stored in the drainage tank 11. The drainage tank 11 is provided with a heat insulating material on the tank wall, and retains and holds the stored wastewater. There are a plurality of drain tanks 11 (here, three), and when one drain tank 11 is filled with drainage, drainage is put into another drain tank 11.

排水タンク11では、復水脱塩装置排水および脱硫排水を入れて1日以上4日以下保温をしながら保管しておく。この保管時において排水内のアンモニアが亜硝酸へ分解され、さらに分子状窒素に分解される。この分解については後で詳しく説明する。なお、この保管の工程が保持工程である。   In the drainage tank 11, condensate demineralizer drainage and desulfurization drainage are placed and stored while keeping the temperature for 1 day to 4 days. During this storage, ammonia in the wastewater is decomposed into nitrous acid and further decomposed into molecular nitrogen. This decomposition will be described in detail later. This storage process is a holding process.

保持工程を終えた排水は、排水タンク11から排水貯槽21に流入し貯留される。それから排水を排水貯槽21からpH調整槽22に送り、このpH調整槽22において後段の分離膜処理のためのpH調整を行う。それから反応槽23において排水中の重金属およびフッ素を取り除くための処理を行う。この処理の終わった排水を循環槽24に流入させる。   The drainage after the holding step flows into the drainage storage tank 21 from the drainage tank 11 and is stored. Then, the waste water is sent from the waste water storage tank 21 to the pH adjustment tank 22, and the pH adjustment for the subsequent separation membrane treatment is performed in the pH adjustment tank 22. Then, a treatment for removing heavy metals and fluorine in the waste water is performed in the reaction tank 23. The waste water after the treatment is caused to flow into the circulation tank 24.

次に、循環槽24から分離膜31に排水を送るとともに分離膜31による分離処理ができなかった排水を再度循環槽24に戻す。分離膜31によって分離処理が終了した排水は中継槽25に送られる。   Next, wastewater is sent from the circulation tank 24 to the separation membrane 31 and wastewater that could not be separated by the separation membrane 31 is returned to the circulation tank 24 again. The waste water that has been separated by the separation membrane 31 is sent to the relay tank 25.

中継槽25に流入した排水は、ポンプによってCOD吸着塔41に送られ、COD吸着塔41内で活性炭で吸着されるCODの元になる物質が除去される。   The waste water that has flowed into the relay tank 25 is sent to the COD adsorption tower 41 by a pump, and the COD adsorbed by the activated carbon in the COD adsorption tower 41 is removed.

COD吸着塔41から出た排水は中和槽26に流入し、そこで放流可能なようにpHが7.0となるよう調節される。   The waste water discharged from the COD adsorption tower 41 flows into the neutralization tank 26 where the pH is adjusted to 7.0 so that it can be discharged.

さらに排水は、中和槽26から監視槽27に流入し、ここでCODや重金属などが排出基準を満たすかどうかのチェックを受けて、排出基準を満たす場合は発電所外に放流する。排出基準を満たさない場合は、排出基準を満たすようになるまでさらに処理を行う。   Further, the wastewater flows from the neutralization tank 26 into the monitoring tank 27, where it is checked whether COD, heavy metal, etc. satisfy the emission standard, and if it meets the emission standard, it is discharged outside the power plant. If the emission standard is not met, further processing is performed until the emission standard is met.

本実施形態では、以上のフローに従って復水脱塩装置排水および脱硫排水は処理されて発電所外に放流される。本実施形態において重要なのは、最初に復水脱塩装置排水および脱硫排水を混合して排水タンク11に貯留すること(保管)と、この貯留を、保温をしながら1日以上4日以下行うことである。このようにすることによりアンモニアの分解が確実に効率的に行われる。これについて以下に説明する。   In the present embodiment, the condensate demineralizer drainage and the desulfurization wastewater are treated and discharged outside the power plant according to the above flow. What is important in this embodiment is that the condensate demineralizer drainage and the desulfurization wastewater are first mixed and stored in the drainage tank 11 (storage), and this storage is performed for 1 day or more and 4 days or less while keeping the temperature. It is. This ensures that ammonia is efficiently decomposed. This will be described below.

