JP2012041572A - Ozone water generator - Google Patents

Ozone water generator Download PDF

Info

Publication number
JP2012041572A
JP2012041572A JP2010181254A JP2010181254A JP2012041572A JP 2012041572 A JP2012041572 A JP 2012041572A JP 2010181254 A JP2010181254 A JP 2010181254A JP 2010181254 A JP2010181254 A JP 2010181254A JP 2012041572 A JP2012041572 A JP 2012041572A
Authority
JP
Japan
Prior art keywords
water
ozone water
electrode
solenoid valve
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010181254A
Other languages
Japanese (ja)
Other versions
JP5574877B2 (en
Inventor
Yoshiyuki Nishimura
喜之 西村
Shigeo Sekiguchi
重夫 関口
Shogo Iijima
捷語 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suisei Kogyo Co Ltd
Nikka Micron Co Ltd
Original Assignee
Suisei Kogyo Co Ltd
Nikka Micron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suisei Kogyo Co Ltd, Nikka Micron Co Ltd filed Critical Suisei Kogyo Co Ltd
Priority to JP2010181254A priority Critical patent/JP5574877B2/en
Publication of JP2012041572A publication Critical patent/JP2012041572A/en
Application granted granted Critical
Publication of JP5574877B2 publication Critical patent/JP5574877B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ozone water generator capable of preventing contamination of ozone water and obtaining the ozone water of high purity.SOLUTION: The ozone water generator 100 includes a catalyst electrode 2 composed by holding a cation exchange membrane 21 between an anode electrode 22 and a cathode electrode 23 and generates the ozone water by supplying raw material water to the cation electrode 22, supplying cathode water to the cathode electrode 23 and applying a DC voltage between the anode electrode 22 and the cathode electrode 23. An outflow path 12a for making the raw material water or the generated ozone water flow out to the outside is provided on the side of the anode electrode 22, the outflow path 12a is provided with a three-way solenoid valve 3, one of the exits of the three-way solenoid valve 3 is connected to a water discharge line 31 which discharges the ozone water, the other exit of the three-way solenoid valve is connected to a drain line 32, and the raw material water supplied to the catalyst electrode 2 is drained from the drain line 32 for a fixed time together with operation start.

Description

本発明は、オゾン水生成装置に関する。   The present invention relates to an ozone water generator.

近年、オゾン水は食品の殺菌や悪臭ガスの脱臭などの用途に広範に使用されており、さらに医療や介護の分野で、数多い知見例が発表され始めている。また、半導体製造領域においても、超微細構造に対するオゾン酸化の特徴が認められ、オゾン水の使用が必須とされている。
このようなオゾン水の製法として、陽イオン交換膜の一方の面に陽極電極を圧接させ、他方の面に陰極電極を圧接してなる触媒電極の電解面に原料水を直接接触させて、水の電気分解によりオゾン水を生成させる直接電解法を利用したものが知られている(例えば、特許文献1参照)。
直接電解法を利用したオゾン水生成装置は、立ち上がりや、立ち下りの応答性が極めて良いため、原料水を少量ずつオゾン水にしながら繰り返して使用することができるという特徴を持っている。
In recent years, ozone water has been widely used for applications such as sterilization of foods and deodorization of malodorous gases, and many examples of knowledge have begun to be published in the fields of medical care and nursing care. Also in the semiconductor manufacturing area, the feature of ozone oxidation with respect to the ultrafine structure is recognized, and the use of ozone water is essential.
As such a method for producing ozone water, the anode electrode is pressed against one surface of the cation exchange membrane, and the raw material water is brought into direct contact with the electrolytic surface of the catalyst electrode formed by pressing the cathode electrode against the other surface. The thing using the direct electrolysis method which produces | generates ozone water by electrolysis of is known (for example, refer patent document 1).
The ozone water generation apparatus using the direct electrolysis method has a feature that it can be repeatedly used while making raw water into ozone water little by little because it has very good response to rise and fall.

特開平8−134678号公報JP-A-8-134678

しかしながら、原料水が遊離塩素を含まない脱塩素水や精製水の場合、装置内に滞留している水が、使用していない間に汚染される可能性は否定できないものであった。このような場合には、装置の運転初期にこれを排水するとともに、さらに新しく供給された水で洗浄排水することが推奨される。
また、精製水からオゾン水を生成する場合、精製水は導電率が低いため、オゾンを生成する電気分解反応が十分に促進されないため、陰極電極側に電解液を使用して水素イオンが陽極電極側から陰極電極側へ移動するのを助けている。
しかし、このように陰極電極側に電解液を使用する方式では、停止中に電解液中の成分が固体電解質膜中を浸潤して陽極電極側に析出して陽極電極側を汚染するという問題がある。このままの状態でオゾン水を生成すると、装置の運転初期の段階においては装置停止中に固体電解質膜中を浸潤した電解液成分がオゾン水とともに吐水されてオゾン水を汚染してしまう。
本発明は、上記事情に鑑みてなされたもので、オゾン水の汚染を防止して、純度の高いオゾン水を得ることができるオゾン水生成装置を提供することを目的としている。
However, in the case where the raw water is dechlorinated water or purified water that does not contain free chlorine, the possibility that the water staying in the apparatus is contaminated while it is not being used cannot be denied. In such a case, it is recommended that this be drained at the initial stage of operation of the apparatus, and further washed and drained with newly supplied water.
In addition, when ozone water is generated from purified water, since the conductivity of purified water is low, the electrolysis reaction that generates ozone is not sufficiently accelerated. It helps to move from the side to the cathode electrode side.
However, in the system using the electrolyte solution on the cathode electrode side in this way, there is a problem that the components in the electrolyte solution infiltrate the solid electrolyte membrane during the stop and precipitate on the anode electrode side to contaminate the anode electrode side. is there. If ozone water is generated in this state, the electrolyte component infiltrated into the solid electrolyte membrane while the apparatus is stopped is discharged together with the ozone water at the initial stage of operation of the apparatus and contaminates the ozone water.
This invention is made | formed in view of the said situation, and it aims at providing the ozone water production | generation apparatus which can prevent ozone water contamination and can obtain ozone water with high purity.

上記課題を解決するため、請求項1の発明は、陽極電極と陰極電極との間に陽イオン交換膜が狭持されてなる触媒電極を備え、
前記陽極電極に原料水を供給し、陰極電極に陰極水を供給するとともに前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成するオゾン水生成装置において、
前記陽極電極側に、原料水又は生成されたオゾン水を外部に流出する陽極側流出部が設けられ、
前記陽極側流出部に3方向電磁弁が設けられており、
前記3方向電磁弁の出口の一方がオゾン水を吐出する吐水ラインに繋がれ、
前記3方向電磁弁の出口の他方が排水ラインに繋がれ、
運転開始とともに前記触媒電極に供給された原料水を一定時間、前記排水ラインから排水することを特徴とする。
In order to solve the above problems, the invention of claim 1 includes a catalyst electrode in which a cation exchange membrane is sandwiched between an anode electrode and a cathode electrode,
In the ozone water generator for supplying ozone water by supplying raw water to the anode electrode, supplying cathode water to the cathode electrode and applying a direct current voltage between the anode electrode and the cathode electrode,
The anode electrode side is provided with an anode side outflow portion for flowing out raw material water or generated ozone water to the outside,
A three-way solenoid valve is provided in the anode-side outflow portion;
One of the outlets of the three-way solenoid valve is connected to a water discharge line that discharges ozone water,
The other outlet of the three-way solenoid valve is connected to a drain line,
The raw water supplied to the catalyst electrode at the start of operation is drained from the drain line for a certain time.

