JPH09290297A - Treatment of waste water from thermal electric power plant - Google Patents

Treatment of waste water from thermal electric power plant

Info

Publication number
JPH09290297A
JPH09290297A JP13089096A JP13089096A JPH09290297A JP H09290297 A JPH09290297 A JP H09290297A JP 13089096 A JP13089096 A JP 13089096A JP 13089096 A JP13089096 A JP 13089096A JP H09290297 A JPH09290297 A JP H09290297A
Authority
JP
Japan
Prior art keywords
water
iron
tank
treatment
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13089096A
Other languages
Japanese (ja)
Other versions
JP4382167B2 (en
Inventor
Hisao Tsuboya
久男 坪谷
Tsukasa Watanabe
司 渡辺
Kenichi Muto
憲一 武藤
Tsutomu Ogose
勤 生越
Akiyoshi Tsurumaru
陽佳 鶴丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Kurita Water Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Kurita Water Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP13089096A priority Critical patent/JP4382167B2/en
Publication of JPH09290297A publication Critical patent/JPH09290297A/en
Application granted granted Critical
Publication of JP4382167B2 publication Critical patent/JP4382167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively remove the harmful matter, especially selenium, contained in the waste water from a thermal electric power plant by bringing the waste water with the pH specified into contact with iron, conducting flocculation and solid-liq. separation and then biologically denitrifying the waste water. SOLUTION: The waste water from a thermal electric power plant contg. such oxidative matter as iodic acid and selenic acid is introduced into a pH regulating tank 1, controlled to <=pH5 with hydrochloric acid and then sent to a fine iron grain-packed column 3 by a pump 2 to elute the iron as ferrous ion and to reduce the oxidative matter and selenium compd. in the water. Sodium hydroxide is injected into the water flowing out from the column 3 in a reaction tank 4 to flocculate the iron ion as iron hydroxide, the water contg. the iron floc is sent to a settling tank 5, and solid is separated from liq. The supernatant water in the settling tank 5 is aerobically nitrated in a nitration tank 6, anaerobically denitrified in a denitrification tank 7 and further subjected to solid-liq. separation in a settling tank 8 to obtain treated water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電所排水の
処理方法に関する。さらに詳しくは、本発明は、ペルオ
キソ硫酸、ヨウ素酸、セレン酸などの酸化性物質を含有
する火力発電所排水を、効率的に生物脱窒処理すること
ができる火力発電所排水の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater from a thermal power plant. More specifically, the present invention relates to a method of treating wastewater from a thermal power plant, which can efficiently perform biological denitrification on wastewater from a thermal power plant containing oxidizing substances such as peroxosulfuric acid, iodic acid and selenate.

【0002】[0002]

【従来の技術】火力発電所においては、排煙脱硫排水、
復水脱塩排水、一般排水など種々の排水が発生する。排
煙脱硫排水には硝酸性窒素、亜硝酸性窒素が含まれ、復
水脱塩排水にはアンモニア性窒素が含まれるので、これ
らの排水は脱窒処理により窒素を除去する必要がある。
火力発電所において発生する種々の排水は、状況に応じ
て別々に処理されたり、あるいは、混合して一括処理さ
れたりする。排煙脱硫方式がスーツ混合型の場合、排水
は有害物質として重金属類、フッ素、窒素などを含み、
さらに酸化性物質としてペルオキソ硫酸、ヨウ素酸、セ
レン酸など、いわゆる酸素酸を含有する場合が多い。排
煙脱硫排水は一般的には排水貯槽より凝集沈殿処理、ろ
過処理を経由して生物脱窒処理に送られ、さらに凝集沈
殿処理及びろ過処理を経て処理水槽へ送られる。しか
し、この処理フローによると、生物脱窒処理工程におけ
る窒素除去機能がしばしば低下し、安定して火力発電所
排水の処理を行うことが困難であった。また、火力発電
所排水中に含まれるペルオキソ硫酸、ヨウ素酸、セレン
酸などの有害物質も除去する必要があるが、従来の処理
方法ではセレン濃度を排水基準である0.1mg/リット
ル以下まで低減することは困難であった。
In a thermal power plant, flue gas desulfurization wastewater,
Various kinds of wastewater such as condensate desalination wastewater and general wastewater are generated. Flue gas desulfurization wastewater contains nitrate nitrogen and nitrite nitrogen, and condensate desalination wastewater contains ammonia nitrogen. Therefore, it is necessary to remove nitrogen from these wastewaters by denitrification.
Various wastewaters generated in a thermal power plant are treated separately depending on the situation or mixed and treated collectively. If the flue gas desulfurization method is a suit mixed type, the wastewater contains heavy metals, fluorine, nitrogen, etc. as harmful substances,
Further, so-called oxygen acid such as peroxosulfuric acid, iodic acid and selenate is often contained as an oxidizing substance. Flue gas desulfurization wastewater is generally sent from a wastewater storage tank to a biological denitrification process via coagulation sedimentation treatment and filtration treatment, and further to coagulation sedimentation treatment and filtration treatment and then to a treated water tank. However, according to this treatment flow, the nitrogen removal function in the biological denitrification treatment step is often lowered, and it is difficult to stably treat the wastewater from the thermal power plant. In addition, it is necessary to remove harmful substances such as peroxosulfuric acid, iodic acid, and selenate contained in wastewater from thermal power plants, but the conventional treatment method reduces the selenium concentration to 0.1 mg / liter or less, which is the wastewater standard. It was difficult to do.

【0003】[0003]

【発明が解決しようとする課題】本発明は、生物脱窒処
理工程において安定した窒素除去機能を発揮し、排水中
に含まれる有害物質、特にセレンを効率的に除去するこ
とができる火力発電所排水の処理方法を提供することを
目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention is a thermal power plant capable of exhibiting a stable nitrogen removal function in a biological denitrification process and efficiently removing harmful substances, especially selenium, contained in wastewater. It was made for the purpose of providing a method for treating wastewater.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、生物脱窒処理工
程における機能低下が火力発電所排水中に含まれる酸化
性物質によることを見いだし、さらに、排水のpHを5以
下に調整して鉄と接触させたのち凝集処理及び固液分離
を行うことにより、酸化性物質を効率的に除去すること
が可能となることを見いだして、これらの知見に基づい
て本発明を完成するに至った。すなわち、本発明は、
(1)火力発電所排水のpHを5以下に調整して鉄と接触
させ、凝集処理及び固液分離を行ったのち、生物脱窒処
理することを特徴とする火力発電所排水の処理方法、を
提供するものである。さらに、本発明の好ましい態様と
して、(2)pHの調整に、塩酸又は硫酸を使用する第
(1)項記載の火力発電所排水の処理方法、(3)鉄が、
最大径3mm以下の微粒子、網線又は粒状の鉄又は鉄含有
率85重量%以上の鉄合金である第(1)項又は第(2)項
記載の火力発電所排水の処理方法、(4)鉄との接触
を、被処理水のpHが5〜7となるまで、又は、被処理水
の酸化還元電位が−100mV以下に到達するまで行う
第(1)項、第(2)項又は第(3)項記載の火力発電所排水
の処理方法、(5)凝集処理を、被処理水にアルカリ剤
を添加し、pHを7以上に調整することにより行う第(1)
項、第(2)項、第(3)項又は第(4)項記載の火力発電所
排水の処理方法、及び、(6)生物脱窒処理を、浮遊生
物法、生物膜法又はこれらの組み合せにより行う第(1)
項、第(2)項、第(3)項、第(4)項又は第(5)項記載の
火力発電所排水の処理方法、を挙げることができる。
As a result of intensive studies to solve the above problems, the inventors of the present invention have found that the functional deterioration in the biological denitrification process is caused by the oxidizing substances contained in the wastewater of thermal power plants. Furthermore, by adjusting the pH of the waste water to 5 or less and bringing it into contact with iron, and then performing coagulation treatment and solid-liquid separation, it was possible to efficiently remove oxidizing substances. As a result, the present invention has been completed based on these findings. That is, the present invention
(1) A method for treating thermal power plant wastewater, which comprises subjecting the thermal power plant wastewater to pH 5 or less, bringing it into contact with iron, performing coagulation treatment and solid-liquid separation, and then performing biological denitrification treatment, Is provided. Furthermore, as a preferred embodiment of the present invention, (2) the use of hydrochloric acid or sulfuric acid for pH adjustment
(1) Thermal power plant wastewater treatment method described in (1), (3) iron,
A method for treating wastewater from a thermal power plant according to item (1) or (2), which is fine particles having a maximum diameter of 3 mm or less, wire or granular iron, or an iron alloy having an iron content of 85% by weight or more, (4) The contact with iron is carried out until the pH of the water to be treated reaches 5 to 7 or until the oxidation-reduction potential of the water to be treated reaches −100 mV or less, (1), (2) or The method for treating wastewater from a thermal power plant according to (3), (5) performing coagulation treatment by adding an alkaline agent to the water to be treated and adjusting the pH to 7 or higher (1)
Item, (2), (3) or (4) the thermal power plant wastewater treatment method described in (4), and (6) biological denitrification treatment, floating organism method, biofilm method or these Combined first (1)
The method of treating wastewater from a thermal power plant according to item (2), item (3), item (4) or item (5) can be mentioned.

【0005】[0005]

【発明の実施の形態】本発明方法は、火力発電所排水の
処理に適用することができる。本発明方法は、火力発電
所において、排煙脱硫排水を単独で処理する場合にも、
また、排煙脱硫排水に火力発電所で発生する他の排水、
例えば、一般排水や復水脱塩排水を混合して処理する場
合にも適用することができる。火力発電所排水は、通
常、ペルオキソ硫酸、ヨウ素酸、セレン酸などの酸化性
物質を含有し、これらの酸化性物質は硝化細菌、脱窒細
菌に対して阻害作用を有するので、本発明方法において
は、火力発電所排水中の酸化性物質をあらかじめ除去し
たのちに生物脱窒処理を行う。本発明方法においては、
火力発電所排水にpH調整剤を加えてpHを5以下、好まし
くはpHを2〜3に調整する。使用するpH調整剤には特に
制限はないが、塩酸及び硫酸を好適に使用することがで
きる。被処理水のpHが5を超えると、鉄と接触させたと
き、被処理水への鉄の溶出に時間がかかり、あるいは被
処理水に鉄が十分に溶出しないおそれがある。火力発電
所排水のpHが5以下である場合は、必ずしもpH調整を行
う必要はない。被処理水のpHが2〜3であると、速やか
に鉄が溶出して反応に寄与するので好ましい。被処理水
のpHが1以下であると、鉄の溶出が速すぎて過剰の鉄が
溶出するおそれがある。本発明方法において、pH調整は
任意の場所において行うことができ、例えば、pH調整槽
を設けてあらかじめpH調整することができ、反応槽にお
いてpH調整剤を添加することができ、あるいは、被処理
水の配管に直接pH調整剤を供給することにより行うこと
ができる。本発明方法において、pHを5以下に調整した
被処理水を接触させる鉄としては、純鉄、粗鋼、合金
鋼、その他の鉄合金などを挙げることができる。鉄は、
鉄微粒子、鉄網線、粒状鉄など表面積の大きい形状であ
ることが好ましく、最大径が3mm以下であることが好ま
しく、0.1〜1mmであることがより好ましい。また、
鉄が鉄合金であるときは、鉄の含有率が85重量%以上
であることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention can be applied to the treatment of wastewater from thermal power plants. The method of the present invention, even in the case of treating flue gas desulfurization wastewater alone in a thermal power plant,
In addition, flue gas desulfurization wastewater, other wastewater generated at thermal power plants,
For example, it can be applied to the case of mixing and treating general wastewater and condensate desalination wastewater. Wastewater from a thermal power plant usually contains oxidizing substances such as peroxosulfuric acid, iodic acid, and selenic acid. Since these oxidizing substances have an inhibitory effect on nitrifying bacteria and denitrifying bacteria, in the method of the present invention, First removes oxidizing substances from the wastewater of thermal power plants and then performs biological denitrification. In the method of the present invention,
A pH adjusting agent is added to the wastewater of the thermal power plant to adjust the pH to 5 or less, preferably to 2 to 3. The pH adjuster used is not particularly limited, but hydrochloric acid and sulfuric acid can be preferably used. When the pH of the water to be treated exceeds 5, it may take a long time to elute iron into the water to be treated when it is brought into contact with iron, or iron may not be sufficiently eluted into the water to be treated. If the pH of wastewater from a thermal power plant is 5 or less, it is not always necessary to adjust the pH. It is preferable for the pH of the water to be treated to be 2 to 3 because iron is quickly eluted to contribute to the reaction. When the pH of the water to be treated is 1 or less, the elution of iron is too fast and excess iron may elute. In the method of the present invention, pH adjustment can be carried out at any place, for example, it is possible to preliminarily adjust the pH by providing a pH adjusting tank, a pH adjusting agent can be added in the reaction tank, or This can be done by directly supplying the pH adjusting agent to the water pipe. In the method of the present invention, examples of the iron with which the water to be treated whose pH is adjusted to 5 or less are brought into contact include pure iron, crude steel, alloy steel, and other iron alloys. Iron is
It is preferable that the particles have a large surface area such as iron fine particles, iron wire, and granular iron, and the maximum diameter is preferably 3 mm or less, more preferably 0.1 to 1 mm. Also,
When iron is an iron alloy, the iron content is preferably 85% by weight or more.

【0006】本発明方法において、pHを5以下に調整し
た被処理水と鉄を接触させる方法には特に制限はなく、
例えば、鉄微粒子、鉄網線、粒状鉄などを充填したカラ
ムに通水することにより接触させることができ、あるい
は、反応槽中において被処理水に鉄微粒子、鉄網線、粒
状鉄などを加えることにより接触させることができる。
被処理水と鉄の接触時間は、通常2〜30分とすること
が好ましいが、被処理水のpH値あるいは酸化還元電位を
測定して制御することが可能である。pHは、鉄の溶解に
より酸が消費されるので上昇し、pHが5〜7となること
を適切な接触時間を判断する基準とすることができる。
酸化還元電位は、酸化性物質が還元されることにより低
下するので、酸化還元電位が−100mV以下に到達す
ることを適切な接触時間を判断する基準とすることがで
きる。本発明方法において、pHを5以下に調整した被処
理水と鉄を接触させることにより、鉄は2価の鉄イオン
となって水中に溶出する。2価の鉄イオンは、水中のペ
ルオキソ硫酸、ヨウ素酸、セレン酸などの酸化性物質と
反応する。本発明方法において、ペルオキソ硫酸は、次
式にしたがって分解されると考えられる。 Fe → Fe2++2e S28 2-+2Fe2+ → 2SO4 2-+2Fe3+ また、ヨウ素酸は次式にしたがって還元処理されると考
えられる。 2IO3 -+10Fe2++12H+ → I2+10Fe3+
6H2O さらに、セレン酸は次式にしたがって還元処理されると
考えられる。 SeO4 2-+6Fe2++8H+ → Se0+6Fe3++4
2
In the method of the present invention, there is no particular limitation on the method of contacting iron with the water to be treated whose pH is adjusted to 5 or less,
For example, it can be brought into contact by passing water through a column packed with iron fine particles, iron wire, granular iron, or the like, or iron fine particles, iron wire, granular iron, etc. are added to the water to be treated in the reaction tank. They can be brought into contact with each other.
The contact time between the water to be treated and iron is usually preferably 2 to 30 minutes, but it can be controlled by measuring the pH value or redox potential of the water to be treated. The pH increases because the acid is consumed by the dissolution of iron, and the pH of 5 to 7 can be used as a criterion for determining an appropriate contact time.
Since the redox potential decreases due to the reduction of the oxidizing substance, it is possible to use the fact that the redox potential reaches −100 mV or less as a criterion for determining an appropriate contact time. In the method of the present invention, when the water to be treated whose pH is adjusted to 5 or less is brought into contact with iron, iron becomes divalent iron ions and is eluted in water. Divalent iron ions react with oxidizing substances such as peroxosulfate, iodic acid, and selenate in water. In the method of the present invention, peroxosulfate is considered to be decomposed according to the following formula. Fe → Fe 2+ + 2e S 2 O 8 2− + 2Fe 2+ → 2SO 4 2 + 2Fe 3+ It is considered that iodic acid is reduced according to the following formula. 2IO 3+ 10Fe 2+ + 12H + → I 2 + 10Fe 3+ +
6H 2 O Further, it is considered that selenate is reduced according to the following formula. SeO 4 2- + 6Fe 2+ + 8H + → Se 0 + 6Fe 3+ +4
H 2 O

【0007】本発明方法においては、鉄と接触すること
により水中の酸化性物質を還元したのち、被処理水の凝
集処理を行う。凝集処理の方法には特に制限はないが、
アルカリ剤を添加することにより、水中の2価の鉄イオ
ン及び3価の鉄イオンを水不溶性の水酸化第一鉄及び水
酸化第二鉄とし、鉄フロックを形成して凝集することが
好ましい。アルカリ剤の添加により、被処理水のpHを7
以上とすることが好ましく、pHを9〜10とすることが
より好ましい。被処理水のpHが7未満であると、鉄フロ
ックなどの凝集が不十分となるおそれがある。被処理水
のpHを7以上とすることにより、次式のように、水中の
2価の鉄イオンは水不溶性の水酸化第一鉄となり、3価
の鉄イオンは水不溶性の水酸化第二鉄となる。 Fe2++2NaOH → Fe(OH)2+2Na+ Fe3++3NaOH → Fe(OH)3+3Na+ このとき、還元されたセレンは、生成する水酸化鉄のフ
ロックに吸着され、凝集分離される。さらに、フッ素の
一部も、鉄フロックに吸着され、凝集分離される。本発
明方法においては、被処理水のpHを7以上にすることに
より、水酸化物が水不溶性であるその他の金属イオン
も、同様に水酸化物となってフロックを形成する。ま
た、この際、火力発電所排水に含まれる懸濁物質、還元
されたセレン、フッ化物成分などは、鉄フロックに吸着
されて同時に凝集する。さらに、水中に鉄の超微粒子が
浮遊している場合は、鉄の超微粒子も鉄フロックに吸着
されて凝集する。また、反応系が空気に開放されている
場合は、2価の鉄イオンが空気酸化を受けて、一部が酸
化第二鉄の微粒子となり、酸化第二鉄の微粒子は鉄フロ
ックに吸着されて凝集する。
In the method of the present invention, the oxidizing substance in the water is reduced by contacting with iron, and then the water to be treated is coagulated. There is no particular limitation on the method of aggregation treatment,
By adding an alkaline agent, it is preferable that divalent iron ions and trivalent iron ions in water are converted to water-insoluble ferrous hydroxide and ferric hydroxide to form iron flocs and aggregate. The pH of the water to be treated is adjusted to 7 by adding an alkaline agent.
The above is preferable, and the pH is more preferably 9 to 10. If the pH of the water to be treated is less than 7, aggregation of iron flocs and the like may be insufficient. By adjusting the pH of the water to be treated to 7 or more, divalent iron ions in water become water-insoluble ferrous hydroxide as shown in the following formula, and trivalent iron ions become water-insoluble ferric hydroxide. Becomes iron. Fe2 ++ 2NaOH → Fe (OH) 2 + 2Na + Fe3 ++ 3NaOH → Fe (OH) 3 + 3Na + At this time, the reduced selenium is adsorbed on the flocs of the iron hydroxide to be produced and separated by aggregation. Further, part of the fluorine is also adsorbed on the iron flocs and aggregated and separated. In the method of the present invention, by adjusting the pH of the water to be treated to 7 or more, other metal ions whose hydroxides are insoluble in water also become hydroxides to form flocs. At this time, suspended matter, reduced selenium, fluoride components, etc. contained in the wastewater of the thermal power plant are adsorbed by the iron flocs and coagulate at the same time. Further, when ultrafine iron particles are suspended in water, the ultrafine iron particles are also adsorbed by the iron flocs and aggregated. Further, when the reaction system is open to the air, the divalent iron ions undergo air oxidation and part of them become ferric oxide fine particles, and the ferric oxide fine particles are adsorbed on the iron flocs. Aggregate.

【0008】本発明方法において、被処理水のpHを7以
上にするためのアルカリ剤には特に制限はなく、例え
ば、水酸化ナトリウム、消石灰、水酸化カリウム、炭酸
ナトリウム、炭酸カリウム、カーバイド滓など使用する
ことができるが、水酸化ナトリウム及び消石灰を特に好
適に使用することができる。本発明方法においては、ア
ルカリ剤の添加による凝集処理の際に、さらに高分子凝
集剤を添加することができる。高分子凝集剤の添加によ
り、フロックが粗大化し、水からの分離が容易になる。
使用する高分子凝集剤には特に制限はなく、例えば、ポ
リアクリルアミド、ポリエチレンオキシド、尿素−ホル
マリン樹脂などのノニオン性高分子凝集剤、ポリアミノ
アルキルメタクリレート、ポリエチレンイミン、ハロゲ
ン化ポリジアリルアンモニウム、キトサンなどのカチオ
ン性高分子凝集剤、ポリアクリル酸ナトリウム、ポリア
クリルアミド部分加水分解物、部分スルホメチル化ポリ
アクリルアミド、ポリ(2−アクリルアミド)−2−メチ
ルプロパン硫酸塩などのアニオン性高分子凝集剤などを
使用することができる。これらの高分子凝集剤の中で、
アニオン性高分子凝集剤は凝集効果に優れているので、
特に好適に使用することができる。本発明方法において
は、凝集処理ののち固液分離を行うことにより、凝集処
理により生成したフロックを除去し、被処理水を分離す
る。固液分離方法には特に制限はなく、沈殿、ろ過、遠
心分離、膜分離など任意の固液分離方法を使用すること
ができる。これらの固液分離方法の中で、膜分離は微細
なSSをも除去することができ、装置を小型化すること
が可能であるので、特に好適に使用することができる。
In the method of the present invention, the alkaline agent for adjusting the pH of the water to be treated to 7 or more is not particularly limited, and examples thereof include sodium hydroxide, slaked lime, potassium hydroxide, sodium carbonate, potassium carbonate, and carbide slag. Although it can be used, sodium hydroxide and slaked lime can be used particularly preferably. In the method of the present invention, a polymer flocculant can be further added during the flocculation treatment by adding the alkali agent. The addition of the polymeric flocculant coarsens the flocs and facilitates their separation from water.
The polymer flocculant used is not particularly limited, and examples thereof include polyacrylamide, polyethylene oxide, nonionic polymer flocculants such as urea-formalin resin, polyaminoalkylmethacrylate, polyethyleneimine, halogenated polydiallylammonium, and chitosan. Use cationic polymer flocculant, sodium polyacrylate, polyacrylamide partial hydrolyzate, partially sulfomethylated polyacrylamide, anionic polymer flocculant such as poly (2-acrylamide) -2-methylpropane sulfate be able to. Among these polymer flocculants,
Since the anionic polymer flocculant has an excellent flocculating effect,
It can be particularly preferably used. In the method of the present invention, the floc generated by the coagulation treatment is removed by performing solid-liquid separation after the coagulation treatment, and the water to be treated is separated. The solid-liquid separation method is not particularly limited, and any solid-liquid separation method such as precipitation, filtration, centrifugation or membrane separation can be used. Among these solid-liquid separation methods, the membrane separation can remove even fine SS, and the apparatus can be downsized, so that it can be particularly preferably used.

【0009】本発明方法においては、固液分離により得
られた被処理水を、つづいて生物脱窒処理する。生物脱
窒処理は、硝化工程及び脱窒工程の組み合せにより行
う。硝化工程においては、アンモニアが硝化細菌により
亜硝酸や硝酸に酸化される。硝化細菌は、自然界に広く
存在する独立栄養菌であり、Nitrosomonas
がアンモニアを亜硝酸に酸化し、Nitrobacte
rが亜硝酸を硝酸に酸化して、いずれも遊離するエネル
ギーを二酸化炭素の還元的同化に利用する。脱窒工程に
おいては、亜硝酸や硝酸が脱窒細菌により還元されて窒
素ガスとなる。脱窒細菌としては、Pseudomon
as、Micrococcus、Spirillumな
どがあり、硝酸、亜硝酸の還元過程において、これらが
酸素に代わって生体酸化の終局酸化剤となる。排水中の
窒素分として、アンモニア性窒素が少なく、硝酸性窒
素、亜硝酸性窒素を主とするときは硝化工程を省いて脱
窒細菌による処理のみとすることができるが、通常は、
硝化工程及び脱窒工程を利用して行う。硝化は、曝気し
て酸素を供給する好気的条件下に、被処理水と活性汚泥
を接触させることにより進行する。脱窒は、嫌気条件下
に炭素源を供給しながら、被処理水と活性汚泥とを接触
させることにより進行する。本発明方法において、生物
脱窒法は、活性汚泥法などの浮遊生物法又は懸濁粒子生
物膜法、固定生物膜法などの生物膜法のいずれの処理法
によっても行うことができ、さらにこれらの方法を組み
合わせて行うことができる。また、硝化及び脱窒からな
る生物脱窒処理は、通常知られている方式を採用するこ
とができ、例えば、硝化槽、脱窒槽をそれぞれ設ける二
槽式、あるいは、硝化、脱窒を一槽で行う方式により行
うことができる。また、連続式又は回分式のいずれの処
理方法でもよく、さらに、硝化処理水を脱窒槽に循環す
る循環脱窒法、原水を分注するステップ脱窒法などによ
ることができる。本発明方法において、鉄との接触、凝
集処理後の被処理水は、必要に応じてpH調整して、生物
脱窒処理することができる。生物脱窒処理における硝化
工程では、被処理水のpHが低下するので、硝化槽内の水
のpHを弱アルカリ性に維持することが好ましい。本発明
方法によれば、凝集処理後の被処理水は通常アルカリ性
であり、そのまま硝化槽に導入できることが多いが、pH
調整をする場合でも必要とするpH調整剤は少量である。
In the method of the present invention, the water to be treated obtained by solid-liquid separation is subsequently subjected to biological denitrification treatment. The biological denitrification treatment is performed by a combination of a nitrification process and a denitrification process. In the nitrification process, ammonia is oxidized by nitrifying bacteria into nitrous acid and nitric acid. Nitrifying bacteria are autotrophic bacteria that exist widely in nature, and Nitrosomonas
Oxidizes ammonia to nitrous acid, and Nitrobacte
r oxidizes nitrous acid to nitric acid, and the energy released in each case is used for reductive assimilation of carbon dioxide. In the denitrification step, nitrous acid and nitric acid are reduced to nitrogen gas by denitrifying bacteria. As denitrifying bacteria, Pseudomon
As, Micrococcus, Spirillum and the like are present, and in the reduction process of nitric acid and nitrous acid, they replace oxygen and become a final oxidant for biological oxidation. As the nitrogen content in the wastewater, there is little ammonia nitrogen, nitrate nitrogen, when mainly nitrite nitrogen can be omitted and only treatment with denitrifying bacteria can be omitted, but usually,
The nitrification process and the denitrification process are used. Nitrification proceeds by bringing water to be treated into contact with activated sludge under aerobic conditions where aeration is performed to supply oxygen. The denitrification proceeds by bringing the water to be treated into contact with activated sludge while supplying a carbon source under anaerobic conditions. In the method of the present invention, the biological denitrification method can be carried out by any treatment method such as a suspended biological method such as an activated sludge method or a suspended particle biofilm method, and a biofilm method such as a fixed biofilm method. A combination of methods can be used. Further, the biological denitrification treatment consisting of nitrification and denitrification can adopt a generally known method, for example, a nitrification tank, a two-tank type in which a denitrification tank is provided, or nitrification and denitrification in one tank. It can be performed by the method described in 1. Further, either a continuous treatment method or a batch treatment method may be used, and further, a circulating denitrification method of circulating nitrification-treated water in a denitrification tank, a step denitrification method of dispensing raw water, or the like can be used. In the method of the present invention, the water to be treated after contact with iron and coagulation treatment can be subjected to biological denitrification treatment by adjusting the pH as necessary. In the nitrification step in the biological denitrification treatment, the pH of the water to be treated decreases, so it is preferable to maintain the pH of the water in the nitrification tank at weak alkaline. According to the method of the present invention, the water to be treated after the coagulation treatment is usually alkaline, and it is often possible to introduce the water as it is into the nitrification tank.
Even if the pH is adjusted, a small amount of the pH adjuster is required.

【0010】本発明方法において、排煙脱硫排水に他の
排水を混合して処理する場合は、あらかじめ混合した火
力発電所排水を本発明方法に従って処理することがで
き、あるいは、排煙脱硫排水を鉄接触工程及び凝集工程
で処理したのち、他の排水と混合して生物脱窒処理する
ことができる。排煙脱硫排水のみを鉄接触工程及び凝集
工程で処理する方法は、処理装置が小さくなり、使用薬
品も少なくなるので好ましい。本発明方法においては、
鉄との接触工程の前に、凝集処理、ろ過などの前処理工
程を設けることができる。前処理工程を設けることによ
り、排水中の除去しやすい懸濁物や汚染物の一部を除去
し、後続の工程の負荷を軽減することができる。特に、
鉄接触のためにカラムを使用するときは、懸濁物が鉄充
填層を目詰まりさせないよう、あらかじめ除去しておく
ことが好ましい。また、生物脱窒処理工程後にも、所望
の処理水質により、凝集、ろ過などの後処理工程を設け
ることができる。さらに、COD吸着工程を任意の位置
に設けることができる。図1は、本発明方法の実施の一
態様の工程系統図である。火力発電所排水をpH調整槽1
に導き、塩酸を加えてpHを5以下に調整する。pH調整を
終了した被処理水を、ポンプ2により鉄微粒子充填カラ
ム3へ送り、鉄を2価の鉄イオンとして溶出させ、被処
理水中の酸化性物質やセレン化合物を還元処理する。鉄
微粒子充填カラムより流出した被処理水は反応槽4へ送
り、水酸化ナトリウムを注入し、pHを7以上に調整して
鉄イオンを水酸化鉄として凝集させる。反応槽において
鉄フロックを形成した被処理水は、沈殿分離槽5へ送
り、固液分離する。沈殿分離槽の上澄水は、硝化槽6に
おいて好気性硝化、次いで脱窒槽7において嫌気性脱窒
を行い、さらに沈殿分離槽8において再び固液分離を行
って処理水を得る。
In the method of the present invention, when the flue gas desulfurization effluent is mixed with another effluent to be treated, the effluent desulfurization effluent which has been mixed in advance can be treated according to the method of the present invention. After the treatment in the iron contacting step and the coagulating step, it can be mixed with other waste water to perform biological denitrification treatment. The method of treating only the flue gas desulfurization wastewater in the iron contacting step and the aggregating step is preferable because it requires a smaller processing apparatus and uses less chemicals. In the method of the present invention,
Before the step of contacting with iron, a pretreatment step such as coagulation treatment or filtration can be provided. By providing the pretreatment step, it is possible to remove a part of easily-removed suspensions and contaminants in the wastewater and reduce the load of the subsequent steps. Especially,
When using the column for iron contact, it is preferable to remove it beforehand so that the suspension does not clog the iron packed bed. Further, after the biological denitrification treatment step, a post-treatment step such as coagulation or filtration can be provided depending on the desired treated water quality. Further, the COD adsorption step can be provided at any position. FIG. 1 is a process flow chart of an embodiment of the method of the present invention. Wastewater from thermal power plant pH adjustment tank 1
And adjust the pH to 5 or less by adding hydrochloric acid. The water to be treated whose pH has been adjusted is sent to the iron fine particle packed column 3 by the pump 2 to elute iron as divalent iron ions to reduce the oxidizing substances and selenium compounds in the water to be treated. The water to be treated flowing out from the column packed with iron fine particles is sent to the reaction tank 4, sodium hydroxide is injected, and the pH is adjusted to 7 or higher to aggregate iron ions as iron hydroxide. The water to be treated in which iron flocs are formed in the reaction tank is sent to the precipitation separation tank 5 and is subjected to solid-liquid separation. The supernatant water of the precipitation separation tank is subjected to aerobic nitrification in the nitrification tank 6, then anaerobic denitrification in the denitrification tank 7, and further subjected to solid-liquid separation in the precipitation separation tank 8 to obtain treated water.

【0011】[0011]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 参考例1(ペルオキソ硫酸による硝化の阻害) ペルオキソ硫酸イオン(S28 2-)100mg/リットル
を含む凝集沈殿ろ過水を、そのまま及び2倍、10倍、
20倍に希釈して、ペルオキソ硫酸イオン濃度が5〜1
00mg/リットルの水4種類を調製した。純水及びペル
オキソ硫酸イオンを含む水に、アンモニアを濃度が50
mg/リットルとなるよう添加した。これら5種類の検水
に、硝化細菌を付着した担体を一定量添加し、25℃で
ロータリーシエカー内で振盪させ、一定時間毎にアンモ
ニア濃度を測定し、アンモニア濃度の減少速度から硝化
速度を求めた。ペルオキソ硫酸イオンを含まない検水と
の硝化速度の比を、硝化活性比とした。ペルオキソ硫酸
イオン濃度が5、10、50及び100mg/リットルの
ときの硝化活性比は、それぞれ82、77、50及び3
4%であった。結果を図2に示す。ペルオキソ硫酸イオ
ン濃度の増加とともに、硝化活性が低下することが分か
った。 参考例2(ヨウ素酸イオンによる硝化の阻害) 純水に、ヨウ素酸イオン濃度が1、5、10及び20mg
/リットルになるようヨウ素酸を添加し、さらに純水及
びヨウ素酸イオンを含む水に、アンモニアを濃度が50
mg/リットルとなるよう添加した。これら5種類の検水
に、硝化細菌を付着した担体を一定量添加し、25℃で
ロータリーシエカー内で振盪させ、一定時間毎にアンモ
ニア濃度を測定し、アンモニア濃度の減少速度から硝化
速度を求めた。ヨウ素酸イオンを含まない検水との硝化
速度の比を、硝化活性比とした。ヨウ素酸イオン濃度が
1、5、10及び20mg/リットルのときの硝化活性比
は、それぞれ100、100、68及び38%であっ
た。結果を図3に示す。ヨウ素酸イオン濃度が5mg/リ
ットル以下では硝化活性比は100%となり硝化の阻害
は認められないが、ヨウ素酸イオン濃度が5mg/リット
ルを超えると硝化活性比は急激に低下し、ヨウ素酸イオ
ン濃度約15mg/リットルで半減することが分かった。
参考例1及び参考例2の結果から、ペルオキソ硫酸イオ
ンは5mg/リットル以下の濃度でも硝化を阻害し、濃度
50mg/リットルにおいて硝化活性が半減する。一方、
ヨウ素酸イオンは5mg/リットル以下の濃度では硝化を
阻害しないが、濃度15mg/リットルにおいて硝化活性
が半減する。このように、ペルオキソ硫酸イオンとヨウ
素酸イオンは、硝化を阻害する状態は細部では異なる
が、いずれも硝化細菌に対して強い阻害作用を有する。 実施例1(火力発電所排水の処理) pHが6.5であり、ペルオキソ硫酸イオン10mg/リッ
トル、ヨウ素酸イオン5mg/リットル、銅1mg/リット
ル、鉛0.5mg/l、亜鉛0.5mg/リットル、セレン
0.5mg/リットル、フッ素30mg/リットル及び硝酸
性窒素20mg/リットルを含む排煙脱硫排水に、アンモ
ニア性窒素100mg/リットルを含む一般排水を1:1
で混合し、図1に示す装置を用いて処理を行った。pH調
整槽において塩酸300mg/リットルを注入してpHを
2.5に調整し、この水をポンプにより粒径0.6mmの鉄
粒子を充填したカラムに上向流で通水速度SV20hr-1
で通水し、流出する水を反応槽に導いた。反応槽におい
て水酸化ナトリウム350mg/リットルを注入してpHを
9に調整し、凝集反応を行った。その後、沈殿分離槽に
導き固液分離を行った。固液分離後の上澄水の水質は、
pHは7.0であり、ペルオキソ硫酸イオン0.1mg/リッ
トル以下、ヨウ素酸イオン0.1mg/リットル以下、
銅、鉛、亜鉛、セレンはいずれも0.1mg/リットル以
下の濃度であった。また、フッ素の濃度は10mg/リッ
トルであった。この水を、つづいて窒素除去のため、硝
化槽及び脱窒槽へ通水処理し、さらに沈殿槽において懸
濁物を除去した。処理水中の全窒素の濃度は、8mg/リ
ットルであった。 比較例1 実施例1に用いた排煙脱硫排水と一般排水の1:1混合
水を、凝集沈殿処理したのち生物脱窒処理を行った。凝
集処理工程においては、水酸化ナトリウム200mg/リ
ットル及びアニオン性高分子凝集剤0.5mg/リットル
を添加して凝集処理及び固液分離し、次いで実施例1と
同様に硝化槽及び脱窒槽へ通水処理し、さらに沈殿槽に
おいて懸濁物を除去した。硝化槽出口における被処理水
のアンモニア性窒素の濃度は10mg/リットルであり、
通水を継続すると徐々に高くなる傾向が確認された。処
理水のpHは7.5であり、ヨウ素酸イオン2.5mg/リッ
トル、セレン0.3mg/リットル、全窒素20mg/リッ
トルが残留していた。実施例1及び比較例1の結果を、
第1表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Reference Example 1 (Inhibition of nitrification by peroxosulfuric acid) Coagulated sediment filtered water containing 100 mg / l of peroxosulfuric acid ion (S 2 O 8 2− ) was used as it was and 2 times, 10 times,
Dilute 20 times to give a peroxosulfate ion concentration of 5 to 1
Four kinds of water of 00 mg / liter were prepared. Ammonia concentration of 50 in pure water and water containing peroxosulfate ion
It was added to be mg / l. A fixed amount of a carrier to which nitrifying bacteria were attached was added to these five types of test water, and the mixture was shaken in a rotary shaker at 25 ° C, the ammonia concentration was measured at regular intervals, and the nitrification rate was calculated from the decreasing rate of ammonia concentration. I asked. The ratio of the nitrification rate to the sample water containing no peroxosulfate ion was defined as the nitrification activity ratio. When the peroxosulfate ion concentration was 5, 10, 50 and 100 mg / liter, the nitrification activity ratios were 82, 77, 50 and 3, respectively.
4%. The results are shown in FIG. It was found that the nitrification activity decreased with the increase of the peroxosulfate ion concentration. Reference Example 2 (Inhibition of nitrification by iodate ion) Pure water having an iodate ion concentration of 1, 5, 10 and 20 mg
Iodic acid is added to adjust the concentration to be 1 / liter, and ammonia is added to pure water and water containing iodate ions at a concentration of 50
It was added to be mg / l. A fixed amount of a carrier to which nitrifying bacteria were attached was added to these five types of test water, and the mixture was shaken in a rotary shaker at 25 ° C, the ammonia concentration was measured at regular intervals, and the nitrification rate was calculated from the decreasing rate of ammonia concentration. I asked. The ratio of nitrification rate to that of sample water containing no iodate ion was defined as the nitrification activity ratio. The nitrification activity ratios at the iodate ion concentrations of 1, 5, 10 and 20 mg / liter were 100, 100, 68 and 38%, respectively. The results are shown in FIG. When the iodate ion concentration is 5 mg / liter or less, the nitrification activity ratio is 100% and no inhibition of nitrification is observed, but when the iodate ion concentration exceeds 5 mg / liter, the nitrification activity ratio sharply decreases and the iodate ion concentration It was found to be halved at about 15 mg / liter.
From the results of Reference Example 1 and Reference Example 2, peroxosulfate ion inhibits nitrification even at a concentration of 5 mg / liter or less, and the nitrification activity is halved at a concentration of 50 mg / liter. on the other hand,
Iodiate ion does not inhibit nitrification at a concentration of 5 mg / liter or less, but the nitrification activity is halved at a concentration of 15 mg / liter. Thus, the peroxosulfate ion and the iodate ion have strong inhibitory effects on nitrifying bacteria, although the states of inhibiting nitrification differ in details. Example 1 (Treatment of wastewater from thermal power plant) pH is 6.5, peroxosulfate ion 10 mg / liter, iodate ion 5 mg / liter, copper 1 mg / liter, lead 0.5 mg / l, zinc 0.5 mg / liter Liter, selenium 0.5 mg / liter, fluorine 30 mg / liter, and flue gas desulfurization wastewater containing nitrate nitrogen 20 mg / liter and general wastewater containing ammoniacal nitrogen 100 mg / liter 1: 1
Were mixed and treated using the apparatus shown in FIG. In the pH adjusting tank, 300 mg / liter of hydrochloric acid was injected to adjust the pH to 2.5, and this water was pumped up through a column packed with iron particles having a particle diameter of 0.6 mm in an upward flow rate SV20 hr -1.
The water flowing out was led to the reaction tank. In the reaction tank, 350 mg / liter of sodium hydroxide was injected to adjust the pH to 9, and the aggregation reaction was performed. After that, the solid-liquid separation was conducted by introducing it into a precipitation separation tank. The quality of the supernatant water after solid-liquid separation is
pH is 7.0, peroxosulfate ion is 0.1 mg / liter or less, iodate ion is 0.1 mg / liter or less,
The concentrations of copper, lead, zinc and selenium were all 0.1 mg / liter or less. The concentration of fluorine was 10 mg / liter. This water was then passed through a nitrification tank and a denitrification tank to remove nitrogen, and a suspension was removed in a precipitation tank. The concentration of total nitrogen in the treated water was 8 mg / liter. Comparative Example 1 A 1: 1 mixed water of flue gas desulfurization wastewater and general wastewater used in Example 1 was subjected to coagulation sedimentation treatment and then biological denitrification treatment. In the coagulation treatment step, 200 mg / liter of sodium hydroxide and 0.5 mg / liter of anionic polymer coagulant were added to perform coagulation treatment and solid-liquid separation, and then the mixture was passed to a nitrification tank and a denitrification tank as in Example 1. After water treatment, the suspension was removed in a settling tank. The concentration of ammonia nitrogen in the water to be treated at the outlet of the nitrification tank is 10 mg / liter,
It was confirmed that the water flow gradually increased as the water flow continued. The pH of the treated water was 7.5, and 2.5 mg / liter of iodate ion, 0.3 mg / liter of selenium, and 20 mg / liter of total nitrogen remained. The results of Example 1 and Comparative Example 1 are
It is shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明方法によれば、従来は処理が困難
であった酸化性物質を含む火力発電所排水を、あらかじ
め鉄と接触させて還元反応処理、凝集処理及び固液分離
することによって、生物脱窒処理の機能を向上させ、安
定して硝化及び脱窒を行うことができる。また、従来は
低濃度まで除去することが困難であった排水中のセレン
を、規制値0.1mg/リットル以下まで低減することが
できる。
EFFECTS OF THE INVENTION According to the method of the present invention, wastewater from a thermal power plant containing an oxidizing substance, which has been difficult to treat in the past, is brought into contact with iron in advance for reduction reaction treatment, coagulation treatment and solid-liquid separation. It is possible to improve the function of biological denitrification treatment and perform nitrification and denitrification stably. Further, it is possible to reduce selenium in wastewater, which was conventionally difficult to remove to a low concentration, to a regulated value of 0.1 mg / liter or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明方法の実施の一態様の工程系統
図である。
FIG. 1 is a process flow chart of an embodiment of the method of the present invention.

【図2】図2は、ペルオキソ硫酸イオン濃度と硝化活性
比の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between peroxosulfate ion concentration and nitrification activity ratio.

【図3】図3は、ヨウ素酸イオン濃度と硝化活性比の関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between iodate ion concentration and nitrification activity ratio.

【符号の説明】[Explanation of symbols]

1 pH調整槽 2 ポンプ 3 鉄微粒子充填カラム 4 反応槽 5 沈殿分離槽 6 硝化槽 7 脱窒槽 8 沈殿分離槽 1 pH adjusting tank 2 Pump 3 Iron fine particle packed column 4 Reaction tank 5 Precipitation separation tank 6 Nitrification tank 7 Denitrification tank 8 Precipitation separation tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武藤 憲一 東京都中央区銀座六丁目15番1号 電源開 発株式会社内 (72)発明者 生越 勤 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 鶴丸 陽佳 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Muto 6-15-1, Ginza, Chuo-ku, Tokyo Power source development Co., Ltd. (72) Inventor Tsutomu Ogoshi 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo No. Kurita Industry Co., Ltd. (72) Inventor Haruka Tsurumaru 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】火力発電所排水のpHを5以下に調整して鉄
と接触させ、凝集処理及び固液分離を行ったのち、生物
脱窒処理することを特徴とする火力発電所排水の処理方
法。
1. Treatment of wastewater from a thermal power plant, which comprises adjusting the pH of the wastewater from a thermal power plant to 5 or less, bringing it into contact with iron, performing coagulation treatment and solid-liquid separation, and then performing biological denitrification treatment. Method.
JP13089096A 1996-04-26 1996-04-26 Thermal power plant wastewater treatment method Expired - Lifetime JP4382167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13089096A JP4382167B2 (en) 1996-04-26 1996-04-26 Thermal power plant wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13089096A JP4382167B2 (en) 1996-04-26 1996-04-26 Thermal power plant wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH09290297A true JPH09290297A (en) 1997-11-11
JP4382167B2 JP4382167B2 (en) 2009-12-09

Family

ID=15045109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13089096A Expired - Lifetime JP4382167B2 (en) 1996-04-26 1996-04-26 Thermal power plant wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4382167B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036497A (en) * 2006-08-03 2008-02-21 Chugoku Electric Power Co Inc:The Wastewater treatment method
KR20110129863A (en) 2009-03-24 2011-12-02 쿠리타 고교 가부시키가이샤 Method of treating coal gasification wastewater
JP5828969B2 (en) * 2012-11-30 2015-12-09 オルガノ株式会社 Coal gasification wastewater treatment system and coal gasification wastewater treatment method
CN105967397A (en) * 2016-07-01 2016-09-28 华电水务工程有限公司 Industrial wastewater treatment system for thermal power plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036497A (en) * 2006-08-03 2008-02-21 Chugoku Electric Power Co Inc:The Wastewater treatment method
JP4671928B2 (en) * 2006-08-03 2011-04-20 中国電力株式会社 Wastewater treatment method
KR20110129863A (en) 2009-03-24 2011-12-02 쿠리타 고교 가부시키가이샤 Method of treating coal gasification wastewater
JP5828969B2 (en) * 2012-11-30 2015-12-09 オルガノ株式会社 Coal gasification wastewater treatment system and coal gasification wastewater treatment method
JPWO2014083903A1 (en) * 2012-11-30 2017-01-05 オルガノ株式会社 Coal gasification wastewater treatment system and coal gasification wastewater treatment method
CN105967397A (en) * 2016-07-01 2016-09-28 华电水务工程有限公司 Industrial wastewater treatment system for thermal power plant

Also Published As

Publication number Publication date
JP4382167B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP3739480B2 (en) Treatment method of flue gas desulfurization waste water
CN110092503B (en) Method for treating copper-nickel alloy electroplating wastewater of pyrophosphate-citric acid system
US6033572A (en) Method and apparatus for treating selenium-containing waste water
JP4703370B2 (en) Nitrogen-containing wastewater treatment method
JP2010000479A (en) Organic raw water denitrification method including scale prevention
JP3811522B2 (en) Thermal power plant wastewater treatment method
CN110092502B (en) Method for treating pyrophosphate-zinc citrate nickel alloy electroplating wastewater
JP6789779B2 (en) Wastewater treatment method, wastewater treatment system and coal gasification combined cycle equipment equipped with it
JP4382167B2 (en) Thermal power plant wastewater treatment method
JP4507267B2 (en) Water treatment method
JPH10118664A (en) Treatment of waste water containing cyan compound and organic matter
CN110540336A (en) treatment method and application of ammoximation wastewater
JP3382766B2 (en) Method and apparatus for treating human wastewater
KR100470350B1 (en) Method for disposing of livestock waste water
CN110759511B (en) Treatment method of gun black tin-nickel alloy electroplating wastewater
JP3358388B2 (en) Treatment method for selenium-containing water
JPH11319889A (en) Treatment of selenium-containing waste water and device therefor
CN220223868U (en) Thallium removal system for high-salt high-COD sintering desulfurization wastewater
JPH09155368A (en) Treatment process for flue gas desulfurization drain
JP2720096B2 (en) Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater
JP4214319B2 (en) Method for treating selenium-containing water
JPH10128388A (en) Method and apparatus for treating selenium-containing waste water
JPH09187790A (en) Method for treating selenium-containing water
JPH07163987A (en) Complete treatment of water
JP2024042492A (en) Activated sludge acclimation method, organic wastewater treatment method, and organic wastewater treatment apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070201

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term