まず、復水脱塩装置排水および脱硫排水にはアンモニアが比較的多く含まれており、排水を発電所外に放流するためにはこのアンモニアを分解する必要がある。アンモニアの分解は排水タンク11内において硝化菌による硝化と脱窒菌による分子状窒素化とによって行われる生物脱窒法により行われている。生物脱窒法は、ほとんど全ての形態の窒素除去が可能であり、他の物理化学的処理法に比べてエネルギー消費が少ないなど、優れた処理法である。   First, the condensate demineralizer waste water and the desulfurization waste water contain a relatively large amount of ammonia. In order to discharge the waste water outside the power plant, it is necessary to decompose the ammonia. The ammonia is decomposed in the drainage tank 11 by a biological denitrification method that is performed by nitrification by nitrifying bacteria and molecular nitrogenation by denitrifying bacteria. The biological denitrification method is an excellent treatment method that can remove almost all forms of nitrogen and consumes less energy than other physicochemical treatment methods.

硝化は、学名NitrosomonasやNitrosocystisなどの硝化菌によって行われる、下記式
NH +3/2O→NO +2H+H
NO +1/2O→NO
で表される反応のことである。硝化菌の比増殖速度μ[1/d]は、μ=0.18×1.128t−15(tは処理温度[℃])により表されるので、温度が15℃以下になると硝化速度は著しく低下する。一方、温度が10℃上がると硝化速度は約3.3倍となる。
Nitrification is carried out by nitrifying bacteria such as the scientific names Nitrosomonas and Nitrosocystis, and the following formula NH 4 + + 3 / 2O 2 → NO 2 + 2H + + H 2 O
NO 2 + 1 / 2O 2 → NO 3
It is a reaction represented by. Since the specific growth rate μ [1 / d] of nitrifying bacteria is expressed by μ = 0.18 × 1.128 t−15 (t is a processing temperature [° C.]), when the temperature becomes 15 ° C. or less, the nitrification rate Is significantly reduced. On the other hand, when the temperature rises by 10 ° C., the nitrification rate becomes about 3.3 times.

分子状窒素化(脱窒)は、学名Pseudomonas denitrificansなどの脱窒菌によって行われる、下記式
2NO +5H→N+2OH+4H
で表される反応のことである。脱窒菌の比増殖速度も硝化菌とほぼ同様の式で表され、温度が上がると脱窒速度は上がる。また、脱窒菌は嫌気的条件の下では脱窒を行うが、好気的条件の下では溶存酸素を利用するため脱窒を行わない。
Molecular nitrogenation (denitrification) is carried out by a denitrifying bacterium such as the scientific name Pseudomonas denitrificans, and the following formula 2NO 3 + 5H 2 → N 2 + 2OH + 4H 2 O
It is a reaction represented by. The specific growth rate of denitrifying bacteria is also expressed by a formula similar to that of nitrifying bacteria, and the denitrifying rate increases as the temperature rises. In addition, denitrifying bacteria denitrify under anaerobic conditions, but do not denitrify under aerobic conditions because they use dissolved oxygen.

本実施形態においては脱硫排水と復水脱塩装置排水とを一緒に排水タンク11に入れる。脱硫排水は排煙脱硫装置から排出される高温な排水であり、排水タンク11に入る時点では約40〜55℃と比較的高温である。排水タンク11は保温されているため、脱硫排水が復水脱塩装置排水と混合された後も保持工程においてタンク内の排水は4日以下であれば約30〜50℃に保たれる。従って、上述のように硝化菌および脱窒菌の活動が活発になり、アンモニアの分解が常温の場合に比べて大幅に促進される。ここで、保持工程において排水タンク11内の温度が30℃よりも低くなると、特に夏場において常温の場合と比べてアンモニア分解の促進効果が小さいため好ましくない。なお、冬場においては20℃以上30℃未満であっても常温に比べてアンモニア分解の促進効果が認められる。また、保持工程において排水タンク11内の温度が50℃よりも高くなると、硝化菌および脱窒菌の活動がかえって抑制されてしまうので好ましくない。   In this embodiment, the desulfurization effluent and the condensate demineralizer effluent are put together in the drainage tank 11. The desulfurization effluent is a high temperature effluent discharged from the flue gas desulfurization device, and is relatively high at about 40 to 55 ° C. when entering the drainage tank 11. Since the drainage tank 11 is kept warm, even after the desulfurization drainage is mixed with the condensate demineralizer drainage, the drainage in the tank is maintained at about 30 to 50 ° C. if it is 4 days or less. Therefore, as described above, the activities of nitrifying bacteria and denitrifying bacteria become active, and the decomposition of ammonia is greatly accelerated as compared with the case of normal temperature. Here, when the temperature in the drainage tank 11 is lower than 30 ° C. in the holding step, it is not preferable because the effect of promoting the decomposition of ammonia is small compared to the case of room temperature particularly in summer. In winter, even when the temperature is 20 ° C. or higher and lower than 30 ° C., the effect of promoting ammonia decomposition is recognized as compared with normal temperature. Further, if the temperature in the drainage tank 11 is higher than 50 ° C. in the holding step, the activities of nitrifying bacteria and denitrifying bacteria are suppressed, which is not preferable.

