JP4637885B2 - Ozone water generator - Google Patents

Ozone water generator Download PDF

Info

Publication number
JP4637885B2
JP4637885B2 JP2007221121A JP2007221121A JP4637885B2 JP 4637885 B2 JP4637885 B2 JP 4637885B2 JP 2007221121 A JP2007221121 A JP 2007221121A JP 2007221121 A JP2007221121 A JP 2007221121A JP 4637885 B2 JP4637885 B2 JP 4637885B2
Authority
JP
Japan
Prior art keywords
cathode electrode
water
ozone
ozone water
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007221121A
Other languages
Japanese (ja)
Other versions
JP2009052105A (en
Inventor
重夫 関口
喜之 西村
純子 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka Micron Co Ltd
Original Assignee
Nikka Micron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikka Micron Co Ltd filed Critical Nikka Micron Co Ltd
Priority to JP2007221121A priority Critical patent/JP4637885B2/en
Publication of JP2009052105A publication Critical patent/JP2009052105A/en
Application granted granted Critical
Publication of JP4637885B2 publication Critical patent/JP4637885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、水の電気分解によりオゾン水を生成するオゾン水生成装置に関する。   The present invention relates to an ozone water generator that generates ozone water by electrolysis of water.

近年、オゾン水は食品の殺菌や悪臭ガスの脱臭などの用途に広範に使用されており、さらに医療や介護の分野で、数多い知見例が発表され始めている。また、半導体製造領域においても、超微細構造に対するオゾン酸化の特徴が認められ、オゾン水の使用が必須とされている。
このようなオゾン水の製法として、陽イオン交換膜の一方の面に陽極電極を圧接させ、他方の面に陰極電極を圧接してなる触媒電極の電解面に原料水を直接接触させて、水の電気分解によりオゾン水を生成させる直接電解法を利用したものが知られている(例えば、特許文献1参照)。
特開平8−134678号公報
In recent years, ozone water has been widely used for applications such as sterilization of foods and deodorization of malodorous gases, and many examples of knowledge have begun to be published in the fields of medical care and nursing care. Also in the semiconductor manufacturing area, the feature of ozone oxidation with respect to the ultrafine structure is recognized, and the use of ozone water is essential.
As such a method for producing ozone water, the anode electrode is pressed against one surface of the cation exchange membrane, and the raw material water is brought into direct contact with the electrolytic surface of the catalyst electrode formed by pressing the cathode electrode against the other surface. The thing using the direct electrolysis method which produces | generates ozone water by electrolysis of is known (for example, refer patent document 1).
JP-A-8-134678

ところで、電気分解を利用してオゾン水生成効率を上げるためには、陽極電極として、二酸化鉛、白金、ダイアモンド等のオゾン水生成触媒を基本に種々の改良技術が研究されているが、陽極電極だけでなく陰極電極に使用する触媒電極の選択並びにその電気的特性の改善も重要視される。
本発明は、上記事情に鑑みてなされたもので、陰極電極側の電気伝導度を上げて、低電圧でかつオゾン水生成効率をより高めることのできるオゾン水生成装置を提供することを目的としている。
By the way, in order to increase the efficiency of ozone water generation using electrolysis, various improved technologies have been studied as an anode electrode based on an ozone water generation catalyst such as lead dioxide, platinum, and diamond. In addition to the selection of the catalyst electrode used for the cathode electrode, improvement of its electrical characteristics is also regarded as important.
The present invention has been made in view of the above circumstances, and an object thereof is to provide an ozone water generation apparatus that can increase the electrical conductivity on the cathode electrode side and further increase the ozone water generation efficiency at a low voltage. Yes.

上記課題を解決するため、請求項1の発明は、例えば、図1に示すように、陽イオン交換膜21の一方の面に陽極電極22を圧接し、他方の面に陰極電極23を圧接してなる触媒電極2を備え、前記陽極電極と前記陰極電極との間に直流電圧を印加し、前記陽極電極に原料水を接触させることによりオゾン水を生成するオゾン水生成装置100において、
前記陽極電極にオゾン生成触媒機能を有する材料を使用し、
前記陰極電極は、前記オゾン生成触媒機能を有する材料からなる第一の陰極電極部231と、銀、銅、金又はアルミニウムのうち少なくとも一つの金属からなる第二の陰極電極部232とを備え、前記第一の陰極電極部を前記陽イオン交換膜側に配置し、
前記第二の陰極電極部の質量又は表面積が、前記第一の陰極電極部の質量又は表面積と等しいかあるいはそれより大きいことを特徴とする。
In order to solve the above-mentioned problem, the invention of claim 1 is, for example, as shown in FIG. 1, wherein the anode electrode 22 is pressed against one surface of the cation exchange membrane 21 and the cathode electrode 23 is pressed against the other surface. In the ozone water generating apparatus 100 that generates the ozone water by applying a direct current voltage between the anode electrode and the cathode electrode and bringing the raw material water into contact with the anode electrode,
Using a material having an ozone generation catalyst function for the anode electrode,
The cathode electrode includes a first cathode electrode portion 231 made of a material having the ozone generation catalyst function, and a second cathode electrode portion 232 made of at least one metal of silver, copper, gold or aluminum, The first cathode electrode part is disposed on the cation exchange membrane side ,
The mass or surface area of the second cathode electrode part is equal to or greater than the mass or surface area of the first cathode electrode part .

請求項2の発明は、請求項1に記載のオゾン水生成装置において、
前記オゾン生成触媒機能を有する材料は、白金、金又はその被覆金属であることを特徴とする。
The invention of claim 2 is the ozone water generator according to claim 1,
The material having an ozone generation catalytic function is platinum, gold, or a coating metal thereof.

請求項4の発明は、請求項1又は2に記載のオゾン水生成装置において、
前記第二の陰極電極部に使用する銀、銅、金又はアルミニウムが、塩化銀層を有する銀、銅、金又はアルミニウムであることを特徴とする。
The invention of claim 4 is the ozone water generator according to claim 1 or 2 ,
The silver, copper, gold or aluminum used for the second cathode electrode part is silver, copper, gold or aluminum having a silver chloride layer.

本発明によれば、陽イオン交換膜の劣化を防止し、低電圧でかつ高濃度のオゾン水を生成することができる。   According to the present invention, deterioration of the cation exchange membrane can be prevented, and ozone water having a low voltage and a high concentration can be generated.

以下、本発明の実施の形態について図面を参照しながら説明する。
図1は、オゾン水生成装置100の概略を模式的に示した縦断面図である。
オゾン水生成装置100は、原料水(例えば、水道水又は精製水)が流入される容器1内に触媒電極2を配置して構成したもので、触媒電極2に直流電圧を印加することによって陽極側にオゾン気泡を発生させて、そのオゾン気泡を水に溶解させることによりオゾン水を生成する装置である。
容器1は、上下に長尺でその上下両端が閉塞された直方体状をなしており、下面に、容器1内に原料水を流入するための流入路11a,11bが設けられ、容器1の上面に容器1内で生成された陽極側のオゾン水並びに陰極側の陰極水を流出するための流出路12a,12bが設けられている。
流入路11a,11bは、例えば、原料水が貯留されたタンクに接続された定吐出圧の小型ポンプや、水道栓に連結されている。また、流出路12aは、容器1内で生成されたオゾン水を貯留するタンクやオゾン水を噴出させるノズル等に接続され、流出路12bは陰極水を貯留するタンクや排水ラインに接続されている。また、二つの流入路11a,11bの間の容器1の内壁面には、後述する陽イオン交換膜21の上端部が挿入される挿入孔13が形成され、二つの流出路12a,12bの間の容器1の内壁面にも、陽イオン交換膜21の下端部が挿入される挿入孔14が形成されている。
容器1内には、流入路11a,11bから原料水が流入し、流入路11a,11bから流出路12a,12bへと水流が発生している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view schematically showing an outline of the ozone water generator 100.
The ozone water generating device 100 is configured by arranging a catalyst electrode 2 in a container 1 into which raw water (for example, tap water or purified water) flows, and an anode is formed by applying a DC voltage to the catalyst electrode 2. This device generates ozone water by generating ozone bubbles on the side and dissolving the ozone bubbles in water.
The container 1 has a rectangular parallelepiped shape that is long in the vertical direction and closed at both upper and lower ends, and has inflow paths 11 a and 11 b for flowing raw material water into the container 1 on the lower surface. In addition, outflow paths 12a and 12b are provided for flowing out the ozone water on the anode side and the cathode water on the cathode side generated in the container 1.
The inflow channels 11a and 11b are connected to, for example, a small pump with a constant discharge pressure connected to a tank in which raw material water is stored, or a water tap. The outflow path 12a is connected to a tank for storing ozone water generated in the container 1, a nozzle for ejecting ozone water, and the like, and the outflow path 12b is connected to a tank for storing cathode water and a drain line. . Further, an insertion hole 13 into which an upper end portion of a cation exchange membrane 21 described later is inserted is formed on the inner wall surface of the container 1 between the two inflow passages 11a and 11b, and between the two outflow passages 12a and 12b. An insertion hole 14 into which the lower end of the cation exchange membrane 21 is inserted is also formed on the inner wall surface of the container 1.
In the container 1, raw material water flows from the inflow channels 11a and 11b, and water flows from the inflow channels 11a and 11b to the outflow channels 12a and 12b.

触媒電極2は、容器1内の略中央部に配置されて、陽イオン交換膜21と、陽イオン交換膜21の両面のうち一方の面に圧接された陽極電極22と、他方の面に圧接された陰極電極23とを備えている。陽イオン交換膜21は、上端部が挿入孔13に嵌め込まれ、下端部が挿入孔14に嵌め込まれて固定されている。さらに、容器1の内壁面のうち陽極電極22側を向く面には凹部が形成されて、この凹部内に陽極電極22を保持する保持板15が取り付けられて、陽極電極22が保持板15に保持されている。同様に、容器1の内壁面のうち陰極電極23側を向く面にも凹部が形成されて、この凹部内に陰極電極23を保持する保持板16が取り付けられ、陰極電極23が保持板16に保持されている。このように、容器1内に陽イオン交換膜21と、陽極電極22及び陰極電極23とを配置することにより、陽イオン交換膜21によって陽極側と陰極側が分離され、陽イオン交換膜21の外周を容器1に固定でき、原料水、オゾン水並びに陰極水などが外部に漏れないように密閉されている。また、保持板15,16によって陽極電極22及び陰極電極23が陽イオン交換膜21側に適度に圧接されている。そして、流入路11a,11bから流入した原料水がそれぞれ陽極電極22と陰極電極23に連続的に接触するようになっている。
また、陽極電極22と陰極電極23との間には、電源装置(図示しない)の出力端24が電気的に連結され、直流電圧が印加されるように構成されている。すなわち、陽極電極22及び陰極電極23は、各電極22,23に導線を介して電源装置に連結されている。印加する直流電圧は、例えば6〜15ボルトが好ましい。
The catalyst electrode 2 is arranged at a substantially central portion in the container 1, and has a cation exchange membrane 21, an anode electrode 22 pressed against one of both surfaces of the cation exchange membrane 21, and a pressure contact with the other surface. The cathode electrode 23 is provided. The cation exchange membrane 21 has an upper end portion fitted into the insertion hole 13 and a lower end portion fitted into the insertion hole 14 to be fixed. Further, a concave portion is formed on the inner wall surface of the container 1 facing the anode electrode 22 side, and a holding plate 15 for holding the anode electrode 22 is attached in the concave portion, so that the anode electrode 22 is attached to the holding plate 15. Is retained. Similarly, a concave portion is formed on the inner wall surface of the container 1 facing the cathode electrode 23 side, and a holding plate 16 for holding the cathode electrode 23 is attached in the concave portion, and the cathode electrode 23 is attached to the holding plate 16. Is retained. Thus, by arranging the cation exchange membrane 21, the anode electrode 22, and the cathode electrode 23 in the container 1, the anode side and the cathode side are separated by the cation exchange membrane 21, and the outer periphery of the cation exchange membrane 21. Can be fixed to the container 1 and is sealed so that raw water, ozone water, cathode water and the like do not leak outside. Further, the anode plate 22 and the cathode electrode 23 are appropriately pressed against the cation exchange membrane 21 side by the holding plates 15 and 16. And the raw material water which flowed in from the inflow paths 11a and 11b contacts the anode electrode 22 and the cathode electrode 23 continuously, respectively.
An output terminal 24 of a power supply device (not shown) is electrically connected between the anode electrode 22 and the cathode electrode 23 so that a DC voltage is applied. That is, the anode electrode 22 and the cathode electrode 23 are connected to the power supply device via the conductive wires to the electrodes 22 and 23. The applied DC voltage is preferably 6 to 15 volts, for example.

陽イオン交換膜21としては、従来公知のものを使用することができ、発生するオゾンに耐久性の強いフッ素系陽イオン交換膜を使用することができ、例えば厚さ100〜300μmが好ましい。   As the cation exchange membrane 21, a conventionally known one can be used, and a fluorine-based cation exchange membrane having strong durability against the generated ozone can be used. For example, a thickness of 100 to 300 μm is preferable.

陽極電極22は、陽イオン交換膜21を全面的に覆い隠すように密着されるものではなく、多数の通孔を設けて、陽イオン交換膜21に接触部と非接触部とを有して重ねられている。すなわち、陽極電極22はグレーチング状又はパンチングメタル状とすることが好ましい。なお、図1では陽極電極22がグレーチング状の場合を示している。具体的に、グレーチング状とは線材を溶接した格子状で、パンチングメタル状とは金属板に多数の通孔を形成した多孔板状である。   The anode electrode 22 is not closely attached so as to completely cover the cation exchange membrane 21, and has a large number of through holes, and the cation exchange membrane 21 has a contact portion and a non-contact portion. It is piled up. That is, it is preferable that the anode electrode 22 has a grating shape or a punching metal shape. FIG. 1 shows a case where the anode electrode 22 has a grating shape. Specifically, the grating shape is a lattice shape in which wires are welded, and the punching metal shape is a porous plate shape in which a large number of through holes are formed in a metal plate.

陽極電極22としては、オゾン発生触媒機能を有する材料を使用する。具体的には、β−二酸化鉛、白金、白金族(パラジウム、ロジウム、ルテニウム)、金、カーボン(黒鉛)、ダイアモンド等が挙げられ、これらの貴金属の中でも、安定性が良い点で白金、金又はその被覆金属を使用することが好ましく、特にチタンに白金を被覆した金属を使用すると製品コストを安価に抑えることができる。被覆処理としては、例えばメッキや熱着等により行うことができる。   As the anode electrode 22, a material having an ozone generation catalyst function is used. Specific examples include β-lead dioxide, platinum, platinum group (palladium, rhodium, ruthenium), gold, carbon (graphite), diamond and the like. Among these noble metals, platinum, gold is preferable in terms of stability. Alternatively, it is preferable to use a coating metal thereof, and in particular, when a metal obtained by coating platinum on titanium is used, the product cost can be reduced. The covering process can be performed by, for example, plating or heat deposition.

このようにグレーチング状の陽極電極22とすることによって、陽極電極22を構成する部材の交点部位が尖って外面に突出し、水流と接触して渦流を生じ、陽極電極22で発生したオゾンの微泡を巻き込んで溶解を早めることができる。   By using the grating-like anode electrode 22 in this way, the intersection part of the members constituting the anode electrode 22 protrudes sharply and protrudes to the outer surface to generate a vortex in contact with the water flow, and the fine bubbles of ozone generated at the anode electrode 22 Can be dissolved to accelerate dissolution.

陰極電極23としては、オゾン生成触媒機能を有する材料からなる第一の陰極電極部231と、銀、銅、金又はアルミニウムのうち少なくとも一つの金属からなる第二の陰極電極部232とを備えている。オゾン生成触媒機能を有する材料からなる第一の陰極電極部231としては、上述した陽極電極22と同様の貴金属を使用することができ、安定性が良い点で白金、金又はその被覆金属を使用することが好ましく、特にチタンに白金を被覆した金属を使用すると製品コストを安価に抑えることができる。そして、第一の陰極電極部231は陽イオン交換膜21に接触するように配置され、第二の陰極電極部232は第一の陰極電極部231の陽イオン交換膜21と反対側の面に重ねて配置されている。
ここで、第二の陰極電極部232に使用する銀、銅、金又はアルミニウムの質量又は表面積が、第一の陰極電極部231に使用するオゾン生成触媒機能を有する材料の質量又は表面積と等しいかあるいはそれより大きいことが好ましい。具体的には、第一の陰極電極部231の白金を1gとした場合、第二の陰極電極部232の銀、銅、金又はアルミニウムを1g以上と多くすることが好ましい。第二の陰極電極部232に使用する銀、金又はアルミニウムの質量又は表面積が、第一の陰極電極部231に使用するオゾン生成触媒機能を有する材料の質量又は表面積と等しいかあるいはそれより大きくしたのは、銀、銅、金又はアルミニウムが電気伝導度の極めて良好な金属であり、陰極電極23の良好な電気伝導度を確保し易く、その結果、陽極電極22から陰極電極23への水素イオンの移動を容易にするためである。
さらに、第二の陰極電極232に使用する銀、銅、金又はアルミニウムが、塩化銀層を有する銀、銅、金又はアルミニウムであることが好ましい。塩化銀層を有するとは、例えば、銀、銅、金又はアルミニウムの表面に塩化銀被覆を施したもの等が挙げられる。塩化銀はオゾン測定の比較電極としても使用されており、オゾン発生に必要なイオン移動性に富み、安定した陰極電位の維持を行い、陽極電極22において安定してオゾンを発生できるものである。このように第二の陰極電極部232に使用する銀、銅、金又はアルミニウムが塩化銀層を有する銀、銅、金又はアルミニウムとすることによって、陽極電極22から陰極電極23へのイオンの移動をより加速させることができ、電気伝導度の低い精製水を原料水としても十分な電解電流が流れて、オゾンが発生し、オゾン水を生成することができる。
また、第一及び第二の陰極電極部231,232も陽極電極22と同様にグレーチング状とすることが好ましく、特に、第一及び第二の陰極電極部231,232は陽極電極22よりも目の粗さが粗くなるように形成されていることが好ましい。
以上の陽イオン交換膜21、陽極電極22及び陰極電極23は平板状に形成され、容器1内の保持板15,16で圧接保持されて触媒電極2とされている。
The cathode electrode 23 includes a first cathode electrode portion 231 made of a material having an ozone generation catalyst function and a second cathode electrode portion 232 made of at least one metal of silver, copper, gold, or aluminum. Yes. As the first cathode electrode portion 231 made of a material having an ozone generation catalyst function, the same noble metal as the above-described anode electrode 22 can be used, and platinum, gold, or a coating metal thereof is used in terms of stability. It is preferable to use a metal in which titanium is coated with platinum, and the product cost can be reduced. The first cathode electrode portion 231 is disposed so as to contact the cation exchange membrane 21, and the second cathode electrode portion 232 is disposed on the surface of the first cathode electrode portion 231 opposite to the cation exchange membrane 21. They are placed one on top of the other.
Here, the mass or surface area of silver, copper, gold or aluminum used for the second cathode electrode part 232 is equal to the mass or surface area of the material having an ozone generation catalytic function used for the first cathode electrode part 231. Or larger than that is preferable. Specifically, when 1 g of platinum in the first cathode electrode part 231 is 1 g, it is preferable to increase silver, copper, gold or aluminum in the second cathode electrode part 232 to 1 g or more. The mass or surface area of silver, gold or aluminum used for the second cathode electrode part 232 is equal to or larger than the mass or surface area of the material having an ozone generation catalyst function used for the first cathode electrode part 231. In this case, silver, copper, gold or aluminum is a metal having a very good electric conductivity, and it is easy to ensure a good electric conductivity of the cathode electrode 23. As a result, hydrogen ions from the anode electrode 22 to the cathode electrode 23 are obtained. This is to make it easier to move.
Furthermore, it is preferable that silver, copper, gold, or aluminum used for the second cathode electrode 232 is silver, copper, gold, or aluminum having a silver chloride layer. Having a silver chloride layer includes, for example, silver, copper, gold, or aluminum having a silver chloride coating on the surface. Silver chloride is also used as a reference electrode for ozone measurement, has high ion mobility necessary for ozone generation, maintains a stable cathode potential, and can stably generate ozone at the anode electrode 22. As described above, when silver, copper, gold, or aluminum used for the second cathode electrode portion 232 is silver, copper, gold, or aluminum having a silver chloride layer, ions move from the anode electrode 22 to the cathode electrode 23. Thus, even if purified water having low electrical conductivity is used as raw material water, a sufficient electrolysis current flows, ozone is generated, and ozone water can be generated.
Further, the first and second cathode electrode portions 231 and 232 are preferably formed in a grating shape similarly to the anode electrode 22. In particular, the first and second cathode electrode portions 231 and 232 are more prominent than the anode electrode 22. It is preferable that it is formed so that the roughness of is rough.
The cation exchange membrane 21, the anode electrode 22, and the cathode electrode 23 are formed in a flat plate shape, and are held in pressure contact with the holding plates 15 and 16 in the container 1 to form the catalyst electrode 2.

次に、上述の構成からなるオゾン水生成装置100を使用してオゾン水を生成する方法について説明する。
流入路11a,11bから原料水を容器1内に流入させて、陽極電極22面に原料水を連続接触させる。同時に、電源装置を駆動させることによって陽極電極22及び陰極電極23間に所定の電圧を印加する。この通電により原料水が電気分解されて、原料水中の水素が陽極電極22側から陽イオン交換膜21中を通過して陰極電極23側へと加速して移動する。その結果、陽極電極22側にはオゾン気泡が発生し、陰極電極23側には水素気泡が発生する。
Next, a method for generating ozone water using the ozone water generating apparatus 100 having the above-described configuration will be described.
Raw material water is caused to flow into the container 1 from the inflow channels 11a and 11b, and the raw material water is continuously brought into contact with the surface of the anode electrode 22. At the same time, a predetermined voltage is applied between the anode electrode 22 and the cathode electrode 23 by driving the power supply device. By this energization, the raw water is electrolyzed, and hydrogen in the raw water passes through the cation exchange membrane 21 from the anode electrode 22 side and accelerates and moves to the cathode electrode 23 side. As a result, ozone bubbles are generated on the anode electrode 22 side, and hydrogen bubbles are generated on the cathode electrode 23 side.

ここで、陽極電極22側では原料水はわずかな陽極電極22の凹凸によって流れの方向が複雑に変わり渦流となる。そのため、陽極電極22側では、発生したオゾン気泡をいち早く水中に取り込んで溶解させることによってオゾン水を生成し、陽極電極22と陽イオン交換膜21との間(正確には陽極電極22と陰極電極23との間)に電流が多く流れる状態を確保することになる。
このようにしてオゾン水が生成されると、オゾン水は流出路12aへと流出されてオゾン水貯留タンク等に貯留される。
一方、陰極電極23側においては、水素気泡が発生し、流出路12bから陰極水とともに排出される。
Here, on the anode electrode 22 side, the direction of the flow of raw material water is complicated due to slight unevenness of the anode electrode 22 and becomes a vortex. Therefore, on the anode electrode 22 side, the generated ozone bubbles are quickly taken into water and dissolved to generate ozone water, and between the anode electrode 22 and the cation exchange membrane 21 (more precisely, the anode electrode 22 and the cathode electrode). 23), a state where a large amount of current flows is ensured.
When ozone water is generated in this way, the ozone water flows out into the outflow path 12a and is stored in an ozone water storage tank or the like.
On the other hand, on the cathode electrode 23 side, hydrogen bubbles are generated and discharged together with the cathode water from the outflow path 12b.

以上、本発明の実施の形態によれば、陽極電極22にオゾン生成触媒機能を有する材料を使用し、陰極電極23にオゾン生成触媒機能を有する材料からなる第一の陰極電極部231と、銀、銅、金又はアルミニウムのうち少なくとも一つの金属からなる第二の陰極電極部232とを使用し、第一の陰極電極部231を陽イオン交換膜21側に配置するので、陽イオン交換膜21の両側を陽極電極22のオゾン生成触媒機能を有する材料と、第一の陰極電極部231のオゾン生成触媒機能を有する材料の同種の材料で挟むことにより、陽イオン交換膜21の接触電位差を防ぎ、陽イオン交換膜21の劣化を防止することができる。そして、より低い電圧でオゾン水を生成することができる。また、特に陽極電極22や第一の陰極電極部231に白金被覆金属を使用した場合には、無垢の白金を使用する場合に比して安価に抑えることができる。
さらに、陰極電極23として、オゾン生成触媒機能を有する材料からなる第一の陰極電極部231に加えて銀、銅、金又はアルミニウムの少なくとも一つの金属からなる第二の陰極電極部232を使用するので、導電性の高い金属によって陰極電極23側の電気伝導度を大幅に上げることができ、オゾン水生成効率をさらに高めることができる。
また、第二の陰極電極部232に使用する銀、銅、金又はアルミニウムの質量又は表面積を、第一の陰極電極部231に使用するオゾン生成触媒機能を有する材料の質量又は表面積と等しいかあるいはそれより大きくすることによって、陰極電極23側の電気伝導度をさらに大幅に上げ、陽極電極22から陰極電極23への水素イオンの移動を一層容易にし、電気伝導度の低い精製水を原料水としても高濃度のオゾン水を生成することができる。
As described above, according to the embodiment of the present invention, the anode electrode 22 is made of a material having an ozone generation catalyst function, and the cathode electrode 23 is made of a material having an ozone generation catalyst function. Since the first cathode electrode portion 231 is disposed on the cation exchange membrane 21 side using the second cathode electrode portion 232 made of at least one metal of copper, gold or aluminum, the cation exchange membrane 21 The contact potential difference of the cation exchange membrane 21 is prevented by sandwiching the both sides of the same material between the material having the ozone generation catalyst function of the anode electrode 22 and the material having the ozone generation catalyst function of the first cathode electrode portion 231. Deterioration of the cation exchange membrane 21 can be prevented. And ozone water can be produced | generated by a lower voltage. In particular, when a platinum-coated metal is used for the anode electrode 22 or the first cathode electrode portion 231, it can be suppressed at a lower cost than when pure platinum is used.
Further, as the cathode electrode 23, in addition to the first cathode electrode portion 231 made of a material having an ozone generation catalyst function, a second cathode electrode portion 232 made of at least one metal of silver, copper, gold or aluminum is used. Therefore, the electrical conductivity on the cathode electrode 23 side can be significantly increased by the highly conductive metal, and the ozone water generation efficiency can be further increased.
Further, the mass or surface area of silver, copper, gold or aluminum used for the second cathode electrode part 232 is equal to the mass or surface area of the material having an ozone generation catalyst function used for the first cathode electrode part 231 or By making it larger, the electrical conductivity on the cathode electrode 23 side is further greatly increased, hydrogen ions can be more easily transferred from the anode electrode 22 to the cathode electrode 23, and purified water having a low electrical conductivity is used as raw water. Can also produce highly concentrated ozone water.

[実施例]
次に、本発明に関して下記の実験を行い、陰極電極で使用する材料による効果を明確にした。
(陰極電極の白金の役割)
陽イオン交換膜にデュポン製のナフイオン膜を使用し、陽極電極には無垢の白金マイクログレーチングを用い、陰極電極として表1に示すものをそれぞれ使用した。そして、これら陽イオン交換膜、陽極電極及び陰極電極を重ね合わせて圧接した触媒電極を、図1に示すように容器内の所定位置に配置し、流入路から水道水(水温25℃、導電率165μS/cm)を供給し、陽極電極及び陰極電極間に表1に示す各値の直流電圧を印加したところ、流出路からオゾン水を得た。このときのオゾン水の濃度を表1に示した。また、同様にして水道水の代わりに精製水(水温25℃、導電率1.92μS/cm)を供給してオゾン水を生成し、生成したオゾン水の濃度を表1に示した。

Figure 0004637885
表1の結果より、陰極電極に白金のみを使用する場合より、白金と銀を重ねて使用することによって陽極電極におけるオゾンの生成を促進しオゾン水濃度を上げることができる。さらに表1の結果から、白金がなければオゾン水を得られないということはないが、水道水、精製水のいずれの場合も、白金が存在することにより低い電圧でオゾン水を生成することができる。また、陰極電極における白金の役割としては、陽イオン交換膜の接触電位差を防ぐという目的もある。 [Example]
Next, the following experiment was performed on the present invention to clarify the effect of the material used for the cathode electrode.
(Role of platinum as cathode electrode)
The cation exchange membrane used was a DuPont naphthion membrane, the anode electrode used solid platinum micro-grating, and the cathode electrode shown in Table 1 was used. Then, a catalyst electrode in which the cation exchange membrane, the anode electrode and the cathode electrode are overlapped and press-contacted is arranged at a predetermined position in the container as shown in FIG. 1, and tap water (water temperature 25 ° C., conductivity is introduced from the inflow path). 165 μS / cm) was supplied, and each value of DC voltage shown in Table 1 was applied between the anode electrode and the cathode electrode, and ozone water was obtained from the outflow path. The concentration of ozone water at this time is shown in Table 1. Similarly, purified water (water temperature 25 ° C., conductivity 1.92 μS / cm) was supplied instead of tap water to generate ozone water, and the concentration of the generated ozone water is shown in Table 1.
Figure 0004637885
From the results shown in Table 1, it is possible to promote the generation of ozone in the anode electrode and increase the concentration of ozone water by using platinum and silver in an overlapping manner, compared with the case where only platinum is used for the cathode electrode. Furthermore, from the results of Table 1, ozone water cannot be obtained without platinum, but in both cases of tap water and purified water, ozone water can be generated at a low voltage due to the presence of platinum. it can. Also, the role of platinum in the cathode electrode is to prevent contact potential difference of the cation exchange membrane.

(陰極電極の銀の役割)
陽イオン交換膜にデュポン製のナフイオン膜を使用し、陽極電極には無垢の白金マイクログレーチングを用い、陰極電極として表2に示すものをそれぞれ使用した。そして、これら陽イオン交換膜、陽極電極及び陰極電極を重ね合わせて圧接した触媒電極を、図1に示すように容器内の所定位置に配置し、流入路から水道水(水温25℃、導電率165μS/cm)を供給し、陽極電極及び陰極電極間に表2に示す各値の直流電圧を印加したところ、流出路からオゾン水を得た。このときのオゾン水の濃度を表2に示した。また、同様にして水道水の代わりに精製水(水温25℃、導電率1.92μS/cm)を供給してオゾン水を生成し、生成したオゾン水の濃度を表2に示した。

Figure 0004637885
表2の結果より、陰極電極に銀の質量を増やしていくことにより、明らかにオゾン水の濃度が高くなり、オゾン水生成が促進されることが認められる。 (The role of silver in the cathode electrode)
The cation exchange membrane used was a DuPont naphthion membrane, the anode electrode used solid platinum micro-grating, and the cathode electrode shown in Table 2 was used. Then, a catalyst electrode in which the cation exchange membrane, the anode electrode and the cathode electrode are overlapped and press-contacted is arranged at a predetermined position in the container as shown in FIG. 1, and tap water (water temperature 25 ° C., conductivity is introduced from the inflow path). 165 μS / cm) was supplied, and each value of DC voltage shown in Table 2 was applied between the anode electrode and the cathode electrode, and ozone water was obtained from the outflow path. The concentration of ozone water at this time is shown in Table 2. Similarly, purified water (water temperature 25 ° C., conductivity 1.92 μS / cm) was supplied instead of tap water to generate ozone water, and the concentration of the generated ozone water is shown in Table 2.
Figure 0004637885
From the results in Table 2, it can be seen that increasing the mass of silver in the cathode electrode clearly increases the concentration of ozone water and promotes the generation of ozone water.

(陰極電極の銅の役割)
陽イオン交換膜にデュポン製のナフイオン膜を使用し、陽極電極には無垢の白金マイクログレーチングを用い、陰極電極として表3に示すものをそれぞれ使用した。そして、これら陽イオン交換膜、陽極電極及び陰極電極を重ね合わせて圧接した触媒電極を、図1に示すように容器内の所定位置に配置し、流入路から水道水(水温25℃、導電率160μS/cm)を供給し、陽極電極及び陰極電極間に表3に示す各値の直流電圧を印加したところ、流出路からオゾン水を得た。このときのオゾン水の濃度を表3に示した。また、同様にして水道水の代わりに精製水(水温25℃、導電率165μS/cm)を供給してオゾン水を生成し、オゾン水の濃度を表3に示した。

Figure 0004637885
表3の結果より、陰極電極を白金と銅の組み合わせにすることによっても、銀を使用する場合より劣るもののオゾン水を得られることが認められ、白金のみを使用する場合に比して明らかにオゾン水生成効率が上がることがわかる。 (The role of copper in the cathode electrode)
The cation exchange membrane used was a DuPont naphthion membrane, the anode electrode used solid platinum micro-grating, and the cathode electrode shown in Table 3 was used. Then, a catalyst electrode in which the cation exchange membrane, the anode electrode and the cathode electrode are overlapped and press-contacted is arranged at a predetermined position in the container as shown in FIG. 1, and tap water (water temperature 25 ° C., conductivity is introduced from the inflow path). 160 μS / cm) was supplied, and each value of DC voltage shown in Table 3 was applied between the anode and cathode, and ozone water was obtained from the outflow path. The concentration of ozone water at this time is shown in Table 3. Similarly, purified water (water temperature 25 ° C., conductivity 165 μS / cm) was supplied instead of tap water to generate ozone water. Table 3 shows the concentration of ozone water.
Figure 0004637885
From the results in Table 3, it is recognized that even when the cathode electrode is a combination of platinum and copper, ozone water can be obtained although it is inferior to the case of using silver, as compared with the case of using only platinum. It can be seen that the ozone water generation efficiency increases.

(陰極電極の白金メッキの役割)
陽イオン交換膜にデュポン製のナフイオン膜を使用し、陽極電極には無垢の白金マイクログレーチングを用い、陰極電極として表4に示すものをそれぞれ使用した。そして、これら陽イオン交換膜、陽極電極及び陰極電極を重ね合わせて圧接した触媒電極を、図1に示すように容器内の所定位置に配置し、流入路から水道水(水温25℃、導電率165μS/cm)を供給し、陽極電極及び陰極電極間に表2に示す各値の直流電圧を印加したところ、流出路からオゾン水を得た。このときのオゾン水の濃度を表4に示した。また、同様にして水道水の代わりに精製水(水温25℃、導電率1.92μS/cm)を供給してオゾン水を生成し、生成したオゾン水の濃度を表4に示した。

Figure 0004637885
表4の結果より、陰極電極に白金メッキを施したものを使用した場合も無垢の白金ほどではないが、オゾン生成に効果が得られることが認められる。白金メッキはチタンのマイクログレーチングの母材に厚さ2μmの白金メッキを施したもので、厚さと形状からこれを重量で表示すると約0.052grとなり、無垢の白金の約10分の1の質量となる。母材のチタンは極めて電気伝導度の低い材質であるから、この場合は表面積が支配的になると考えられる。 (Role of platinum plating of cathode electrode)
The cation exchange membrane used was a DuPont naphthion membrane, the anode electrode used solid platinum micro-grating, and the cathode electrode shown in Table 4 was used. Then, a catalyst electrode in which the cation exchange membrane, the anode electrode and the cathode electrode are overlapped and press-contacted is arranged at a predetermined position in the container as shown in FIG. 1, and tap water (water temperature 25 ° C., conductivity is introduced from the inflow path). 165 μS / cm) was supplied, and each value of DC voltage shown in Table 2 was applied between the anode electrode and the cathode electrode, and ozone water was obtained from the outflow path. The concentration of ozone water at this time is shown in Table 4. Similarly, purified water (water temperature 25 ° C., conductivity 1.92 μS / cm) was supplied instead of tap water to generate ozone water, and the concentration of the generated ozone water is shown in Table 4.
Figure 0004637885
From the results in Table 4, it can be seen that even when the cathode electrode is subjected to platinum plating, it is not as effective as pure platinum, but it is effective for generating ozone. Platinum plating is a titanium micro-grating base material with a platinum plating thickness of 2μm. When expressed in weight from the thickness and shape, it is about 0.052gr, which is about one-tenth the mass of pure platinum. It becomes. Since the base material titanium is a material with extremely low electrical conductivity, it is considered that the surface area becomes dominant in this case.

以上の表1〜表4の結果から明らかなように、陽極電極に白金又は白金被覆金属を使用し、陰極電極の陽イオン交換膜側に白金又は白金被覆電極を使用し、さらに導電性の高い銀や銅も重ねて使用することによって、陽イオン交換膜の劣化を防止し、低電圧でオゾン水を生成することができる。また、陰極電極における電気伝導度を大きくすることができ、高濃度のオゾン水を生成でき、その結果、電導性の低い精製水を原料水としても高濃度のオゾン水を容易に生成することができる。   As is clear from the results of Tables 1 to 4 above, platinum or a platinum-coated metal is used for the anode electrode, platinum or a platinum-coated electrode is used on the cation exchange membrane side of the cathode electrode, and the conductivity is higher. By using silver or copper in layers, it is possible to prevent deterioration of the cation exchange membrane and to generate ozone water at a low voltage. Moreover, the electrical conductivity in the cathode electrode can be increased, and high-concentration ozone water can be generated. As a result, high-concentration ozone water can be easily generated even if purified water with low conductivity is used as raw water. it can.

オゾン水生成装置100の概略を模式的に示した縦断面図である。1 is a longitudinal sectional view schematically showing an outline of an ozone water generating device 100. FIG.

符号の説明Explanation of symbols

2 触媒電極
21 陽イオン交換膜
22 陽極電極
23 陰極電極
100 オゾン水生成装置
231 第一の陰極電極部
232 第二の陰極電極部
2 Catalytic electrode 21 Cation exchange membrane 22 Anode electrode 23 Cathode electrode 100 Ozone water generator 231 First cathode electrode part 232 Second cathode electrode part

Claims (3)

陽イオン交換膜の一方の面に陽極電極を圧接し、他方の面に陰極電極を圧接してなる触媒電極を備え、前記陽極電極と前記陰極電極との間に直流電圧を印加し、前記陽極電極に原料水を接触させることによりオゾン水を生成するオゾン水生成装置において、
前記陽極電極にオゾン生成触媒機能を有する材料を使用し、
前記陰極電極は、前記オゾン生成触媒機能を有する材料からなる第一の陰極電極部と、銀、銅、金又はアルミニウムのうち少なくとも一つの金属からなる第二の陰極電極部とを備え、前記第一の陰極電極部を前記陽イオン交換膜側に配置し、
前記第二の陰極電極部の質量又は表面積が、前記第一の陰極電極部の質量又は表面積と等しいかあるいはそれより大きいことを特徴とするオゾン水生成装置。
A catalyst electrode is formed by pressing an anode electrode on one surface of a cation exchange membrane and pressing a cathode electrode on the other surface, a DC voltage is applied between the anode electrode and the cathode electrode, and the anode In the ozone water generator that generates ozone water by bringing the raw material water into contact with the electrode,
Using a material having an ozone generation catalyst function for the anode electrode,
The cathode electrode includes a first cathode electrode portion made of a material having the ozone generation catalyst function, and a second cathode electrode portion made of at least one metal of silver, copper, gold or aluminum, One cathode electrode part is disposed on the cation exchange membrane side ,
The ozone water generating apparatus , wherein the mass or surface area of the second cathode electrode part is equal to or greater than the mass or surface area of the first cathode electrode part .
前記オゾン生成触媒機能を有する材料は、白金、金又はその被覆金属であることを特徴とする請求項1に記載のオゾン水生成装置。   The ozone water generating apparatus according to claim 1, wherein the material having an ozone generation catalytic function is platinum, gold, or a coating metal thereof. 前記第二の陰極電極部に使用する銀、銅、金又はアルミニウムが、塩化銀層を有する銀、銅、金又はアルミニウムであることを特徴とする請求項1又は2に記載のオゾン水生成装置。 The ozone water generator according to claim 1 or 2 , wherein silver, copper, gold or aluminum used for the second cathode electrode part is silver, copper, gold or aluminum having a silver chloride layer. .
JP2007221121A 2007-08-28 2007-08-28 Ozone water generator Expired - Fee Related JP4637885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221121A JP4637885B2 (en) 2007-08-28 2007-08-28 Ozone water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221121A JP4637885B2 (en) 2007-08-28 2007-08-28 Ozone water generator

Publications (2)

Publication Number Publication Date
JP2009052105A JP2009052105A (en) 2009-03-12
JP4637885B2 true JP4637885B2 (en) 2011-02-23

Family

ID=40503433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221121A Expired - Fee Related JP4637885B2 (en) 2007-08-28 2007-08-28 Ozone water generator

Country Status (1)

Country Link
JP (1) JP4637885B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039290A1 (en) * 2009-08-31 2011-03-03 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Method for oxidation anodic treatment of electrically conductive, natural water and/or aqueous solution, comprises pressing a perforated structure in a cell housing on a cation exchanger membrane and a porous cathode plate
JP5544181B2 (en) * 2010-01-29 2014-07-09 公立大学法人 滋賀県立大学 Electrochemical synthesis of ozone fine bubbles
JP5116793B2 (en) * 2010-03-30 2013-01-09 三菱電機株式会社 Reactive oxygen species generator
JP5090574B1 (en) * 2012-02-15 2012-12-05 日科ミクロン株式会社 Ozone water generator
JP5791841B1 (en) * 2015-04-17 2015-10-07 日科ミクロン株式会社 Ozone water production equipment
AU2019243601B2 (en) * 2018-03-29 2023-03-23 NorthStar Medical Radioisotopes LLC Systems and methods for ozone water generator
CN110846674B (en) * 2019-10-16 2024-07-12 广州德百顺蓝钻科技有限公司 Ozone electrolysis structure and electrolysis chamber
JP6864939B1 (en) * 2020-09-15 2021-04-28 アクア株式会社 Electrolytic cell and ozone water sprayer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134678A (en) * 1994-11-11 1996-05-28 V M C:Kk Ozonized water producing device
JP2002121690A (en) * 2000-10-17 2002-04-26 Ryoden Kasei Co Ltd Electrolytic type ozone generating apparatus and portable electronic appliance using the apparatus
JP2004269295A (en) * 2003-03-06 2004-09-30 Matsushita Electric Ind Co Ltd Oxygen pumping device and oxygen pumping apparatus on which oxygen pumping device is loaded
JP2007520626A (en) * 2003-06-25 2007-07-26 アールトゥアール インコーポレイティッド Electrolytic ozone generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134678A (en) * 1994-11-11 1996-05-28 V M C:Kk Ozonized water producing device
JP2002121690A (en) * 2000-10-17 2002-04-26 Ryoden Kasei Co Ltd Electrolytic type ozone generating apparatus and portable electronic appliance using the apparatus
JP2004269295A (en) * 2003-03-06 2004-09-30 Matsushita Electric Ind Co Ltd Oxygen pumping device and oxygen pumping apparatus on which oxygen pumping device is loaded
JP2007520626A (en) * 2003-06-25 2007-07-26 アールトゥアール インコーポレイティッド Electrolytic ozone generator

Also Published As

Publication number Publication date
JP2009052105A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4637885B2 (en) Ozone water generator
JP5639724B1 (en) ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP4220978B2 (en) Electrode, ozone generator, and ozone generation method
JP4528840B2 (en) Ozone water generator
JP5232271B2 (en) High pressure water electrolyzer
ES2402768T3 (en) An apparatus to produce ozone by electrolysis
JP5574877B2 (en) Ozone water generator
JPH11333458A (en) Apparatus for producing electrolytic water
JP5702885B1 (en) Electrolyzed water generator
JP5210455B1 (en) Wash water generator
JP2011083655A (en) Electrolytic water generator
JP2017018852A (en) Electric cell and electrolysis water generation device
JP4464362B2 (en) Ozone water generation method
JP6599411B2 (en) Electrolytic cell and electrode plate for electrolytic cell
JP6132234B2 (en) Electrolyzed water generator
JP4373985B2 (en) Ozone water generator
JP2017110279A (en) Hydrogen peroxide production device
JP2012193428A (en) Electrolytic solution decomposition device and decomposition method for electrolytic solution using the same
KR101822465B1 (en) Electrode assembly to generate hydrogen water and portable hydrogen water generating device comprising the same
JP5588402B2 (en) High pressure hydrogen production equipment
JP5048878B1 (en) Ozone water generator
CN106574381B (en) Electrode unit and the electrolysis unit for having used the electrode unit
JP5210456B1 (en) Wash water generator
JP6220957B1 (en) Diamond electrode, method for producing diamond electrode, and electrolyzed water generating apparatus
JP2005211725A (en) Reduced water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100726

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4637885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees