JP2012193428A - Electrolytic solution decomposition device and decomposition method for electrolytic solution using the same - Google Patents

Electrolytic solution decomposition device and decomposition method for electrolytic solution using the same Download PDF

Info

Publication number
JP2012193428A
JP2012193428A JP2011059228A JP2011059228A JP2012193428A JP 2012193428 A JP2012193428 A JP 2012193428A JP 2011059228 A JP2011059228 A JP 2011059228A JP 2011059228 A JP2011059228 A JP 2011059228A JP 2012193428 A JP2012193428 A JP 2012193428A
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrode
cell
water
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011059228A
Other languages
Japanese (ja)
Inventor
Akihisa Matsudo
覚央 松戸
Hirohito Hayashi
裕人 林
Kazuto Noritake
和人 則武
翼 ▲高▼島
Tsubasa Takashima
Toru Sasaya
亨 笹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011059228A priority Critical patent/JP2012193428A/en
Publication of JP2012193428A publication Critical patent/JP2012193428A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic solution decomposition device capable of easily separating and recovering a product produced in each electrode, oxygen and hydrogen gas in particular, by electrolysis or photolysis of an electrolytic solution, water in particular, while separately flowing the electrolytic solution by the reason that two electrodes are arranged by sandwiching an inflow cell into which the electrolytic solution flows, and the pressure of the electrolytic solution within the inflow cell is higher than the pressure of the electrolytic solution within each outflow cell from which the electrolytic solution having passed through those two electrodes flows out.SOLUTION: The electrolytic solution decomposition device 100 is equipped with the inflow cell 10 into which the electrolytic solution is flowed, a first electrode section 20 and a second electrode section 30 being arranged by sandwiching the inflow cell, a first outflow cell 40 from which the electrolytic solution having passed through the first electrode section flows out and a second outflow cell 50 from which the electrolytic solution having passed through the second electrode section flows out. The pressure of the electrolytic solution within the inflow cell is higher than the pressure of the electrolytic solution within the first outflow cell and within the second outflow cell.

Description

本発明は、電解液を分解する電解液分解装置、及びその電解液分解装置を用いた電解液の分解方法に関する。   The present invention relates to an electrolytic solution decomposing apparatus that decomposes an electrolytic solution, and an electrolytic solution decomposing method using the electrolytic solution decomposing apparatus.

近年、電解液、特には水の電気分解又は光分解(光化学分解とも言う。)により生成する酸素及び水素の需要が高まっている。酸素は、多くの産業上の利用、医療用途等がある。例えば、酸素の用途は、化学工業における安価な酸化剤としての用途、呼吸に不可欠な元素であるため医療分野での酸素吸入としての用途、ガス溶接や鉄鋼の製造工程における助燃剤としての用途等がある。一方、水素は、エネルギー有効利用の観点から注目されている。すなわち、水素は、電力の豊富な地域や時間において、水を電気分解又は光分解して、水素として貯蔵し、電力が必要な地域や時間に供給することが考えられる。具体的には、大都市から離れた大河流域の大型ダムで製造された豊富な電力で、水の電気分解又は光分解により水素を製造し、パイプラインにより工場や大都市に供給したり、化学物質の原料として消費したり、水素自動車や燃料電池の燃料としたりすること等が可能である。   In recent years, there has been an increasing demand for oxygen and hydrogen produced by electrolysis or photolysis (also referred to as photochemical decomposition) of an electrolyte, particularly water. Oxygen has many industrial uses and medical uses. For example, oxygen is used as an inexpensive oxidant in the chemical industry, as an oxygen inhalation in the medical field because it is an element essential for breathing, as a combustion aid in gas welding and steel manufacturing processes, etc. There is. On the other hand, hydrogen attracts attention from the viewpoint of effective energy use. That is, it is conceivable that hydrogen is electrolyzed or photolyzed in an area and time rich in electric power, stored as hydrogen, and supplied to an area and time where electric power is required. Specifically, hydrogen is produced by electrolysis or photolysis of water using abundant electric power produced by a large dam in a large river basin far from a large city, and supplied to factories and large cities through pipelines, It can be consumed as a raw material for substances, or used as a fuel for hydrogen automobiles or fuel cells.

例えば、特許文献1には、原水を電気分解して電解水を生成する電解水生成装置であって、原水が供給される陽極および陰極と、陽極及び陰極間に配置される隔膜とを備え、陽極及び陰極のうちの少なくとも一方の表面には、貴金属元素である白金を主体とする白金触媒層が形成されており、白金触媒層には、平均細孔径50μm以下の細孔が形成されていることを特徴とする電解水生成装置が提案されている。特許文献1によると、陰極表面から発生した水素気泡を小さいサイズのまま水中に速やかに分散させることができ、水素溶存水中の溶存水素濃度を効率良く大きくすることができ、さらに、溶存水素濃度を効率良く大きくすることができるので、所望の溶存水素濃度を得るために要する電気分解の電気量を低減することができ、水素溶存水のpH値の上昇を抑制することができると記載されている。また、特許文献2には、固体酸化物を有する電解質と、水素極と、酸素極とを有する電気化学セルを用いて水蒸気を電気分解して水素を生成する水蒸気電解装置において、水素極及び酸素極に水蒸気を含むガスが供給されるガス供給手段を有することを特徴とする水蒸気電解装置が提案されている。特許文献2によると、水素極及び酸素極に水蒸気を含むガスが供給されるガス供給手段を設けることにより、水素極側雰囲気と酸素極側雰囲気との間で生じるガスリークを抑制し、安全性の向上を図り、さらには装置構造の簡易化を図ることができると記載されている。特許文献3には、固体酸化物電解質材料を素材とする電解質と、この電解質を挟んで設けられた水素極と酸素極とから成る電気化学セルを用いて、水蒸気を電気分解し、水素と酸素を生成する水蒸気電解方法において、水素極及び酸素極に供給する供給ガスが、いずれも水蒸気を主な成分とし、水素極及び酸素極を通過した排出ガスの一部をそれぞれの供給ガスの流れの上流側へ循環させるようにしたことを特徴とする水蒸気電解方法が提案されている。特許文献3によると、構造が簡単で、また、水素極側雰囲気と酸素極側雰囲気間で生じるガスリークによる影響を軽減し、できるだけ緩和・簡易・安全な運転が可能な水蒸気電解方法及び水蒸気電解装置を得ることができると記載されている。さらに、特許文献4には、電解液を収容するための第1室と、電解液の電気分解により生成する電解生成物を排出するための第2室と、第1室と前記第2室との間に設けられた作用電極と、電解液を介して作用電極に電流を供給するための対極と、作用電極と対極間に直流電流を印加するための電源とを備え、作用電極は、電解生成物を選択的に第2室に排出することが可能な大きさの細孔を有し、かつ、細孔が一方の面から他方の面に向かって連続的につながっている炭素膜を含む電解装置が提案されている。特許文献4によると、炭素膜を電解用の作用電極として使用すれば、電解生成物を効率よく分離することができ、しかも、炭素膜は、電解生成物が透過する際に膨張・収縮がないので、これを作用電極に用いることによって電解装置の耐久性が向上し、さらに、第2室に強制排出手段を設けた場合には、電解生成物の分離効率がさらに向上すると記載されている。さらにまた、特許文献5には、電解液が流液する液体流路と、液体流路で流液する電解液と気液界面を形成するための気体流路と、電解液の電気分解を起こすための一対の電極であって、少なくとも一部が電解液と接触し、且つ前記電解液との接触領域全域が液体流路及び気体流路の境界から100μm以内に位置する一対の電極と、を具備することを特徴とする電気分解セルが提案されている。特許文献5によると、電気分解により生じた気体を電極表面から速やかに取り除くことが可能な電気分解セル、及びそれを用いた電気分解方法を提供することができると記載されている。   For example, Patent Document 1 is an electrolyzed water generating apparatus that electrolyzes raw water to generate electrolyzed water, and includes an anode and a cathode to which raw water is supplied, and a diaphragm disposed between the anode and the cathode, A platinum catalyst layer mainly composed of platinum as a noble metal element is formed on at least one surface of the anode and the cathode, and pores having an average pore diameter of 50 μm or less are formed in the platinum catalyst layer. An electrolyzed water generator characterized by this is proposed. According to Patent Document 1, hydrogen bubbles generated from the cathode surface can be quickly dispersed in water with a small size, the dissolved hydrogen concentration in the hydrogen-dissolved water can be increased efficiently, and the dissolved hydrogen concentration can be increased. It is described that since it can be efficiently increased, the amount of electrolysis required to obtain a desired dissolved hydrogen concentration can be reduced, and an increase in the pH value of hydrogen-dissolved water can be suppressed. . Further, Patent Document 2 discloses a water vapor electrolysis apparatus that generates hydrogen by electrolyzing water vapor using an electrochemical cell having an electrolyte having a solid oxide, a hydrogen electrode, and an oxygen electrode. There has been proposed a steam electrolyzer having a gas supply means for supplying a gas containing water vapor to the electrode. According to Patent Document 2, by providing a gas supply means for supplying a gas containing water vapor to the hydrogen electrode and the oxygen electrode, gas leakage occurring between the hydrogen electrode side atmosphere and the oxygen electrode side atmosphere is suppressed, and safety is improved. It is described that improvement can be achieved and the structure of the apparatus can be simplified. In Patent Document 3, water vapor is electrolyzed using an electrochemical cell composed of an electrolyte made of a solid oxide electrolyte material and a hydrogen electrode and an oxygen electrode sandwiched between the electrolyte and hydrogen and oxygen. In the water vapor electrolysis method for generating water, the supply gas supplied to the hydrogen electrode and the oxygen electrode is mainly composed of water vapor, and a part of the exhaust gas that has passed through the hydrogen electrode and the oxygen electrode is converted into the flow of each supply gas. A steam electrolysis method characterized in that it is circulated upstream is proposed. According to Patent Document 3, a water vapor electrolysis method and a water vapor electrolysis apparatus that have a simple structure and that can reduce the influence of a gas leak that occurs between the hydrogen electrode side atmosphere and the oxygen electrode side atmosphere and can be operated as easily, simply, and safely as possible. It is described that can be obtained. Further, Patent Document 4 discloses a first chamber for containing an electrolytic solution, a second chamber for discharging an electrolytic product generated by electrolysis of the electrolytic solution, a first chamber, and the second chamber. A working electrode provided between the working electrode, a counter electrode for supplying a current to the working electrode via an electrolytic solution, and a power source for applying a direct current between the working electrode and the counter electrode. Including a carbon membrane having pores of a size capable of selectively discharging the product to the second chamber and continuously connected from one surface to the other surface Electrolysis devices have been proposed. According to Patent Document 4, if a carbon membrane is used as a working electrode for electrolysis, the electrolytic product can be efficiently separated, and the carbon membrane does not expand or contract when the electrolytic product permeates. Therefore, it is described that the durability of the electrolysis apparatus is improved by using this for the working electrode, and further, when the forced discharge means is provided in the second chamber, the separation efficiency of the electrolysis product is further improved. Furthermore, Patent Document 5 discloses a liquid flow path through which an electrolytic solution flows, a gas flow path for forming a gas-liquid interface with the electrolytic solution flowing through the liquid flow path, and electrolysis of the electrolytic solution. A pair of electrodes, at least part of which is in contact with the electrolytic solution, and the entire contact region with the electrolytic solution is located within 100 μm from the boundary between the liquid channel and the gas channel, There has been proposed an electrolysis cell characterized by comprising. According to Patent Document 5, it is described that an electrolysis cell capable of quickly removing gas generated by electrolysis from an electrode surface and an electrolysis method using the electrolysis cell can be provided.

しかしながら、電解液、特には水を、更に安価、かつ、効率的に電気分解又は光分解をして酸素及び水素を生成させて、そして酸素及び水素を別々に容易に回収することができる電解液分解装置が求められているのが現状である。   However, an electrolytic solution, particularly water, can be cheaply and efficiently electrolyzed or photolyzed to produce oxygen and hydrogen, and oxygen and hydrogen can be easily recovered separately. The present situation is that a decomposition apparatus is required.

特開2009−195884号公報JP 2009-195484 A 特開2007−063619号公報JP 2007-063619 A 特開2007−031784号公報JP 2007-031784 A 特開2007−197765号公報JP 2007-197765 A 特開2007−154217号公報JP 2007-154217 A

本発明は、電解液が流入する流入セルを挟んで2つの電極が配設されて、流入セル内の電解液の圧力が、それら2つの電極を通過した電解液が流出するそれぞれの流出セル内の電解液の圧力よりも高いことによって電解液を分流して、電解液、特には水の電気分解又は光分解によって各々の電極において生成される生成物、特には酸素及び水素のガスを容易に分離して回収することができる電解液分解装置を提供することを目的とする。さらには、本発明は、その電解液分解装置を用いた電解液の分解方法を提供することを目的とする。   In the present invention, two electrodes are disposed across an inflow cell into which the electrolyte flows, and the pressure of the electrolyte in the inflow cell is reduced in each outflow cell from which the electrolyte that has passed through the two electrodes flows out. The electrolyte is diverted by being higher than the pressure of the electrolyte, and the products generated at each electrode by electrolysis or photolysis of the electrolyte, especially water, especially oxygen and hydrogen gas are easily It is an object of the present invention to provide an electrolytic solution decomposing apparatus that can be separated and recovered. Furthermore, an object of the present invention is to provide a method for decomposing an electrolytic solution using the electrolytic solution decomposing apparatus.

上記目的を達成するための手段は、以下の第(1)項〜第(14)項である。
(1)電解液が流入する流入セルと、その流入セルを挟んで配設される第1電極部と第2電極部と、その第1電極部を通過したその電解液が流出する第1流出セルと、その第2電極部を通過したその電解液が流出する第2流出セルとを備え、その流入セル内のその電解液の圧力が、その第1流出セル内及びその第2流出セル内のその電解液の圧力よりも高いことを特徴とする、電解液分解装置。
(2)その第1流出セルが第1導入部を更に備え、かつ、その第2流出セルが第2導入部を更に備えることを特徴とする、第(1)項に記載の電解液分解装置。
(3)その流入セルが導出部を更に備えることを特徴とする、第(1)項又は第(2)項に記載の電解液分解装置。
(4)その第1電極部が第1電極基板を備えることを特徴とする、第(1)項〜第(3)項のいずれか1項に記載の電解液分解装置。
(5)その第1電極部がその第1電極基板のその流入セル側に第1多孔質膜を更に備えることを特徴とする、第(4)項に記載の電解液分解装置。
(6)その第1電極基板とその第1多孔質膜とが積層されて成ることを特徴とする、第(5)項に記載の電解液分解装置。
(7)その第1電極基板とその第1多孔質膜とが離間して配設されて成ることを特徴とする、第(5)項に記載の電解液分解装置。
(8)その第1電極部がその第1電極基板のその流出セル側に光触媒膜を更に備えることを特徴とする、第(4)項〜第(7)項のいずれか1項に記載の電解液分解装置。
(9)その第2電極部が第2電極基板を備えることを特徴とする、第(1)項〜第(8)項のいずれか1項に記載の電解液分解装置。
(10)その第2電極部がその第2電極基板のその流入セル側に第2多孔質膜を更に備えることを特徴とする、第(9)項に記載の電解液分解装置。
(11)その第2電極基板とその第2多孔質膜とが積層されて成ることを特徴とする、第(10)項に記載の電解液分解装置。
(12)その第2電極基板とその第2多孔質膜とが離間して配設されて成ることを特徴とする、第(10)項に記載の電解液分解装置。
(13)その第2電極部がその第2電極基板のその第2流出セル側に光触媒膜を更に備えることを特徴とする、第(9)項〜第(12)項のいずれか1項に記載の電解液分解装置。
(14)第(1)項から第(13)項のいずれか1項に記載の電解液分解装置を用いてその電解液の分解を行うことを特徴とする、電解液分解方法。
Means for achieving the above object are the following items (1) to (14).
(1) An inflow cell into which the electrolytic solution flows, a first electrode portion and a second electrode portion disposed across the inflow cell, and a first outflow from which the electrolytic solution that has passed through the first electrode portion flows out. A second outflow cell from which the electrolyte that has passed through the second electrode section flows out, and the pressure of the electrolyte in the inflow cell is within the first outflow cell and the second outflow cell. The electrolytic solution decomposing apparatus is characterized by being higher than the pressure of the electrolytic solution.
(2) The electrolytic solution decomposition apparatus according to (1), wherein the first outflow cell further includes a first introduction portion, and the second outflow cell further includes a second introduction portion. .
(3) The electrolytic solution decomposition apparatus according to (1) or (2), wherein the inflow cell further includes a lead-out unit.
(4) The electrolytic solution decomposing apparatus according to any one of (1) to (3), wherein the first electrode portion includes a first electrode substrate.
(5) The electrolytic solution decomposition apparatus according to (4), wherein the first electrode portion further includes a first porous film on the inflow cell side of the first electrode substrate.
(6) The electrolytic solution decomposition apparatus according to (5), wherein the first electrode substrate and the first porous film are laminated.
(7) The electrolytic solution decomposing apparatus according to item (5), wherein the first electrode substrate and the first porous film are spaced apart from each other.
(8) The first electrode section according to any one of (4) to (7), wherein the first electrode portion further includes a photocatalytic film on the outflow cell side of the first electrode substrate. Electrolyte decomposition device.
(9) The electrolytic solution decomposing apparatus according to any one of (1) to (8), wherein the second electrode portion includes a second electrode substrate.
(10) The electrolytic solution decomposition apparatus according to (9), wherein the second electrode portion further includes a second porous film on the inflow cell side of the second electrode substrate.
(11) The electrolytic solution decomposing apparatus according to item (10), wherein the second electrode substrate and the second porous film are laminated.
(12) The electrolytic solution decomposing apparatus according to item (10), wherein the second electrode substrate and the second porous film are disposed apart from each other.
(13) In any one of items (9) to (12), the second electrode portion further includes a photocatalytic film on the second outflow cell side of the second electrode substrate. The electrolytic solution decomposition apparatus as described.
(14) A method for decomposing an electrolytic solution, comprising decomposing the electrolytic solution using the electrolytic solution decomposing apparatus according to any one of items (1) to (13).

本発明によれば、流入セル内の電解液の圧力と、流出セル内の電解液の圧力との差を利用することによって電解液を分流して、電解液、特には水の電気分解又は光分解によって各々の電極において生成される生成物、特には酸素及び水素のガスとを容易に分離して回収することができる電解液分解装置が提供され、また、その電解液分解装置を用いた電解液の分解方法が提供される。   According to the present invention, the electrolytic solution is diverted by utilizing the difference between the pressure of the electrolytic solution in the inflow cell and the pressure of the electrolytic solution in the outflow cell, and electrolysis or light of the electrolytic solution, particularly water. An electrolytic solution decomposition apparatus capable of easily separating and recovering products generated at each electrode by decomposition, particularly oxygen and hydrogen gas, is provided, and electrolysis using the electrolytic decomposition apparatus is provided. A method for decomposing liquid is provided.

図1は、本発明の電解液分解装置の1つである、電解液分解装置100の態様を示す側面断面図である。FIG. 1 is a side cross-sectional view showing an aspect of an electrolytic solution decomposing apparatus 100 that is one of the electrolytic solution decomposing apparatuses of the present invention. 図2は、本発明の電解液分解装置100と配管とを組み合わせて構成された還流装置200の態様を示す図である。FIG. 2 is a diagram showing an embodiment of a reflux device 200 configured by combining the electrolytic solution decomposition apparatus 100 of the present invention and piping. 図3は、本発明の電解液分解装置の1つである、電解液分解装置300の態様を示す側面断面図である。FIG. 3 is a side cross-sectional view showing an aspect of an electrolytic solution decomposing apparatus 300 that is one of the electrolytic solution decomposing apparatuses of the present invention. 図4は、本発明の電解液分解装置300と配管とを組み合わせて構成された還流装置400の態様を示す図である。FIG. 4 is a diagram showing an embodiment of a reflux device 400 configured by combining the electrolytic solution decomposition apparatus 300 of the present invention and piping. 図5は、本発明の電解液分解装置の1つである、電解液分解装置500の態様を示す側面断面図である。FIG. 5 is a side sectional view showing an aspect of an electrolytic solution decomposing apparatus 500 which is one of the electrolytic solution decomposing apparatuses of the present invention. 図6は、本発明の電解液分解装置500と配管とを組み合わせて構成された還流装置600の態様を示す図である。FIG. 6 is a diagram showing an embodiment of a reflux device 600 configured by combining the electrolytic solution decomposition apparatus 500 of the present invention and piping. 図7は、本発明の電解液分解装置の1つである、電解液分解装置700の態様を示す側面断面図である。FIG. 7 is a side cross-sectional view showing an aspect of an electrolytic solution decomposing apparatus 700, which is one of the electrolytic solution decomposing apparatuses of the present invention. 図8は、本発明の電解液分解装置の1つである、電解液分解装置800の態様を示す側面断面図である。FIG. 8 is a side sectional view showing an aspect of an electrolytic solution decomposing apparatus 800 that is one of the electrolytic solution decomposing apparatuses of the present invention.

(1)電解液分解装置
本発明による電解液分解装置は、電解液が流入する流入セルと、流入セルを挟んで配設される第1電極部と第2電極部と、第1電極部を通過した電解液が流出する第1流出セルと、第2電極部を通過した電解液が流出する第2流出セルとを備え、流入セル内の電解液の圧力が、第1流出セル内及び第2流出セル内の電解液の圧力よりも高いことを特徴として、流入セル内の電解液の圧力と、流出セル内の電解液の圧力との差を利用することによって電解液を分流して、電解液の分解によって各々の電極において生成される生成物を容易に分離して回収することができる。本発明による電解液分解装置において用いられる電解液は、イオン性物質を水等の極性溶媒に溶解させて作製した電気伝導性を有する溶液であれば、特に限定されることはなく、例えば、水(H2O)、重金属等の金属含有水溶液(金属廃液)が挙げられるが、水(H2O)であることが好ましい。また、本発明の電解液分解装置は、電解液の分解として電気分解を実施する場合に用いられてもよいし、光分解を実施する場合に用いられてもよい。
(1) Electrolyte decomposition apparatus An electrolyte decomposition apparatus according to the present invention includes an inflow cell into which an electrolyte flows, a first electrode part, a second electrode part, and a first electrode part that are disposed across the inflow cell. A first outflow cell through which the electrolytic solution that has passed through and a second outflow cell through which the electrolytic solution that has passed through the second electrode section flow out, and the pressure of the electrolytic solution in the inflow cell is set in the first outflow cell and the first outflow cell. 2 It is characterized by being higher than the pressure of the electrolyte solution in the outflow cell, and by dividing the electrolyte solution by utilizing the difference between the pressure of the electrolyte solution in the inflow cell and the pressure of the electrolyte solution in the outflow cell, Products generated at the respective electrodes by the decomposition of the electrolytic solution can be easily separated and recovered. The electrolytic solution used in the electrolytic solution decomposing apparatus according to the present invention is not particularly limited as long as it is an electrically conductive solution prepared by dissolving an ionic substance in a polar solvent such as water. Examples thereof include (H 2 O) and metal-containing aqueous solutions (metal waste liquid) such as heavy metals, but water (H 2 O) is preferable. Moreover, the electrolytic solution decomposing apparatus of the present invention may be used when electrolysis is performed as electrolytic solution decomposition, or may be used when photolysis is performed.

以下、図1を参照しながら、本発明による電解液分解装置について更に詳細に説明をする。なお、本発明の電解液分解装置は、本発明の目的及び主旨を逸脱しない範囲で、図1〜図5の本発明の実施の形態に限定されるものではない。図1は、本発明の実施の形態に係る電解液分解装置の1態様(電解液分解装置(100))を示す側面断面図である。本発明の実施の形態に係る電解液分解装置(100)は、筐体(110)内に配設された、電解液(水:H2O)(1)が流入する流入セル(10)と、その流入セルを挟んで配設された第1電極部(20)と、第2電極部(30)と、その第1電極部(20)を通過した電解液(水:H2O)(1)が流出する第1流出セル(40)と、その第2電極部(30)を通過した電解液(水:H2O)(1)が流出する第2流出セル(50)と、透明窓部(120)と、セパレータ(130)と、を備える。 Hereinafter, the electrolytic solution decomposing apparatus according to the present invention will be described in more detail with reference to FIG. Note that the electrolytic solution decomposing apparatus of the present invention is not limited to the embodiment of the present invention shown in FIGS. 1 to 5 without departing from the object and the spirit of the present invention. FIG. 1 is a side sectional view showing one embodiment (electrolyte decomposition device (100)) of an electrolyte solution decomposition device according to an embodiment of the present invention. An electrolytic solution decomposing apparatus (100) according to an embodiment of the present invention includes an inflow cell (10) disposed in a housing (110) and into which an electrolytic solution (water: H 2 O) (1) flows. The first electrode part (20) disposed across the inflow cell, the second electrode part (30), and the electrolytic solution (water: H 2 O) that has passed through the first electrode part (20) ( A first outflow cell (40) through which 1) flows out, a second outflow cell (50) through which the electrolyte (water: H 2 O) (1) that has passed through the second electrode portion (30) flows out, and transparent A window part (120) and a separator (130) are provided.

図1による本発明の実施の形態に係る電解液分解装置において、電解液(水:H2O)(1)が電解液流入口(60)から流入して流入セル(10)中を流れて第1電極部(20)を通過すると、光(140)照射による光化学反応によって光触媒膜(91)上で酸素(O2)(2)が生成される。一方、電解液(水:H2O)(1)が電解液流入口(60)から流入して流入セル(10)中を流れて第2電極部(30)を通過するとカウンター電極(95)の表面で水素(H2)(3)が生成される。生成された酸素(O2)(2)の気泡は、多孔質膜(93)が電極基板(92)よりも上流側に配置されたことと、流入セル内の電解液の圧力が第1流出セル内の電解液の圧力よりも高いこととによって、生成された酸素(O2)(2)の逆流を防止することが可能となり、第1電極部の下部から上部へ向かう電解液(水:H2O)(1)の流れによって第1電極部から脱離して電解液(水:H2O)(1)の流れと同伴して、第1流出セル(40)の電解液流出口(70)から流出される。一方、水素(H2)(3)の気泡も同様に、多孔質膜(94)がカウンター電極(95)よりも上流側に配置されたことと、流入セル内の電解液の圧力が第2流出セル内の電解液の圧力よりも高いこととによって逆流をすることなく、電解液(水:H2O)(1)の流れと同伴して第2流出セル(50)の電解液流出口(80)から流出される。酸素(O2)(2)の気泡及び水素(H2)(3)の気泡は、電解液流出口(70)及び電解液流出口(80)からそれぞれ流出されるので、酸素(O2)(2)及び水素(H2)(3)はセパレータ(130)を介して容易に分離して回収され得る。 In the electrolytic solution decomposing apparatus according to the embodiment of the present invention shown in FIG. 1, an electrolytic solution (water: H 2 O) (1) flows from the electrolytic solution inlet (60) and flows through the inlet cell (10). When passing through the first electrode part (20), oxygen (O 2 ) (2) is generated on the photocatalyst film (91) by a photochemical reaction caused by light (140) irradiation. On the other hand, when the electrolytic solution (water: H 2 O) (1) flows in from the electrolytic solution inlet (60), flows through the inflow cell (10), and passes through the second electrode portion (30), the counter electrode (95) Hydrogen (H 2 ) (3) is generated on the surface of The generated oxygen (O 2 ) (2) bubbles are due to the fact that the porous membrane (93) is disposed upstream of the electrode substrate (92) and the pressure of the electrolyte in the inflow cell is the first outflow. By being higher than the pressure of the electrolyte in the cell, it is possible to prevent the backflow of the generated oxygen (O 2 ) (2), and the electrolyte (water: H 2 O) (1) is desorbed from the first electrode portion and is accompanied by the flow of the electrolyte (water: H 2 O) (1), and the electrolyte outlet ( 70). On the other hand, the bubbles of hydrogen (H 2 ) (3) are similarly arranged such that the porous membrane (94) is arranged upstream of the counter electrode (95) and the pressure of the electrolyte in the inflow cell is second. The electrolyte outlet of the second outlet cell (50) accompanies the flow of the electrolyte (water: H 2 O) (1) without backflow due to being higher than the pressure of the electrolyte in the outlet cell. (80). Since the bubbles of oxygen (O 2 ) (2) and bubbles of hydrogen (H 2 ) (3) flow out from the electrolyte outlet (70) and the electrolyte outlet (80), respectively, oxygen (O 2 ) (2) and hydrogen (H 2 ) (3) can be easily separated and recovered via the separator (130).

例えば、図2に示された、本発明の電解液分解装置100と配管とを組み合わせて構成された還流装置200のように、流出された酸素(O2)(2)は電解液(水:H2O)(1)と同伴して酸素流出用配管(201)を通って酸素溶解液用リザーバータンク(211)に流れて酸素が回収される。そして酸素回収後の酸素が溶存していない電解液(水:H2O)(1)は水補給用のリザーバータンク(213)に配管を通って流れて、補給された水と共に循環ポンプ(221)を通過して、流入セル用配管(203)を通って流入セル(10)に流れて電解液(水:H2O)(1)の分解が再度実行される。一方、流出された水素(H2)(3)は、電解液(水:H2O)(1)と同伴して水素流出用配管(202)を通って水素溶解液用リザーバータンク(212)に流れて水素が回収される。そして水素回収後の水素が溶存していない電解液(水:H2O)(1)は酸素回収後の酸素が溶存していない電解液(水:H2O)(1)と同様に水補給用のリザーバータンク(213)に流れて、補給された水と、酸素回収後の酸素が溶存していない電解液(水:H2O)(1)と共に循環ポンプ(221)を通過して、流入セル用配管(203)を通って流入セル(10)に流れて電解液(水:H2O)(1)の分解が再度実行される。 For example, as shown in FIG. 2, the oxygen (O 2 ) (2) that has flowed out is an electrolyte solution (water: water) as in the reflux device 200 configured by combining the electrolytic solution decomposition apparatus 100 of the present invention and piping. H 2 O) (1) accompanying the oxygen outflow pipe (201) flows to the oxygen solution reservoir tank (211) to collect oxygen. Then, the electrolytic solution (water: H 2 O) (1) in which oxygen is not dissolved after the oxygen recovery flows through the pipe to the reservoir tank (213) for water supply, and the circulating pump (221) together with the supplied water. ) Through the inflow cell pipe (203) to the inflow cell (10), and the decomposition of the electrolyte (water: H 2 O) (1) is performed again. On the other hand, the hydrogen (H 2 ) (3) that flowed out is accompanied by the electrolyte (water: H 2 O) (1) and passes through the hydrogen outflow pipe (202) to form a hydrogen-dissolved reservoir tank (212). To recover hydrogen. The electrolytic solution of hydrogen after hydrogen recovery is not dissolved (water: H 2 O) (1) an electrolytic solution oxygen after oxygen recovery is not dissolved (water: H 2 O) (1) as well as water It flows into the reservoir tank (213) for replenishment, and passes through the circulation pump (221) together with the replenished water and the electrolyte solution (water: H 2 O) (1) in which oxygen after oxygen recovery is not dissolved. Then, it flows into the inflow cell (10) through the inflow cell pipe (203), and the decomposition of the electrolyte (water: H 2 O) (1) is performed again.

本発明による電解液分解装置において、流入セル内の該電解液の圧力が、第1流出セル内及び第2流出セル内の電解液の圧力よりも高いこと(圧力差が生じること)により、電解液を容易に分流して、電解液、特には水の分解によって第1電極部において生成される生成物、特には酸素と第2電極部において生成される生成物、特には水素とを容易に分離して回収することができる。本発明による電解液分解装置においては、生成物、特には酸素及び水素のガスが発生する箇所より上流部に圧力差が生じて上流部への生成物、特には酸素及び水素のガスの逆流を防ぐこととなる。一般的には、流体流路内に任意の物(例えば、電極等)を置くと、流れが阻害されることにより圧損が生じてその物の箇所に圧力差が生じる。本発明による電解液分解装置においては、圧力差の箇所は電極部で生成される生成物、特には酸素及び水素のガスが発生する箇所より上流側に存在する。例えば図1においては、光触媒電極(90)又はカウンター電極(95)よりも上流側に配設される多孔質膜(93又は94)で圧力差が生じて、光触媒電極(90)又はカウンター電極(95)で生成する酸素(O2)(2)及び水素(H2)(3)のガスの逆流を防止することができる。電解液の光分解であって多孔質を配設していない場合は、光触媒膜を電極基板の下流側に配置して光触媒側から光を照射することにより、生成物、特には酸素及び水素のガスは、電極基板の最下流部で発生し、圧力差は電極部全体で生じるので生成物、特には酸素及び水素のガスの逆流を防止することができる。電解液の電気分解の場合には、生成物、特には酸素及び水素のガスが電極全体で発生するため、その上流側に多孔質膜を配設し圧力差発生箇所よりも下流側でガスを発生させることで、生成物、特には酸素及び水素のガスの逆流を防止することができる。 In the electrolytic solution decomposing apparatus according to the present invention, since the pressure of the electrolytic solution in the inflow cell is higher than the pressure of the electrolytic solution in the first outflow cell and the second outflow cell (a pressure difference is generated), The liquid is easily diverted so that the product produced in the first electrode part, particularly oxygen and the product produced in the second electrode part, especially hydrogen, easily by the decomposition of the electrolyte, especially water It can be separated and recovered. In the electrolytic solution decomposing apparatus according to the present invention, a pressure difference is generated in the upstream portion from the place where the product, particularly oxygen and hydrogen gas is generated, and the product, particularly oxygen and hydrogen gas, flows backward to the upstream portion. Will prevent. In general, when an arbitrary object (for example, an electrode or the like) is placed in the fluid flow path, the flow is hindered to cause pressure loss, and a pressure difference is generated at the position of the object. In the electrolytic solution decomposing apparatus according to the present invention, the location of the pressure difference exists upstream from the location where the products generated in the electrode section, particularly the oxygen and hydrogen gas are generated. For example, in FIG. 1, a pressure difference is generated in the porous membrane (93 or 94) disposed upstream of the photocatalytic electrode (90) or the counter electrode (95), and the photocatalytic electrode (90) or the counter electrode ( 95), the backflow of oxygen (O 2 ) (2) and hydrogen (H 2 ) (3) gas generated can be prevented. If the electrolyte is photolyzed and no porous material is provided, the photocatalyst film is placed on the downstream side of the electrode substrate and irradiated with light from the photocatalyst side, so that products, particularly oxygen and hydrogen, The gas is generated in the most downstream portion of the electrode substrate, and the pressure difference is generated in the entire electrode portion, so that backflow of products, particularly oxygen and hydrogen gases, can be prevented. In the case of electrolysis of the electrolyte, products, particularly oxygen and hydrogen gas, are generated in the entire electrode. Therefore, a porous membrane is provided upstream of the electrode, and gas is supplied downstream from the location where the pressure difference is generated. By generating it, it is possible to prevent the back flow of the products, particularly oxygen and hydrogen gases.

図1に示される、本発明の実施の形態に係る電解液分解装置(100)が備える第1電極部(20)は、光触媒電極(90)と、多孔質膜(93)とから構成され、光触媒電極(90)は、光触媒膜(91)と、電極基板(92)とから構成される。光触媒電極(90)と多孔質膜(93)とは、図1に示すとおり積層されて配設されてよい。また、図7(本発明の電解液分解装置700)に示すとおり、光触媒電極(90)と多孔質膜(93)とは離間して配設されてもよく、離間することによって隙間が生じて生成物、特には酸素及び水素のガスが多孔質膜に捕捉されないようにしたため、これを剥離させやすくするという効果がある。さらに、図8(本発明の電解液分解装置800)に示すとおり、光触媒電極(90)と多孔質膜(93)との間に第1蓋部(801)が配設されてもよく、第1蓋部(801)が配設されることによって図7より電極の上流側と下流側の圧力差を大きくするという効果がある。第1蓋部の形状は図8に示される第1蓋部(801)の形状に限定されるものではなく、本発明の目的及び主旨を逸脱しない範囲内であれば任意の形状でよい。また、第1蓋部の材料も本発明の目的及び主旨を逸脱しない範囲内であれば任意の材料でよい。光触媒膜(91)は、特に限定されることはないが、例えば、二酸化チタン、酸化タングステン、三酸化二鉄等が挙げられるが、バイアスを与えることにより酸素を選択的に生成可能な光触媒が好ましい。電極基板(92)は、電流(電子)が電解液等の媒体に流れ込んだり、電解液等の媒体から流れ出たりするために通過可能な構造の導体であれば、特に限定されることはないが、例えば、パンチングメタル、金属製メッシュ、金属製不織布、発泡金属板等が挙げられ、触媒担持の点からパンチングメタルが好ましい。電極基板(92)が、電解液(水:H2O)(1)の流れを阻害して圧損が生じることにより酸素(O2)(2)の気泡が逆流することはない。多孔質膜(93)は特に限定されることはないが、例えば、ポリエチレン不織布、ポリオレフィン不織布、ガラス繊維不織布等が挙げられ、ポリオレフィン不織布が好ましい。多孔質膜(93)を、電極基板(92)よりも上流に配置することにより、ガス発生箇所である電極基板(92)より上流の多孔質膜(93)で圧力差が発生し、ガスの逆流を防止できる。第1電極部の形状は図1に示される第1電極部(30)の形状に限定されるものではなく、本発明の目的及び主旨を逸脱しない範囲で、任意の形状でよい。なお、図1に示される第1電極部(20)は、光分解を実施するので光触媒電極(90)であるが、電気分解を実施する場合は、第1電極部は導電性の電極でよい。 The 1st electrode part (20) with which the electrolyte solution decomposition device (100) which concerns on embodiment of this invention shown by FIG. 1 is comprised is comprised from the photocatalyst electrode (90) and the porous membrane (93), The photocatalytic electrode (90) includes a photocatalytic film (91) and an electrode substrate (92). The photocatalytic electrode (90) and the porous membrane (93) may be laminated and disposed as shown in FIG. Further, as shown in FIG. 7 (electrolyte decomposition apparatus 700 of the present invention), the photocatalyst electrode (90) and the porous membrane (93) may be arranged apart from each other, and a gap is generated by the separation. The product, in particular, oxygen and hydrogen gases are prevented from being trapped by the porous membrane, and this has the effect of facilitating separation. Furthermore, as shown in FIG. 8 (electrolytic solution decomposition apparatus 800 of the present invention), a first lid (801) may be disposed between the photocatalytic electrode (90) and the porous membrane (93). By disposing one lid portion (801), there is an effect of increasing the pressure difference between the upstream side and the downstream side of the electrode from FIG. The shape of the first lid portion is not limited to the shape of the first lid portion (801) shown in FIG. 8 and may be any shape as long as it does not depart from the object and spirit of the present invention. Further, the material of the first lid portion may be any material as long as it does not depart from the object and spirit of the present invention. The photocatalyst film (91) is not particularly limited, and examples thereof include titanium dioxide, tungsten oxide, and ferric trioxide. A photocatalyst that can selectively generate oxygen by applying a bias is preferable. . The electrode substrate (92) is not particularly limited as long as the electrode substrate (92) is a conductor having a structure that allows current (electrons) to flow through the medium such as the electrolytic solution or flow out of the medium such as the electrolytic solution. Examples thereof include punching metal, metal mesh, metal nonwoven fabric, and metal foam plate, and punching metal is preferable from the viewpoint of catalyst support. The electrode substrate (92) inhibits the flow of the electrolytic solution (water: H 2 O) (1) and causes pressure loss, so that bubbles of oxygen (O 2 ) (2) do not flow backward. Although a porous membrane (93) is not specifically limited, For example, a polyethylene nonwoven fabric, a polyolefin nonwoven fabric, a glass fiber nonwoven fabric etc. are mentioned, A polyolefin nonwoven fabric is preferable. By disposing the porous membrane (93) upstream of the electrode substrate (92), a pressure difference is generated in the porous membrane (93) upstream of the electrode substrate (92), which is a gas generation location, Backflow can be prevented. The shape of the first electrode portion is not limited to the shape of the first electrode portion (30) shown in FIG. 1, and may be any shape without departing from the object and spirit of the present invention. The first electrode portion (20) shown in FIG. 1 is a photocatalytic electrode (90) because it performs photolysis, but when performing electrolysis, the first electrode portion may be a conductive electrode. .

図1に示される、本発明の実施の形態に係る電解液分解装置(100)が備える第2電極部(30)は、カウンター電極(95)と、多孔質膜(94)とから構成される。カウンター電極(95)と、多孔質膜(94)とは、図1に示すとおり積層されて配設されてよい。また、図7(本発明の電解液分解装置700)に示すとおりカウンター電極(95)と多孔質膜(94)とは離間して配設されてもよく、離間することによって隙間が生じて生成物、特には酸素及び水素のガスが多孔質膜に捕捉されないようにしたことで、酸素及び水素のガスの滞留防止という効果がある。さらに、図8(本発明の電解液分解装置800)に示すとおり、カウンター電極(95)と多孔質膜(94)との間に第2蓋部(802)が配設されてもよく、第2蓋部(802)が配設されることによって、図7に示されるように電極の上流側と下流側の圧力差を大きくするという効果がある。第2蓋部の形状は図8に示される第1蓋部(802)の形状に限定されるものではなく、本発明の目的及び主旨を逸脱しない範囲内であれば任意の形状でよい。また、第2蓋部の材料も本発明の目的及び主旨を逸脱しない範囲内であれば任意の材料でよい。カウンター電極(95)は、特に限定されることはないが、例えば、メッシュ状のもの、発泡材、棒状のもの、不織布状のもの、金属製の織物状のもの、Pt、Ni、貴金属をめっきしたもの等が挙げられ、Ptが好ましい。上記で述べたとおり、多孔質膜(94)は特に限定されることはないが、例えば、ポリエチレン不織布、ポリオレフィン不織布、ガラス繊維不織布等が挙げられ、ポリオレフィン不織布が好ましい。多孔質膜(94)を、カウンター電極(95)よりも上流に配置することにより、ガス発生箇所であるカウンター電極(95)より上流の多孔質膜(94)で圧力差が発生し、ガスの逆流を防止できる。第2電極部の形状は図1に示される第2電極部(30)の形状に限定されるものではなく、本発明の目的及び主旨を逸脱しない範囲で、任意の形状でよい。なお、図1には示されていないが、第2電極部は、光触媒電極と、多孔質膜とから構成されてもよい。   The 2nd electrode part (30) with which the electrolyte solution decomposition device (100) which concerns on embodiment of this invention shown by FIG. 1 is provided is comprised from a counter electrode (95) and a porous membrane (94). . The counter electrode (95) and the porous membrane (94) may be laminated and disposed as shown in FIG. Further, as shown in FIG. 7 (electrolytic solution decomposition apparatus 700 of the present invention), the counter electrode (95) and the porous membrane (94) may be disposed apart from each other, and a gap is generated by the separation. By preventing the gas, particularly oxygen and hydrogen gas from being trapped in the porous membrane, there is an effect of preventing the retention of oxygen and hydrogen gas. Furthermore, as shown in FIG. 8 (electrolytic solution decomposition apparatus 800 of the present invention), a second lid (802) may be disposed between the counter electrode (95) and the porous membrane (94). The provision of the two lid portions (802) has an effect of increasing the pressure difference between the upstream side and the downstream side of the electrode as shown in FIG. The shape of the second lid portion is not limited to the shape of the first lid portion (802) shown in FIG. 8, and may be any shape as long as it does not depart from the purpose and spirit of the present invention. Further, the material of the second lid portion may be any material as long as it does not depart from the object and spirit of the present invention. The counter electrode (95) is not particularly limited. For example, the counter electrode (95) is plated with mesh, foam, rod, nonwoven, metal fabric, Pt, Ni, or noble metal. Pt is preferable. As described above, the porous membrane (94) is not particularly limited, and examples thereof include a polyethylene nonwoven fabric, a polyolefin nonwoven fabric, and a glass fiber nonwoven fabric, and a polyolefin nonwoven fabric is preferable. By disposing the porous membrane (94) upstream of the counter electrode (95), a pressure difference is generated in the porous membrane (94) upstream of the counter electrode (95), which is a gas generation location, and Backflow can be prevented. The shape of the second electrode portion is not limited to the shape of the second electrode portion (30) shown in FIG. 1, and may be any shape without departing from the object and spirit of the present invention. Although not shown in FIG. 1, the second electrode portion may be composed of a photocatalytic electrode and a porous film.

図1に示す本発明の実施の形態に係る電解液分解装置(100)においては、本発明の実施の形態に係る電解液分解装置(100)が備える透明窓部(120)を通して第1電極部(20)に照射される光(140)によって電解液(水:H2O)(1)を分解して、第1電極部(20)では、酸素(O2)(2)が発生し、第2電極部(30)では、水素(H2)(3)が発生する。なお、図1には示されていないが、第2電極部(30)側にも透明窓部を設けて、第2電極部(30)に光触媒電極を設けて光を照射して電解液(水:H2O)(1)を分解してもよい。透明窓部(120)の材料は、光を透過すれば任意のものでよく、例えば、特に限定されることはないが、ガラス状のもの、プラスチック状のもの等が挙げられる。また、透明窓部の形状は図1に示される透明窓部(120)の形状に限定されるものではなく、本発明の目的及び主旨を逸脱しない範囲で、任意の形状でよい。 In the electrolytic solution decomposing apparatus (100) according to the embodiment of the present invention shown in FIG. 1, the first electrode portion is passed through the transparent window (120) provided in the electrolytic solution decomposing apparatus (100) according to the embodiment of the present invention. Electrolytic solution (water: H 2 O) (1) is decomposed by light (140) applied to (20), and oxygen (O 2 ) (2) is generated in the first electrode part (20). In the second electrode part (30), hydrogen (H 2 ) (3) is generated. Although not shown in FIG. 1, a transparent window portion is also provided on the second electrode portion (30) side, a photocatalyst electrode is provided on the second electrode portion (30), and light is applied to the electrolyte solution ( Water: H 2 O) (1) may be decomposed. The material of the transparent window portion (120) may be any material as long as it transmits light, and examples thereof include, but are not particularly limited to, glassy materials and plastic materials. Further, the shape of the transparent window portion is not limited to the shape of the transparent window portion (120) shown in FIG. 1, and may be any shape without departing from the object and spirit of the present invention.

酸素(O2)及び水素(H2)の発生機構は、第1電極部及び第2電極部における、電気化学反応又は光化学反応によって、第1電極部に正孔(+)が提供されて、電解液分子(H2O)から酸素(O2)及び水素イオン(H+)が生成されて、一方で第2電極部に電子(−)が提供されて、水素イオン(H+)から水素(H2)が生成される。図1に示されるように、分解する電解液(水:H2O)(1)の中に水素イオン(H+)よりも水酸化物イオン(OH-)(4)が多く含まれる場合には、第1電極部に正孔(+)が提供されて、水酸化物イオン(OH-)(4)から水分子(H2O)(1)及び酸素(O2)(2)が生成されて、一方で第2電極部に電子(−)が提供されて、分解する電解液(水:H2O)(1)から水素(H2)(3)及び水酸化物イオン(OH-)(4)が生成される。 The generation mechanism of oxygen (O 2 ) and hydrogen (H 2 ) is such that holes (+) are provided to the first electrode part by an electrochemical reaction or a photochemical reaction in the first electrode part and the second electrode part, Oxygen (O 2 ) and hydrogen ions (H + ) are generated from the electrolyte molecules (H 2 O), while electrons (−) are provided to the second electrode portion, and hydrogen from the hydrogen ions (H + ). (H 2 ) is generated. As shown in FIG. 1, when the electrolytic solution (water: H 2 O) (1) to be decomposed contains more hydroxide ions (OH ) (4) than hydrogen ions (H + ). In the first electrode part, holes (+) are provided to generate water molecules (H 2 O) (1) and oxygen (O 2 ) (2) from hydroxide ions (OH ) (4). On the other hand, the electrolyte (water: H 2 O) (1) to hydrogen (H 2 ) (3) and hydroxide ions (OH ) (4) is generated.

本発明の電解液分解装置は、本発明の電解液分解装置に備えられる流入セル内に参照電極を備えることが好ましい。参照電極を流入セル内に備えることによって第1電極部及び第2電極部にバイアス電圧を印加して3極方式で電解液を分解することができるので、本発明の電解液分解装置における電解液(特には、水:H2O)の分解反応を促進することが可能である。参照電極は流入セル内であれば任意の位置に備えてよいが、多孔質膜の上流側の位置に備えることが好ましい。 The electrolytic solution decomposing apparatus of the present invention preferably includes a reference electrode in an inflow cell provided in the electrolytic solution decomposing apparatus of the present invention. By providing a reference electrode in the inflow cell, a bias voltage can be applied to the first electrode portion and the second electrode portion to decompose the electrolyte solution in a three-pole system, so that the electrolyte solution in the electrolyte solution decomposition apparatus of the present invention It is possible to accelerate the decomposition reaction of (especially water: H 2 O). The reference electrode may be provided at any position within the inflow cell, but is preferably provided at a position upstream of the porous membrane.

本発明の電解液分解装置で光化学反応により電解液を分解する場合、第1電極部及び第2電極部の両方が光照射を受けるようにされている必要はなく、第1電極部又は第2電極部のどちらか一方のみが、光照射を受けるようにされていてもよい。図1においては、透明窓部(120)を通して第1電極部(20)のみに光(140)が照射される。   When the electrolytic solution is decomposed by a photochemical reaction in the electrolytic solution decomposing apparatus of the present invention, it is not necessary that both the first electrode portion and the second electrode portion are irradiated with light, the first electrode portion or the second electrode portion. Only one of the electrode portions may be irradiated with light. In FIG. 1, light (140) is applied only to the first electrode part (20) through the transparent window part (120).

なお、電解液が水の場合であって、第1電極部及び第2電極部の一方のみが光照射を受けるようにされている場合、酸素を発生させる第1電極部が光照射を受けるようにされていることが好ましい。これは、電解液(水)の分解では、酸素と水素との発生量の比が1:2であり、酸素のほうが少ないので、酸素を発生させる第1電極部では、気泡によって反射される光の割合が比較的少なく、また気泡の存在によって第1電極部と電解液(水)との接触面積が減少する割合が比較的少ないことによる。   When the electrolytic solution is water and only one of the first electrode portion and the second electrode portion is irradiated with light, the first electrode portion that generates oxygen is irradiated with light. It is preferable that This is because, in the decomposition of the electrolytic solution (water), the ratio of the generation amount of oxygen and hydrogen is 1: 2, and the amount of oxygen is smaller. This is because the ratio of the contact area between the first electrode portion and the electrolytic solution (water) decreases due to the presence of bubbles.

筐体及びセパレータは、図1に示される筐体(110)及びセパレータ(130)の形状に限定されるものではなく、本発明の目的及び主旨を逸脱しない範囲であれば任意の形状でよい。また、筐体及びセパレータの材料も、本発明の目的及び主旨を逸脱しない範囲であれば任意の材料でよい。   The housing and the separator are not limited to the shapes of the housing (110) and the separator (130) shown in FIG. 1, and may be in any shape as long as they do not depart from the object and spirit of the present invention. The material of the casing and the separator may be any material as long as it does not depart from the purpose and spirit of the present invention.

本発明による電解液分解装置は、第1流出セルが第1導入部を更に備え、かつ、前記第2流出セルが第2導入部を更に備えることが好ましい。図3の本発明の実施の形態に係る電解液分解装置(300)で示されているとおり、第1流出セル(40)に第1導入部(310)を備え、かつ、第2流出セル(50)に第2導入部(320)を備えることによって、電解液(水:H2O)(1)を循環させて光分解を実行し、酸素(O2)(2)及び水素(H2)(3)を生成させて、そして酸素(O2)(2)及び水素(H2)(3)を別々に容易に、かつ、効率的に回収することができる。 In the electrolytic solution decomposing apparatus according to the present invention, it is preferable that the first outflow cell further includes a first introduction unit, and the second outflow cell further includes a second introduction unit. As shown in the electrolytic solution decomposing apparatus (300) according to the embodiment of the present invention in FIG. 3, the first outflow cell (40) is provided with the first introduction part (310), and the second outflow cell ( 50) is provided with the second introduction part (320), whereby the electrolytic solution (water: H 2 O) (1) is circulated to perform photolysis, and oxygen (O 2 ) (2) and hydrogen (H 2 ) are circulated. ) (3) and oxygen (O 2 ) (2) and hydrogen (H 2 ) (3) can be easily and efficiently recovered separately.

例えば、図4に示された、本発明の電解液分解装置300と配管とを組み合わせて構成された還流装置400のように、流出された酸素(O2)(2)は電解液(水:H2O)(1)と同伴して酸素流出用配管(401)を通って酸素溶解液用リザーバータンク(411)に流れて酸素が回収される。そして、酸素回収後の酸素が溶存していない電解液(水:H2O)(1)は、第1導入部用配管(402)を通って循環ポンプ(421)を通過して第1流出セル(40)に備えられている第1導入部(310)に導入されて、電解液(水:H2O)(1)の分解が再度実行される。一方、流出された水素(H2)(3)は、電解液(水:H2O)(1)と同伴して水素流出配管(403)を通って水素溶解液用リザーバータンク(412)に流れて水素が回収される。そして水素回収後の水素が溶存していない電解液(水:H2O)(1)は、第2導入部用配管(404)を通って循環ポンプ(421)を通過して第2流出セル(50)に備えられている第2導入部(320)に導入されて、電解液(水:H2O)(1)の分解が再度実行される。さらに、補給水が水補給用のリザーバータンク(413)に補給されて流入セル用配管(405)を通って循環ポンプ(421)を通過して流入セル(10)に流れて、電解液(水:H2O)(1)の分解が実行される。 For example, as shown in FIG. 4, the oxygen (O 2 ) (2) that has flowed out is the electrolyte solution (water: water) as in the reflux device 400 configured by combining the electrolytic solution decomposition apparatus 300 of the present invention and the piping. H 2 O) (1) accompanying the oxygen outflow pipe (401) flows to the oxygen solution reservoir tank (411) to collect oxygen. Then, the electrolytic solution (water: H 2 O) (1) in which oxygen is not dissolved after the oxygen recovery passes through the first introduction pipe (402), passes through the circulation pump (421), and flows out for the first time. is introduced into the cell (40) first introduction part provided in the (310), the electrolytic solution: decomposition (water H 2 O) (1) is performed again. On the other hand, the outflowed hydrogen (H 2 ) (3) is accompanied by the electrolytic solution (water: H 2 O) (1) and passes through the hydrogen outflow pipe (403) to the hydrogen solution reservoir tank (412). The hydrogen is recovered by flowing. Then, the electrolytic solution (water: H 2 O) (1) in which hydrogen is not dissolved after the hydrogen recovery passes through the circulation pump (421) through the second introduction pipe (404) and passes through the second outflow cell. Introduced in the second introduction part (320) provided in (50), decomposition of the electrolytic solution (water: H 2 O) (1) is performed again. Further, makeup water is replenished to the reservoir tank (413) for water replenishment, passes through the inflow cell pipe (405), passes through the circulation pump (421), flows into the inflow cell (10), and then electrolyte (water : H 2 O) (1) decomposition is carried out.

本発明による電解液分解装置は、流入セルが導出部を更に備えることが好ましい。図5の本発明の実施の形態に係る電解液分解装置(500)で示されているとおり、流入セル(10)が導出部(510)を備えることによって、電解液(水:H2O)(1)を更に循環させて光分解を実行し、酸素(O2)(2)及び水素(H2)(3)を生成させて、そして酸素(O2)(2)及び水素(H2)(3)を別々に容易、かつ、効率的に回収することができる。 In the electrolytic solution decomposition apparatus according to the present invention, it is preferable that the inflow cell further includes a lead-out portion. As shown in the electrolytic solution decomposition apparatus (500) according to the embodiment of the present invention in FIG. 5, the inflow cell (10) includes the lead-out portion (510), so that the electrolytic solution (water: H 2 O). (1) is further circulated to perform photolysis to produce oxygen (O 2 ) (2) and hydrogen (H 2 ) (3), and oxygen (O 2 ) (2) and hydrogen (H 2 ) (3) can be easily and efficiently recovered separately.

例えば、図6に示された、本発明の電解液分解装置500と配管とを組み合わせて構成された還流装置600のように、流出された酸素(O2)(2)は電解液(水:H2O)(1)と同伴して酸素流出用配管(601)を通って酸素溶解液用リザーバータンク(611)に流れて酸素が回収される。そして、酸素回収後の酸素が溶存していない電解液(水:H2O)(1)は、第1導入部用配管(602)を通って循環ポンプ(621)を通過して第1流出セル(40)に備えられている第1導入部(310)に導入されて、電解液(水:H2O)(1)の分解が再度実行される。一方、流出された水素(H2)(3)は、電解液(水:H2O)(1)と同伴して水素流出配管(603)を通って水素溶解液用リザーバータンク(612)に流れて水素が回収される。そして水素回収後の水素が溶存していない電解液(水:H2O)(1)は、第2導入部用配管(604)を通って循環ポンプ(621)を通過して第2流出セル(50)に備えられている第2導入部(320)に導入されて、電解液(水:H2O)(1)の分解が再度実行される。さらに、流入セル(10)から直接流出して、電解液流出用配管(605)を通る電解液(水:H2O)(1)と補給水が水補給用のリザーバータンク(613)に補給されて流入セル用配管(606)を通って循環ポンプ(621)を通過して流入セル(10)に流れて、電解液(水:H2O)(1)の分解が実行される。 For example, as shown in FIG. 6, the oxygen (O 2 ) (2) that has flowed out is an electrolyte solution (water: water) like a reflux device 600 that is configured by combining the electrolytic solution decomposition apparatus 500 of the present invention and piping. H 2 O) (1) accompanying the oxygen outflow pipe (601) flows to the oxygen solution reservoir tank (611) to collect oxygen. Then, the electrolytic solution (water: H 2 O) (1) in which oxygen is not dissolved after the oxygen recovery passes through the circulation pump (621) through the first introduction pipe (602) and flows out to the first. is introduced into the cell (40) first introduction part provided in the (310), the electrolytic solution: decomposition (water H 2 O) (1) is performed again. On the other hand, the discharged hydrogen (H 2 ) (3) is accompanied by the electrolyte (water: H 2 O) (1) and passes through the hydrogen outflow pipe (603) to the hydrogen solution reservoir tank (612). The hydrogen is recovered by flowing. Then, the electrolytic solution (water: H 2 O) (1) in which hydrogen after hydrogen recovery is not dissolved passes through the circulation pump (621) through the second introduction pipe (604) and passes through the second outflow cell. Introduced in the second introduction part (320) provided in (50), decomposition of the electrolytic solution (water: H 2 O) (1) is performed again. Further, the electrolyte solution (water: H 2 O) (1) and makeup water that directly flow out from the inflow cell (10) and pass through the electrolyte solution outflow pipe (605) are supplied to the reservoir tank (613) for water supply. Then, it passes through the inflow cell pipe (606), passes through the circulation pump (621), flows into the inflow cell (10), and the electrolytic solution (water: H 2 O) (1) is decomposed.

(2)電解液分解方法
本発明の電解液分解方法は、本発明の電解液分解装置を用いて電解液の分解を行うことを特徴とする。本発明の電解液分解方法において用いられる電解液はイオン性物質を水等の極性溶媒に溶解させて作製した電気伝導性を有する溶液であれば、特に限定されることはなく、例えば、水(H2O)、重金属等の金属含有水溶液(金属廃液)が挙げられるが、水(H2O)であることが好ましい。また、本発明の電解液分解方法は、電解液の分解として、電気分解を実施する場合に用いられてもよいし、光分解を実施する場合に用いられてもよい。
(2) Electrolytic solution decomposition method The electrolytic solution decomposition method of the present invention is characterized in that the electrolytic solution is decomposed using the electrolytic solution decomposition apparatus of the present invention. The electrolytic solution used in the electrolytic solution decomposing method of the present invention is not particularly limited as long as it is an electroconductive solution prepared by dissolving an ionic substance in a polar solvent such as water. For example, water ( H 2 O) and metal-containing aqueous solutions (metal waste liquid) such as heavy metals are exemplified, but water (H 2 O) is preferred. In addition, the electrolytic solution decomposition method of the present invention may be used when electrolysis is performed as the electrolytic solution decomposition, or may be used when photolysis is performed.

本発明の電解液分解方法は本発明の電解液分解装置を用いればよく、本発明の電解液分解方法を実施する上で、任意の公知の工程、任意の公知の装置等を更に追加してよい。例えば、水循環の工程、気液分離の工程、ポンプ等の装置を、本発明の電解液分解方法を実施する上で、更に追加してもよい。   The electrolytic solution decomposing method of the present invention may be performed using the electrolytic solution decomposing apparatus of the present invention. In carrying out the electrolytic solution decomposing method of the present invention, any known process, any known apparatus, etc. are further added. Good. For example, devices such as a water circulation step, a gas-liquid separation step, and a pump may be further added in carrying out the electrolytic solution decomposition method of the present invention.

1 電解液(水:H2O)
2 酸素(O2
3 水素(H2
4 水酸化物イオン(OH-
10 流入セル
20 第1電極部
30 第2電極部
40 第1流出セル
50 第2流出セル
60 電解液流入口
70 第1流出セルの電解液流出口
80 第2流出セルの電解液流出口
90 光触媒電極
91 光触媒膜
92 電極基板
93 第1電極部の多孔質膜
94 第2電極部の多孔質膜
95 カウンター電極
100 本発明の電解液分解装置
110 筐体
120 透明窓部
130 セパレータ
140 光
200 本発明の電解液分解装置100と配管とを組み合わせて構成された還流装置
201 酸素流出用配管
202 水素流出用配管
203 流入セル用配管
211 酸素溶解液用リザーバータンク
212 水素溶解液用リザーバータンク
213 水補給用のリザーバータンク
221 循環ポンプ
300 本発明の電解液分解装置300
310 第1導入部
320 第2導入部
400 本発明の電解液分解装置300と配管とを組み合わせて構成された還流装置
401 酸素流出用配管
402 第1導入部用配管
403 水素流出用配管
404 第2導入部用配管
405 流入セル用配管
411 酸素溶解液用リザーバータンク
412 水素溶解液用リザーバータンク
413 水補給用のリザーバータンク
421 循環ポンプ
500 本発明の電解液分解装置500
510 導出部
600 本発明の電解液分解装置500と配管とを組み合わせて構成された還流装置
601 酸素流出用配管
602 第1導入部用配管
603 水素流出用配管
604 第2導入部用配管
605 電解液流出用配管
606 流入セル用配管
611 酸素溶解液用リザーバータンク
612 水素溶解液用リザーバータンク
613 水補給用のリザーバータンク
621 循環ポンプ
700 本発明の電解液分解装置700
800 本発明の電解液分解装置800
801 第1蓋部
802 第2蓋部
1 Electrolytic solution (water: H 2 O)
2 Oxygen (O 2 )
3 Hydrogen (H 2 )
4 hydroxide ion (OH -)
DESCRIPTION OF SYMBOLS 10 Inflow cell 20 1st electrode part 30 2nd electrode part 40 1st outflow cell 50 2nd outflow cell 60 Electrolyte inflow port 70 Electrolyte outflow port of 1st outflow cell 80 Electrolyte outflow port of 2nd outflow cell 90 Photocatalyst Electrode 91 Photocatalytic film 92 Electrode substrate 93 Porous film of first electrode part 94 Porous film of second electrode part 95 Counter electrode 100 Electrolyte decomposition apparatus of the present invention 110 Housing 120 Transparent window part 130 Separator 140 Light 200 Present invention Refrigeration apparatus configured by combining the electrolytic solution decomposition apparatus 100 and the pipe 201 of oxygen outflow pipe 202 hydrogen outflow pipe 203 inflow cell pipe 211 oxygen solution reservoir tank 212 hydrogen solution reservoir tank 213 for water supply Reservoir tank 221 Circulating pump 300 Electrolyte decomposition apparatus 300 of the present invention
310 1st introduction part 320 2nd introduction part 400 Reflux device constituted by combining electrolyte solution decomposition apparatus 300 of the present invention and piping 401 Oxygen outflow pipe 402 First introduction section piping 403 Hydrogen outflow pipe 404 Second Pipe for introduction section 405 Pipe for inflow cell 411 Reservoir tank for oxygen solution 412 Reservoir tank for hydrogen solution 413 Reservoir tank for water supply 421 Circulation pump 500 Electrolyte decomposition apparatus 500 of the present invention
510 Deriving unit 600 Reflux device configured by combining the electrolytic solution decomposing apparatus 500 of the present invention and piping 601 Oxygen outflow piping 602 First introduction piping 603 Hydrogen outflow piping 604 Second introduction piping 605 Electrolyte Outflow piping 606 Inflow cell piping 611 Reservoir tank for oxygen solution 612 Reservoir tank for hydrogen solution 613 Reservoir tank for water supply 621 Circulation pump 700 Electrolyte decomposition apparatus 700 of the present invention
800 Electrolyte decomposition apparatus 800 of the present invention
801 First lid 802 Second lid

Claims (14)

電解液が流入する流入セルと、該流入セルを挟んで配設される第1電極部と第2電極部と、該第1電極部を通過した該電解液が流出する第1流出セルと、該第2電極部を通過した該電解液が流出する第2流出セルとを備え、該流入セル内の該電解液の圧力が、該第1流出セル内及び該第2流出セル内の該電解液の圧力よりも高いことを特徴とする、電解液分解装置。   An inflow cell into which the electrolyte solution flows, a first electrode portion and a second electrode portion disposed across the inflow cell, a first outflow cell from which the electrolyte solution that has passed through the first electrode portion flows out, A second outflow cell through which the electrolytic solution that has passed through the second electrode portion flows out, and the pressure of the electrolytic solution in the inflow cell is such that the electrolysis in the first outflow cell and in the second outflow cell. An electrolytic solution decomposing apparatus characterized by being higher than the pressure of the liquid. 前記第1流出セルが第1導入部を更に備え、かつ、前記第2流出セルが第2導入部を更に備えることを特徴とする、請求項1に記載の電解液分解装置。   2. The electrolytic solution decomposing apparatus according to claim 1, wherein the first outflow cell further includes a first introduction unit, and the second outflow cell further includes a second introduction unit. 前記流入セルが導出部を更に備えることを特徴とする、請求項1又は2に記載の電解液分解装置。   The electrolytic solution decomposition apparatus according to claim 1, wherein the inflow cell further includes a lead-out unit. 前記第1電極部が第1電極基板を備えることを特徴とする、請求項1から3のいずれか1項に記載の電解液分解装置。   The electrolytic solution decomposing apparatus according to claim 1, wherein the first electrode unit includes a first electrode substrate. 前記第1電極部が前記第1電極基板の前記流入セル側に第1多孔質膜を更に備えることを特徴とする、請求項4に記載の電解液分解装置。   5. The electrolytic solution decomposing apparatus according to claim 4, wherein the first electrode unit further includes a first porous film on the inflow cell side of the first electrode substrate. 前記第1電極基板と前記第1多孔質膜とが積層されて成ることを特徴とする、請求項5に記載の電解液分解装置。   6. The electrolytic solution decomposing apparatus according to claim 5, wherein the first electrode substrate and the first porous film are laminated. 前記第1電極基板と前記第1多孔質膜とが離間して配設されて成ることを特徴とする、請求項5に記載の電解液分解装置。   The electrolytic solution decomposing apparatus according to claim 5, wherein the first electrode substrate and the first porous film are spaced apart from each other. 前記第1電極部が前記第1電極基板の前記流出セル側に光触媒膜を更に備えることを特徴とする、請求項4から7のいずれか1項に記載の電解液分解装置。   8. The electrolytic solution decomposing apparatus according to claim 4, wherein the first electrode portion further includes a photocatalytic film on the outflow cell side of the first electrode substrate. 9. 前記第2電極部が第2電極基板を備えることを特徴とする、請求項1から8のいずれか1項に記載の電解液分解装置。   The electrolytic solution decomposing apparatus according to claim 1, wherein the second electrode unit includes a second electrode substrate. 前記第2電極部が前記第2電極基板の前記流入セル側に第2多孔質膜を更に備えることを特徴とする、請求項9に記載の電解液分解装置。   10. The electrolytic solution decomposing apparatus according to claim 9, wherein the second electrode unit further includes a second porous film on the inflow cell side of the second electrode substrate. 前記第2電極基板と前記第2多孔質膜とが積層されて成ることを特徴とする、請求項10に記載の電解液分解装置。   The electrolytic solution decomposing apparatus according to claim 10, wherein the second electrode substrate and the second porous film are laminated. 前記第2電極基板と前記第2多孔質膜とが離間して配設されて成ることを特徴とする、請求項10に記載の電解液分解装置。   11. The electrolytic solution decomposing apparatus according to claim 10, wherein the second electrode substrate and the second porous film are spaced apart from each other. 前記第2電極部が前記第2電極基板の前記第2流出セル側に光触媒膜を更に備えることを特徴とする、請求項9から12のいずれか1項に記載の電解液分解装置。   13. The electrolytic solution decomposing apparatus according to claim 9, wherein the second electrode unit further includes a photocatalytic film on the second outflow cell side of the second electrode substrate. 請求項1から13のいずれか1項に記載の電解液分解装置を用いて前記電解液の分解を行うことを特徴とする、電解液分解方法。   A method for decomposing an electrolytic solution, wherein the electrolytic solution is decomposed using the electrolytic solution decomposing apparatus according to claim 1.
JP2011059228A 2011-03-17 2011-03-17 Electrolytic solution decomposition device and decomposition method for electrolytic solution using the same Withdrawn JP2012193428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011059228A JP2012193428A (en) 2011-03-17 2011-03-17 Electrolytic solution decomposition device and decomposition method for electrolytic solution using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011059228A JP2012193428A (en) 2011-03-17 2011-03-17 Electrolytic solution decomposition device and decomposition method for electrolytic solution using the same

Publications (1)

Publication Number Publication Date
JP2012193428A true JP2012193428A (en) 2012-10-11

Family

ID=47085588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059228A Withdrawn JP2012193428A (en) 2011-03-17 2011-03-17 Electrolytic solution decomposition device and decomposition method for electrolytic solution using the same

Country Status (1)

Country Link
JP (1) JP2012193428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774052B2 (en) 2013-02-21 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Hydrogen producing device and hydrogen producing unit and energy system including the hydrogen producing device and the hydrogen producing unit
JP2018178227A (en) * 2017-04-19 2018-11-15 富士通株式会社 Photoelectrochemical reaction apparatus
US10760167B2 (en) 2017-11-15 2020-09-01 Kabushiki Kaisha Toshiba Electrolytic cell and hydrogen production apparatus
WO2023136358A1 (en) * 2022-01-17 2023-07-20 三菱ケミカル株式会社 Quenching device, hydrogen production device, hydrogen production method and reactor for photochemical reaction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774052B2 (en) 2013-02-21 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Hydrogen producing device and hydrogen producing unit and energy system including the hydrogen producing device and the hydrogen producing unit
JP2018178227A (en) * 2017-04-19 2018-11-15 富士通株式会社 Photoelectrochemical reaction apparatus
US10760167B2 (en) 2017-11-15 2020-09-01 Kabushiki Kaisha Toshiba Electrolytic cell and hydrogen production apparatus
WO2023136358A1 (en) * 2022-01-17 2023-07-20 三菱ケミカル株式会社 Quenching device, hydrogen production device, hydrogen production method and reactor for photochemical reaction

Similar Documents

Publication Publication Date Title
JP4392354B2 (en) High electrolysis cell
JP5113892B2 (en) Membrane-electrode assembly, electrolytic cell using the same, ozone water production apparatus, ozone water production method, sterilization method, and waste water / waste liquid treatment method
US20020092775A1 (en) Generation and delivery device for ozone gas and ozone dissolved in water
CN104812709A (en) Method for imparting filtering capability in electrolytic cell for wastewater treatment
JP2011246800A5 (en)
AU2012234274B2 (en) Cell for depolarised electrodialysis of salt solutions
KR101895525B1 (en) Sodium hydroxide manufacturing apparatus using reverse electrodialysis device and hybrid system using the same
JP2011149074A (en) Method of operating water-electrolyzing system
TW201730377A (en) Electrolyzed water generation device
JP6366360B2 (en) Method for producing electrolytic reduced water containing hydrogen molecules and apparatus for producing the same
JP2012193428A (en) Electrolytic solution decomposition device and decomposition method for electrolytic solution using the same
JP5282201B2 (en) Electrolyzed water generator
CN110402240B (en) Stack of electrochemical cells for wastewater treatment with isolated electrodes
Sin et al. Performance recovery of proton exchange membrane electrolyzer degraded by metal cations contamination
JP5140123B2 (en) Water electrolysis system
JP3228885B2 (en) Hydrogen and oxygen gas added water production equipment
RU2641645C2 (en) Method and plant for gas production
JP2017519114A (en) Electrolysis equipment
KR101892692B1 (en) Hybrid power generation system using reverse electrodialysis device and fuel cell
JP2015196871A (en) Apparatus and method for production of radical oxygen water
JP2015196873A (en) Apparatus and method for production of radical oxygen water
JP2012193429A (en) Decomposition device of electrolytic solution and decomposition method of electrolytic solution using the same
JP2021120140A (en) Ozone water generation method, generation sprayer and generation spraying device
JP2008178771A (en) Electrolytic water generator
JP5975391B2 (en) Ozone water generator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603