さらに、保持工程では1日以上4日以下の間排水を保温しておくが、1日未満であるとアンモニアの分解が不十分であり、4日よりも長いと排水タンク11がたくさん必要になりコストが増加するため好ましくない。排水タンク11において復水脱塩装置排水と脱硫排水とを一緒にして30〜50℃の状態で1日以上4日以下保持することにより、重金属およびフッ素処理をする排水量が増えても、復水脱塩装置排水と脱硫排水とを別々に処理する場合に比べてトータルの処理時間および処理コストが少なくなる。これは、これまで無駄に捨てられていた脱硫排水の廃熱を有効に生かすことができるからである。   Furthermore, in the holding process, the waste water is kept warm for 1 day or more and 4 days or less, but if it is less than 1 day, the decomposition of ammonia is insufficient, and if it is longer than 4 days, a lot of drainage tanks 11 are required. This is not preferable because the cost increases. Condensate demineralizer wastewater and desulfurization wastewater are kept together at 30 to 50 ° C. for 1 day or more and 4 days or less in the drainage tank 11, even if the amount of wastewater for heavy metal and fluorine treatment increases, Compared with the case where the desalination apparatus waste water and the desulfurization waste water are treated separately, the total treatment time and treatment cost are reduced. This is because the waste heat of the desulfurization wastewater that has been wasted so far can be effectively utilized.

(実施形態2)
実施形態2に係る排水処理は、排水タンク11に投入する排水の一部、および次亜塩素酸ソーダ貯蔵タンクが存することが実施形態1とは異なっており、他の部分はほとんど実施形態1と同じであるので、実施形態1とは異なっている部分のみを説明する。
(Embodiment 2)
The wastewater treatment according to the second embodiment is different from the first embodiment in that a part of the wastewater to be input to the drainage tank 11 and a sodium hypochlorite storage tank exist, and the other parts are almost the same as those in the first embodiment. Since they are the same, only the parts different from the first embodiment will be described.

本実施形態の排水処理のフローを図2に示す。本実施形態では、排水タンク11に復水脱塩装置排水および脱硫排水に加えて空気予熱器洗浄排水を投入している。空気予熱器洗浄排水は非定常に排出される排水であってアンモニアを多く含んでいる。   The flow of the waste water treatment of this embodiment is shown in FIG. In this embodiment, in addition to the condensate demineralizer drainage and the desulfurization drainage, the air preheater cleaning wastewater is put into the drainage tank 11. Air preheater cleaning wastewater is wastewater discharged irregularly and contains a lot of ammonia.

排水タンク11に投入された3種類の排水は、実施形態1と同様に保温されて1日以上4日以下保持される。この保持されている間に実施形態1で説明したように、生物脱窒法によってアンモニアが分解される。ただ、本実施形態では脱窒が十分に行われず、保持工程が終了した後の排水にNO が多く残っている。これは、脱窒反応は硝化反応の次の段階であることと、脱窒菌が脱窒反応を行うのは、嫌気的条件下でかつ水素を供与する有機物(例えばメタノール)が十分存在する場合であることとによっている。 The three types of wastewater thrown into the drainage tank 11 are kept warm in the same manner as in the first embodiment and are held for 1 day or more and 4 days or less. While being held, ammonia is decomposed by the biological denitrification method as described in the first embodiment. However, in this embodiment, denitrification is not sufficiently performed, and a large amount of NO 3 remains in the waste water after the holding process is completed. This is because the denitrification reaction is the next stage of the nitrification reaction, and the denitrification bacteria perform the denitrification reaction under anaerobic conditions and when there is sufficient organic substance (for example, methanol) to donate hydrogen. It depends on being.

保持工程の終了後、排水中のNO の量を測定して、所定値(例えば20mg/l)を越える場合には、次亜塩素酸ソーダ貯蔵タンク12から次亜塩素酸ソーダを排水へ投入する。NO が排水中に多く残ったままであると、CODの値が上昇するためなんらかの処理をしてNO を減らす必要があるが、本実施形態では次亜塩素酸ソーダを加えることによってNO を減らしている。通常の排水処理においては、次亜塩素酸ソーダはアンモニアを分子状窒素にまで処理する薬品として用いられているが、本願発明者は、次亜塩素酸ソーダがNO の処理にも用いることができることを見出して、本実施形態に利用したものである。なお、加える次亜塩素酸ソーダの量は、NO をCODに換算した時のCOD重量の2〜4倍が適当な量である。 When the amount of NO 3 − in the waste water is measured after the holding process is finished and exceeds a predetermined value (for example, 20 mg / l), sodium hypochlorite is discharged from the sodium hypochlorite storage tank 12 to the waste water. throw into. If a large amount of NO 3 remains in the wastewater, the value of COD increases, so it is necessary to reduce the NO 3 by performing some treatment. In this embodiment, NO 3 is added by adding sodium hypochlorite. 3 - it is reducing. In normal waste water treatment, but the sodium hypochlorite is used as a medicine for treating the ammonia to the molecular nitrogen, the inventors have, sodium hypochlorite NO 3 - can also be used for treatment It has been found that it is possible to use this embodiment. The amount of sodium hypochlorite added is, NO 3 - a is an amount 2 to 4 times is appropriate for COD weight when converted to the COD.

以後の工程は実施形態1と同じであるので、説明を省略する。   Since the subsequent steps are the same as those in the first embodiment, the description thereof is omitted.

本実施形態は、実施形態1の効果に加えて、CODを確実に排水基準以下にすることができ、排水処理を効率よく行うことができる効果を奏する。   In addition to the effects of the first embodiment, the present embodiment has an effect that the COD can be reliably made to be equal to or lower than the wastewater standard, and the wastewater treatment can be performed efficiently.

(その他の実施形態)
上述の実施形態は本発明の例示であって、本発明はこれらの例に限定されない。排水タンク11にはアンモニアタンクブロー排水などのアンモニアを多く含む他の排水をさらに投入しても構わない。排水処理フローにおいては、他の処理工程(例えばN−S結合を有する化合物の処理工程)を途中に含んでいても構わない。また、処理に必要な槽をさらに加えても構わない。
(Other embodiments)
The above-described embodiments are examples of the present invention, and the present invention is not limited to these examples. The drain tank 11 may be further charged with other drainage containing a large amount of ammonia such as ammonia tank blow drainage. In the wastewater treatment flow, other treatment steps (for example, a treatment step of a compound having an NS bond) may be included in the middle. Moreover, you may add the tank required for a process further.

排水タンク11には脱窒を促すためにメタノールなど水素を供与する化合物を添加することが好ましい。   In order to promote denitrification, it is preferable to add a compound that donates hydrogen, such as methanol, to the drain tank 11.

以上説明したように、本発明に係る排水処理方法は、アンモニアを効率よく処理できるので、石炭火力発電所の排水処理等として有用である。   As described above, the waste water treatment method according to the present invention can treat ammonia efficiently, and is thus useful as waste water treatment for a coal-fired power plant.

実施形態1に係る排水処理のフロー図である。FIG. 3 is a flowchart of waste water treatment according to the first embodiment. 実施形態2に係る排水処理のフロー図である。FIG. 6 is a flowchart of wastewater treatment according to Embodiment 2.

符号の説明Explanation of symbols

11 排水タンク
12 次亜塩素酸ソーダ貯蔵タンク
21 排水貯槽
22 pH調整槽
23 反応槽
24 循環槽
25 中継槽
26 中和槽
27 監視槽
31 分離膜
41 COD吸着塔
DESCRIPTION OF SYMBOLS 11 Drain tank 12 Sodium hypochlorite storage tank 21 Drain storage tank 22 pH adjustment tank 23 Reaction tank 24 Circulation tank 25 Relay tank 26 Neutralization tank 27 Monitoring tank 31 Separation membrane 41 COD adsorption tower

Claims (4)

石炭火力発電所の復水脱塩装置排水の処理を行う排水処理方法であって、
排水タンクに復水脱塩装置排水と脱硫排水とを投入する投入工程と、
前記投入工程の後、前記排水タンクを保温しつつ1日以上4日以下保持する保持工程と
を含み、
前記保持工程では前記排水タンク内の排水を30℃以上50℃以下に保温する、排水処理方法。
A wastewater treatment method for treating condensate demineralizer drainage from a coal-fired power plant,
An input process for supplying condensate demineralizer drainage and desulfurization drainage to the drainage tank;
After said adding step, seen including a holding step of holding less than one day 4 days while kept the drainage tank,
A wastewater treatment method in which in the holding step, the wastewater in the drainage tank is kept at a temperature of 30 ° C to 50 ° C.
前記排水タンクにはさらに空気予熱器洗浄排水が加えられる、請求項1に記載の排水処理方法。   The waste water treatment method according to claim 1, wherein an air preheater cleaning waste water is further added to the waste water tank. 前記保持工程の後に排水に次亜塩素酸ソーダを加える工程をさらに含む、請求項1または2に記載の排水処理方法。 The wastewater treatment method according to claim 1 or 2 , further comprising a step of adding sodium hypochlorite to the wastewater after the holding step. 前記保持工程の後に排水中の亜硝酸イオンの量を測定し、該亜硝酸イオンの量が所定値を越えているときに排水に次亜塩素酸ソーダを加える、請求項に記載の排水処理方法。 The wastewater treatment according to claim 3 , wherein the amount of nitrite ions in the wastewater is measured after the holding step, and sodium hypochlorite is added to the wastewater when the amount of nitrite ions exceeds a predetermined value. Method.
JP2006212105A 2006-08-03 2006-08-03 Wastewater treatment method Expired - Fee Related JP4671928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212105A JP4671928B2 (en) 2006-08-03 2006-08-03 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212105A JP4671928B2 (en) 2006-08-03 2006-08-03 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2008036497A JP2008036497A (en) 2008-02-21
JP4671928B2 true JP4671928B2 (en) 2011-04-20

Family

ID=39172122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212105A Expired - Fee Related JP4671928B2 (en) 2006-08-03 2006-08-03 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4671928B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358495B2 (en) * 2010-03-23 2013-12-04 中国電力株式会社 Waste water management device and waste water management method
JP6162068B2 (en) * 2014-03-31 2017-07-12 住友重機械エンバイロメント株式会社 Waste water treatment apparatus and waste water treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123696A (en) * 1991-11-07 1993-05-21 Chubu Electric Power Co Inc Biological nitrification and denitrification treatment equipment
JPH0938694A (en) * 1995-07-31 1997-02-10 Kurita Water Ind Ltd Treatment of waste water of flue gas desulfurization
JPH09290297A (en) * 1996-04-26 1997-11-11 Electric Power Dev Co Ltd Treatment of waste water from thermal electric power plant
JPH09290299A (en) * 1996-04-26 1997-11-11 Electric Power Dev Co Ltd Treatment of waste water from thermal electric power plant
JP2006122771A (en) * 2004-10-27 2006-05-18 Chuden Kankyo Technos Co Ltd Fluid treatment method and fluid treatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123696A (en) * 1991-11-07 1993-05-21 Chubu Electric Power Co Inc Biological nitrification and denitrification treatment equipment
JPH0938694A (en) * 1995-07-31 1997-02-10 Kurita Water Ind Ltd Treatment of waste water of flue gas desulfurization
JPH09290297A (en) * 1996-04-26 1997-11-11 Electric Power Dev Co Ltd Treatment of waste water from thermal electric power plant
JPH09290299A (en) * 1996-04-26 1997-11-11 Electric Power Dev Co Ltd Treatment of waste water from thermal electric power plant
JP2006122771A (en) * 2004-10-27 2006-05-18 Chuden Kankyo Technos Co Ltd Fluid treatment method and fluid treatment system

Also Published As

Publication number Publication date
JP2008036497A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
US7175765B2 (en) Method for treating for-treatment water containing organic matter and nitrogen compound
JP5100091B2 (en) Water treatment method
JP2000015288A (en) Waste water treatment method and apparatus
JP2006122771A (en) Fluid treatment method and fluid treatment system
JP4703370B2 (en) Nitrogen-containing wastewater treatment method
JP4106203B2 (en) How to remove nitrogen from water
US7550086B2 (en) Advanced treatment method of ethanolamine-wastewater based on physico-chemical and biological coupling process
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
JP2002011495A (en) Method for removing nitrogen and phosphor from wastewater
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP2006205097A (en) Biological treatment method of wastewater
JP4671928B2 (en) Wastewater treatment method
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
JP2000308900A (en) Treatment of ammonia-containing waste water
JP3958900B2 (en) How to remove nitrogen from wastewater
JP2002079299A (en) Method for treating ammonia-containing waste
JP5812277B2 (en) Nitrogen removal method
JP2005288371A (en) Wastewater treatment method
JP2001062486A (en) Biological treatment of heavy metal in desulfurization waste water
JP2000189995A (en) Method and device for removing nitrogen in waste water
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP3837760B2 (en) Treatment method of flue gas desulfurization waste water
US20050077251A1 (en) Method for control of wastewater treatment plant odors
JPH11165180A (en) Method for treating scrubber drainage
JPH11156391A (en) Treating method for ethanolamine-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4671928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees