JP2007325981A - Circulation-type apparatus for preparing ozone water and method for operating the same - Google Patents

Circulation-type apparatus for preparing ozone water and method for operating the same Download PDF

Info

Publication number
JP2007325981A
JP2007325981A JP2006156858A JP2006156858A JP2007325981A JP 2007325981 A JP2007325981 A JP 2007325981A JP 2006156858 A JP2006156858 A JP 2006156858A JP 2006156858 A JP2006156858 A JP 2006156858A JP 2007325981 A JP2007325981 A JP 2007325981A
Authority
JP
Japan
Prior art keywords
ozone
water
ozone water
tank
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006156858A
Other languages
Japanese (ja)
Other versions
JP4909648B2 (en
Inventor
Hidekazu Saito
英一 斉藤
Yoshiyuki Seya
良之 瀬谷
Atsushi Kobayashi
篤史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2006156858A priority Critical patent/JP4909648B2/en
Publication of JP2007325981A publication Critical patent/JP2007325981A/en
Application granted granted Critical
Publication of JP4909648B2 publication Critical patent/JP4909648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circulation-type apparatus for preparing ozone water capable of always maintaining an ozone concentration in the ozone water in a circulation path in the apparatus at a predetermined value and supplying the ozone water having a predetermined ozone concentration to a cleaning tank. <P>SOLUTION: The circulation type apparatus for preparing ozone water stably supplies ozone water having a predetermined ozone concentration prepared by steps of measuring the ozone concentration in the ozone water in an ozone dissolving tank 3, controlling the ozone gas supply to the ozone dissolving tank 3 by controlling electrolysis current to an electrolysis-type ozone gas generator 1 and/or switching the ozone flow by valve B from the measured value, controlling the liquid level in a circulation tank 2 by virtue of a level gauge LS attached to the circulation tank 2, and maintaining the ozone concentration in the ozone water in the circulation path at a predetermined value by repeating replenishment and suspension thereof of ultrapure water to the circulation tank 2. A method for operating the same is also disclosed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、使用する超純水の使用量を大幅に削減し、節水を可能とするとともに、オゾン水濃度の立ち上がり時間をゼロとすることができ、かつ、循環式オゾン水供給装置内の循環経路中のオゾン水濃度を常に設定した濃度に保ち、常時、設定したオゾン水濃度のオゾン水を洗浄槽に供給するための循環型オゾン水製造装置及び該装置の運転方法に関するものである。   The present invention significantly reduces the amount of ultrapure water used, enables water saving, makes the rise time of the ozone water concentration zero, and circulates in the circulating ozone water supply device. The present invention relates to a circulation type ozone water production apparatus for maintaining ozone water concentration in a path at a set concentration at all times and constantly supplying ozone water having a set ozone water concentration to a cleaning tank, and a method for operating the device.

近年、環境に対する人々の関心は高まっており、エネルギーや水、薬品等の資源を多量に消費する半導体製造工場においてもこれらの削減が日々の課題となっている。特に半導体工場において洗浄等に使用される超純水は、活性炭処理工程、紫外線酸化工程、RO膜処理工程、UF膜工程、イオン交換工程、電気透析工程、脱気工程等の複数の厳密に管理された工程を通して製造されるが、この時多量のエネルギーを消費する上、工程にて消費される薬品や機器も多い。このため、超純水の使用量の削減は、半導体製造工場の省エネルギー化、省資源化に直結しており、当然、工場で製造される半導体装置の製造原価、ひいては価格競争力にも大きな影響を与える。
また、半導体製造工場で使用されるオゾン水は、ベアウェハや半導体回路を形成したシリコンウェハの表面洗浄、表面酸化に主として用いられる。オゾンはフッ素に次ぐ強い酸化力を有しており、また反応後及び経時後は無害な酸素になることから、超純水にppmオーダーのオゾンガスを溶解しただけのオゾン水は、従来の濃硫酸等の薬液を多用する洗浄方法と比較して、清浄性、酸化能力、後処理の簡易化、の面で有利であり、広く普及している。
In recent years, people's interest in the environment has increased, and these reductions have become a daily issue even in semiconductor manufacturing plants that consume a large amount of resources such as energy, water, and chemicals. In particular, ultrapure water used for cleaning, etc. in semiconductor factories is strictly controlled by multiple processes such as activated carbon treatment, UV oxidation, RO membrane treatment, UF membrane, ion exchange, electrodialysis, and degassing. In this process, a large amount of energy is consumed, and many chemicals and equipment are consumed in the process. For this reason, the reduction in the amount of ultrapure water used is directly linked to energy saving and resource saving in semiconductor manufacturing plants, and of course, it has a major impact on the manufacturing cost of semiconductor devices manufactured in the factory, and in turn on price competitiveness. give.
Ozone water used in semiconductor manufacturing plants is mainly used for surface cleaning and surface oxidation of silicon wafers on which bare wafers and semiconductor circuits are formed. Ozone has the strong oxidizing power after fluorine and becomes harmless oxygen after the reaction and after the lapse of time. Therefore, ozone water in which ozone gas in the order of ppm is dissolved in ultrapure water is the conventional concentrated sulfuric acid. Compared with cleaning methods that frequently use chemical solutions such as the above, it is advantageous in terms of cleanliness, oxidation ability, and simplification of post-treatment, and is widely spread.

半導体洗浄に用いるオゾン水製造方法としては、多孔質PTFE膜を介した気液接触方式が採用される。この方式は、ハウジング内に収納された多孔質PTFE膜の片側にオゾンガスを、もう片側に超純水を流通させるようオゾン溶解槽を構成するもので、超純水側の膜表面にてオゾンガスを超純水に溶解させる方式である。このオゾン水製造方法の長所としては、気泡を用いるバブリングなどの方式と異なり、気液接触面積が一定していることから製造されるオゾン水濃度が経時安定しやすいこと、オゾンガスを多孔質PTFEを通過した後に超純水を接触させるためオゾンガス中の微粒子が除去され清浄なオゾン水が製造できること、多孔質PTFE膜自体が十分なオゾン耐性を有しており膜自体の劣化等による不純物の発生及び超純水への混入がないこと、等半導体製造に用いる上で有利な点があげられる。   As a method for producing ozone water used for semiconductor cleaning, a gas-liquid contact method through a porous PTFE membrane is employed. In this method, an ozone dissolution tank is configured so that ozone gas is circulated on one side of the porous PTFE membrane housed in the housing and ultrapure water is circulated on the other side. It is a method of dissolving in ultrapure water. The advantages of this ozone water production method are that, unlike the bubbling method using bubbles, the concentration of ozone water produced is easy to stabilize over time because the gas-liquid contact area is constant, and ozone gas is made of porous PTFE. Fine ozone in the ozone gas can be removed to make ultra pure water contact after passing through, and clean ozone water can be produced, the porous PTFE membrane itself has sufficient ozone resistance, and the generation of impurities due to deterioration of the membrane itself Advantages in use in semiconductor manufacturing, such as the absence of contamination in ultrapure water.

しかし、上記の方法によると、ハウジング内のオゾンガス濃度が一定にならないと一定濃度のオゾン水が得られない問題がある。これはオゾン溶解槽のガス側体積と、オゾン溶解槽に供給するオゾンガス流量に依存する問題であり、設定オゾン水濃度まで濃度が上昇している間に生成したオゾン水は濃度が設定値に達していないため洗浄に利用できず、排水ラインに捨て続けることとなり、高価な超純水を無駄に使われる。また、半導体洗浄工程にて間欠的にオゾン水が使用される場合、ユースポイントでオゾン水が使用されない間もオゾン水濃度を一定に保ち続けるためにオゾン水を製造し続ける必要が生じ、同様にオゾン水を捨て続けなければならない問題がある。   However, according to the above method, there is a problem that ozone water having a constant concentration cannot be obtained unless the ozone gas concentration in the housing is constant. This is a problem that depends on the gas side volume of the ozone dissolution tank and the flow rate of ozone gas supplied to the ozone dissolution tank. The concentration of the ozone water generated while the concentration is rising to the set ozone water concentration reaches the set value. It cannot be used for cleaning because it is not, and it will continue to be discarded in the drainage line, so that expensive ultrapure water is wasted. Also, when ozone water is used intermittently in the semiconductor cleaning process, it is necessary to continue to produce ozone water in order to keep the ozone water concentration constant even when ozone water is not used at the point of use. There is a problem that ozone water must be thrown away.

また、水に溶けたオゾンガスは水中でOH-イオンと反応して様々なラジカル類を経て最終的に酸素になる。この過程を水中での溶存オゾンの自己分解と言う。
近年、超純水中の総有機物量(TOC)低減のために、超純水に酸化力の強い185nm紫外線を照射して超純水中の微量有機物を酸化して炭酸イオンにし、イオン交換樹脂で捕捉・除去する処理方法が一般的に用いられている。この処理方法により、超純水中のTOCは1ppbよりも少ない値となる。またこの時、溶存酸素及び水の光反応により微量の過酸化水素が生成する。超純水中のTOCの低下及び過酸化水素の混入は、共にオゾンの自己分解速度を上昇させ、オゾン水製造装置内における生成オゾン水濃度低下や、配管や洗浄槽中での著しいオゾン水濃度低下という現象として現れる。この現象により洗浄槽内の濃度管理が困難となること、利用できるオゾン水濃度も低くなること等の問題が発生し、オゾン水を利用する半導体洗浄工程自体が、不安定且つ効果の低いものとなってしまう。
Further, ozone gas dissolved in water is OH in water - eventually the oxygen through various radicals react with ions. This process is called autolysis of dissolved ozone in water.
In recent years, in order to reduce the total amount of organic matter (TOC) in ultrapure water, the ultrapure water is irradiated with highly oxidizing 185 nm ultraviolet rays to oxidize trace organics in ultrapure water to carbonate ions, and ion exchange resin. In general, a processing method of capturing / removing with the above method is used. By this processing method, the TOC in the ultrapure water becomes a value less than 1 ppb. At this time, a trace amount of hydrogen peroxide is generated by the photoreaction of dissolved oxygen and water. Both the decrease in TOC and the incorporation of hydrogen peroxide in ultrapure water increase the self-decomposition rate of ozone, resulting in a decrease in the concentration of generated ozone water in the ozone water production system and a significant concentration of ozone water in pipes and cleaning tanks. Appears as a phenomenon of decline. This phenomenon makes it difficult to manage the concentration in the cleaning tank, and the concentration of ozone water that can be used is low. The semiconductor cleaning process using ozone water itself is unstable and less effective. turn into.

即ち、オゾン水を半導体等の洗浄槽に連続的に供給する時は、超純水及びオゾンガスを一定量連続的に供給する事により、あらかじめ設定した濃度のオゾン水を安定して供給する事が出来るが、半導体等の洗浄方法によっては、オゾン水を間歇的に供給しなければならない場合があり、この場合、従来方法では、オゾン水の供給停止時間を設けるか、オゾン水供給をユースポイントからドレンラインヘ切り替えて排出し続ける必要があった。しかし、このように、装置の停止や排水のためのライン切り替えを行う場合、オゾン水流量の変動は濃度変動の要因となり、所望の濃度に安定するまでの立ち上がり時間をゼロとする困難であり、洗浄時間のロスが発生していた。   That is, when ozone water is continuously supplied to a cleaning tank such as a semiconductor, it is possible to stably supply ozone water having a preset concentration by continuously supplying a certain amount of ultrapure water and ozone gas. However, depending on the cleaning method for semiconductors, etc., it may be necessary to supply ozone water intermittently. In this case, in the conventional method, the ozone water supply stop time is provided or the ozone water supply is started from the point of use. It was necessary to switch to the drain line and continue discharging. However, in this way, when switching the line for stopping the device or draining, fluctuations in the flow rate of ozone water cause fluctuations in concentration, and it is difficult to make the rise time until it stabilizes to the desired concentration, There was a loss of cleaning time.

上記のような欠点を解消するため、近年、洗浄機で使用されなかったガス溶解水を水槽へ戻し、ガス溶解水に溶存する特定のガスの濃度を一定値以上に維持し、かつ、ガス溶解水を貯留する水槽の上部空間の特定のガスの濃度を低く保つことができる循環型オゾン水製造装置が提案されている。   In order to eliminate the above drawbacks, gas dissolved water that has not been used in washing machines in recent years is returned to the water tank, the concentration of the specific gas dissolved in the gas dissolved water is maintained at a certain value or more, and the gas dissolved A circulation type ozone water production apparatus that can keep the concentration of a specific gas in an upper space of a water tank storing water low has been proposed.

この従来装置は、図3に示すように、特定のガス溶解水を製造する溶解装置A、特定のガス溶解水を貯留する水槽B、溶解装置Aと水槽Bをつなぐ接続配管C、水槽Bの貯留水を洗浄機に送り出すポンプD、水槽BよりポンプDと洗浄機への分岐点を経て水槽Bに戻る循環配管E、水槽Bの上部空間にガスを供給するガス配管Fを有するガス溶解水供給装置であって、接続配管Cの下端と循環配管Eの下端が水槽B内の水面下に没していることを特徴としている。この従来装置では、特定ガスを超純水に溶解させたガス溶解水(本発明によるオゾン水に該当)と特定ガスとを水槽B(本発明によるオゾン溶解槽に該当)に供給する際、供給ガスの配管、溶解水、循環水の配管の水槽内の位置を調整することにより、当該水槽Bの上部空間の特定ガスの濃度を低く保っている。しかるに、この従来装置では、供給ガスの配管、溶解水、循環水の配管の水槽B内の位置を調整することにより、当該水槽Bの上部空間の特定ガスの濃度を低く保っているため、特定ガスの溶解水の濃度管理が極めて困難であった。(特許文献1)。   As shown in FIG. 3, this conventional apparatus includes a dissolving device A for producing a specific gas-dissolved water, a water tank B for storing a specific gas-dissolved water, a connecting pipe C for connecting the dissolving device A and the water tank B, and a water tank B. Gas dissolved water having a pump D for sending stored water to the washing machine, a circulation pipe E returning from the water tank B to the pump D and the washing machine through the branch point to the water tank B, and a gas pipe F for supplying gas to the upper space of the water tank B It is a supply apparatus, Comprising: The lower end of the connection piping C and the lower end of the circulation piping E are submerged under the water surface in the water tank B, It is characterized by the above-mentioned. In this conventional apparatus, when supplying a gas-dissolved water (corresponding to ozone water according to the present invention) obtained by dissolving a specific gas in ultrapure water and a specific gas to a water tank B (corresponding to an ozone dissolving tank according to the present invention) The concentration of the specific gas in the upper space of the water tank B is kept low by adjusting the positions of the gas pipe, dissolved water, and circulating water pipe in the water tank. However, in this conventional apparatus, the concentration of the specific gas in the upper space of the water tank B is kept low by adjusting the position of the supply gas pipe, dissolved water, and circulating water pipe in the water tank B. It was extremely difficult to control the concentration of dissolved gas water. (Patent Document 1).

また、この従来装置は、特定ガスとして、オゾンではなく水素を溶解させた水を主な対象とした装置であり、循環装置中での水素濃度変化は水槽Bでの上部空間気相(不活性ガスや空気)への放散だけであり、気相に接していない配管中等での濃度変化はない。一方、オゾン水を対象とした場合は、これに加えて自己分解があり、配管中でも(移送中でも)時間が経つだけで溶存オゾン濃度は低下するが、この従来装置では、このような濃度低下に対する対策はなされておらず、オゾン水に使用する場合、濃度維持が困難であり、安定した濃度のオゾン水が得られない欠点を有している。即ち、この従来装置では、以下の機構を備えていないため、安定した濃度のオゾン水を得ることができなかった。
・循環ライン中の濃度測定機構
・濃度測定機構の測定値で制御された溶解槽へのガス補給機構
・循環タンクに液面管理機構
・液面管理機構で制御された循環タンクへの純水補給機構
In addition, this conventional device is a device mainly intended for water in which hydrogen is dissolved instead of ozone as a specific gas, and the change in hydrogen concentration in the circulation device is caused by an upper space gas phase (inactive in the water tank B). Gas or air), and there is no change in concentration in piping that is not in contact with the gas phase. On the other hand, when ozone water is targeted, in addition to this, there is self-decomposition, and the dissolved ozone concentration is lowered only in time (even during transfer) in the piping. No countermeasure has been taken, and when used for ozone water, it is difficult to maintain the concentration, and ozone water having a stable concentration cannot be obtained. That is, in this conventional apparatus, since the following mechanism is not provided, ozone water having a stable concentration cannot be obtained.
・ Concentration measurement mechanism in the circulation line ・ Gas supply mechanism to the dissolution tank controlled by the measured value of the concentration measurement mechanism ・ Liquid level management mechanism in the circulation tank ・ Pure water supply to the circulation tank controlled by the liquid level management mechanism mechanism

即ち、上記の従来装置では、これをオゾン水に適用する場合、
オゾンガス・超純水→溶解槽で溶解→オゾン水
としていたため、一定量に管理されたオゾンガス・超純水を供給していても、この従来装置の装置立上げ時には、立上げ前に空気で満たされている溶解槽内のオゾンガス充填空間をオゾンのガスとしての供給とオゾン水としての生成・排出によってバランスがとれた一定濃度のオゾンガスで置換しなければならず、この時オゾン水製造も同時に行っているので、オゾンはオゾン水に溶解して溶解槽から排出され、置換速度は遅くなり、置換が完了するまでは生成・排出するオゾン水は濃度が容易に一定せず、オゾン水濃度を一定させるためには、1時間程度を要していた。また、前もって溶解槽をオゾンガス発生装置から供給されるオゾンガスと同濃度の一定濃度のオゾンガスで満たしておき、純水供給だけを新たに始める装置立上げを行ったとしても、溶解槽内のオゾンガス濃度がオゾン水生成条件とバランスをとって一定になるためには、数十分の時間を要していた。洗浄機へのオゾン水供給が間欠の場合は、後者の稼動状態となるが、処理待ち時間をわずかでも長くしないために、常にオゾン水を製造し続けることでオゾン水濃度及び流量を一定に維持し、ユースポイントにて使用しない間も、無駄なオゾン水を大量に製造し続け、オゾン水原水として使用する超純水の量が多く必要であった。
That is, in the above conventional apparatus, when this is applied to ozone water,
Ozone gas / ultra pure water → Dissolved in dissolution tank → Ozone water, so even if ozone gas / ultra pure water controlled to a certain amount is supplied, when starting up this conventional device, it is The filled ozone gas space in the dissolution tank must be replaced with a constant concentration of ozone gas that is balanced by the supply of ozone gas and the generation and discharge of ozone water. Since ozone is dissolved in ozone water and discharged from the dissolution tank, the replacement speed becomes slow, and the concentration of ozone water generated and discharged is not easily constant until the replacement is completed. It took about 1 hour to keep it constant. Even if the dissolution tank is filled with a constant concentration of ozone gas at the same concentration as the ozone gas supplied from the ozone gas generator in advance and the apparatus is started to start only pure water supply, the concentration of ozone gas in the dissolution tank However, it took several tens of minutes to be balanced with the ozone water generation conditions. If the ozone water supply to the washing machine is intermittent, the latter will be in operation, but in order not to lengthen the processing waiting time even slightly, the ozone water concentration and flow rate are kept constant by constantly producing ozone water. However, even when not used at the point of use, a large amount of useless ozone water was continuously produced, and a large amount of ultrapure water used as raw ozone water was required.

特開2005−262031号公報(請求項1、図3)Japanese Patent Laying-Open No. 2005-262031 (Claim 1, FIG. 3)

本発明の目的は、上記の従来方法の欠点を解消し、使用する超純水の量を大幅に削減し、節水を可能とするとともに、オゾン水濃度の立ち上がり時間をゼロとすることができ、かつ、循環経路中のオゾン水濃度を常に設定した濃度に保ち、設定したオゾン水濃度のオゾン水を安定して洗浄槽に供給することのできる循環型オゾン水製造装置及び該装置の運転方法を提供することにある。   The object of the present invention is to eliminate the drawbacks of the above-described conventional methods, greatly reduce the amount of ultrapure water to be used, enable water saving, and make the rise time of the ozone water concentration zero, In addition, there is provided a circulating ozone water production apparatus capable of constantly maintaining the ozone water concentration in the circulation path at a set concentration and stably supplying the ozone water having the set ozone water concentration to the cleaning tank, and an operation method of the device. It is to provide.

本発明は、上記目的を達成するために、超純水を電解してオゾンガスを生成する電解式オゾンガス発生装置1と、オゾン水を循環するための循環タンク2と、電解式オゾンガス発生装置1より発生したオゾンガスの一部を溶解しオゾン水を生成するためのオゾン溶解槽3と、オゾン溶解槽3によって生成されたオゾン水の一部をユースポイントに供給するためのオゾン水出口5と、超純水をバルブAを介して循環タンク2に供給するための接続配管6と、電解式オゾンガス発生装置1より発生したオゾンガスの一部をバルブBを介してオゾン溶解槽3に供給する接続配管7と、循環タンク2内の超純水及び循環されたオゾン水を循環ポンプP及びバルブCを介してオゾン溶解槽3に供給するための接続配管8と、オゾン溶解槽3によって生成されたオゾン水の一部をバルブDを介してオゾン水出口5に供給するための接続配管10と、オゾン水出口5の手前から循環タンク2に循環するための接続配管11と、循環するオゾン水を所定の濃度に調整するためオゾン溶解槽3に接続したオゾン水濃度測定装置13と、循環タンク2に設けた液面計LSとよりなり、オゾン溶解槽3によって生成されたオゾン水の一部をオゾン水出口5よりユースポイントに供給し、オゾン溶解槽3によって生成されたオゾン水の残部を接続配管10、11及び8を用いて循環使用するとともに、オゾン溶解槽3で製造したオゾン水の濃度を測定し、その測定値に基づいて、電解式オゾンガス発生装置1への電解電流制御及び/又はバルブBによる切り替えを行い、オゾン溶解槽3へのオゾンガス供給を制御するとともに、循環タンク2に設けた液面計LSにより、循環タンク2内の液面を管理し、超純水の補給、停止を繰り返すことにより、循環経路中のオゾン水の濃度を一定に保ち、設定したオゾン水濃度のオゾン水を安定して供給を行う循環型オゾン水製造装置にある。   In order to achieve the above object, the present invention includes an electrolytic ozone gas generator 1 for electrolyzing ultrapure water to generate ozone gas, a circulation tank 2 for circulating ozone water, and an electrolytic ozone gas generator 1. An ozone dissolution tank 3 for dissolving a part of the generated ozone gas to generate ozone water, an ozone water outlet 5 for supplying a part of the ozone water generated by the ozone dissolution tank 3 to a use point, A connection pipe 6 for supplying pure water to the circulation tank 2 via the valve A and a connection pipe 7 for supplying a part of the ozone gas generated from the electrolytic ozone gas generator 1 to the ozone dissolution tank 3 via the valve B And the connection pipe 8 for supplying the ultrapure water in the circulation tank 2 and the circulated ozone water to the ozone dissolution tank 3 through the circulation pump P and the valve C, and the ozone dissolution tank 3. A connecting pipe 10 for supplying a part of the ozone water to the ozone water outlet 5 via the valve D, a connecting pipe 11 for circulating from the front of the ozone water outlet 5 to the circulation tank 2, and circulating ozone An ozone water concentration measuring device 13 connected to the ozone dissolution tank 3 for adjusting water to a predetermined concentration and a liquid level gauge LS provided in the circulation tank 2, one of ozone water generated by the ozone dissolution tank 3. The ozone water is supplied to the use point from the ozone water outlet 5, and the remaining ozone water generated by the ozone dissolution tank 3 is circulated using the connection pipes 10, 11 and 8, and the ozone water produced in the ozone dissolution tank 3 The concentration of water is measured, and based on the measured value, the electrolytic current control to the electrolytic ozone gas generator 1 and / or the switching by the valve B are performed, and the ozone gas supply to the ozone dissolution tank 3 is performed. In addition, the liquid level gauge LS provided in the circulation tank 2 manages the liquid level in the circulation tank 2 and repeats the replenishment and stoppage of ultrapure water so that the concentration of ozone water in the circulation path is kept constant. It is in a circulating ozone water production apparatus that keeps and supplies ozone water with a set ozone water concentration stably.

また、第2の課題解決手段は、上記循環型オゾン水製造装置において、循環ポンプPとして磁気浮上型無接触構造のフッ素樹脂製渦巻きポンプを用いたことにある。   A second problem-solving means is that, in the circulating ozone water producing apparatus, a fluorocarbon spiral pump having a magnetic levitation type non-contact structure is used as the circulating pump P.

更に、第3の課題解決手段は、上記循環型オゾン水製造装置において、オゾン水出口5にオゾン水をユースポイントへ供出する単数又は複数口に分岐させた配管を接続したことにある。   Furthermore, the third problem solving means is that, in the circulating ozone water producing apparatus, a pipe for branching into ozone water outlet 5 into one or more outlets for supplying ozone water to a use point is connected.

更に、第4の課題解決手段は、上記循環型オゾン水製造装置において、オゾン水濃度測定装置13として、全量式溶存オゾン濃度計を用いたことにある。   Further, the fourth problem solving means is that a total amount dissolved ozone concentration meter is used as the ozone water concentration measuring device 13 in the circulating ozone water producing apparatus.

更に、第5の課題解決手段は、上記循環型オゾン水製造装置において、オゾン耐性を有する多孔質PTFE膜を用いたフィルターFをオゾン溶解槽3下流とオゾン水出口5の間の接続配管10に設置し、循環するオゾン水中のパーティクルを除去し、循環するオゾン水の清浄性を維持したことにある。   Furthermore, the fifth problem solving means is that in the circulating ozone water production apparatus, the filter F using a porous PTFE membrane having ozone resistance is connected to the connection pipe 10 between the ozone dissolution tank 3 downstream and the ozone water outlet 5. It was installed and removed the particles in the circulating ozone water to maintain the cleanliness of the circulating ozone water.

更に、第6の課題解決手段は、電解式オゾンガス発生装置1を用いてオゾンガスを生成する工程と、
電解式オゾンガス発生装置1において生成したオゾンガスの一部を接続配管7及びバルブBを介してオゾン溶解槽3に供給する工程と、
超純水を循環タンク2より接続配管8、ポンプP及びバルブBを介してオゾン溶解槽3に供給する工程と、
オゾン溶解槽3にてオゾン水を生成する工程と、
オゾン溶解槽3において生成したオゾン水の一部を接続配管10及びバルブDを用いて、オゾン水出口5に供給する工程と、
オゾン水出口5の手前からオゾン水の一部をバルブD及び接続配管11を用いて循環タンク2に循環する工程と、
循環タンク2内のオゾン水をオゾン溶解槽3に供給して循環使用する工程と、
オゾン水濃度計13によりオゾン溶解槽3で製造したオゾン水の濃度を測定し、その測定値に基づいて、電解式オゾンガス発生装置1への電解電流制御及び/又はバルブBによる切り替えを行い、オゾン溶解槽3へのオゾンガス供給を制御する工程と、
循環タンク2に設けた液面計LSにより、循環タンク2内の液面を管理し、超純水の補給、停止を繰り返す工程とよりなり、循環経路中のオゾン水の濃度を一定に保ち、設定したオゾン水濃度のオゾン水を安定して供給することを特徴とする循環型オゾン水製造装置の運転方法にある。
Furthermore, the sixth problem-solving means includes a step of generating ozone gas using the electrolytic ozone gas generator 1, and
Supplying a part of the ozone gas generated in the electrolytic ozone gas generator 1 to the ozone dissolution tank 3 via the connection pipe 7 and the valve B;
Supplying ultrapure water from the circulation tank 2 to the ozone dissolution tank 3 via the connection pipe 8, the pump P and the valve B;
Generating ozone water in the ozone dissolution tank 3,
Supplying a part of the ozone water generated in the ozone dissolution tank 3 to the ozone water outlet 5 using the connecting pipe 10 and the valve D;
Circulating a part of the ozone water from the front of the ozone water outlet 5 to the circulation tank 2 using the valve D and the connecting pipe 11;
Supplying ozone water in the circulation tank 2 to the ozone dissolution tank 3 for circulation;
The concentration of ozone water produced in the ozone dissolution tank 3 is measured by the ozone water concentration meter 13, and based on the measured value, the electrolytic current control to the electrolytic ozone gas generator 1 and / or the switching by the valve B is performed, and the ozone Controlling the ozone gas supply to the dissolution tank 3,
The liquid level gauge LS provided in the circulation tank 2 manages the liquid level in the circulation tank 2 and repeats the replenishment and stoppage of ultrapure water. The concentration of ozone water in the circulation path is kept constant, The present invention resides in a method for operating a circulating ozone water production apparatus characterized by stably supplying ozone water having a set ozone water concentration.

更に、第7の課題解決手段は、上記循環型オゾン水製造装置の運転方法において、循環タンク2に供給する超純水として二酸化炭素を溶解させた超純水を使用することにある。   Furthermore, a seventh problem solving means is to use ultrapure water in which carbon dioxide is dissolved as the ultrapure water supplied to the circulation tank 2 in the operation method of the circulating ozone water production apparatus.

更に、第8の課題解決手段は、上記循環型オゾン水製造装置の運転方法において、超純水を電解してオゾンガスを生成する電解式オゾンガス発生装置1の陽極室に二酸化炭素を供給しながら電解を行うことにある。   Further, the eighth problem-solving means is an operation method of the above circulating ozone water production apparatus, in which electrolysis is performed while supplying carbon dioxide to the anode chamber of the electrolytic ozone gas generator 1 that electrolyzes ultrapure water to generate ozone gas. Is to do.

本発明によれば、使用する超純水の量を大幅に削減し、節水を可能とするとともに、オゾン水濃度の立ち上がり時間をゼロとすることができ、かつ、循環経路中のオゾン水濃度を常に設定した濃度に保ち、設定したオゾン水濃度のオゾン水が安定して洗浄槽に供給することができる循環型オゾン水製造装置及びその運転方法を提供することが出来る。   According to the present invention, the amount of ultrapure water used can be greatly reduced, water can be saved, the rise time of the ozone water concentration can be zero, and the concentration of ozone water in the circulation path can be reduced. It is possible to provide a circulating ozone water production apparatus and its operating method capable of always maintaining a set concentration and stably supplying ozone water having a set ozone water concentration to a cleaning tank.

以下に、本発明の実施の形態を図2に基づいて説明する。
図1は、本発明による循環型オゾン水製造装置の全体図、図2は、本発明による循環型オゾン水製造装置の詳細図を示したものであり、1は、超純水を電解してオゾンガスを生成する電解式オゾンガス発生装置であって、原料となる超純水の一部は、バルブAを介して、接続配管14よりオゾンガス発生部1aの陽極室1bに供給される。陽極室1bで発生したオゾンガスは、循環塔1dを経て、オゾン溶解槽3に供給される。陰極室1cで発生した水素ガスは、系外に放出される。2は、オゾン溶解槽3により生成されたオゾン水を循環するための循環タンクであり、原料となる超純水の残部は、バルブAを介して接続配管6より、循環タンク2に供給される。4は、電解式オゾンガス発生装置1より発生したオゾンガスの残部をドレインするためのオゾンドレインタンク、5は、オゾン溶解槽3によって生成されたオゾン水の一部をユースポイントに供給するためのオゾン水出口、7は、電解式オゾンガス発生装置1より発生したオゾンガスの一部を三方バルブBを介してオゾン溶解槽3に供給する接続配管、8は、循環タンク2内の超純水及び循環されたオゾン水を循環ポンプP及びバルブCを介してオゾン溶解槽3に供給するための接続配管、9は、電解式オゾンガス発生装置1より発生したオゾンガスの残部を前記オゾンドレインタンク4に供給する接続配管、10は、オゾン溶解槽3によって生成されたオゾン水の一部をバルブDを介してオゾン水出口5に供給するための接続配管、11は、前記オゾン水出口5の手前から循環タンク2に循環するための接続配管、12は、前記オゾン溶解槽3によって生成されたオゾン水の残部を前記オゾンドレインタンク4に供給するための接続配管12であり、オゾン溶解槽3によって生成されたオゾン水の大部分を接続配管10、11及び8を用いて循環使用するとともに、オゾン水の一部をオゾン水出口5よりユースポイントに供給し、少量のオゾンガス及びオゾン水を接続配管9および12を用いてドレインタンク4より排出し、循環経路中のオゾン水の濃度を一定に保ち、設定したオゾン水濃度のオゾン水を安定して供給を行っている。13は、循環するオゾン水を所定の濃度に調整するためオゾン溶解槽3に接続したオゾン水濃度測定装置であり、オゾン溶解槽3内のオゾン水の濃度を測定し、その測定値に基づいて、電解式オゾンガス発生装置1への電解電流制御及び/又はバルブBによる切り替えを行い、オゾン溶解槽3へのオゾンガス供給を制御している。また、LSは、前記循環タンク2に設けた液面計であり、静電容量式の液面センサを循環タンク2の側面又は循環タンク3の上下の穴につないだ液面位置が循環タンク3と同じになるようにした配管に取り付けて行っている。液面計LSは、高さ方向上からHH、H、L、LLと4つ付けているが、HH、LLは非常停止のためのもので、液面管理はHとLで行っている。ユースポイントでオゾン水が使用された場合、循環タンク2内の液面が低下するが、Lの液面センサ位置まで液面が下がったときにバルブAを開いて純水を循環タンク2に補給する動作をし、純水供給により液面が上昇してHの液面センサ位置まで液面が上昇したときにバルブAを閉じて純水補給停止を行う。Fは、オゾン水フィルターであって、オゾン溶解槽3の水排出ライン中の接続配管10のバルブEとバルブHの間に設けられ、循環オゾン水中のパーティクル除去を行い、循環オゾン水の濃度だけでなく、循環オゾン水の清浄性を維持している。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is an overall view of a circulation type ozone water production apparatus according to the present invention, FIG. 2 is a detailed view of the circulation type ozone water production apparatus according to the present invention, and 1 is an electrolysis of ultrapure water. In the electrolytic ozone gas generator that generates ozone gas, a part of ultrapure water as a raw material is supplied via a valve A to the anode chamber 1b of the ozone gas generator 1a through a connection pipe. The ozone gas generated in the anode chamber 1b is supplied to the ozone dissolution tank 3 through the circulation tower 1d. The hydrogen gas generated in the cathode chamber 1c is released out of the system. Reference numeral 2 denotes a circulation tank for circulating ozone water generated by the ozone dissolution tank 3, and the remaining portion of the ultrapure water as a raw material is supplied to the circulation tank 2 from the connection pipe 6 through the valve A. . 4 is an ozone drain tank for draining the remainder of the ozone gas generated from the electrolytic ozone gas generator 1, and 5 is ozone water for supplying a part of the ozone water generated by the ozone dissolution tank 3 to a use point. The outlet 7 is a connecting pipe for supplying a part of the ozone gas generated from the electrolytic ozone gas generator 1 to the ozone dissolution tank 3 via the three-way valve B, and 8 is the ultrapure water in the circulation tank 2 and the circulating pipe 2 A connection pipe for supplying ozone water to the ozone dissolution tank 3 through the circulation pump P and the valve C, 9 is a connection pipe for supplying the remaining ozone gas generated from the electrolytic ozone gas generator 1 to the ozone drain tank 4 10 is a connection pipe for supplying a part of the ozone water generated by the ozone dissolution tank 3 to the ozone water outlet 5 through the valve D; A connection pipe 12 for circulating from the front of the ozone water outlet 5 to the circulation tank 2, 12 is a connection pipe 12 for supplying the remaining ozone water generated by the ozone dissolution tank 3 to the ozone drain tank 4. Yes, a large part of the ozone water generated by the ozone dissolution tank 3 is circulated and used using the connecting pipes 10, 11 and 8, and a part of the ozone water is supplied to the use point from the ozone water outlet 5, Ozone gas and ozone water are discharged from the drain tank 4 using the connecting pipes 9 and 12, and the ozone water concentration in the circulation path is kept constant, and the ozone water having the set ozone water concentration is stably supplied. . 13 is an ozone water concentration measuring device connected to the ozone dissolution tank 3 to adjust the circulating ozone water to a predetermined concentration, and measures the concentration of ozone water in the ozone dissolution tank 3 and based on the measured value. The electrolytic current control to the electrolytic ozone gas generator 1 and / or the switching by the valve B are performed, and the ozone gas supply to the ozone dissolution tank 3 is controlled. Further, LS is a liquid level gauge provided in the circulation tank 2, and the liquid level position where the capacitance type liquid level sensor is connected to the side surface of the circulation tank 2 or the upper and lower holes of the circulation tank 3 is the circulation tank 3. It is attached to a pipe that is the same as the above. There are four liquid level gauges LS from the top in the height direction, HH, H, L, and LL. HH and LL are for emergency stop, and liquid level management is performed by H and L. When ozone water is used at the point of use, the liquid level in the circulation tank 2 decreases, but when the liquid level drops to the L level sensor position, the valve A is opened to replenish the circulation tank 2 with pure water. When the liquid level rises due to the supply of pure water and the liquid level rises to the H level sensor position, the valve A is closed to stop the pure water supply. F is an ozone water filter, which is provided between the valve E and the valve H of the connection pipe 10 in the water discharge line of the ozone dissolution tank 3 to remove particles in the circulating ozone water, and only the concentration of the circulating ozone water Rather, it maintains the cleanliness of circulating ozone water.

オゾン水流量は、流量計Gによりモニタするが、流量設定は循環ポンプPの回転数を調整して制御した。オゾンガスは、電解式オゾンガス発生装置1を用いて製造した。このオゾンガス濃度は、200g/Nm3、オゾンガス供給量は、24g/hrである。オゾンガスの一部は、接続配管7を通り、3方バルブBにて切り替えられ、オゾン溶解槽3に供給されて、オゾン水製造に使用される。オゾンガスの残部は、オゾン溶解槽3を経ずに接続配管9を通り、オゾンドレンタンク4を通過してオゾン触媒にて処理される。3方バルブBは、オゾン水濃度計13からの測定値が設定オゾン水濃度値より低い場合は、NC側に開いて、オゾン溶解槽3にオゾンガスを供給し、設定オゾン水濃度値より高い場合はNO側に開いて、オゾンドレンタンク4へオゾンガスを流す。オゾン水製造の原水となる超純水は、バルブA、接続配管8を通って循環タンク2に貯留された後、循環ポンプPによってオゾン溶解槽3にてオゾンガスと接触し、オゾン水となる。 The ozone water flow rate is monitored by the flow meter G, but the flow rate setting was controlled by adjusting the number of rotations of the circulation pump P. The ozone gas was produced using the electrolytic ozone gas generator 1. The ozone gas concentration is 200 g / Nm 3 , and the ozone gas supply amount is 24 g / hr. A part of the ozone gas passes through the connecting pipe 7 and is switched by the three-way valve B, supplied to the ozone dissolution tank 3, and used for ozone water production. The remainder of the ozone gas passes through the connection pipe 9 without passing through the ozone dissolution tank 3, passes through the ozone drain tank 4, and is treated with the ozone catalyst. When the measured value from the ozone water concentration meter 13 is lower than the set ozone water concentration value, the three-way valve B opens to the NC side, supplies ozone gas to the ozone dissolution tank 3, and is higher than the set ozone water concentration value. Opens to the NO side and allows ozone gas to flow into the ozone drain tank 4. Ultrapure water, which is raw water for ozone water production, is stored in the circulation tank 2 through the valve A and the connection pipe 8, and then contacts ozone gas in the ozone dissolution tank 3 by the circulation pump P to become ozone water.

即ち、本発明における循環型オゾン水製造装置は、純水→循環タンク2→オゾン溶解槽3でオゾンガスを溶解→オゾン水→循環タンク2(戻)となり、純水供給とオゾンガス供給は、循環タンク2の液面計LSによる監視とオゾン水濃度測定値13によって制御される。従って、本発明における循環式オゾン水供給装置は、オゾン水はオゾン水濃度が規定値に達するまでは上記系内で循環しているので、従来装置のように生成・排出を続ける必要がなく、節水になり、無駄水がゼロになる。また、ここで言う立上げ時間ゼロとは循環系内で既に規定濃度に達しているオゾン水を排出するのに時間がゼロであるということで、例えば洗浄機に間欠的にオゾン水を供給する場合、従来装置のようにオゾン水濃度立上げを待つ必要がないことを意味するものである。   That is, the circulation type ozone water production apparatus according to the present invention is pure water → circulation tank 2 → dissolving ozone gas in the ozone dissolution tank 3 → ozone water → circulation tank 2 (return). 2 and the ozone water concentration measured value 13 are controlled by the liquid level gauge LS. Therefore, in the circulation type ozone water supply apparatus in the present invention, since the ozone water is circulated in the system until the ozone water concentration reaches the specified value, it is not necessary to continue generation and discharge as in the conventional apparatus, Water saving and zero waste water. The zero start-up time here means that the time for discharging ozone water that has already reached the specified concentration in the circulation system is zero. For example, ozone water is intermittently supplied to the washing machine. In this case, it means that it is not necessary to wait for the ozone water concentration to rise as in the conventional apparatus.

次に、本発明を実施例及び比較例を挙げて、本発明を具体的に説明する。但し、本発明は、これらの実施例に限定されるものではない。   Next, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to these examples.

<実施例1>
図2に示す装置を用いて本発明を実施した。
主要機器については次の装置を使用した。また、系内のオゾン水、オゾンガスに接する部分は全てフッ素樹脂製とした。
(1)電解式オゾンガス発生装置1:クロリンエンジニアズ株式会社製、電解式オゾンガス発生装置、商品名、ピュアゾン(登録商標)、オゾンガス発生量 24g/hour、オゾンガス濃度 200g/Nm3
(2)循環タンク2:PTFEライニングSUSタンク 容積30L/min.
(3)循環ポンプP:磁気浮上方式キャンド型渦巻きポンプ(イワキレビトロポンプLEV750)
(4)オゾン水濃度計13:紫外線式オゾン水濃度計(荏原実業製、EL−550)、紫外線式全量式オゾン水濃度計(アプリクスOD−UND−200−PC−R)
(5)オゾン水フィルターF:PTFEフィルタ(クラボウ製、KF2LS10005M/E)
(6)流量計G:カルマン渦式流量計(鷺宮製作所製、SLK)
(7)オゾン溶解槽3:多孔質PTFE膜式オゾン溶解槽(ジャパンゴアテックス製)
(8)液中パーティクルカウンタ(リオン KS−40A):バルブHの先に設置。
装置立上げ時及び流量変更時においては、オゾンガス供給量一定の場合、装置立上げ時のオゾン水濃度及びその後に超純水流量を変動させた場合、オゾン水濃度が安定するまで10分以上かかったが、その後、バルブDを閉じ、循環タンク2にオゾン水を戻す循環系を構成し、設定オゾン水濃度は15ppmにし、3方バルブBの自動切り替えを実施した。循環オゾン水量は15L/minに設定した。
試験結果:オゾン水量14.4−15.7L/min、オゾン水濃度14.5−15.3ppmで推移し、オゾン水量、オゾン水濃度とも安定していた。また、無駄な水がゼロとなり、超純水の節水となった。更に、循環系内で既に規定濃度に達しているオゾン水を排出するのに時間がゼロとなり、従来装置のようにオゾン水濃度立上げを待つ必要がなかった。
<Example 1>
The present invention was implemented using the apparatus shown in FIG.
The following equipment was used for main equipment. Moreover, all the parts in contact with ozone water and ozone gas in the system were made of fluororesin.
(1) Electrolytic ozone gas generator 1: manufactured by Chlorine Engineers Co., Ltd., electrolytic ozone gas generator, trade name, Purezone (registered trademark), ozone gas generation amount 24 g / hour, ozone gas concentration 200 g / Nm 3
(2) Circulation tank 2: PTFE lining SUS tank Volume 30 L / min.
(3) Circulation pump P: magnetic levitation canned centrifugal pump (Iwakiretro pump LEV750)
(4) Ozone water concentration meter 13: UV-type ozone water concentration meter (EL-550, manufactured by Sugawara Jitsugyo), UV-type full-volume ozone water concentration meter (Aplix OD-UND-200-PC-R)
(5) Ozone water filter F: PTFE filter (manufactured by Kurabo Industries, KF2LS10005M / E)
(6) Flow meter G: Karman vortex flow meter (manufactured by Sagamiya Seisakusho, SLK)
(7) Ozone dissolution tank 3: Porous PTFE membrane type ozone dissolution tank (manufactured by Japan Gore-Tex)
(8) In-liquid particle counter (Rion KS-40A): installed at the tip of the valve H.
When the device is started up and when the flow rate is changed, if the ozone gas supply amount is constant, it takes 10 minutes or more for the ozone water concentration to stabilize when the ozone water concentration at the time of device startup and the ultrapure water flow rate are changed thereafter. However, after that, the valve D was closed and a circulation system for returning the ozone water to the circulation tank 2 was constructed, the set ozone water concentration was set to 15 ppm, and the three-way valve B was automatically switched. The amount of circulating ozone water was set to 15 L / min.
Test results: The amount of ozone water was 14.4-15.7 L / min, the concentration of ozone water was 14.5 to 15.3 ppm, and both the amount of ozone water and the concentration of ozone water were stable. In addition, there was no wasted water, saving water for ultrapure water. Furthermore, it takes no time to discharge the ozone water that has already reached the specified concentration in the circulation system, and there is no need to wait for the ozone water concentration to be raised unlike the conventional apparatus.

<比較例1>
実施例1の状態で、設定オゾン水濃度を特に設けず、3方バルブBは、NC側(オゾン溶解槽3側)に常に開とし、循環オゾン水量は、15L/minに設定した。
試験結果:オゾン濃度は50mg/L超まで経時的に増加したが、その後、オゾン水中への気泡混入が著しく、紫外線式オゾン水濃度計では測定できなくなった。多量の気泡混入は、ユースポイントにて半導体洗浄に使用する際、水流量が安定せず、また、半導体を槽内に浸漬して洗浄した場合、被洗浄物表面へ気泡が付着して均一な洗浄が出来なかった。オゾン水製造装置においても、多量の気泡混入は、循環ポンプ動作が安定せず、多孔質PTFE膜表面に気泡付着すると、気液接触面積が安定せず溶解性能が安定しない等の欠点があった。
<Comparative Example 1>
In the state of Example 1, the set ozone water concentration was not particularly provided, and the three-way valve B was always opened on the NC side (ozone dissolution tank 3 side), and the circulating ozone water amount was set to 15 L / min.
Test result: The ozone concentration increased over time to over 50 mg / L, but then bubbles were significantly mixed into the ozone water, and measurement with an ultraviolet ozone water concentration meter became impossible. When a large amount of air bubbles is mixed into the semiconductor at the point of use, the water flow rate is not stable, and when the semiconductor is immersed in the bath for cleaning, bubbles adhere to the surface of the object to be cleaned and are uniform. Could not wash. Even in the ozone water production apparatus, a large amount of bubbles mixed in had a drawback that the circulation pump operation was not stable, and if bubbles adhered to the surface of the porous PTFE membrane, the gas-liquid contact area was not stable and the dissolution performance was not stable. .

<実施例2>
実施例1の状態で、電解セル陽極室に二酸化炭素ガスを10ml/min供給し、設定オゾン水濃度は15ppmにし、3方バルブBの自動切り替えを実施した。循環オゾン水量は15L/minに設定した。パーティクル測定も実施した。
試験結果:オゾン水量13.4−14.4L/min、オゾン水濃度14.6−15.2ppmで推移。パーティクルは、0.1μmφ以上で50個/10ml以下であった。オゾン水濃度安定性は実用に供せ、パーティクル量も半導体洗浄に利用できるレベルであった。実施例1よりもオゾン水濃度の経時低下が更に少なく、濃度変動幅が小さくなっていた。また、無駄な水がゼロとなり、超純水の節水となった。更に、循環系内で既に規定濃度に達しているオゾン水を排出するのに時間がゼロとなり、従来装置のようにオゾン水濃度立上げを待つ必要がなかった。
<Example 2>
In the state of Example 1, carbon dioxide gas was supplied to the electrolytic cell anode chamber at 10 ml / min, the set ozone water concentration was set to 15 ppm, and the three-way valve B was automatically switched. The amount of circulating ozone water was set to 15 L / min. Particle measurements were also performed.
Test results: The ozone water amount was 13.4 to 14.4 L / min and the ozone water concentration was 14.6 to 15.2 ppm. Particles were 0.1 μmφ or more and 50 particles / 10 ml or less. The ozone water concentration stability was practically used, and the amount of particles was at a level that could be used for semiconductor cleaning. The decrease in ozone water concentration over time was smaller than that in Example 1, and the concentration fluctuation range was small. In addition, there was no wasted water, saving water for ultrapure water. Furthermore, it takes no time to discharge the ozone water that has already reached the specified concentration in the circulation system, and there is no need to wait for the ozone water concentration to be raised unlike the conventional apparatus.

<実施例3>
実施例1の状態で、超純水に二酸化炭素を添加し、超純水の比抵抗を1MΩ・cmとし、オゾン水原水とした。設定オゾン水濃度は、15ppmにし、3方バルブBの自動切り替えを実施した。循環オゾン水量は15L/minに設定した。パーティクル測定も実施した。
試験結果:オゾン水量14.4−15.4L/min、オゾン水濃度14.6−15.2ppmで推移。パーティクルは0.1μmφ以上で50個/10ml以下であった。オゾン水濃度安定性は実用に供せ、パーティクル量も半導体洗浄に利用できるレベルであった。また、無駄な水がゼロとなり、超純水の節水となった。更に、循環系内で既に規定濃度に達しているオゾン水を排出するのに時間がゼロとなり、従来装置のようにオゾン水濃度立上げを待つ必要がなかった。
<Example 3>
In the state of Example 1, carbon dioxide was added to ultrapure water, the specific resistance of ultrapure water was 1 MΩ · cm, and raw ozone water was obtained. The set ozone water concentration was 15 ppm, and automatic switching of the three-way valve B was performed. The amount of circulating ozone water was set to 15 L / min. Particle measurements were also performed.
Test results: The ozone water amount was 14.4-15.4 L / min, and the ozone water concentration was 14.6-15.2 ppm. Particles were 0.1 μmφ or more and 50 particles / 10 ml or less. The ozone water concentration stability was practically used, and the amount of particles was at a level that could be used for semiconductor cleaning. In addition, there was no wasted water, saving water for ultrapure water. Furthermore, it takes no time to discharge the ozone water that has already reached the specified concentration in the circulation system, and there is no need to wait for the ozone water concentration to be raised unlike the conventional apparatus.

尚、実施例1の状態で、オゾン水フィルターFを取り外し、パーティクルを測定したところ、パーティクルは、0.1μmφ以上で100000個/10ml以上であった。   In addition, when the ozone water filter F was removed in the state of Example 1 and the particles were measured, the number of particles was 0.1 μmφ or more and 100000 pieces / 10 ml or more.

<実施例4>
実施例1の状態で、オゾン水出口5の手前のバルブDから10分間に5L/minで排水し、流量計Gには15L/min流量を流した。また、電解式オゾンガス発生装置1の陽極室に二酸化炭素ガスを10ml/min供給した。設定オゾン水濃度は15ppmにし、3方バルブBの自動切り替えを実施した。循環オゾン水量は15L/minに設定した。パーティクル測定を実施した。バルブDから5L/minの排水を行うとともに、同量の給水を常時同時に実施した。
試験結果:オゾン水量11.9−14.0L/min、オゾン水濃度13.8−15.6ppmで推移。パーティクルは、0.1μmφ以上で50個/10ml以下であった。オゾン水濃度安定性は実用に使用できるレベル。パーティクル量も半導体洗浄に利用できるレベルであった。また、無駄な水がゼロとなり、超純水の節水となった。更に、循環系内で既に規定濃度に達しているオゾン水を排出するのに時間がゼロとなり、従来装置のようにオゾン水濃度立上げを待つ必要がなかった。
<Example 4>
In the state of Example 1, water was drained at 5 L / min for 10 minutes from the valve D in front of the ozone water outlet 5, and a flow rate of 15 L / min was passed through the flow meter G. Further, carbon dioxide gas was supplied to the anode chamber of the electrolytic ozone gas generator 1 at 10 ml / min. The set ozone water concentration was 15 ppm, and automatic switching of the three-way valve B was performed. The amount of circulating ozone water was set to 15 L / min. Particle measurement was performed. While draining 5 L / min from valve | bulb D, the same amount of water supply was always implemented simultaneously.
Test results: The ozone water amount changed from 11.9 to 14.0 L / min and the ozone water concentration changed from 13.8 to 15.6 ppm. Particles were 0.1 μmφ or more and 50 particles / 10 ml or less. Ozone water concentration stability is at a level that can be used practically. The amount of particles was also at a level that could be used for semiconductor cleaning. In addition, there was no wasted water, saving water for ultrapure water. Furthermore, it takes no time to discharge the ozone water that has already reached the specified concentration in the circulation system, and there is no need to wait for the ozone water concentration to be raised unlike the conventional apparatus.

本発明に係る循環型オゾン水製造装置及び該装置の運転方法によれば、使用する超純水の量を大幅に削減し、節水を可能とするとともに、オゾン水濃度の立ち上がり時間をゼロとすることができ、かつ、循環経路中のオゾン水濃度を常に設定した濃度に保ち、設定したオゾン水濃度のオゾン水を安定して洗浄槽に供給することができる。   According to the circulation type ozone water production apparatus and the operation method of the apparatus according to the present invention, the amount of ultrapure water to be used is greatly reduced, water can be saved, and the rise time of the ozone water concentration is made zero. In addition, the ozone water concentration in the circulation path can always be kept at the set concentration, and the ozone water having the set ozone water concentration can be stably supplied to the cleaning tank.

本発明による循環型オゾン水製造装置の全体図。1 is an overall view of a circulating ozone water production apparatus according to the present invention. 本発明による循環型オゾン水製造装置の詳細図。Detailed drawing of the circulation type ozone water manufacturing apparatus by this invention. 従来装置の循環型オゾン水製造装置を示す図。The figure which shows the circulation type ozone water manufacturing apparatus of a conventional apparatus.

符号の説明Explanation of symbols

1:電解式オゾンガス発生装置
1a:オゾンガス発生部
1b:陽極室
1c:陰極室
1d:循環塔
2:循環タンク
3:オゾン溶解槽
4:オゾンドレインタンク
5:オゾン水出口
6:接続配管
7:接続配管
8:接続配管
9:接続配管
10:接続配管
11:接続配管
12:接続配管
13:オゾン水濃度計
14:接続配管
A:バルブ
B:バルブ
C:バルブ
D:バルブ
E:バルブ
P:ポンプ
F:オゾン水フィルター
G:流量計
H:バルブ
LS:液面計
1: Electrolytic ozone gas generator 1a: ozone gas generator 1b: anode chamber 1c: cathode chamber 1d: circulation tower 2: circulation tank 3: ozone dissolution tank 4: ozone drain tank 5: ozone water outlet 6: connection pipe 7: connection Pipe 8: Connection pipe 9: Connection pipe 10: Connection pipe 11: Connection pipe 12: Connection pipe 13: Ozone water concentration meter 14: Connection pipe A: Valve B: Valve C: Valve D: Valve E: Valve P: Pump F : Ozone water filter G: Flow meter H: Valve LS: Liquid level gauge

Claims (8)

超純水を電解してオゾンガスを生成する電解式オゾンガス発生装置1と、オゾン水を循環するための循環タンク2と、電解式オゾンガス発生装置1より発生したオゾンガスの一部を溶解しオゾン水を生成するためのオゾン溶解槽3と、オゾン溶解槽3によって生成されたオゾン水の一部をユースポイントに供給するためのオゾン水出口5と、超純水をバルブAを介して循環タンク2に供給するための接続配管6と、電解式オゾンガス発生装置1より発生したオゾンガスの一部をバルブBを介してオゾン溶解槽3に供給する接続配管7と、循環タンク2内の超純水及び循環されたオゾン水を循環ポンプP及びバルブCを介してオゾン溶解槽3に供給するための接続配管8と、オゾン溶解槽3によって生成されたオゾン水の一部をバルブDを介してオゾン水出口5に供給するための接続配管10と、オゾン水出口5の手前から循環タンク2に循環するための接続配管11と、循環するオゾン水を所定の濃度に調整するためオゾン溶解槽3に接続したオゾン水濃度測定装置13と、循環タンク2に設けた液面計LSとよりなり、オゾン溶解槽3によって生成されたオゾン水の一部をオゾン水出口5よりユースポイントに供給し、オゾン溶解槽3によって生成されたオゾン水の残部を接続配管10、11及び8を用いて循環使用するとともに、オゾン溶解槽3で製造したオゾン水の濃度を測定し、その測定値に基づいて、電解式オゾンガス発生装置1への電解電流制御及び/又はバルブBによる切り替えを行い、オゾン溶解槽3へのオゾンガス供給を制御するとともに、循環タンク2に設けた液面計LSにより、循環タンク2内の液面を管理し、超純水の補給、停止を繰り返すことにより、循環経路中のオゾン水の濃度を一定に保ち、設定したオゾン水濃度のオゾン水を安定して供給を行うことを特徴とする循環型オゾン水製造装置。   An electrolytic ozone gas generator 1 that electrolyzes ultrapure water to generate ozone gas, a circulation tank 2 for circulating ozone water, and a part of ozone gas generated from the electrolytic ozone gas generator 1 are dissolved to generate ozone water. An ozone dissolution tank 3 for generating, an ozone water outlet 5 for supplying a part of the ozone water generated by the ozone dissolution tank 3 to the use point, and ultrapure water to the circulation tank 2 via the valve A Connection piping 6 for supplying, connection piping 7 for supplying a part of ozone gas generated from the electrolytic ozone gas generator 1 to the ozone dissolution tank 3 through the valve B, ultrapure water and circulation in the circulation tank 2 A connecting pipe 8 for supplying the ozone water to the ozone dissolution tank 3 through the circulation pump P and the valve C, and a part of the ozone water generated by the ozone dissolution tank 3 through the valve D A connection pipe 10 for supplying to the ozone water outlet 5, a connection pipe 11 for circulating from the front of the ozone water outlet 5 to the circulation tank 2, and an ozone dissolution tank 3 for adjusting the circulating ozone water to a predetermined concentration. The ozone water concentration measuring device 13 connected to the liquid tank and a liquid level gauge LS provided in the circulation tank 2, supplying a part of the ozone water generated by the ozone dissolution tank 3 from the ozone water outlet 5 to the use point, While circulating the remaining ozone water generated by the ozone dissolution tank 3 using the connecting pipes 10, 11 and 8, the concentration of the ozone water produced in the ozone dissolution tank 3 is measured, and based on the measured value, The electrolytic current control to the electrolytic ozone gas generator 1 and / or the switching by the valve B are performed to control the supply of the ozone gas to the ozone dissolution tank 3 and the circulation tank 2 is provided. The liquid level gauge LS manages the liquid level in the circulation tank 2 and repeats the replenishment and stoppage of ultrapure water to keep the concentration of ozone water in the circulation path constant. A recirculating ozone water production apparatus characterized by stably supplying water. 循環ポンプPとして磁気浮上型無接触構造のフッ素樹脂製渦巻きポンプを用いた請求項1記載の循環型オゾン水製造装置。   2. The circulating ozone water production apparatus according to claim 1, wherein a fluorine resin spiral pump having a magnetic levitation type non-contact structure is used as the circulation pump P. オゾン水出口5にオゾン水をユースポイントへ供出する単数又は複数口に分岐させた配管を接続した請求項1記載の循環型オゾン水製造装置。   The circulating ozone water production apparatus according to claim 1, wherein the ozone water outlet 5 is connected to a pipe branched into a single port or a plurality of ports for supplying ozone water to a use point. オゾン水濃度測定装置13として、全量式溶存オゾン濃度計を用いた請求項1記載の循環型オゾン水製造装置。   The circulating ozone water production apparatus according to claim 1, wherein a total quantity dissolved ozone concentration meter is used as the ozone water concentration measuring device 13. オゾン耐性を有する多孔質PTFE膜を用いたフィルターFをオゾン溶解槽3下流とオゾン水出口5の間の接続配管10に設置し、循環するオゾン水中のパーティクルを除去し、循環するオゾン水の清浄性を維持した請求項1記載の循環型オゾン水製造装置。   A filter F using a porous PTFE membrane having ozone resistance is installed in a connection pipe 10 between the ozone dissolution tank 3 downstream and the ozone water outlet 5 to remove particles in the circulating ozone water and clean the circulating ozone water. The circulating ozone water production apparatus according to claim 1, which maintains the property. 電解式オゾンガス発生装置1を用いてオゾンガスを生成する工程と、
電解式オゾンガス発生装置1において生成したオゾンガスの一部を接続配管7及びバルブBを介してオゾン溶解槽3に供給する工程と、
超純水を循環タンク2より接続配管8、ポンプP及びバルブBを介してオゾン溶解槽3に供給する工程と、
オゾン溶解槽3にてオゾン水を生成する工程と、
オゾン溶解槽3において生成したオゾン水の一部を接続配管10及びバルブDを用いて、オゾン水出口5に供給する工程と、
オゾン水出口5の手前からオゾン水の一部をバルブD及び接続配管11を用いて循環タンク2に循環する工程と、
循環タンク2内のオゾン水をオゾン溶解槽3に供給して循環使用する工程と、
オゾン水濃度計13によりオゾン溶解槽3で製造したオゾン水の濃度を測定し、その測定値に基づいて、電解式オゾンガス発生装置1への電解電流制御及び/又はバルブBによる切り替えを行い、オゾン溶解槽3へのオゾンガス供給を制御する工程と、
循環タンク2に設けた液面計LSにより、循環タンク2内の液面を管理し、超純水の補給、停止を繰り返す工程
とよりなり、循環経路中のオゾン水の濃度を一定に保ち、設定したオゾン水濃度のオゾン水を安定して供給することを特徴とする循環型オゾン水製造装置の運転方法。
Generating ozone gas using the electrolytic ozone gas generator 1;
Supplying a part of the ozone gas generated in the electrolytic ozone gas generator 1 to the ozone dissolution tank 3 via the connection pipe 7 and the valve B;
Supplying ultrapure water from the circulation tank 2 to the ozone dissolution tank 3 via the connection pipe 8, the pump P and the valve B;
Generating ozone water in the ozone dissolution tank 3,
Supplying a part of the ozone water generated in the ozone dissolution tank 3 to the ozone water outlet 5 using the connecting pipe 10 and the valve D;
Circulating a part of the ozone water from the front of the ozone water outlet 5 to the circulation tank 2 using the valve D and the connecting pipe 11;
Supplying ozone water in the circulation tank 2 to the ozone dissolution tank 3 for circulation;
The concentration of ozone water produced in the ozone dissolution tank 3 is measured by the ozone water concentration meter 13, and based on the measured value, the electrolytic current control to the electrolytic ozone gas generator 1 and / or the switching by the valve B is performed, and the ozone Controlling the ozone gas supply to the dissolution tank 3,
The liquid level gauge LS provided in the circulation tank 2 manages the liquid level in the circulation tank 2 and repeats the replenishment and stoppage of ultrapure water. The concentration of ozone water in the circulation path is kept constant, A method for operating a circulating ozone water production apparatus, wherein ozone water having a set ozone water concentration is stably supplied.
循環タンク2に供給する超純水として二酸化炭素を溶解させた超純水を使用する請求項6記載の循環型オゾン水製造装置の運転方法。   The operation method of the circulating ozone water production apparatus according to claim 6, wherein ultrapure water in which carbon dioxide is dissolved is used as the ultrapure water supplied to the circulation tank 2. 超純水を電解してオゾンガスを生成する電解式オゾンガス発生装置1の陽極室に二酸化炭素を供給しながら電解を行う請求項6記載の循環型オゾン水製造装置の運転方法。
The operating method of the circulating ozone water manufacturing apparatus of Claim 6 which electrolyzes supplying carbon dioxide to the anode chamber of the electrolytic ozone gas generator 1 which electrolyzes ultrapure water and produces | generates ozone gas.
JP2006156858A 2006-06-06 2006-06-06 Circulating ozone water production apparatus and method of operating the apparatus Active JP4909648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156858A JP4909648B2 (en) 2006-06-06 2006-06-06 Circulating ozone water production apparatus and method of operating the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156858A JP4909648B2 (en) 2006-06-06 2006-06-06 Circulating ozone water production apparatus and method of operating the apparatus

Publications (2)

Publication Number Publication Date
JP2007325981A true JP2007325981A (en) 2007-12-20
JP4909648B2 JP4909648B2 (en) 2012-04-04

Family

ID=38926846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156858A Active JP4909648B2 (en) 2006-06-06 2006-06-06 Circulating ozone water production apparatus and method of operating the apparatus

Country Status (1)

Country Link
JP (1) JP4909648B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830592A (en) * 2010-05-11 2010-09-15 吴志文 Nickel-containing washing waste water recycling treatment system
JP2010270364A (en) * 2009-05-21 2010-12-02 Chlorine Eng Corp Ltd Ozone-generating method and ozone-generating apparatus
CN101930240A (en) * 2010-08-19 2010-12-29 天威四川硅业有限责任公司 Ultrapure water energy-saving control system
JP2012041572A (en) * 2010-08-13 2012-03-01 Nikka Micron Kk Ozone water generator
JP2013253432A (en) * 2012-06-07 2013-12-19 Tamura Teco:Kk Public toilet washing water supply system
CN104264181A (en) * 2014-10-21 2015-01-07 百尔康环保科技有限公司 Device for increasing hydroxyl radical content of ozone water produced by electrolytic ozone generator
CN106277503A (en) * 2016-08-30 2017-01-04 重庆颐洋企业发展有限公司 A kind of ultrapure water machine intelligent control system and control method thereof
JP2018153727A (en) * 2017-03-15 2018-10-04 住友精密工業株式会社 Ozone water supply system
KR20220002125A (en) 2020-06-30 2022-01-06 가부시키가이샤 스크린 홀딩스 Substrate processing apparatus and substrate processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6734621B2 (en) 2014-02-20 2020-08-05 オルガノ株式会社 Ozone water supply method and ozone water supply device
CN108241066B (en) * 2018-01-18 2021-06-15 南京洁态环保科技有限公司 Internal circulation pipeline system for multi-test-solution program detection and control method thereof

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172593A (en) * 1988-12-26 1990-07-04 Plant Service:Kk Apparatus for continuously supplying ozone water
JPH07232903A (en) * 1994-02-18 1995-09-05 Ishikawajima Shibaura Mach Co Ltd Ozonized water producing device
JPH09906A (en) * 1995-06-21 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water producing device and its method
JPH1177021A (en) * 1997-09-01 1999-03-23 Kurita Water Ind Ltd Supplier for hydrogen-containing high-purity water
JPH11123390A (en) * 1997-10-22 1999-05-11 Japan Organo Co Ltd Desalination apparatus
JPH11303788A (en) * 1998-02-18 1999-11-02 Ebara Corp Liquid feeding line pump
JP2000015272A (en) * 1998-07-03 2000-01-18 Japan Organo Co Ltd Method and apparatus for producing ozone water
JP2001000981A (en) * 1999-06-21 2001-01-09 Sasakura Engineering Co Ltd High-degree ozone cleaning apparatus of pool water
JP2001129376A (en) * 1999-11-08 2001-05-15 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for manufacturing ozone water
JP2001157828A (en) * 1999-12-03 2001-06-12 Kurabo Ind Ltd Ozone dissolving device
JP2002166147A (en) * 2000-12-04 2002-06-11 Sasakura Engineering Co Ltd Ozone water production apparatus
JP2002186839A (en) * 2000-12-20 2002-07-02 Daikin Ind Ltd Gas dissolving device
JP2003117570A (en) * 2001-10-19 2003-04-22 Nomura Micro Sci Co Ltd Making method and making device for ozone water
JP2003181251A (en) * 2001-12-18 2003-07-02 Sasakura Engineering Co Ltd Method and apparatus for manufacturing ozone-dissolved water
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2004188246A (en) * 2002-12-06 2004-07-08 Toshiba Plant Systems & Services Corp System for manufacturing ozonized water
JP2004330050A (en) * 2003-05-06 2004-11-25 Regal Joint Co Ltd Ozonized-water supplying apparatus and fluid mixing apparatus
JP2005161284A (en) * 2003-11-28 2005-06-23 Nittetu Chemical Engineering Ltd Method for supplying ozonized water of constant concentration

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172593A (en) * 1988-12-26 1990-07-04 Plant Service:Kk Apparatus for continuously supplying ozone water
JPH07232903A (en) * 1994-02-18 1995-09-05 Ishikawajima Shibaura Mach Co Ltd Ozonized water producing device
JPH09906A (en) * 1995-06-21 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water producing device and its method
JPH1177021A (en) * 1997-09-01 1999-03-23 Kurita Water Ind Ltd Supplier for hydrogen-containing high-purity water
JPH11123390A (en) * 1997-10-22 1999-05-11 Japan Organo Co Ltd Desalination apparatus
JPH11303788A (en) * 1998-02-18 1999-11-02 Ebara Corp Liquid feeding line pump
JP2000015272A (en) * 1998-07-03 2000-01-18 Japan Organo Co Ltd Method and apparatus for producing ozone water
JP2001000981A (en) * 1999-06-21 2001-01-09 Sasakura Engineering Co Ltd High-degree ozone cleaning apparatus of pool water
JP2001129376A (en) * 1999-11-08 2001-05-15 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for manufacturing ozone water
JP2001157828A (en) * 1999-12-03 2001-06-12 Kurabo Ind Ltd Ozone dissolving device
JP2002166147A (en) * 2000-12-04 2002-06-11 Sasakura Engineering Co Ltd Ozone water production apparatus
JP2002186839A (en) * 2000-12-20 2002-07-02 Daikin Ind Ltd Gas dissolving device
JP2003117570A (en) * 2001-10-19 2003-04-22 Nomura Micro Sci Co Ltd Making method and making device for ozone water
JP2003181251A (en) * 2001-12-18 2003-07-02 Sasakura Engineering Co Ltd Method and apparatus for manufacturing ozone-dissolved water
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2004188246A (en) * 2002-12-06 2004-07-08 Toshiba Plant Systems & Services Corp System for manufacturing ozonized water
JP2004330050A (en) * 2003-05-06 2004-11-25 Regal Joint Co Ltd Ozonized-water supplying apparatus and fluid mixing apparatus
JP2005161284A (en) * 2003-11-28 2005-06-23 Nittetu Chemical Engineering Ltd Method for supplying ozonized water of constant concentration

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270364A (en) * 2009-05-21 2010-12-02 Chlorine Eng Corp Ltd Ozone-generating method and ozone-generating apparatus
CN101830592A (en) * 2010-05-11 2010-09-15 吴志文 Nickel-containing washing waste water recycling treatment system
JP2012041572A (en) * 2010-08-13 2012-03-01 Nikka Micron Kk Ozone water generator
CN101930240A (en) * 2010-08-19 2010-12-29 天威四川硅业有限责任公司 Ultrapure water energy-saving control system
CN101930240B (en) * 2010-08-19 2011-11-23 天威四川硅业有限责任公司 Ultrapure water energy-saving control system
JP2013253432A (en) * 2012-06-07 2013-12-19 Tamura Teco:Kk Public toilet washing water supply system
CN104264181A (en) * 2014-10-21 2015-01-07 百尔康环保科技有限公司 Device for increasing hydroxyl radical content of ozone water produced by electrolytic ozone generator
CN104264181B (en) * 2014-10-21 2016-08-24 百特环保科技(烟台)有限公司 Improve the device that electrolysis ozone generator manufactures the hydroxyl radical free radical of Ozone Water
CN106277503A (en) * 2016-08-30 2017-01-04 重庆颐洋企业发展有限公司 A kind of ultrapure water machine intelligent control system and control method thereof
JP2018153727A (en) * 2017-03-15 2018-10-04 住友精密工業株式会社 Ozone water supply system
JP7041466B2 (en) 2017-03-15 2022-03-24 住友精密工業株式会社 Ozone water supply system
KR20220002125A (en) 2020-06-30 2022-01-06 가부시키가이샤 스크린 홀딩스 Substrate processing apparatus and substrate processing method
JP2022011581A (en) * 2020-06-30 2022-01-17 株式会社Screenホールディングス Substrate processing device and substrate processing method
TWI771024B (en) * 2020-06-30 2022-07-11 日商斯庫林集團股份有限公司 Substrate processing apparatus and substrate processing method
JP7504679B2 (en) 2020-06-30 2024-06-24 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP4909648B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4909648B2 (en) Circulating ozone water production apparatus and method of operating the apparatus
KR101165918B1 (en) Cleaning method, cleaning system, and method for manufacturing microstructure
JP2015155083A (en) Method and apparatus for supply of ozone water
JP6629494B1 (en) Method for producing heated ozone water, heated ozone water and semiconductor wafer cleaning liquid
JP5997130B2 (en) Sulfuric acid electrolysis apparatus and sulfuric acid electrolysis method
JP5087325B2 (en) Cleaning system and cleaning method
JP6430772B2 (en) Carbon dioxide-dissolved water supply system, carbon dioxide-dissolved water supply method, and ion exchange device
JP2018069212A (en) Water treatment apparatus, water treatment system and water treatment method
JP6427378B2 (en) Ammonia dissolved water supply system, ammonia dissolved water supply method, and ion exchange apparatus
JP2012204546A (en) Electronic material cleaning method and cleaning device
JP6428806B2 (en) Semiconductor substrate cleaning apparatus and semiconductor substrate cleaning method
JP2018182098A (en) Cleaning water supply device
JP2007266477A (en) Semiconductor substrate cleaning system
TWI443190B (en) Cleaning liquid, cleaning method, cleaning system, and method for manufacturing microstructure
JP2009213961A (en) Air washer
JP2005186067A (en) Ozone-containing ultrapure water supply method and apparatus
JP2006278838A (en) Sulfuric acid recycling type cleaning system
JP2017202474A (en) Ozone dissolved water production apparatus
JP5126478B2 (en) Cleaning liquid manufacturing method, cleaning liquid supply apparatus and cleaning system
JP2008095144A (en) Method and apparatus for forming high-temperature high concentration persulfuric acid solution
JP2006297343A (en) Washing method of ultrapure water manufacturing and supplying device
JP2008294020A (en) Cleaning solution supplying system, and cleaning system
JP3748765B2 (en) Electrolytic gas generation method and electrolytic gas generator
JP2002166279A (en) Method and device for generating gas by electrolysis
JP7502037B2 (en) Ozone water production device and method for producing ozone water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4909648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250