請求項1の発明によれば、陽極電極側に、原料水又は生成されたオゾン水を外部に流出する陽極側流出部が設けられ、陽極側流出部に3方向電磁弁が設けられており、3方向電磁弁の出口の一方がオゾン水を吐出する吐水ラインに繋がれ、3方向電磁弁の出口の他方が排水ラインに繋がれ、運転開始とともに触媒電極に供給された原料水を一定時間、排水ラインから排水するので、装置内に滞留している原料水が使用していない間に汚染されていても、運転初期に汚染された原料水が排水ラインから排水されるとともに、新しく供給された原料水で洗浄排水される。その結果、一定時間経過後、汚染された原料水が混合されずに、吐水ラインからオゾン濃度の高いオゾン水を得ることができる。特に、原料水に、遊離塩素を含まない脱塩素水や精製水を使用した場合に効果的である。
また、原料水として精製水を使用する場合、精製水は導電率が低いのでオゾンを生成する電気分解反応が十分促進されないことから、陰極電極側に陰極水として電解液を使用して水素イオンが陽極電極側から陰極電極側へ移動するのを促進している。このように陰極電極側に電解液を使用する方式では、装置の停止中に電解液中の成分が陽イオン交換膜中を浸潤して陽極電極側に析出して陽極電極側を汚染することがあり、このままの状態でオゾン水を生成すると運転初期の段階において装置停止中に陽イオン交換膜中を浸潤した電解液成分がオゾン水とともに吐水されてオゾン水を汚染することになる。しかし、本発明のように運転開始とともに原料水を一定時間排水することにより、このようなオゾン水の汚染を確実に防止することができる。
According to the invention of claim 1, on the anode electrode side, an anode-side outflow portion that flows out raw material water or generated ozone water to the outside is provided, and a three-way solenoid valve is provided in the anode-side outflow portion, One of the outlets of the three-way solenoid valve is connected to a water discharge line that discharges ozone water, the other of the outlets of the three-way solenoid valve is connected to a drainage line, and the raw water supplied to the catalyst electrode at the start of operation for a certain period of time, Since the water is drained from the drainage line, even if the raw water staying in the equipment is contaminated while it is not in use, the contaminated raw water is drained from the drainage line at the beginning of operation and newly supplied. Washed and drained with raw water. As a result, it is possible to obtain ozone water having a high ozone concentration from the water discharge line without mixing the contaminated raw material water after a certain period of time. This is particularly effective when dechlorinated water or purified water that does not contain free chlorine is used as the raw water.
In addition, when purified water is used as raw water, purified water has low electrical conductivity, so the electrolysis reaction that generates ozone is not sufficiently accelerated. The movement from the anode electrode side to the cathode electrode side is promoted. As described above, in the method using the electrolyte solution on the cathode electrode side, the components in the electrolyte solution may infiltrate the cation exchange membrane and precipitate on the anode electrode side to contaminate the anode electrode side while the apparatus is stopped. If the ozone water is generated as it is, the electrolyte component infiltrated into the cation exchange membrane during the operation stop in the initial stage of operation is discharged together with the ozone water to contaminate the ozone water. However, such contamination of ozone water can be reliably prevented by draining the raw material water for a certain period of time at the start of operation as in the present invention.

請求項2の発明は、請求項1に記載のオゾン水生成装置において、
前記3方向電磁弁の通電がONの状態で、前記吐水ラインが閉鎖され、前記排水ラインが開放され、
前記3方向電磁弁の通電がOFFの状態で、前記吐水ラインが開放され、前記排水ラインが閉鎖され、
運転開始とともに前記触媒電極に通水された原料水を一定時間、前記3方向電磁弁の通電をONとし、前記排水ラインに排水し、前記一定時間経過後、前記3方向電磁弁の通電をOFFとし、前記吐水ラインから吐水することを特徴とする。
The invention of claim 2 is the ozone water generator according to claim 1,
With the three-way solenoid valve energized, the water discharge line is closed, the drainage line is opened,
With the energization of the three-way solenoid valve turned off, the water discharge line is opened, the drainage line is closed,
When the operation is started, the raw water passed through the catalyst electrode is turned on for a certain period of time, the energization of the three-way solenoid valve is turned on, drained to the drainage line, and after the elapse of the certain period of time, the energization of the three-way solenoid valve is turned off. And discharging water from the water discharge line.

請求項2の発明によれば、3方向電磁弁の通電がONの状態で一定時間、吐水ラインが閉鎖され、排水ラインが開放され、3方向電磁弁の通電がOFFの状態で吐水ラインが開放され、排水ラインが閉鎖され、運転開始とともに触媒電極に通水された原料水を一定時間、3方向電磁弁の通電をONとし、排水ラインに排水し、一定時間経過後、3方向電磁弁の通電をOFFとし、吐水ラインから吐水する。運転停止により通電がOFFとなるので、運転状態から引き続き排水ラインは閉鎖され、吐水ラインは開放されたままとなり、系内のオゾン水は自然に吐水されて最終的に停止する。また、オゾンは強力な殺菌性を有するため、オゾン水を吐水した後の吐水ラインは常に清潔な状態に保たれることになる。   According to the invention of claim 2, the water discharge line is closed for a certain period of time while the energization of the three-way solenoid valve is ON, the drainage line is opened, and the water discharge line is opened while the energization of the three-way solenoid valve is OFF. The drainage line is closed, and the raw water that has passed through the catalyst electrode at the start of operation is turned on for a certain period of time, the energization of the three-way solenoid valve is turned on and drained to the drainage line. The energization is turned off and water is discharged from the water discharge line. Since the energization is turned off by the operation stop, the drainage line is continuously closed from the operation state, the water discharge line remains open, and the ozone water in the system is discharged naturally and finally stops. Moreover, since ozone has a strong bactericidal property, the water discharge line after discharging the ozone water is always kept clean.

請求項3の発明は、請求項1又は2に記載のオゾン水生成装置において、
運転開始とともに前記触媒電極に供給された原料水を一定時間、前記排水ラインから排水する際に、運転開始直後に生成された低濃度のオゾン水も前記排水ラインから排水することを特徴とする。
Invention of Claim 3 is the ozone water generating apparatus of Claim 1 or 2,
When the raw water supplied to the catalyst electrode is drained from the drain line for a certain period of time with the start of operation, low-concentration ozone water generated immediately after the start of operation is also drained from the drain line.

請求項3の発明によれば、運転開始直後の立ち上がり時に生成された低濃度のオゾン水が排水されるので、吐水されるオゾン水は常に一定以上の濃度を保つことができる。
また、陰極電極側に陰極水として電解液を使用する場合には、装置の停止中に陽イオン交換膜中を浸潤して陽極電極側に析出した電解液の成分がオゾン水とともに吐水されてオゾン水を汚染するが、このような場合も、運転開始直後の汚染物質を含む可能性のある低濃度のオゾン水を排水することによって、吐水されるオゾン水を常に純度の高いオゾン水とすることができる。
According to the invention of claim 3, since the low-concentration ozone water generated at the time of startup immediately after the start of operation is drained, the discharged ozone water can always maintain a certain concentration or more.
In addition, when an electrolytic solution is used as cathode water on the cathode electrode side, the components of the electrolyte solution that infiltrate the cation exchange membrane and deposit on the anode electrode side while the apparatus is stopped are discharged together with ozone water to Although water is contaminated, even in such a case, drain the ozone water at a low concentration that may contain pollutants immediately after the start of operation, so that the discharged ozone water is always highly pure ozone water. Can do.

本発明によれば、オゾン水の汚染を防止して、純度の高いオゾン水を得ることができる。   According to the present invention, contamination of ozone water can be prevented and high-purity ozone water can be obtained.

オゾン水生成装置の概略を模式的に示した縦断面図であり、オゾン水生成装置の通常運転時及び停止時を示している。It is the longitudinal cross-sectional view which showed the outline of the ozone water production | generation apparatus typically, and has shown at the time of the normal driving | operation of the ozone water production | generation apparatus, and a stop. オゾン水生成装置の概略を模式的に示した縦断面図であり、オゾン水生成装置の初期運転時を示している。It is the longitudinal cross-sectional view which showed the outline of the ozone water production | generation apparatus typically, and has shown the time of initial operation of an ozone water production | generation apparatus. オゾン水濃度の立ち上がり(時間的変化)を示したグラフである。It is the graph which showed the rise (time change) of ozone water concentration. 変形例を示したもので、図1のオゾン水生成装置においてミキシング装置を使用した場合である。It shows a modification, and is a case where a mixing device is used in the ozone water generator of FIG.

以下、本発明の実施の形態について図面を参照しながら説明する。
[第1の実施形態]
図1は、オゾン水生成装置100の概略を模式的に示した縦断面図である。
オゾン水生成装置100は、原料水及び陰極水が流入されるケーシング1内に触媒電極2を配置して構成したものである。そして、触媒電極2に直流電圧を印加することによって陽極電極22側にオゾン気泡を発生させて、そのオゾン気泡を水に溶解させることによりオゾン水を生成する装置である。
原料水としては、遊離塩素を含まない脱塩素水や精製水、水道水等を使用することができる。
陰極水としては、例えば食塩水、塩化カリウム溶液、塩化カルシウム溶液などの電解液を使用することができる。
ケーシング1は、上下に長尺でその上下両端が閉塞された直方体状をなしている。ケーシング1の下面に、ケーシング1内に原料水、陰極水を流入するための流入路11a,1
1bが設けられ、ケーシング1の上面に、生成された陽極電極22側のオゾン水並びに陰極電極23側の陰極水を流出するための流出路12a,12bが設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a longitudinal sectional view schematically showing an outline of the ozone water generator 100.
The ozone water generating apparatus 100 is configured by arranging a catalyst electrode 2 in a casing 1 into which raw water and cathode water are introduced. And it is an apparatus which produces | generates ozone water by generating an ozone bubble in the anode electrode 22 side by applying a DC voltage to the catalyst electrode 2, and dissolving the ozone bubble in water.
As raw water, dechlorinated water, purified water, tap water, etc. that do not contain free chlorine can be used.
As the cathode water, for example, an electrolytic solution such as saline, potassium chloride solution, calcium chloride solution can be used.
The casing 1 has a rectangular parallelepiped shape that is long in the vertical direction and closed at both the upper and lower ends. Inflow passages 11 a and 1 for allowing raw water and cathode water to flow into the casing 1 on the lower surface of the casing 1.
1b is provided, and on the upper surface of the casing 1, outflow paths 12a and 12b are provided for flowing out the generated ozone water on the anode electrode 22 side and cathode water on the cathode electrode 23 side.

陽極電極22側の流入路11aは、例えば、原料水が貯留されたタンクに接続された定
吐出圧の小型ポンプや、水道栓に連結されている。また、陽極電極22側の流出路12a
は、3方向電磁弁3に接続されている。
3方向電磁弁3には、陽極電極22側の流出路12aが繋がれ、3方向電磁弁3の2つの出口のうち一方がオゾン水を吐出する吐水ライン31(図1(a)参照)に繋がれ、他方が排水ライン32(図1(b)参照)に繋がれている。吐水ライン31は、ケーシング1内で生成されたオゾン水を貯留するタンク(図示しない)やオゾン水を噴出させるノズル等(図示しない)に繋がれている。
3方向電磁弁3は、一方の出口が電気を通して通路をあけるタイプ(電気がきていない
場合は閉じているのでnomal close(NC)と言う)、他方の出口が電気を通して通路を閉じ
るタイプ(電気がきていない場合は開いているのでnomal open(NO)と言う)となってい
る。つまり、3方向電磁弁3は、通電がONの状態(励磁時)で吐水ライン31が閉鎖さ
れ(NO)、排水ライン32が開放される(NC)。一方、通電がOFFの状態(消磁時)
で、吐水ライン31が開放され(NO)、排水ライン32が閉鎖される(NC)。
そして、オゾン生成装置100の運転開始とともに3方向電磁弁3の通電をONとすると、図1(b)に示すように、一定時間、吐水ライン31を閉鎖して排水ライン32を開放し、触媒電極2に通水された原料水を又は初期の低濃度オゾン水を排水ラインから排水する。一定時間排水した後、3方向電磁弁3の通電をOFFとする。これによって、図1(a)に示すように、排水ライン32を閉鎖して吐水ライン31を開放し、所定濃度に達したオゾン水を吐水ライン31から吐出するようになっている。
The inflow channel 11a on the anode electrode 22 side is connected to, for example, a small pump having a constant discharge pressure connected to a tank in which raw material water is stored, or a water tap. Further, the outflow path 12a on the anode electrode 22 side.
Is connected to the three-way solenoid valve 3.
The three-way electromagnetic valve 3 is connected to the outflow passage 12a on the anode electrode 22 side, and one of the two outlets of the three-way electromagnetic valve 3 is connected to a water discharge line 31 (see FIG. 1 (a)) that discharges ozone water. The other is connected to the drainage line 32 (see FIG. 1 (b)). The water discharge line 31 is connected to a tank (not shown) for storing ozone water generated in the casing 1, a nozzle (not shown) for ejecting ozone water, and the like.
The three-way solenoid valve 3 has a type in which one outlet opens a passage through electricity (referred to as “nomal close (NC) because it is closed when there is no electricity), and a type in which the other outlet closes a passage through electricity (electricity). If it is not, it is open and is called nomal open (NO)). That is, in the three-way solenoid valve 3, the water discharge line 31 is closed (NO) and the drainage line 32 is opened (NC) when energization is ON (when excited). On the other hand, when power is off (when degaussing)
Thus, the water discharge line 31 is opened (NO), and the drainage line 32 is closed (NC).
When the operation of the ozone generator 100 is started and the energization of the three-way solenoid valve 3 is turned on, as shown in FIG. 1 (b), the water discharge line 31 is closed and the drainage line 32 is opened for a certain period of time. The raw water passed through the electrode 2 or the initial low-concentration ozone water is drained from the drain line. After draining for a certain time, the energization of the three-way solenoid valve 3 is turned off. As a result, as shown in FIG. 1A, the drainage line 32 is closed and the water discharge line 31 is opened, and ozone water that has reached a predetermined concentration is discharged from the water discharge line 31.

ここで、上記一定時間とは、生成したいオゾン水の濃度によって異なるが、例えば、5ppmの濃度のオゾン水を200mL生成したい場合に、オゾン水生成装置の運転時間は15秒間であり、最初の1〜5秒間、より好ましくは3秒間の5ppmに達しない低濃度のオゾン水を捨て水するためである。
図2は、オゾン水生成装置100を起動した直後のオゾン水濃度の立ち上がり(時間的変化)を示したグラフである。このグラフから明らかなように、起動した直後の1〜5秒間は、低濃度のオゾン水であることが認められる。
なお、低濃度のオゾン水とは、生成したいオゾン水の濃度の半分以下程度のオゾン水を言うものとする。したがって、生成したいオゾン水の濃度(所定濃度)の半分の濃度を超えると、3方向電磁弁3の通電をONからOFFに切り替えるように制御されている。
Here, although the said fixed time changes with the density | concentrations of the ozone water to produce | generate, when operating 200 mL of ozone water with a density | concentration of 5 ppm, for example, the operating time of an ozone water production | generation apparatus is 15 second, and the first 1 This is because the low-concentration ozone water that does not reach 5 ppm for 3 seconds, more preferably 3 seconds, is discarded.
FIG. 2 is a graph showing the rise (temporal change) of the ozone water concentration immediately after the ozone water generator 100 is activated. As is apparent from this graph, it is recognized that the ozone water has a low concentration for 1 to 5 seconds immediately after starting.
The low-concentration ozone water refers to ozone water having a concentration of about half or less of the concentration of ozone water desired to be generated. Therefore, when the concentration of ozone water to be generated exceeds a half of the concentration (predetermined concentration), control is performed so that the energization of the three-way solenoid valve 3 is switched from ON to OFF.

陰極電極23側の流出路12bは、陰極電極23側で生成された陰極水を一旦排出させた後、再び流入路12aを介して陰極電極23側に流入させて循環させる循環経路25に接続されている。
また、二つの流入路11a,11bの間のケーシング1の内壁面には、後述する陽イオン交換膜21の上端部が挿入される挿入孔13が形成され、二つの流出路12a,12bの間のケーシング1の内壁面にも、陽イオン交換膜21の下端部が挿入される挿入孔14が形成されている。
ケーシング1内には、流入路11a,11bから原料水が流入し、流入路11a,11bから流出路12a,12bへと水流が発生している。
The outflow path 12b on the cathode electrode 23 side is connected to a circulation path 25 that once drains the cathode water generated on the cathode electrode 23 side, and then flows it again to the cathode electrode 23 side through the inflow path 12a and circulates it. ing.
Further, an insertion hole 13 into which an upper end portion of a cation exchange membrane 21 described later is inserted is formed on the inner wall surface of the casing 1 between the two inflow passages 11a and 11b, and between the two outflow passages 12a and 12b. An insertion hole 14 into which the lower end portion of the cation exchange membrane 21 is inserted is also formed in the inner wall surface of the casing 1.
In the casing 1, raw material water flows from the inflow channels 11a and 11b, and water flows from the inflow channels 11a and 11b to the outflow channels 12a and 12b.

循環経路25は、陰極電極23側の流出路12bと陰極電極23側の流入路11bとを繋いだ経路である。循環経路25の途中には、水を循環させるポンプ26と、水を一時的に貯留するタンク27が設けられている。   The circulation path 25 is a path connecting the outflow path 12b on the cathode electrode 23 side and the inflow path 11b on the cathode electrode 23 side. In the middle of the circulation path 25, a pump 26 for circulating water and a tank 27 for temporarily storing water are provided.

タンク27には、陰極電極23側から排出された陰極水を例えば、20〜25℃程度に冷却するための冷却器271が設けられている。タンク27及び冷却器271としては、周知の小型チラー等を使用することができる。   The tank 27 is provided with a cooler 271 for cooling the cathode water discharged from the cathode electrode 23 side to about 20 to 25 ° C., for example. As the tank 27 and the cooler 271, a known small chiller or the like can be used.

このように陰極電極23側の流出路12b、タンク27、ポンプ26、陰極電極23側の流入路11bが、順に循環経路25によって接続されており、循環経路25内を陰極水が循環するようになっている。   In this way, the outflow path 12b on the cathode electrode 23 side, the tank 27, the pump 26, and the inflow path 11b on the cathode electrode 23 side are sequentially connected by the circulation path 25 so that the cathode water circulates in the circulation path 25. It has become.

触媒電極2は、ケーシング1内の略中央部に配置されて、陽イオン交換膜21と、陽イオン交換膜21の両面のうち一方の面に圧接された陽極電極22と、他方の面に圧接された陰極電極23とを備えている。陽イオン交換膜21は、上端部が挿入孔13に嵌め込まれ、下端部が挿入孔14に嵌め込まれて固定されている。さらに、ケーシング1の内壁面のうち陽極電極22側を向く面には凹部が形成されて、この凹部内に陽極電極22を保持する保持板15が取り付けられて、陽極電極22が保持板15に保持されている。同様に、ケーシング1の内壁面のうち陰極電極23側を向く面にも凹部が形成されて、この凹部内に陰極電極23を保持する保持板16が取り付けられ、陰極電極23が保持板16に保持されている。このように、ケーシング1内に陽イオン交換膜21と、陽極電極22及び陰極電極23とを配置することにより、陽イオン交換膜21によって陽極電極22側と陰極電極23側が分離され、陽イオン交換膜21の外周をケーシング1に固定でき、原料水、オゾン水並びに陰極水などが外部に漏れないように密閉されている。また、保持板15,16によって陽極電極22及び陰極電極23が陽イオン交換膜21側に適度に圧接されている。そして、流入路11a,11bから流入した原料水がそれぞれ陽極電極22と陰極電極23に連続的に接触するようになっている。
また、陽極電極22と陰極電極23との間には、電源装置(図示しない)の出力端24が電気的に連結され、直流電圧が印加されるように構成されている。すなわち、陽極電極22及び陰極電極23は、各電極22,23に導線を介して電源装置に連結されている。印加する直流電圧は、例えば6〜24ボルトが好ましい。
電源装置のON/OFFの動作に伴って、3方向電磁弁3の通電もON/OFFされるようになっている。具体的には、電源装置をONにすると、オゾン水生成装置100の初期運転時には3方向電磁弁3の通電をONとし(図1(b)参照)、一定時間経過後、通常運転時には3方向電磁弁3の通電をOFFとし(図1(a)参照)、オゾン水生成装置100の停止時には3方向電磁弁3の通電を引き続きOFFとする(図1(a)参照)。
The catalyst electrode 2 is disposed at a substantially central portion in the casing 1, and has a cation exchange membrane 21, an anode electrode 22 pressed against one of both surfaces of the cation exchange membrane 21, and a pressure contact with the other surface. The cathode electrode 23 is provided. The cation exchange membrane 21 has an upper end portion fitted into the insertion hole 13 and a lower end portion fitted into the insertion hole 14 to be fixed. Further, a concave portion is formed on the inner wall surface of the casing 1 facing the anode electrode 22 side, and a holding plate 15 for holding the anode electrode 22 is attached in the concave portion, and the anode electrode 22 is attached to the holding plate 15. Is retained. Similarly, a recess is formed in the inner wall surface of the casing 1 facing the cathode electrode 23 side, and a holding plate 16 for holding the cathode electrode 23 is attached in the recess, and the cathode electrode 23 is attached to the holding plate 16. Is retained. Thus, by arranging the cation exchange membrane 21, the anode electrode 22, and the cathode electrode 23 in the casing 1, the anode electrode 22 side and the cathode electrode 23 side are separated by the cation exchange membrane 21, and the cation exchange is performed. The outer periphery of the membrane 21 can be fixed to the casing 1 and is sealed so that raw water, ozone water, cathode water and the like do not leak outside. Further, the anode plate 22 and the cathode electrode 23 are appropriately pressed against the cation exchange membrane 21 side by the holding plates 15 and 16. And the raw material water which flowed in from the inflow paths 11a and 11b contacts the anode electrode 22 and the cathode electrode 23 continuously, respectively.
An output terminal 24 of a power supply device (not shown) is electrically connected between the anode electrode 22 and the cathode electrode 23 so that a DC voltage is applied. That is, the anode electrode 22 and the cathode electrode 23 are connected to the power supply device via the conductive wires to the electrodes 22 and 23. The applied DC voltage is preferably 6 to 24 volts, for example.
With the ON / OFF operation of the power supply device, the energization of the three-way solenoid valve 3 is also turned ON / OFF. Specifically, when the power supply device is turned on, the energization of the three-way solenoid valve 3 is turned on during the initial operation of the ozone water generating device 100 (see FIG. 1 (b)). The energization of the solenoid valve 3 is turned off (see FIG. 1A), and the energization of the three-way solenoid valve 3 is continuously turned off when the ozone water generating device 100 is stopped (see FIG. 1A).

陽イオン交換膜21としては、従来公知のものを使用することができ、発生するオゾンに耐久性の強いフッ素系陽イオン交換膜を使用することができ、例えば厚さ100〜300μmが好ましい。   As the cation exchange membrane 21, a conventionally known one can be used, and a fluorine-based cation exchange membrane having high durability against the generated ozone can be used. For example, a thickness of 100 to 300 μm is preferable.

陽極電極22は、陽イオン交換膜21を全面的に覆い隠すように密着されるものではなく、多数の通孔を設けて、陽イオン交換膜21に接触部と非接触部とを有して重ねられている。すなわち、陽極電極22はグレーチング状又はパンチングメタル状とすることが好ましい。なお、図1では陽極電極22がグレーチング状の場合を示している。具体的に、グレーチング状とは線材が一体化した格子状で、パンチングメタル状とは金属板に多数の通孔を形成した多孔板状である。   The anode electrode 22 is not in close contact with the cation exchange membrane 21 so as to completely cover it, but has a large number of through holes, and the cation exchange membrane 21 has a contact portion and a non-contact portion. It is piled up. That is, it is preferable that the anode electrode 22 has a grating shape or a punching metal shape. FIG. 1 shows a case where the anode electrode 22 has a grating shape. Specifically, the grating shape is a lattice shape in which wires are integrated, and the punching metal shape is a porous plate shape in which a large number of through holes are formed in a metal plate.

陽極電極22としては、オゾン発生触媒機能を有する材料を使用する。具体的には、β−二酸化鉛、白金、白金族(パラジウム、ロジウム、ルテニウム)、金、カーボン(黒鉛)、ダイアモンド等が挙げられ、これらの貴金属の中でも、安定性が良い点で白金、金又はその被覆金属を使用することが好ましく、特にチタンに白金を被覆した金属を使用すると製品コストを安価に抑えることができる。被覆処理としては、例えばメッキや熱着等により行うことができる。   As the anode electrode 22, a material having an ozone generation catalyst function is used. Specific examples include β-lead dioxide, platinum, platinum group (palladium, rhodium, ruthenium), gold, carbon (graphite), diamond, etc. Among these noble metals, platinum, gold are preferable because of their good stability. Alternatively, it is preferable to use a coating metal thereof, and in particular, when a metal obtained by coating platinum on titanium is used, the product cost can be reduced. The coating process can be performed by, for example, plating or heat deposition.

このようにグレーチング状の陽極電極22とすることによって、陽極電極22を構成する部材の交点部位が尖って外面に突出し、水流と接触して渦流を生じ、陽極電極22で発生したオゾンの微泡を巻き込んで溶解を早めることができる。   By forming the grating-like anode electrode 22 in this way, the intersections of the members constituting the anode electrode 22 are pointed and protrude to the outer surface, and contact with the water flow to generate a vortex flow. Fine ozone bubbles generated at the anode electrode 22 Can be dissolved to accelerate dissolution.

陰極電極23としては、オゾン生成触媒機能を有する材料を使用する。具体的には、上述した陽極電極22と同様の貴金属を使用することができ、安定性が良い点で白金、金又はその被覆金属を使用することが好ましく、特にチタンに白金を被覆した金属を使用すると製品コストを安価に抑えることができる。そして、陰極電極23は陽イオン交換膜21に接触するように配置されている。
また、陰極電極23も陽極電極22と同様にグレーチング状とすることが好ましく、特に、陰極電極部23は陽極電極22よりも目の粗さが粗くなるように形成されていることが好ましい。
以上の陽イオン交換膜21、陽極電極22及び陰極電極23は平板状に形成されて触媒電極2とされている。触媒電極2はケーシング1内の保持板15,16で圧接保持されている。
As the cathode electrode 23, a material having an ozone generation catalyst function is used. Specifically, it is possible to use the same noble metal as the anode electrode 22 described above, and it is preferable to use platinum, gold, or a coating metal thereof from the viewpoint of good stability. In particular, a metal in which titanium is coated with platinum is used. If used, the product cost can be kept low. The cathode electrode 23 is disposed so as to be in contact with the cation exchange membrane 21.
The cathode electrode 23 is also preferably formed in a grating shape like the anode electrode 22. In particular, the cathode electrode portion 23 is preferably formed so as to have a coarser mesh than the anode electrode 22.
The cation exchange membrane 21, the anode electrode 22, and the cathode electrode 23 described above are formed into a flat plate shape as the catalyst electrode 2. The catalyst electrode 2 is held in pressure contact with holding plates 15 and 16 in the casing 1.

次に、上述の構成からなるオゾン水生成装置100の動作について説明する。
まず、電源装置がONとされてオゾン水生成装置100が運転開始すると、図1(b)に示すように、3方向電磁弁3の吐水ライン31が閉鎖され排水ライン32が開放される。
その後、陽極電極22側の流入路11aから原料水(水道水あるいは精製水など)をケーシング1内に流入させるとともに、食塩水などの電解液を陰極電極23側の流入路11bからケーシング1内に流入させる。そして、これら原料水及び陰極水を、陽極電極22、陰極電極23の各面に連続接触させる。同時に、電源装置を駆動させることによって陽極電極22及び陰極電極23間に所定の電圧を印加する。この通電により原料水が電気分解されて、原料水中の水素が陽極電極22側から陽イオン交換膜21中を通過して陰極電極23側へと加速して移動する。その結果、陽極電極22側にはオゾン気泡が発生し、陰極電極23側には水素気泡が発生する。
Next, the operation of the ozone water generating apparatus 100 having the above configuration will be described.
First, when the power supply device is turned on and the ozone water generating device 100 starts operation, the water discharge line 31 of the three-way electromagnetic valve 3 is closed and the drainage line 32 is opened as shown in FIG.
Thereafter, raw water (such as tap water or purified water) is caused to flow into the casing 1 from the inflow passage 11a on the anode electrode 22 side, and an electrolyte such as saline is introduced into the casing 1 from the inflow passage 11b on the cathode electrode 23 side. Let it flow. Then, the raw material water and the cathode water are continuously brought into contact with each surface of the anode electrode 22 and the cathode electrode 23. At the same time, a predetermined voltage is applied between the anode electrode 22 and the cathode electrode 23 by driving the power supply device. By this energization, the raw water is electrolyzed, and hydrogen in the raw water passes through the cation exchange membrane 21 from the anode electrode 22 side and accelerates and moves to the cathode electrode 23 side. As a result, ozone bubbles are generated on the anode electrode 22 side, and hydrogen bubbles are generated on the cathode electrode 23 side.

ここで、陽極電極22側では原料水はわずかな陽極電極22の凹凸によって流れの方向が複雑に変わり渦流となる。そのため、陽極電極22側では、発生したオゾン気泡をいち早く水中に取り込んで溶解させることによってオゾン水を生成し、陽極電極22と陽イオン交換膜21との間(正確には陽極電極22と陰極電極23との間)に電流が多く流れる状態を確保することになる。
このようにしてオゾン水が生成されるが、運転開始から一定時間は、オゾン水のオゾン濃度が低濃度であるので、流出路12a及び3方向電磁弁3を介して排水ライン32から排水される。そして、一定時間経過後に(所定濃度に達したら)、図1(a)に示すように、排水ライン32が閉鎖され、吐水ライン31が開放されるので、オゾン水は吐水ライン31からオゾン水貯留タンク等に貯留される。
その後、3方向電磁弁3の通電がOFFの状態のまま、系内のオゾン水は自然に、吐水ライン31から吐水されて、最終的に停止する。
Here, on the anode electrode 22 side, the direction of the flow of raw material water is complicated due to slight unevenness of the anode electrode 22 and becomes a vortex. Therefore, on the anode electrode 22 side, the generated ozone bubbles are quickly taken into water and dissolved to generate ozone water, and between the anode electrode 22 and the cation exchange membrane 21 (more precisely, the anode electrode 22 and the cathode electrode). 23), a state where a large amount of current flows is ensured.
Ozone water is generated in this way, but since the ozone concentration of ozone water is low for a certain period from the start of operation, it is drained from the drain line 32 via the outflow path 12a and the three-way solenoid valve 3. . Then, after a predetermined time has elapsed (when a predetermined concentration is reached), as shown in FIG. 1A, the drainage line 32 is closed and the water discharge line 31 is opened, so that ozone water is stored in the ozone water from the water discharge line 31. Stored in a tank or the like.
Thereafter, while the energization of the three-way solenoid valve 3 is OFF, the ozone water in the system is naturally discharged from the water discharge line 31 and finally stops.

一方、陰極電極23側においては、水素気泡が発生し、流出路12bから陰極水ととも
に排出される。排出された陰極水は循環経路25内を流通して、タンク27内に一時貯留される。このとき冷却器271によって冷却された後、さらにポンプ26によって再び陰極電極23側の流入路11bからケーシング1内の陰極電極23側に供給され、順次、陰極水は循環する。
On the other hand, on the cathode electrode 23 side, hydrogen bubbles are generated and discharged together with the cathode water from the outflow path 12b. The discharged cathode water flows through the circulation path 25 and is temporarily stored in the tank 27. At this time, after being cooled by the cooler 271, the pump 26 is again supplied from the inflow passage 11 b on the cathode electrode 23 side to the cathode electrode 23 side in the casing 1, and the cathode water circulates sequentially.

以上、本発明の実施形態によれば、陽極電極22側に、原料水又は生成されたオゾン水を外部に流出する流出路12aが設けられ、流出路12aに3方向電磁弁3が設けられており、3方向電磁弁3の出口の一方がオゾン水を吐出する吐水ライン31に繋がれ、3方向電磁弁3の出口の他方が排水ライン32に繋がれ、運転開始とともに触媒電極2に供給された原料水を一定時間、排水ライン32から排水するので、装置100内に滞留している原料水が使用していない間に汚染されていても、運転初期に汚染された原料水が排水ライン32から排水されるとともに、新しく供給された原料水で洗浄排水される。その結果、一定時間経過後、汚染された原料水が混合されずに、吐水ライン31からオゾン濃度の高いオゾン水を得ることができる。特に、原料水に、遊離塩素を含まない脱塩素水や精製水を使用した場合に効果的である。
また、原料水として精製水を使用する場合、精製水は導電率が低いのでオゾンを生成する電気分解反応が十分促進されないことから、陰極電極23側に陰極水として電解液を使用して水素イオンが陽極電極22側から陰極電極23側へ移動するのを促進している。このように陰極電極23側に電解液を使用する方式では、装置100の停止中に電解液中の成分が陽イオン交換膜21中を浸潤して陽極電極22側に析出して陽極電極22側を汚染することがあり、このままの状態でオゾン水を生成すると運転初期の段階において装置100の停止中に陽イオン交換膜21中を浸潤した電解液成分がオゾン水とともに吐水されてオゾン水を汚染することになる。しかし、本発明のように運転開始とともに原料水を一定時間排水することにより、このようなオゾン水の汚染を確実に防止することができる。
As mentioned above, according to embodiment of this invention, the outflow path 12a which flows out raw material water or produced | generated ozone water outside is provided in the anode electrode 22 side, and the three-way solenoid valve 3 is provided in the outflow path 12a. One of the outlets of the three-way solenoid valve 3 is connected to a water discharge line 31 that discharges ozone water, and the other outlet of the three-way solenoid valve 3 is connected to a drainage line 32, and is supplied to the catalyst electrode 2 when the operation is started. Since the raw water is drained from the drain line 32 for a certain period of time, even if the raw water staying in the apparatus 100 is contaminated while it is not in use, the contaminated raw water is discharged at the initial stage of operation. In addition to being drained from the water, it is washed and drained with the newly supplied raw material water. As a result, after a certain period of time, the contaminated raw material water is not mixed, and ozone water having a high ozone concentration can be obtained from the water discharge line 31. This is particularly effective when dechlorinated water or purified water that does not contain free chlorine is used as the raw water.
In addition, when purified water is used as the raw water, since the electrolysis reaction that generates ozone is not sufficiently promoted because the purified water has low conductivity, an electrolyte is used as the cathode water on the cathode electrode 23 side and hydrogen ions are used. Is moving from the anode electrode 22 side to the cathode electrode 23 side. As described above, in the method of using the electrolytic solution on the cathode electrode 23 side, the components in the electrolytic solution infiltrate into the cation exchange membrane 21 while the apparatus 100 is stopped, and are deposited on the anode electrode 22 side. If ozone water is generated in this state, the electrolyte component infiltrated into the cation exchange membrane 21 during the stop of the apparatus 100 at the initial stage of operation is discharged together with the ozone water to contaminate the ozone water. Will do. However, such contamination of ozone water can be reliably prevented by draining the raw material water for a certain period of time at the start of operation as in the present invention.

また、3方向電磁弁3の通電がONの状態で一定時間、吐水ライン31が閉鎖され、排水ライン32が開放され、3方向電磁弁3の通電がOFFの状態で吐水ライン31が開放され、排水ライン32が閉鎖され、運転開始とともに触媒電極2に通水された原料水を一定時間、3方向電磁弁3の通電をONとし、排水ライン32に排水し、一定時間経過後、3方向電磁弁3の通電をOFFとし、吐水ライン31から吐水し、運転停止により、3方向電磁弁3の通電はOFFとなる。引き続き排水ライン32は閉鎖され、吐水ライン31は開放されたままとなり、系内のオゾン水は自然に吐水されて最終的に停止する。また、オゾンは強力な殺菌性を有するため、オゾン水を吐水した後の吐水ラインは常に清潔な状態に保たれることになる。
さらに、運転開始直後の立ち上がり時に生成された低濃度のオゾン水が排水されるので、吐水されるオゾン水は常に一定以上の濃度を保つことができる。
また、陰極電極23側に陰極水として電解液を使用する場合には、装置100の停止中に陽イオン交換膜21中を浸潤して陽極電極22側に析出した電解液の成分がオゾン水とともに吐水されてオゾン水を汚染するが、このような場合も、運転開始直後の汚染物質を含む可能性のある低濃度のオゾン水を排水することによって、吐水されるオゾン水を常に純度の高いオゾン水とすることができる。
Further, the water discharge line 31 is closed for a certain period of time while the energization of the three-way electromagnetic valve 3 is ON, the drainage line 32 is opened, and the water discharge line 31 is opened while the power supply of the three-way electromagnetic valve 3 is OFF, The drainage line 32 is closed, and the raw water passed through the catalyst electrode 2 at the start of operation is turned on for three hours, the energization of the three-way solenoid valve 3 is turned on, drained to the drainage line 32, and after a certain period of time, the three-way electromagnetic The energization of the valve 3 is turned off, water is discharged from the water discharge line 31, and the operation of the three-way solenoid valve 3 is turned off when the operation is stopped. Subsequently, the drainage line 32 is closed, the water discharge line 31 remains open, and the ozone water in the system is naturally discharged and finally stops. Moreover, since ozone has a strong bactericidal property, the water discharge line after discharging the ozone water is always kept clean.
Furthermore, since the low-concentration ozone water generated at the time of start-up immediately after the start of operation is drained, the ozone water discharged can always maintain a certain concentration or more.
Further, when an electrolytic solution is used as the cathode water on the cathode electrode 23 side, the components of the electrolyte solution that infiltrate the cation exchange membrane 21 and are deposited on the anode electrode 22 side while the apparatus 100 is stopped are combined with ozone water. Water is discharged and pollutes the ozone water. Even in such a case, the ozone water discharged always has high purity by draining low-concentration ozone water that may contain pollutants immediately after the start of operation. Can be water.

また、循環経路25にはポンプ26と、タンク27とが設けられているので、陰極水を効率良く循環経路25内を循環させることができる。   Further, since the pump 26 and the tank 27 are provided in the circulation path 25, the cathode water can be efficiently circulated in the circulation path 25.

なお、上記実施形態において、例えば図3に示すように、保持板15,16を各電極22,23側の面が山形状となるように複数の凹凸151,161を形成したものとしても良い。このようなミキシング装置とすることによって供給された水が攪拌されて、水へのオゾン微泡の溶解が促進される。   In the above embodiment, for example, as shown in FIG. 3, the holding plates 15 and 16 may be formed with a plurality of irregularities 151 and 161 so that the surfaces on the side of the electrodes 22 and 23 have a mountain shape. By using such a mixing device, the supplied water is stirred, and dissolution of ozone fine bubbles in water is promoted.

2 触媒電極
3 3方向電磁弁
12a 流出路(陽極側流出部)
21 陽イオン交換膜
22 陽極電極
23 陰極電極
31 吐水ライン
32 排水ライン
100 オゾン水生成装置
2 Catalytic electrode 3 3-way solenoid valve 12a Outflow path (anode-side outflow part)
21 Cation exchange membrane 22 Anode electrode 23 Cathode electrode 31 Water discharge line 32 Drain line 100 Ozone water generator

Claims (3)

陽極電極と陰極電極との間に陽イオン交換膜が狭持されてなる触媒電極を備え、
前記陽極電極に原料水を供給し、陰極電極に陰極水を供給するとともに前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成するオゾン水生成装置において、
前記陽極電極側に、原料水又は生成されたオゾン水を外部に流出する陽極側流出部が設けられ、
前記陽極側流出部に3方向電磁弁が設けられており、
前記3方向電磁弁の出口の一方がオゾン水を吐出する吐水ラインに繋がれ、
前記3方向電磁弁の出口の他方が排水ラインに繋がれ、
運転開始とともに前記触媒電極に供給された原料水を一定時間、前記排水ラインから排水することを特徴とするオゾン水生成装置。
A catalyst electrode in which a cation exchange membrane is sandwiched between an anode electrode and a cathode electrode,
In the ozone water generator for supplying ozone water by supplying raw water to the anode electrode, supplying cathode water to the cathode electrode and applying a direct current voltage between the anode electrode and the cathode electrode,
The anode electrode side is provided with an anode side outflow portion for flowing out raw material water or generated ozone water to the outside,
A three-way solenoid valve is provided in the anode-side outflow portion;
One of the outlets of the three-way solenoid valve is connected to a water discharge line that discharges ozone water,
The other outlet of the three-way solenoid valve is connected to a drain line,
An ozone water generating device characterized in that the raw water supplied to the catalyst electrode is drained from the drain line for a certain period of time when the operation is started.
前記3方向電磁弁の通電がONの状態で、前記吐水ラインが閉鎖され、前記排水ラインが開放され、
前記3方向電磁弁の通電がOFFの状態で、前記吐水ラインが開放され、前記排水ラインが閉鎖され、
運転開始とともに前記触媒電極に通水された原料水を一定時間、前記3方向電磁弁の通電をONとし、前記排水ラインに排水し、前記一定時間経過後、前記3方向電磁弁の通電をOFFとし、前記吐水ラインから吐水することを特徴とする請求項1に記載のオゾン水生成装置。
With the three-way solenoid valve energized, the water discharge line is closed, the drainage line is opened,
With the energization of the three-way solenoid valve turned off, the water discharge line is opened, the drainage line is closed,
When the operation is started, the raw water passed through the catalyst electrode is turned on for a certain period of time, the energization of the three-way solenoid valve is turned on, drained to the drainage line, and after the elapse of the certain period of time, the energization of the three-way solenoid valve is turned off. The ozone water generating apparatus according to claim 1, wherein water is discharged from the water discharge line.
運転開始とともに前記触媒電極に供給された原料水を一定時間、前記排水ラインから排水する際に、運転開始直後に生成された低濃度のオゾン水も前記排水ラインから排水することを特徴とする請求項1又は2に記載のオゾン水生成装置。
The low-concentration ozone water generated immediately after the start of operation is also discharged from the drain line when the raw water supplied to the catalyst electrode along with the start of operation is drained from the drain line for a certain period of time. Item 3. The ozone water generator according to Item 1 or 2.
JP2010181254A 2010-08-13 2010-08-13 Ozone water generator Expired - Fee Related JP5574877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010181254A JP5574877B2 (en) 2010-08-13 2010-08-13 Ozone water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181254A JP5574877B2 (en) 2010-08-13 2010-08-13 Ozone water generator

Publications (2)

Publication Number Publication Date
JP2012041572A true JP2012041572A (en) 2012-03-01
JP5574877B2 JP5574877B2 (en) 2014-08-20

Family

ID=45898212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181254A Expired - Fee Related JP5574877B2 (en) 2010-08-13 2010-08-13 Ozone water generator

Country Status (1)

Country Link
JP (1) JP5574877B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP5702885B1 (en) * 2014-10-20 2015-04-15 株式会社日本トリム Electrolyzed water generator
JP5791841B1 (en) * 2015-04-17 2015-10-07 日科ミクロン株式会社 Ozone water production equipment
KR20160126010A (en) * 2014-02-25 2016-11-01 콘디아스 게엠베하 Electrode arrangement for electrochemically treating a liquid
JP2019202297A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generation system
JP2019202296A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generator
WO2019225414A1 (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolyzed water generator and electrolyzed water generation system
JP2019202295A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generator and electrolytic water generating system
JP2020006374A (en) * 2019-10-17 2020-01-16 パナソニックIpマネジメント株式会社 Electrolytic water generation device and electrolytic water generation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018205254A1 (en) * 2017-05-12 2018-11-15 广州市德百顺电气科技有限公司 Ozone generator jet head
WO2022020788A1 (en) 2020-07-24 2022-01-27 3Oe Scientific, LLC Docking ozone generator cartridge for ozonating water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235358A (en) * 1997-02-28 1998-09-08 Japan Organo Co Ltd Apparatus and method for electrolytic water-making
JP2001255271A (en) * 2000-03-07 2001-09-21 Shinko Plant Kensetsu Kk Ozone water concentration continuous measuring method and its device and operation control method and device of ozone water manufacturing device
JP2005177671A (en) * 2003-12-22 2005-07-07 Ishikawajima Shibaura Mach Co Ltd Electrolysis type ozonizer
JP2005248212A (en) * 2004-03-01 2005-09-15 Sasakura Engineering Co Ltd Ozonizer
JP2007325981A (en) * 2006-06-06 2007-12-20 Chlorine Eng Corp Ltd Circulation-type apparatus for preparing ozone water and method for operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235358A (en) * 1997-02-28 1998-09-08 Japan Organo Co Ltd Apparatus and method for electrolytic water-making
JP2001255271A (en) * 2000-03-07 2001-09-21 Shinko Plant Kensetsu Kk Ozone water concentration continuous measuring method and its device and operation control method and device of ozone water manufacturing device
JP2005177671A (en) * 2003-12-22 2005-07-07 Ishikawajima Shibaura Mach Co Ltd Electrolysis type ozonizer
JP2005248212A (en) * 2004-03-01 2005-09-15 Sasakura Engineering Co Ltd Ozonizer
JP2007325981A (en) * 2006-06-06 2007-12-20 Chlorine Eng Corp Ltd Circulation-type apparatus for preparing ozone water and method for operating the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160126010A (en) * 2014-02-25 2016-11-01 콘디아스 게엠베하 Electrode arrangement for electrochemically treating a liquid
KR102426302B1 (en) * 2014-02-25 2022-08-01 콘디아스 게엠베하 Electrode arrangement for electrochemically treating a liquid
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP5702885B1 (en) * 2014-10-20 2015-04-15 株式会社日本トリム Electrolyzed water generator
JP5791841B1 (en) * 2015-04-17 2015-10-07 日科ミクロン株式会社 Ozone water production equipment
JP2019202297A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generation system
JP2019202296A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generator
WO2019225414A1 (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolyzed water generator and electrolyzed water generation system
JP2019202295A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Electrolytic water generator and electrolytic water generating system
CN112154124A (en) * 2018-05-25 2020-12-29 松下知识产权经营株式会社 Electrolyzed water generation device and electrolyzed water generation system
US11795072B2 (en) 2018-05-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrolyzed water generator and electrolyzed water generation system
JP2020006374A (en) * 2019-10-17 2020-01-16 パナソニックIpマネジメント株式会社 Electrolytic water generation device and electrolytic water generation system

Also Published As

Publication number Publication date
JP5574877B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5574877B2 (en) Ozone water generator
WO2016047055A1 (en) Electrolytic liquid generating device, liquid modifying device provided with electrolytic liquid generating device, and electric apparatus using electrolytic liquid generated by means of electrolytic liquid generating device
JP4220978B2 (en) Electrode, ozone generator, and ozone generation method
JP5096054B2 (en) Ozone generation method
KR20170055553A (en) Electrolysis device and apparatus for producing electrolyzed ozonated water
TWI622666B (en) Electrolyzed water generator
JP4528840B2 (en) Ozone water generator
JP4637885B2 (en) Ozone water generator
TWI546419B (en) Electrolytic electrode device and electrolytic water generator having the electrolytic electrode device
JP2011083655A (en) Electrolytic water generator
JP6000673B2 (en) Ozone water generator refresh cleaning method
JP2010155227A (en) Ozonated water producing apparatus
JP2006266554A (en) Water heater with gas mixing function
JP2001198574A (en) Device for producing ozonic water
JP6937005B2 (en) Water electrolyzer, method of manufacturing functional water
JP5547661B2 (en) Cleaning method of ozone water sensor
JP2006175384A (en) Radical oxygen water generating device and system
JP2018012105A (en) Electrolytic liquid generator, liquid modification device with electrolytic liquid generator or electrical machine using electrolytic liquid generated by electrolytic liquid generator
JP2003205289A (en) Denitrification method of water and water treatment equipment used therefor
JP5791841B1 (en) Ozone water production equipment
JP2004313977A (en) Water reformer
JP3132048U (en) Electrolyzed water generator
JP5984063B2 (en) Ozone water generator
JP5119557B2 (en) Production method of carbonated water
JP4644272B2 (en) Ozone generator and ozone generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140513

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5574877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees