JP2001255271A - Ozone water concentration continuous measuring method and its device and operation control method and device of ozone water manufacturing device - Google Patents

Ozone water concentration continuous measuring method and its device and operation control method and device of ozone water manufacturing device

Info

Publication number
JP2001255271A
JP2001255271A JP2000067197A JP2000067197A JP2001255271A JP 2001255271 A JP2001255271 A JP 2001255271A JP 2000067197 A JP2000067197 A JP 2000067197A JP 2000067197 A JP2000067197 A JP 2000067197A JP 2001255271 A JP2001255271 A JP 2001255271A
Authority
JP
Japan
Prior art keywords
ozone water
concentration
ozone
measuring
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000067197A
Other languages
Japanese (ja)
Other versions
JP3405707B2 (en
Inventor
Noriaki Okubo
典昭 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO PLANT KENSETSU KK
Original Assignee
SHINKO PLANT KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO PLANT KENSETSU KK filed Critical SHINKO PLANT KENSETSU KK
Priority to JP2000067197A priority Critical patent/JP3405707B2/en
Publication of JP2001255271A publication Critical patent/JP2001255271A/en
Application granted granted Critical
Publication of JP3405707B2 publication Critical patent/JP3405707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ozone water concentration measuring technology having a simple structure. SOLUTION: In this ozone water concentration continuous measuring method, ozone water is made to flow continuously into a measuring cell 3, and simultaneously an ultraviolet ray is transmitted, and the ozone water concentration is measured based on the ultraviolet ray absorption quantity by ozone. In the method, just before manufacturing operation of ozone water by an ozone water manufacturing device 10, only raw water is made to flow into the device, and the ultraviolet ray absorption quantity of the raw water including no ozone substantially supplied to the measuring cell 3 is measured, and the obtained ozone water concentration is memorized as a zero value, and after start of ozone water manufacturing operation, the ozone water concentration is measured by using the zero value as the standard.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として水の電解
によりオゾン水を製造するオゾン水の製造装置における
オゾン水濃度の連続測定方法とその装置並びに該オゾン
水測定方法を用いたオゾン水製造装置の運転制御方法と
その装置に関するもので、具体的には、簡便なオゾン水
濃度測定システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously measuring the concentration of ozone water in an apparatus for producing ozone water which mainly produces ozone water by electrolysis of water, the apparatus, and an apparatus for producing ozone water using the method for measuring ozone water. More specifically, the present invention relates to a simple ozone water concentration measurement system.

【0002】[0002]

【従来の技術】オゾンの測定方法としては幾つかの方法
が存在するが、オゾン水製造装置に使用するオンライン
測定方法としては、紫外線吸収法が一般的である。この
紫外線吸収方法は、254ナノメートル(nm)の波長
の紫外線がオゾン分子のみに吸収され、他の分子には吸
収されないという特性を利用するものである。この紫外
線吸収量とオゾンの濃度とは、ランバート・ベールの法
則によって次の(1)式で表される。 Io =Ii × exp(-kcd)…………………………………………………(1)式 ここで、I0 :紫外線の透過強度 Ii :紫外線の入射強度 k:吸収度係数(測定波長と測定対象物により異なる) c:オゾン濃度 d:測定オゾン層の厚さ 上記(1)式において、測定対象物をオゾン水とし、2
54nmの紫外線を測定波長とすれば吸収度係数(k)
は定数となり、オゾン水の層厚さ(d)は測定装置によ
り定まる定数であり、又、紫外線の入射強度(Ii )も
紫外線発生装置によって定まる値であるから、紫外線の
透過強度(Io )を測定すれば、オゾン水中のオゾン濃
度(c)が計算により求められる事が分かる。
2. Description of the Related Art There are several methods for measuring ozone, but an ultraviolet absorption method is generally used as an on-line measurement method used in an ozone water producing apparatus. This ultraviolet absorption method utilizes the characteristic that ultraviolet light having a wavelength of 254 nanometers (nm) is absorbed only by ozone molecules and not absorbed by other molecules. The ultraviolet absorption amount and the ozone concentration are expressed by the following equation (1) according to Lambert-Beer's law. Io = Ii × exp (-kcd) (1) where I0 is the transmission intensity of ultraviolet rays, Ii is the incident intensity of ultraviolet rays, and k is absorption. Degree coefficient (depends on the measurement wavelength and the measurement object) c: Ozone concentration d: Thickness of measurement ozone layer In the above formula (1), the measurement object is ozone water, and 2
Absorbance coefficient (k) if the measurement wavelength is 54 nm ultraviolet light
Is a constant, the layer thickness (d) of the ozone water is a constant determined by the measuring device, and since the incident intensity (Ii) of the ultraviolet light is also a value determined by the ultraviolet generating device, the transmission intensity (Io) of the ultraviolet light is It can be seen from the measurement that the ozone concentration (c) in the ozone water can be obtained by calculation.

【0003】しかしながら、オゾン水製造装置に付設し
てオゾン水を測定する連続式オゾン水濃度測定装置の場
合には、連続測定中における光源(紫外線発生装置)や
紫外線検出器の劣化等により、紫外線の入射強度(Ii
)や透過強度(Io )に経時変化が生じるため、その
補正が必要となる。
[0003] However, in the case of a continuous type ozone water concentration measuring device which is attached to an ozone water producing device and measures ozone water, the ultraviolet light is deteriorated due to deterioration of a light source (ultraviolet ray generating device) and an ultraviolet ray detector during continuous measurement. Incident intensity (Ii
) And the transmission intensity (Io) change with time, so that their correction is necessary.

【0004】そこで、この補正の方式としては、オゾン
水濃度の判明している比較試料を用いてこの透過紫外線
強度を計測し、これと測定用試料の透過紫外線強度とを
比較する事により、オゾン水濃度を安定して測定する方
式が提案されている。即ち、測定セルに測定オゾン水を
通水したときの透過紫外線強度をIs 、測定セルにオゾ
ン水を含有しない無オゾン水を通水したときの透過紫外
線強度をIn とし、その比の対数をEとすると、上記
(1)式より、 E= log(Is /In )= logIs − logIn = log((Ii × exp(-kcd))/ logIi ) = logIi −kcd− logIi =kcd ………………………(2)式 この(2)式から明らかな様に、この方式によれば、紫
外線発生装置や紫外線検出器の劣化による入射紫外線強
度(Ii )がキャンセルされて、その経時変化の影響を
なくする様になっている。従って、上記測定されたIs
とIn の対数値を求め、これをk×dで除算すれば、オ
ゾン水濃度cが安定して求められる事になる。
Therefore, as a method of this correction, the transmitted ultraviolet intensity is measured using a comparative sample whose ozone water concentration is known, and the transmitted ultraviolet intensity is compared with the transmitted ultraviolet intensity of the measurement sample. A method for stably measuring the water concentration has been proposed. That is, Is is the transmitted ultraviolet intensity when the measured ozone water is passed through the measurement cell, In is the transmitted ultraviolet intensity when the non-ozone water containing no ozone water is passed through the measurement cell, and the logarithm of the ratio is E. When, from the equation (1), E = log (is / In ) = logIs - logIn = log ((Ii × exp (-kcd)) / logI i) = logIi -kcd- logIi = kcd ............ Equation (2) As is apparent from equation (2), according to this method, the intensity of the incident ultraviolet light (Ii) due to the deterioration of the ultraviolet ray generator and the ultraviolet ray detector is canceled, and the change with the passage of time. To eliminate the effects of Therefore, the above measured Is
By calculating the logarithmic value of In and In and dividing this by k × d, the ozone water concentration c can be obtained stably.

【0005】図7は、この方式を示す概念図であり、所
定の254nmの紫外線(以下単に紫外線という)を安
定して発生させるための安定化電源2に接続されたUV
ランプ1で発生した紫外線は、測定用オゾン水が通水さ
れている測定セル3と無オゾン水が通水されている比較
セル3’の両方に照射され、測定用オゾン水が通水され
ている前記測定セル3を透過した紫外線は、紫外線セン
サ4で検出されて透過紫外線強度Is として電気信号と
なってプリアンプ5,対数増幅器6を経てコンピュータ
ユニット(CPU)7に送信され、一方、無オゾン水が
通水されている前記比較セル3’を透過した紫外線は、
紫外線センサ4’で検出されて透過紫外線強度In とし
て、同様に電気信号となってプリアンプ5’,対数増幅
器6’を経て前記CPU7に送信され、上記Is とIn
の比の演算及びk×dによる除算を行ってオゾン水濃度
cを演算し、表示器8にオゾン水のオゾン濃度がデジタ
ル或いはアナログで表示される様になっている。
FIG. 7 is a conceptual diagram showing this method, in which a UV light connected to a stabilizing power supply 2 for stably generating a predetermined 254 nm ultraviolet ray (hereinafter simply referred to as an ultraviolet ray).
The ultraviolet light generated by the lamp 1 is applied to both the measurement cell 3 through which the ozone water for measurement is passed and the comparison cell 3 ′ through which the non-ozone water is passed, and the ozone water for measurement is passed. The ultraviolet light transmitted through the measuring cell 3 is detected by an ultraviolet sensor 4 and transmitted as an electric signal as a transmitted ultraviolet intensity Is through a preamplifier 5 and a logarithmic amplifier 6 to a computer unit (CPU) 7. The ultraviolet light transmitted through the comparison cell 3 ′ through which water is passed is:
Similarly, an electric signal is transmitted to the CPU 7 through the preamplifier 5 'and the logarithmic amplifier 6' as the transmitted ultraviolet intensity In detected by the ultraviolet sensor 4 '.
Is calculated and the ozone water concentration c is calculated by dividing by k × d, and the ozone concentration of the ozone water is displayed on the display 8 in a digital or analog manner.

【0006】他の方式は、UVランプ1から照射される
紫外線強度が常に一定となる様に制御するものであり、
この例を図8に示している。同図において、UVランプ
1から照射される紫外線をハーフミラー20によって、
測定セル3に向かう紫外線と比較センサ21に向かう紫
外線とに等分し、比較センサ21によって入射紫外線の
強度を検出し、これを電気信号に変えてプリアンプ22
を経て比較回路23に入力する。該比較回路では、初期
の入射紫外線強度と比較され、該入射紫外線強度が一定
となる様に電源2’が制御される様になっている。この
結果、測定セル3に入射される紫外線の入射強度はUV
ランプ1の経時変化に拘らず常に一定となし、オゾン水
濃度を安定して測定できる様にしたものである。
Another method is to control the intensity of the ultraviolet light emitted from the UV lamp 1 to be always constant.
This example is shown in FIG. In FIG. 1, ultraviolet light emitted from a UV lamp 1 is reflected by a half mirror 20.
The ultraviolet light directed to the measurement cell 3 and the ultraviolet light directed to the comparison sensor 21 are equally divided, the intensity of the incident ultraviolet light is detected by the comparison sensor 21, and the intensity is converted into an electric signal to be converted into a preamplifier 22.
, And is input to the comparison circuit 23. In the comparison circuit, the power is compared with the initial intensity of the incident ultraviolet light, and the power supply 2 'is controlled so that the intensity of the incident ultraviolet light is constant. As a result, the incident intensity of the ultraviolet light incident on the measurement cell 3 is UV
The ozone water concentration is stably measured regardless of the temporal change of the lamp 1 so that the ozone water concentration can be stably measured.

【0007】[0007]

【発明が解決しようとする課題】ところで、前記図7に
示した方式においては、2つの計測システム、即ち、2
つのセル3,3’と、2つのプリアンプ5,5’と、2
つの対数増幅器6,6’とが必要となり、オゾン水濃度
測定システムが高価なものとなる。その結果、オゾン水
濃度測定装置を付設したオゾン水生成装置においては、
その価格中のオゾン水濃度測定装置の占める割合が相当
部分を占める事になり、オゾン水生成装置としては不合
理なものとなっていた。又、比較セル3’にも常時無オ
ゾン水を通水し続けなければならず、オゾン水製造用に
軟水化処理した原料水の無駄使いにもなっていた。更
に、オゾン水を通水する測定セル3と無オゾン水を通水
する比較セル3’の汚れが均等に進行する事が前提とな
っているが、両セルの汚れ度合いが異なる場合には、原
理的に誤差を生じる事は止むを得なかった。紫外線セン
サ4,4’の劣化の度合いに差が生じた場合も、同様に
測定値に誤差が生じる事になる。
By the way, in the method shown in FIG. 7, two measuring systems, namely, two measuring systems, are used.
Two cells 3, 3 ', two preamplifiers 5, 5' and two
Two logarithmic amplifiers 6, 6 'are required, and the ozone water concentration measurement system becomes expensive. As a result, in the ozone water generator equipped with the ozone water concentration measurement device,
The ratio of the ozone water concentration measurement device in the price was a considerable part, and was unreasonable as an ozone water generation device. In addition, the non-ozone water must be constantly passed through the comparison cell 3 ', and the raw water softened for the production of ozone water is wasted. Furthermore, it is premised that the contamination of the measurement cell 3 passing the ozone water and the comparison cell 3 ′ passing the non-ozone water progress equally, but when the contamination degree of both cells is different, In principle, it was unavoidable that an error would occur. When a difference occurs in the degree of deterioration of the ultraviolet sensors 4, 4 ', an error similarly occurs in the measured value.

【0008】一方、図8に示した方式では、透過紫外線
強度測定系統は1系統のみに簡素化されているので、そ
の分コスト低減に寄与しているが、これに代わって、ハ
ーフミラー20,比較センサ21,プリアンプ22及び
比較回路23が必要となり、コスト低減には限界があっ
た。
On the other hand, in the system shown in FIG. 8, the transmitted ultraviolet intensity measuring system is simplified to only one system, which contributes to cost reduction by that amount. The comparison sensor 21, the preamplifier 22, and the comparison circuit 23 are required, and there is a limit in cost reduction.

【0009】これらの結果、オゾン水濃度測定装置の高
価格がオゾン水製造装置の普及を妨げていたと言っても
過言ではない状態にあり、オゾン水製造装置に組み込め
る簡易型の安価なオゾン水濃度測定システムが希求され
ているのが現状である。そこで、本発明は、係る現状に
鑑み、簡素な構成で安価なオゾン水濃度の連続測定可能
な方式を提供する事を目的とし、更に、同オゾン水濃度
測定装置からの信号により、オゾン水生成装置の制御も
行える様にする事を目的としたものである。
As a result, it is no exaggeration to say that the high price of the ozone water concentration measuring apparatus has hindered the spread of the ozone water producing apparatus, and it is a simple and inexpensive ozone water concentration apparatus which can be incorporated in the ozone water producing apparatus. At present, there is a need for a measurement system. In view of the above situation, an object of the present invention is to provide an inexpensive method for continuously measuring ozone water concentration with a simple configuration. The purpose is to enable control of the device.

【0010】[0010]

【課題を解決するための手段】本発明は、係る観点の元
になされたものであって、その特徴とするところは、測
定セル中にオゾン水を連続的に通水しつつ紫外線を透過
させて、オゾンによる紫外線吸収量に基づいてオゾン水
濃度を測定するオゾン水濃度連続測定方法において、オ
ゾン水製造装置によるオゾン水の製造運転直前に、該装
置に原水の通水のみを行う事により、該装置から前記測
定セルに供給される実質的にオゾンを含有していない前
記原水の紫外線吸収量を測定し、得られたオゾン水濃度
をゼロ点として記憶させ、前記オゾン水製造装置のオゾ
ン水製造運転開始後に該装置から前記測定セルに供給さ
れるオゾン水の濃度を、前記ゼロ点を基準にして計測す
る様にしてなる点にある。即ち、オゾン水製造装置の稼
働直前に、原水の通水のみを行って該装置のオゾン水排
出口からオゾンを実質的に含有しない無オゾン水を排出
させ、この無オゾン水を用いてオゾン水濃度を測定し、
この無オゾン水の測定濃度をゼロ点となし、オゾン水製
造運転開始後は、このゼロ点を基準にして生成オゾン水
の濃度を連続的に測定する様にしているので、1つの紫
外線強度検出系統のみによって連続的にオゾン水の測定
を可能となしたものである。
SUMMARY OF THE INVENTION The present invention has been made on the basis of the above-mentioned point of view, and it is characterized by transmitting ultraviolet light while continuously passing ozone water through a measuring cell. In an ozone water concentration continuous measurement method for measuring ozone water concentration based on the amount of ultraviolet light absorbed by ozone, in the ozone water production device, immediately before the operation of producing ozone water, only raw water is passed through the device. The apparatus is configured to measure an ultraviolet absorption amount of the raw water substantially free of ozone supplied to the measurement cell, store the obtained ozone water concentration as a zero point, and store the ozone water in the ozone water production apparatus. The point is that the concentration of ozone water supplied from the apparatus to the measurement cell after the start of the production operation is measured based on the zero point. That is, just before the operation of the ozone water producing apparatus, only the raw water is passed, and ozone-free water containing substantially no ozone is discharged from the ozone water outlet of the apparatus. Measure the concentration,
Since the measured concentration of the ozone-free water is set to a zero point, and after the start of the ozone water production operation, the concentration of the generated ozone water is continuously measured based on the zero point. This system enables continuous measurement of ozone water using only the system.

【0011】尚、前記オゾン水製造装置の運転開始後の
オゾン水濃度測定は、オゾン水製造開始後一定時間を経
過してから開始するのが好ましく、これによりオゾン水
製造装置運転開始直後のオゾン水濃度の不安定な状況下
でのオゾン水濃度測定とこれによる装置制御システムの
不安定な作動を防止する事が可能となる。
It is preferable that the measurement of the ozone water concentration after the operation of the ozone water producing apparatus is started is started after a certain time has passed since the start of the ozone water producing apparatus. It is possible to prevent the unstable operation of the device control system due to the measurement of the ozone water concentration under the condition where the water concentration is unstable.

【0012】更に、前記紫外線発生装置で生成される紫
外線の強度は、紫外線発生装置の環境温度によっても多
少変化するので、この環境温度を測定して前記ゼロ点の
補正を行うのも好ましい方法である。
Further, since the intensity of the ultraviolet ray generated by the ultraviolet ray generator varies somewhat depending on the environmental temperature of the ultraviolet ray generator, it is preferable to measure the environmental temperature to correct the zero point. is there.

【0013】次に、本発明に係るオゾン水濃度連続測定
装置としては、紫外線を発生するUVランプと、該UV
ランプから所定の紫外線を発生させるための安定化電源
と、前記UVランプからの紫外線を透過させ且つオゾン
水製造装置から供給されるオゾン水を連続的に通水させ
る測定セルと、該測定セルを透過した透過紫外線強度を
測定する紫外線センサと、該透過紫外線強度に基づいて
オゾン水濃度を演算するコンピュータとを有し、該コン
ピュータには、前記オゾン水製造装置によるオゾン水の
製造運転直前に原水の通水のみを行い、前記紫外線セン
サで測定された透過紫外線強度に基づいて演算されたオ
ゾン水濃度をゼロ点として記憶するゼロ点記憶手段と、
該ゼロ点を基準にして、前記オゾン水製造装置のオゾン
水製造運転開始後のオゾン水濃度を演算するオゾン水濃
度演算手段とを有してなるものである。係る構成によ
り、1系統の透過紫外線強度測定システムにより、オゾ
ン水濃度を連続的に測定できる様になっている。
Next, as an apparatus for continuously measuring ozone water concentration according to the present invention, a UV lamp for generating ultraviolet rays,
A stabilized power supply for generating predetermined ultraviolet light from the lamp, a measurement cell that transmits ultraviolet light from the UV lamp and continuously passes ozone water supplied from an ozone water production device, and a measurement cell. An ultraviolet sensor for measuring the intensity of the transmitted ultraviolet light, and a computer for calculating the ozone water concentration based on the transmitted ultraviolet light intensity. Zero-point storage means for performing only water passage, and storing the ozone water concentration calculated based on the transmitted ultraviolet light intensity measured by the ultraviolet sensor as a zero point,
Ozone water concentration calculating means for calculating the ozone water concentration after the start of the ozone water production operation of the ozone water production apparatus based on the zero point. With this configuration, the ozone water concentration can be continuously measured by one system of the transmitted ultraviolet intensity measurement system.

【0014】尚、前記紫外線センサから前記コンピュー
タに送信される前記透過紫外線強度に比例して設定され
た電圧信号を、プリアンプで増幅した後、対数増幅器を
経て前記コンピュータに送信する方式と、プリアンプで
増幅したまま対数増幅器を経る事なくコンピュータに送
信する方式とがあり、後者の場合は、コンピュータ内で
は指数関数を直線近似して近似値を演算させる簡便な方
式を採用する事によって対数増幅器を省略できる利点が
ある。
A voltage signal set in proportion to the intensity of the transmitted ultraviolet light transmitted from the ultraviolet sensor to the computer is amplified by a preamplifier and then transmitted to the computer via a logarithmic amplifier. There is a method in which the signal is amplified and transmitted to the computer without passing through the logarithmic amplifier.In the latter case, the logarithmic amplifier is omitted by adopting a simple method in which the exponential function is linearly approximated and the approximate value is calculated in the computer. There are advantages that can be done.

【0015】又、前記UVランプの近傍の温度を計測す
る温度測定手段を設け、前記コンピュータには、該温度
測定手段で測定された環境温度に基づいて前記ゼロ点を
補正するゼロ点補正手段を設けるのも好ましい態様であ
る。
[0015] Further, a temperature measuring means for measuring a temperature near the UV lamp is provided, and the computer has a zero point correcting means for correcting the zero point based on the environmental temperature measured by the temperature measuring means. It is also a preferred embodiment to provide.

【0016】更に、前記オゾン水製造装置から供給され
るオゾン水を、先ず、気液分離器に供給して気相分を分
離し、液相分のみを前記測定セルに供給する様になすの
が、オゾン水中のオゾン濃度が正確に測定されるので好
ましい方式である。
Further, the ozone water supplied from the ozone water producing apparatus is first supplied to a gas-liquid separator to separate a gas phase component, and only the liquid phase component is supplied to the measurement cell. Is a preferable method because the ozone concentration in the ozone water is accurately measured.

【0017】又、前記コンピュータにおける演算結果に
基づいて、生成オゾン水濃度が所定範囲となる様に、該
コンピュータからオゾン水製造装置の運転制御指令を行
う様になす方式もある。この場合の制御要素としては、
電解式オゾン水製造装置においては、電流値,電圧値,
原水供給量,固体高分子電解質膜に対する電極の押圧力
がある。
There is also a method in which an operation control command of the ozone water producing apparatus is issued from the computer so that the concentration of the generated ozone water is within a predetermined range based on the result of calculation by the computer. The control element in this case is
In the electrolytic ozone water production equipment, the current value, voltage value,
There are the raw water supply amount and the pressing force of the electrode against the solid polymer electrolyte membrane.

【0018】又、本発明に係るオゾン水製造装置の運転
制御装置としては、オゾン水を連続的に通水しつつ紫外
線を透過させてオゾンによる紫外線吸収量に基づいてオ
ゾン濃度を演算するオゾン水濃度測定手段と、電解式オ
ゾン水製造装置によるオゾン水の製造運転直前の該装置
に通水された実質的にオゾンを含有していない原水のオ
ゾン水濃度を、前記オゾン濃度測定手段によって測定
し、該測定値をオゾン濃度のゼロ点として設定すると共
にこれを記憶するゼロ点記憶手段と、該ゼロ点設定の有
無を確認するゼロ設定確認手段と、該ゼロ点設定を確認
すると前記電解式オゾン水製造装置の電解装置に通電を
開始する通電開始手段と、オゾン水製造装置により生成
したオゾン水濃度を前記オゾン濃度測定手段によって連
続的に測定すると共に、測定されたオゾン水濃度が所定
の範囲内にあるか否かを判断する濃度判定手段と、該濃
度判定手段によって所定の範囲外と判断された場合に
は、制御すべき制御要素が制御限界内にあるか否かを判
断する限界判定手段と、該限界判定手段によって制御要
素が制御限界内にあると判断された場合には、所定の制
御信号を出力する制御信号出力手段と、前記限界判定手
段によって制御要素が制御限界に達していると判断され
た場合には、電解式オゾン水製造装置の固体高分子電解
質膜に再生処理等の予め設定された工程に移行する様に
してなるものである。前記制御要素としては、電流値,
電圧値,原水供給量,固体高分子電解質膜に対する電極
の押圧力があり、これらの1以上を所定の範囲内で制御
する様にしている。
The operation control device of the ozone water producing apparatus according to the present invention includes an ozone water device that continuously transmits ozone water, transmits ultraviolet light, and calculates an ozone concentration based on an amount of absorbed ultraviolet light by ozone. The ozone water concentration of the raw water substantially free of ozone passed through the concentration measuring means and the ozone water producing apparatus by the electrolytic ozone water producing apparatus immediately before the operation is measured by the ozone concentration measuring means. Zero point storage means for setting and storing the measured value as a zero point of the ozone concentration; zero setting confirmation means for confirming the presence / absence of the zero point setting; and The energization start means for starting energization of the electrolysis apparatus of the water production apparatus and the ozone water concentration generated by the ozone water production apparatus are continuously measured by the ozone concentration measurement means. Concentration determining means for determining whether or not the measured ozone water concentration is within a predetermined range; and when the concentration determining means determines that the concentration is outside the predetermined range, the control element to be controlled is a control limit. Control signal output means for outputting a predetermined control signal when the control element is determined to be within the control limit by the limit determination means; When it is determined by the determining means that the control element has reached the control limit, the process shifts to a preset process such as a regeneration process for the solid polymer electrolyte membrane of the electrolytic ozone water producing apparatus. It is. The control element includes a current value,
There are a voltage value, a raw water supply amount, and a pressing force of the electrode against the solid polymer electrolyte membrane, and one or more of these are controlled within a predetermined range.

【0019】尚、前記通電開始手段によって前記オゾン
水製造装置によるオゾン水の製造が開始された後、所定
時間が経過するまで前記オゾン濃度測定手段によるオゾ
ン水濃度の測定を禁止する測定禁止手段を設ける事によ
り、オゾン水製造開始初期における不安定な状況下での
制御を禁止する様になすのも好ましい態様である。
After the production of the ozone water by the ozone water producing apparatus is started by the energization starting means, a measurement inhibiting means for inhibiting the measurement of the ozone water concentration by the ozone concentration measuring means until a predetermined time elapses. It is also a preferable embodiment that the provision of such an arrangement prohibits control under unstable conditions at the beginning of the production of ozone water.

【0020】[0020]

【発明の実施の形態】以下、本発明について図面を用い
て詳細に説明する。図1は本発明に係るオゾン水濃度連
続測定方法の実施例を示す系統図である。同図におい
て、電解式オゾン水製造装置10の運転に先立ち、オゾ
ン水濃度測定装置Mの全ての計測機器を立ち上げて計測
可能状態となし、オゾン水製造装置10に原水ライン1
5から軟水化処理された原水の供給を開始する。この時
点では、オゾン水製造装置10は通水ラインのみが作動
しており、電解のための通電はなされていないので、オ
ゾン水排出ライン16から排出される水中には未だオゾ
ンは含有されておらず、原水の状態で排出される。この
原水(無オゾン水)の一部を計測ライン11に分岐して
気液分離器9に供給する。この段階でライン11から供
給される水中にはガスは含まれていないので、原水は該
気液分離器9の下側室9bに入り、ライン12を経て測
定セル3内に供給され、ライン13を経て前記気液分離
器9の上側室9aを経て排出ライン14より装置外に排
出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of a method for continuously measuring ozone water concentration according to the present invention. In the figure, prior to the operation of the electrolytic ozone water producing apparatus 10, all the measuring instruments of the ozone water concentration measuring apparatus M are started up to be in a measurable state.
From 5, supply of raw water subjected to water softening is started. At this time, only the water flow line of the ozone water production device 10 is operating, and no electricity is supplied for electrolysis. Therefore, the water discharged from the ozone water discharge line 16 still contains ozone. And discharged in raw water. A part of the raw water (non-ozone water) is branched to the measurement line 11 and supplied to the gas-liquid separator 9. At this stage, since the gas supplied to the water supplied from the line 11 contains no gas, the raw water enters the lower chamber 9b of the gas-liquid separator 9 and is supplied into the measurement cell 3 via the line 12, and the line 13 Then, the gas is discharged from the discharge line 14 through the upper chamber 9a of the gas-liquid separator 9 to the outside of the apparatus.

【0021】前記測定セル3では、UVランプ1から入
射されている紫外線が該セル3内を流通する原水中を透
過するが、オゾンが含有されていないので、入射紫外線
は吸収される事なくそのまま透過し、紫外線センサ4で
は、入射紫外線強度と同レベルの透過紫外線強度が検出
され、これを電気信号に変えてプリアンプ5,対数増幅
器6を経て、コンピュータユニット(CPU)7に伝達
され、前記式(1)に基づいてオゾン水濃度(c)=0
として演算される。この演算結果から透過紫外線強度
(Io )=入射紫外線強度(Ii )として入射紫外線強
度(Ii )が求められる。即ち、この入射紫外線強度
(Ii )に相当する透過紫外線強度(Io )を、オゾン
水濃度のゼロ点としての基準となす。
In the measuring cell 3, the ultraviolet rays incident from the UV lamp 1 pass through the raw water flowing through the cell 3, but do not contain ozone. The transmitted ultraviolet light sensor 4 detects the transmitted ultraviolet light intensity at the same level as the incident ultraviolet light intensity, converts the transmitted ultraviolet light intensity into an electric signal, and transmits the electric signal to the computer unit (CPU) 7 via the preamplifier 5 and the logarithmic amplifier 6 to obtain the above equation. Ozone water concentration (c) = 0 based on (1)
Is calculated as From this calculation result, the intensity of the incident ultraviolet light (Ii) is determined as the intensity of the transmitted ultraviolet light (Io) = the intensity of the incident ultraviolet light (Ii). That is, the transmitted ultraviolet light intensity (Io) corresponding to the incident ultraviolet light intensity (Ii) is used as a reference as the zero point of the ozone water concentration.

【0022】この基準設定(ゼロ点設定)は、オゾン水
製造装置10のオゾン水製造運転の開始直前に、即ち、
通電運転する前に、オゾンを実質的に含有しない原水の
みを通水して行うものであり、1秒間に100回程度の
濃度測定を行い、この平均値をとる事によりノイズの平
滑化を行うと共に、この平均値演算を複数回繰り返して
更にその平均値を演算する事によってゼロ点設定精度の
向上を図っている。従って、このゼロ点設定時間として
は数十秒で充分である。この意味から、装置の電源をオ
ンにすると、先ずオゾン水濃度測定装置Mのみが立ち上
がり、測定可能な状態になると、通水のみが開始されて
上述のゼロ点設定が行われ、このゼロ設定が終了すると
電解装置に通電を開始してオゾン水の製造を開始する様
に一連の工程を前記CPU7によって自動制御される様
になす事も可能である。
This reference setting (zero point setting) is performed immediately before the start of the ozone water production operation of the ozone water production apparatus 10, that is,
Before the energization operation, the flow is performed by passing only the raw water substantially free of ozone, and the density is measured about 100 times per second, and the average value is taken to smooth the noise. In addition, the average value calculation is repeated a plurality of times to further calculate the average value, thereby improving the zero point setting accuracy. Therefore, several tens of seconds are sufficient as the zero point setting time. In this sense, when the power of the apparatus is turned on, only the ozone water concentration measuring apparatus M first starts up, and when the apparatus is in a measurable state, only the flow of water is started, and the above-described zero point setting is performed. When the process is completed, a series of steps can be automatically controlled by the CPU 7 so that the electrolysis apparatus is energized and the production of ozone water is started.

【0023】次に、上記基準設定が完了すると、オゾン
水製造装置10の通電が開始されて電気分解によるオゾ
ン水の製造が開始され、ライン16からは生成オゾン水
が排出される。このオゾン水の殆どは供給ライン17か
ら需要先に送給されるが、一部は前述のライン11を経
て上側室9aと下側室9bに区画された気液分離器9の
下側室9bに送給される。電解式オゾン水製造装置の場
合には、ライン11から送給されるオゾン水中に、水の
電解によって生じた酸素や未溶解のオゾンガスも僅かな
がら含まれている気液混相流であるので、このまま測定
セル3に供給されると、気相中のオゾンも紫外線を吸収
すると共に、気泡による紫外線の乱反射によって正確な
オゾン水中のオゾンによる紫外線吸収量が測定できなく
なる。そこで本発明では、気液分離器9内にフラッシュ
させる事により、気相分は上側室9aと下側室9bとを
画成する隔壁9cに形成されているガス穴9dから、後
述するエジェクタ作用によって上側室9aに吸入され、
液相分のみがライン12を経て前記測定セル3に流入す
る様になっている。
Next, when the above-mentioned standard setting is completed, the energization of the ozone water producing apparatus 10 is started, the production of ozone water by electrolysis is started, and the generated ozone water is discharged from the line 16. Most of this ozone water is sent to the demand destination from the supply line 17, but part of the ozone water is sent to the lower chamber 9 b of the gas-liquid separator 9 divided into the upper chamber 9 a and the lower chamber 9 b via the line 11. Be paid. In the case of the electrolytic ozone water producing apparatus, the ozone water supplied from the line 11 is a gas-liquid multiphase flow in which oxygen generated by the electrolysis of water and undissolved ozone gas are slightly contained. When supplied to the measurement cell 3, ozone in the gas phase also absorbs ultraviolet light, and the amount of ultraviolet light absorbed by ozone in ozone water cannot be accurately measured due to irregular reflection of ultraviolet light by bubbles. Therefore, in the present invention, by flushing the gas into the gas-liquid separator 9, the gas phase component is discharged from a gas hole 9d formed in a partition wall 9c defining an upper chamber 9a and a lower chamber 9b by an ejector action described later. Inhaled into the upper chamber 9a,
Only the liquid phase component flows into the measuring cell 3 via the line 12.

【0024】該測定セル3では、前述の如くUVランプ
1から入射される紫外線をオゾン水中のオゾン分子が吸
収する結果、紫外線センサ4で検出される透過紫外線強
度はオゾン水濃度に比例して低下した強度が測定される
事になる。この透過紫外線強度(Io )は、公知の手法
によって電気信号(電圧信号)に変えられ、プリアンプ
5,対数増幅器6を経て前記CPU7に送信され、前述
の通り前記(1)式と前述の設定されたゼロ点の基準値
(Ii )に基づいて、オゾン水濃度(c)が演算され、
その結果は、必要に応じて表示器8にアナログ又はデジ
タルで表示される。このオゾン水濃度の測定において
も、一定期間内に微小時間間隔で多数の濃度測定を行
い、その一定期間内における多数の濃度測定値の平均値
を演算し、この平均値をその期間のオゾン水濃度となす
様にしており、これによって、ノイズの影響を平滑化し
ている。
In the measuring cell 3, as described above, the ultraviolet light incident from the UV lamp 1 is absorbed by the ozone molecules in the ozone water, so that the intensity of the transmitted ultraviolet light detected by the ultraviolet sensor 4 decreases in proportion to the ozone water concentration. The measured strength will be measured. This transmitted ultraviolet intensity (Io) is converted into an electric signal (voltage signal) by a known method, transmitted to the CPU 7 through a preamplifier 5 and a logarithmic amplifier 6, and set as described above with the above equation (1). The ozone water concentration (c) is calculated based on the reference value (Ii) of the zero point,
The result is displayed on the display 8 in an analog or digital manner as required. Also in the measurement of the ozone water concentration, a large number of concentration measurements are performed at minute time intervals within a certain period, and an average value of a large number of concentration measurement values within the certain period is calculated. The density is adjusted so that the influence of noise is smoothed.

【0025】オゾン測定に使用されたオゾン水は、ライ
ン13から前記気液分離器9の上側室9aに供給され、
ライン14から系外に排出される。このとき、気液分離
器9の上側室9aは下側室9bよりも小さな流路面積に
設定され、ライン14から気液分離器9の前記上側室9
aに流入した測定済オゾン水は、高速で該上側室9a内
を通過してライン14に至る様に設計されている。この
結果、上側室9aの圧力は下側室9bの圧力よりも低下
する事になり、ライン11から下側室9bに供給された
前記気相分を含むオゾン水中の気相分は、隔壁9cに形
成されているガス穴9dから上側室9aにエジェクタ作
用によって吸引され、測定済オゾン水と共にライン14
から系外に排出される様になっている。
The ozone water used for the ozone measurement is supplied from a line 13 to an upper chamber 9a of the gas-liquid separator 9.
It is discharged out of the system from the line 14. At this time, the upper chamber 9a of the gas-liquid separator 9 is set to have a smaller flow area than the lower chamber 9b, and the upper chamber 9 of the gas-liquid separator 9 is
The measured ozone water flowing into a is designed to pass through the upper chamber 9a at high speed to reach the line. As a result, the pressure in the upper chamber 9a becomes lower than the pressure in the lower chamber 9b, and the gas phase in the ozone water containing the gas phase supplied from the line 11 to the lower chamber 9b is formed on the partition 9c. The gas is sucked into the upper chamber 9a from the gas hole 9d by the ejector action, and together with the measured ozone water, the line 14 is discharged.
From the system.

【0026】尚、UVランプ1で発生する紫外線の強度
は、該UVランプ1の近傍の環境温度Tにより多少の変
化が認められる。即ち、入射紫外線強度Ii は、環境温
度Tの関数「Ii =f(T)」として表される。従っ
て、該環境温度Tを温度測定装置18で測定し、これを
電気信号として前記CPU7に送信し、該CPU7内で
Ii =f(T)の関数演算を行う事により、前記ゼロ点
設定したときの温度との変化によって、設定したゼロ点
の温度補正を行う事も可能であるが、前記ゼロ点設定を
UVランプが安定化した時点で行っておき、且つ、オゾ
ン水製造装置の休止中もUVランプ1の環境温度が変化
しない様なシステムを採用している場合には、必ずしも
必要ではない。
It should be noted that the intensity of the ultraviolet light generated by the UV lamp 1 varies slightly depending on the environmental temperature T near the UV lamp 1. That is, the incident ultraviolet intensity Ii is represented as a function of the ambient temperature T, "Ii = f (T)". Therefore, when the environmental temperature T is measured by the temperature measuring device 18 and transmitted to the CPU 7 as an electric signal, and the CPU 7 performs a function operation of Ii = f (T), the zero point is set. It is also possible to perform the temperature correction of the set zero point by the change with the temperature of, but the zero point setting is performed at the time when the UV lamp is stabilized, and even during the stop of the ozone water producing apparatus. This is not always necessary when a system that does not change the environmental temperature of the UV lamp 1 is employed.

【0027】次に、図2は、本発明に係るオゾン水濃度
測定方法の他の実施形態を示すフロー図であり、前記図
1との相違点は、CPU7に入力される電気信号が、図
1では対数増幅器6で対数変換されて入力されているの
に対し、図2の方式では、プリアンプ5で増幅されたま
まの状態で入力されている点のみが相違し、他の構成は
同一であるので、以下に係る相違点のみについて説明
し、同一構成は同一符号を付して詳細説明は省略する。
FIG. 2 is a flowchart showing another embodiment of the ozone water concentration measuring method according to the present invention. The difference from FIG. 1 is that the electric signal input to the CPU 7 is 1 is logarithmically converted by the logarithmic amplifier 6 and input, whereas the method of FIG. 2 is different only in that the input is made while being amplified by the preamplifier 5, and other configurations are the same. Therefore, only the following differences will be described, and the same components will be denoted by the same reference numerals and detailed description thereof will be omitted.

【0028】前記(1)式から明らかな通り、オゾン濃
度と透過紫外線強度との関係は指数関係にある。従っ
て、透過紫外線強度を、これに比例する電気信号として
の電圧信号に変換しても、電圧(V)とオゾン濃度
(x)との関係は指数関係にあるので、図1の例では、
この指数関係を対数増幅器6によって直線関係(一次式
の関係)に変換してCPU7に入力し、該CPU7では
予めプログラムされている一次式に基づいて入力された
電圧値に対応するオゾン濃度を演算する様になってい
る。一方、図2の方式では、係る対数増幅器6を省略し
ているので、入力される電圧(V)とオゾン濃度(X)
との関係は、図3に示す様な指数関数の関係にある。そ
こで、この指数関数を、〜の直線(一次式)で近似
させ、この〜の近似式を前記CPU7に記憶させて
おき、入力された電圧値がV1以上の場合(V≧V1)
には式(V=aX+b)によってオゾン濃度の演算を
行い、入力された電圧値がV2以上V1未満の場合(V
2≦V<V1)には式(V=a’X+b’)によって
オゾン濃度の演算を行い、入力された電圧値がV2未満
の場合(V<V2)には式(V=a”X+b”)によ
ってオゾン濃度の演算を行う事により、簡便な方法でオ
ゾン水濃度を求める事ができると共に、対数増幅器7を
省略する事ができるので、コスト低減に寄与する事にな
る。尚、この程度の近似値演算であれば、厳密なオゾン
水濃度が要求される試験用等の特殊な場合を除き、通常
の殺菌や洗浄に使用する範囲では、実用上は全く問題は
ない。
As is apparent from the above equation (1), the relationship between the ozone concentration and the intensity of transmitted ultraviolet light is in an exponential relationship. Therefore, even if the transmitted ultraviolet light intensity is converted into a voltage signal as an electric signal proportional to the transmitted ultraviolet light intensity, the relationship between the voltage (V) and the ozone concentration (x) is an exponential relationship.
This exponential relationship is converted into a linear relationship (primary expression relationship) by a logarithmic amplifier 6 and input to a CPU 7, which calculates an ozone concentration corresponding to the input voltage value based on a previously programmed primary expression. It is supposed to. On the other hand, in the system of FIG. 2, the logarithmic amplifier 6 is omitted, so that the input voltage (V) and the ozone concentration (X)
Has an exponential function relationship as shown in FIG. Therefore, this exponential function is approximated by a straight line (linear expression), and the approximate expression is stored in the CPU 7, and when the input voltage value is equal to or more than V1 (V ≧ V1).
Calculates the ozone concentration by the equation (V = aX + b), and when the input voltage value is equal to or more than V2 and less than V1, (V
For 2 ≦ V <V1, the ozone concentration is calculated by the equation (V = a′X + b ′). When the input voltage value is less than V2 (V <V2), the equation (V = a ”X + b”) is calculated. By calculating the ozone concentration according to (1), the ozone water concentration can be obtained by a simple method and the logarithmic amplifier 7 can be omitted, which contributes to cost reduction. It should be noted that if this approximate value calculation is performed, there is no practical problem at all in the range where it is used for normal sterilization and cleaning, except for special cases such as a test requiring a strict ozone water concentration.

【0029】又、本発明においては、上記CPU7にお
ける前記オゾン濃度の演算の結果に基づいて、オゾン水
製造装置の運転制御を行う事も可能である。そこで、先
ず本発明で使用する電解式オゾン水製造装置の概要につ
いて説明する。本発明で使用する電解式オゾン水製造装
置は、特開平8−134677号や特開平11−172
4832号等に示されている電解式オゾン水製造装置で
あり、その構造は特に限定されないが、以下に、一例を
示す。
In the present invention, it is also possible to control the operation of the ozone water producing apparatus based on the calculation result of the ozone concentration in the CPU 7. Therefore, first, the outline of the electrolytic ozone water producing apparatus used in the present invention will be described. The electrolytic ozone water producing apparatus used in the present invention is disclosed in JP-A-8-134677 and JP-A-11-172.
No. 4832 and the like, and the structure thereof is not particularly limited, but an example is shown below.

【0030】図4は本発明で使用する電解式オゾン水製
造装置の一例を示す要部断面図であって、同図におい
て、オゾン水製造装置は、オゾンに対して耐蝕性を有す
るフッ素樹脂又はガラス等を内面にコーティングされた
陽極側ケーシング31と陰極側ケーシング32との間
に、固体高分子電解膜(以下単に「膜」又は「電解質
膜」と記載する)35が配置され、陽極側ケーシング3
1と陰極側ケーシング32内を陽極室36と陰極室37
とに画成している。電解質膜35の陽極室36側の面に
は、オゾンを生成触媒機能を有する白金等の貴金属触媒
46を備えた陽極電極33が該電解質膜を押圧する様に
して配置されている。一方、前記電解質膜35の陰極室
37側の面には、白金,銀等の貴金属の接触面50を有
する陰極電極34が該電解質膜35を押圧する様にして
配置されている。又、陽極室36と陰極37には、夫々
原水の流入口38,39と流出口40,41が形成され
ており、前記両電極33,34間には、直流電源54に
よって電極棒49,53を介して直流電圧が印加される
様になっている。各電極棒49,53は、陽極側ケーシ
ング31の貫通孔42及び陰極側ケーシング32の貫通
孔43を貫通して配置されており、その端部は、流体圧
シリンダ装置44,45に接続されて、夫々電解質膜3
5に対して進退自在に、換言すると、電解質膜35に対
する電極面の押圧力を調整自在に形成されている。
FIG. 4 is a sectional view of an essential part showing an example of an electrolytic ozone water producing apparatus used in the present invention. In FIG. 4, the ozone water producing apparatus is made of a fluorine resin or a resin having corrosion resistance to ozone. A solid polymer electrolyte membrane (hereinafter simply referred to as “membrane” or “electrolyte membrane”) 35 is disposed between the anode-side casing 31 and the cathode-side casing 32 whose inner surfaces are coated with glass or the like. 3
1 and the inside of the cathode side casing 32 are divided into an anode chamber 36 and a cathode chamber 37.
And it is defined. On the surface of the electrolyte membrane 35 on the anode chamber 36 side, an anode electrode 33 provided with a noble metal catalyst 46 such as platinum having a catalytic function of generating ozone is arranged so as to press the electrolyte membrane. On the other hand, on the surface of the electrolyte membrane 35 on the cathode chamber 37 side, a cathode electrode 34 having a contact surface 50 of a noble metal such as platinum or silver is arranged so as to press the electrolyte membrane 35. An inlet 38, 39 and an outlet 40, 41 of raw water are formed in the anode chamber 36 and the cathode 37, respectively. A direct-current voltage is applied via the. Each of the electrode rods 49 and 53 is disposed so as to pass through the through-hole 42 of the anode-side casing 31 and the through-hole 43 of the cathode-side casing 32, and the ends thereof are connected to the fluid pressure cylinder devices 44 and 45. , Respectively, electrolyte membrane 3
5, the pressing force of the electrode surface against the electrolyte membrane 35 can be adjusted freely.

【0031】係る構成の装置において、陽極室36と陰
極室37に通水を行うと共に両電極間に直流電流を通電
すると、電解質膜35を挟んで水の電気分解が生じ、陽
極電極33側にはオゾンが生成し、陰極電極34側には
水素が発生する。この陽極電極33側に発生したオゾン
は、水中に溶解してオゾン水となり、流出口40からオ
ゾン水として排出される。
In the apparatus having the above configuration, when water is supplied to the anode chamber 36 and the cathode chamber 37 and a DC current is applied between both electrodes, electrolysis of water occurs with the electrolyte membrane 35 interposed therebetween. Generates ozone, and hydrogen is generated on the cathode electrode 34 side. The ozone generated on the anode electrode 33 side is dissolved in water to become ozone water, and is discharged from the outlet 40 as ozone water.

【0032】ここで効率的にオゾン水を生成するため
に、特開平8−134677号公報に開示されている様
に、両電極33,34の電解質膜35に接する部分を、
夫々貴金属で形成した金網46,50となし、該金網の
背面にオゾンに対して耐蝕性を有するチタン等で形成し
たラス網47,51と電極板48,52とを順に積層し
て、ろう付け一体化した構造の電極構造となす。これに
より、原水は金網とラス網とからなる流路を流通間に激
しい乱流と渦流とを生じ、陽極電極側で生成したオゾン
は、発生直後に瞬時にして水中に溶解され、高濃度のオ
ゾン水が得られる構成となっている。
Here, in order to efficiently generate ozone water, the portions of both electrodes 33 and 34 that are in contact with the electrolyte membrane 35 are disclosed in Japanese Patent Application Laid-Open No. 8-134677.
Wire meshes 46 and 50 made of noble metals are respectively provided, and lath meshes 47 and 51 made of titanium or the like having corrosion resistance to ozone and electrode plates 48 and 52 are sequentially laminated on the back of the wire mesh and brazed. The electrode structure has an integrated structure. As a result, the raw water generates a violent turbulence and a vortex while flowing through the flow path composed of the wire net and the lath net, and the ozone generated on the anode electrode side is instantly dissolved in the water immediately after generation, and the high concentration Ozone water is obtained.

【0033】係る装置を用いてオゾン水の製造を行う場
合、製品としてのオゾン水の濃度が所定範囲となる様に
運転制御されるのが一般的である。この場合には、運転
の継続と共に、電解質膜の性能が低下してくるので、こ
れを補ってオゾン水濃度が所定の範囲内となる様に制御
する方式としては、次の方式がある。 (1)電流値制御方式はオゾン水濃度を連続的に測定
し、所定濃度範囲の下限値に達すると、電流値を所定の
上限値に達するまで次第に上昇させてオゾン生成を促進
する方式である。 (2)押圧力変化方式はオゾン水濃度を連続的に測定
し、所定濃度範囲の下限値に達すると、電解質膜に対す
る電極の押圧力を、所定の上限値に達するまで次第に上
昇させる事により、電極と電解質膜との接触面を更新し
てオゾン生成を促進する方式である。この場合には、上
記電流値制御方式と併用する方式もある。
When producing ozone water using such a device, the operation is generally controlled so that the concentration of ozone water as a product falls within a predetermined range. In this case, the performance of the electrolyte membrane decreases as the operation continues, and the following method is used to compensate for this and control the ozone water concentration to be within a predetermined range. (1) The current value control method is a method of continuously measuring the concentration of ozone water, and when reaching a lower limit value of a predetermined concentration range, gradually increasing the current value until reaching a predetermined upper limit value to promote ozone generation. . (2) The pressing force change method measures the ozone water concentration continuously, and when it reaches a lower limit value of a predetermined concentration range, gradually increases the pressing force of the electrode against the electrolyte membrane until it reaches a predetermined upper limit value. In this method, the contact surface between the electrode and the electrolyte membrane is renewed to promote ozone generation. In this case, there is a method used in combination with the above current value control method.

【0034】又、電解質膜自体は使用中に次第に劣化す
るので、定期的に再生処理する必要がある。この再生処
理方式としては、次の方式がある。 (イ)電解質膜再生方式は上記(1)又は(2)の方式
で連続運転した結果、その制御方式が限界に達すると、
電解質膜に対する電極の押圧力を所定時間開放する事に
より、電解質膜のストレスを開放して再生を図る方式で
ある。 (ロ)押圧力変化方式は10〜20分の運転時間経過の
度に、或いは、オゾン水濃度が所定の下限値に達する
と、排出オゾン水濃度に影響がでない程度の短時間(数
秒程度)、電解質膜に対する電極の押圧力を開放/加圧
する押圧力変化を電解質膜に与え、電解質膜の劣化が進
行しない内に再生処理を行う方式である。この方式を上
記(1),(2)と併用して連続運転時間を飛躍的に延
ばす方式もある。
Further, the electrolyte membrane itself gradually deteriorates during use, so that it is necessary to periodically regenerate the electrolyte membrane. As the reproduction processing method, there is the following method. (A) As a result of the continuous operation of the electrolyte membrane regeneration method (1) or (2), when the control method reaches the limit,
In this method, the pressing force of the electrode against the electrolyte membrane is released for a predetermined time to release the stress of the electrolyte membrane and regenerate. (B) The pressing force change method is a short time (about several seconds) that does not affect the discharged ozone water concentration every time the operation time elapses from 10 to 20 minutes or when the ozone water concentration reaches a predetermined lower limit. In this method, a change in pressing force for releasing / pressing the pressing force of the electrode against the electrolyte membrane is applied to the electrolyte membrane, and the regeneration treatment is performed before the deterioration of the electrolyte membrane progresses. There is also a method of using this method in combination with the above (1) and (2) to dramatically increase the continuous operation time.

【0035】本発明においては、これらの制御操作の
内、オゾン水濃度に基づいて行う制御操作は、前記CP
U7で行うオゾン水濃度の演算結果に基づいて、該CP
U7から電解式オゾン水製造装置に制御信号を出力する
事が可能であり、その制御要素としては、電流値(電流
密度),電圧値(電圧を上げれば電流も上がるので、電
流値制御と同意義),電極の電解質膜に対する押圧力が
ある。
In the present invention, among these control operations, the control operation performed based on the ozone water concentration is the above-mentioned CP operation.
Based on the calculation result of the ozone water concentration performed in U7, the CP
It is possible to output a control signal from U7 to the electrolytic ozone water producing apparatus. The control elements include a current value (current density) and a voltage value (the current increases as the voltage increases, the same as the current value control). Significance), there is a pressing force on the electrolyte membrane of the electrode.

【0036】次に、本発明による電解式オゾン水製造装
置の制御例について、図5によって説明する。図5は、
本発明による電解式オゾン水製造装置の制御フローの一
例を示すもので、先ず、装置の電源をONにしてスター
トさせると、ブロック61に示した様に、オゾン水濃度
測定系の通電が開始され、同時にオゾン水製造装置に
は、原水の供給が開始されるが(S1)、この時点で
は、電解装置の通電は行われていない。次に、ゼロ設定
確認手段で、計測系の前記オゾン水のゼロ点設定(基準
設定)が行われているか否かを判定する(S2)。通常
の運転開始時点では、前述の通りゼロ点設定はなされて
いないから(S2、NO)、無オゾン水である原水での
オゾン濃度測定を行い(S3)、この無オゾン水の測定
濃度をゼロ点に設定するゼロ点設定を行い(S4)、こ
れでオゾン水濃度測定準備を完了する。このオゾン水濃
度測定準備が完了すると、電解装置への通電を開始して
オゾン水の製造を開始する(S5)。
Next, a control example of the electrolytic ozone water producing apparatus according to the present invention will be described with reference to FIG. FIG.
This shows an example of the control flow of the electrolytic ozone water producing apparatus according to the present invention. First, when the power of the apparatus is turned on and started, as shown in a block 61, the energization of the ozone water concentration measuring system is started. At the same time, the supply of raw water to the ozone water producing apparatus is started (S1), but at this time, the electrolysis apparatus is not energized. Next, it is determined by the zero setting confirmation means whether the zero point setting (reference setting) of the ozone water in the measurement system is performed (S2). At the start of normal operation, the zero point has not been set as described above (S2, NO). Therefore, an ozone concentration measurement is performed on raw water that is non-ozone water (S3), and the measured concentration of the ozone-free water is set to zero. Zero point setting for the point is performed (S4), and the preparation for measuring the ozone water concentration is completed. When the preparation for measuring the ozone water concentration is completed, energization of the electrolysis apparatus is started to start production of ozone water (S5).

【0037】尚、S2において、ゼロ点設定が完了して
いる場合(S2、YES)、即ち、前述した電解質膜再
生のための一時的通電停止による装置の停止期間終了後
の如く、装置の制御過程における装置の運転停止後の再
起動時には、制御系自体は継続して作動しているので、
改めてゼロ点設定を行う必要がないので、直ちに電解装
置への通電が開始される事になる(S5)。
In S2, when the zero point setting is completed (S2, YES), that is, after the stop period of the device due to the temporary stop of the current supply for the electrolyte membrane regeneration, the control of the device is completed. In the process, when the device is restarted after operation stop, the control system itself is continuously operating,
Since there is no need to set the zero point again, the energization of the electrolytic device is immediately started (S5).

【0038】次に、オゾン水の製造が開始されると、該
オゾン水製造開始からの経過時間tを計測し、経過時間
判定手段において、該経過時間が予め設定されている所
定の期間ts を経過しているか否かを判断し(S6)、
経過時間tが所定時間以上(t≧ts )に至った事を判
断すると(S6、YES)、前述の要領で連続的なオゾ
ン水濃度の測定が開始される(S7)。これは、オゾン
水製造装置の運転開始初期においては、オゾン水濃度は
上昇過程にあるが不安定な状態であるので、この状態を
測定して装置の制御を行うのは不適切である事による。
そこで、オゾン水濃度が安定化するまでの一定期間(例
えば10秒〜数分)程度は、オゾン水の測定を行わない
測定禁止期間を設けている。
Next, when the production of the ozone water is started, the elapsed time t from the start of the production of the ozone water is measured, and the elapsed time determination means sets the predetermined time ts for which the elapsed time is set in advance. It is determined whether or not it has passed (S6),
When it is determined that the elapsed time t has reached a predetermined time or longer (t ≧ ts) (S6, YES), continuous measurement of the ozone water concentration is started in the manner described above (S7). This is because, at the beginning of the operation of the ozone water producing apparatus, the ozone water concentration is in a rising process but is in an unstable state, so that it is inappropriate to measure this state and control the apparatus. .
Therefore, for a certain period of time (for example, 10 seconds to several minutes) until the ozone water concentration is stabilized, a measurement prohibition period in which ozone water measurement is not performed is provided.

【0039】オゾン水濃度が連続的に測定されると、そ
の値は次の濃度判定手段68に送信され、ここでオゾン
水濃度(X)が所定の許容濃度範囲(Xmin ≦X≦Xma
x )に入っているか否かを判断し(S8)、許容範囲に
ある場合には(S8、YES)、オゾン水濃度測定に戻
る(S7)。オゾン水濃度が所定の許容範囲外と判断さ
れた場合には(S8、NO)、該濃度を所定範囲内に戻
すために運転条件を変化させる制御を行う事になるが、
その前に、制御しようとする制御要素(電流値増減,電
解質膜に対する押圧力増減等)が限界に達しているか否
かを限界判定手段で判定する(S9)。限界に達してい
ない場合には、ブロック69から所定の制御信号を出力
し(S10)、その信号に基づいて所定の制御を行った
後に(S11)、再び、オゾン水濃度の測定に移行する
(S7)。
When the ozone water concentration is continuously measured, the value is sent to the next concentration judging means 68, where the ozone water concentration (X) is set to a predetermined allowable concentration range (Xmin ≦ X ≦ Xma).
x) is determined (S8), and if it is within the allowable range (S8, YES), the process returns to the ozone water concentration measurement (S7). When it is determined that the ozone water concentration is out of the predetermined allowable range (S8, NO), control for changing the operating conditions is performed to return the concentration to within the predetermined range.
Before that, it is judged by the limit judging means whether or not the control element to be controlled (increase / decrease in current value, increase / decrease in pressing force on the electrolyte membrane, etc.) has reached the limit (S9). If the limit has not been reached, a predetermined control signal is output from the block 69 (S10), and after performing predetermined control based on the signal (S11), the flow again shifts to the measurement of the ozone water concentration (S11). S7).

【0040】尚、S9において、制御限界に達している
場合とは、電解質膜の性能低下に伴うオゾン水濃度の低
下に対応して電流値を増加させる制御を行うケースで
は、電流値が既に装置の上限値に達しており、これ以上
の電流値増加が出来ない場合であり、又、電解質膜の性
能低下に伴うオゾン水濃度の低下に対応して電解質膜に
対する電極の押圧力を増加させる制御を行うケースで
は、押圧力が既に装置の上限値に達しており、これ以上
の押圧力の増加が出来ない場合を意味している。この様
な場合には、限界判定手段で制御要素が制御限界に達し
ていると判断され(S9、YES)、予め設定されてい
る次の工程に移行する。この次工程とは、装置の運転を
停止して電解質膜の再生を行う場合や所定時間電解質膜
に対する電極の押圧力を解放して電解質膜の再生を行う
場合等があり、運転思想或いは設計思想に基づいた処理
がなされ、しかる後にS1に戻って再スタートさせる事
になる。
In S9, the case where the control limit has been reached means that in the case where the current value is increased in response to the decrease in the ozone water concentration due to the decrease in the performance of the electrolyte membrane, the current value is already in the device. Control when the current value cannot be increased any more, and the pressing force of the electrode against the electrolyte membrane is increased in response to the decrease in the concentration of ozone water due to the decrease in the performance of the electrolyte membrane. In this case, the pressing force has already reached the upper limit of the apparatus, and it is not possible to further increase the pressing force. In such a case, the limit determining means determines that the control element has reached the control limit (S9, YES), and shifts to the next step set in advance. The next step includes a case where the operation of the apparatus is stopped to regenerate the electrolyte membrane, a case where the pressing force of the electrode against the electrolyte membrane is released for a predetermined time to regenerate the electrolyte membrane, or the like. Is performed, and then the process returns to S1 and restarts.

【0041】[0041]

【実施例】次に、本発明の実施例について説明する。図
4に示した電解式オゾン水製造装置に図2に示したオゾ
ン水濃度測定装置を付設すると共に、比較のため、外付
けで図8に示した従来型のオゾン水濃度測定装置を付設
してオゾン水濃度測定試験を行った。先ず、本発明方式
では、オゾン水製造運転に先立ち、約2分間、オゾン水
製造装置に通電する事なく(電解を行う事なく)原水の
みを通水し、無オゾン原水によるゼロ点設定を行い、そ
の後、オゾン水製造装置に通電を開始してオゾン水の製
造を行い、オゾン水製造運転開始後約3分間はオゾン水
濃度測定を行わず、約3分経過後にオゾン濃度測定を開
始した。尚、外付けの従来方式のオゾン水濃度測定装置
では、初めからオゾン水濃度測定を行った。両方式によ
る測定結果を図6に示す。
Next, an embodiment of the present invention will be described. The ozone water concentration measuring apparatus shown in FIG. 2 is attached to the electrolytic ozone water producing apparatus shown in FIG. 4, and the conventional ozone water concentration measuring apparatus shown in FIG. 8 is attached externally for comparison. Ozone water concentration measurement test was performed. First, in the method of the present invention, prior to the operation of producing ozone water, only the raw water is passed for about 2 minutes without power supply (without performing electrolysis) to the ozone water producing apparatus, and a zero point is set using ozone-free raw water. Thereafter, the ozone water production apparatus was energized to produce ozone water, the ozone water concentration was not measured for about 3 minutes after the start of the ozone water production operation, and the ozone concentration measurement was started about 3 minutes later. Incidentally, the ozone water concentration measurement was carried out from the beginning in the external conventional ozone water concentration measurement device. FIG. 6 shows the measurement results by both methods.

【0042】同図において透過紫外線強度は、その値に
比例した電圧に変換して表示されており、電圧値の高い
ほど紫外線吸収が少ない(含有オゾン量が少ない)事を
意味している。同図において、t1は、原水のみを通水
している期間(約2分間)であり、この間の透過紫外線
強度に対応する電圧出力は2.8〜3.0Vを示してお
り、この出力に基づいて本発明方式ではゼロ点設定がな
されている。t1経過後に電解装置への通電を開始する
と、この通電開始と共に、外付け測定装置(従来法)で
は、速やかにオゾン水濃度の上昇が認められ、同時に、
透過紫外線強度に対応する出力電圧は、0.2〜0.3
Vにまで急速に低下している。電解装置への通電開始後
の時間t2(約3分間)は、本発明方式によるオゾン水
濃度の測定を禁止している期間であり、t2経過後に濃
度測定が開始されると、速やかにオゾン水濃度は17p
pm程度のレベルの値を検出している事が分かる。同図
から明らかな様に、本発明方式で測定されたオゾン水濃
度と、従来法によって測定されたオゾン水濃度とは、極
めて良く近似している事が分かる。尚、本発明方法によ
る測定値は、従来法による測定値よりも1ppm程度の
バラツキが認められるが、通常の殺菌や洗浄等にオゾン
水を使用するレベルでは、全く問題のない程度である事
も確認された。又、この意味から、本発明のオゾン水濃
度測定方法によって計測されたオゾン水濃度に基づい
て、オゾン水製造装置の運転制御を行う事も可能である
事も理解されよう。
In FIG. 4, the intensity of transmitted ultraviolet light is converted into a voltage proportional to the value and is displayed. The higher the voltage value, the smaller the ultraviolet absorption (the smaller the ozone content). In the figure, t1 is a period during which only raw water flows (about 2 minutes), and the voltage output corresponding to the transmitted ultraviolet intensity during this period is 2.8 to 3.0 V. Based on the method of the present invention, a zero point is set. When the energization of the electrolysis apparatus is started after the passage of t1, the external measuring apparatus (conventional method) rapidly increases the ozone water concentration along with the start of the energization, and at the same time,
The output voltage corresponding to the transmitted ultraviolet intensity is 0.2 to 0.3.
V rapidly. The time t2 (approximately 3 minutes) after the start of energization of the electrolysis apparatus is a period during which the measurement of the ozone water concentration according to the method of the present invention is prohibited. The concentration is 17p
It can be seen that a level value of about pm is detected. As is clear from the figure, the ozone water concentration measured by the method of the present invention and the ozone water concentration measured by the conventional method are very similar. In addition, the measured value according to the method of the present invention has a variation of about 1 ppm compared to the measured value according to the conventional method. However, at the level where ozone water is used for normal sterilization and cleaning, there is no problem at all. confirmed. In this sense, it is also understood that the operation control of the ozone water producing apparatus can be performed based on the ozone water concentration measured by the ozone water concentration measuring method of the present invention.

【0043】[0043]

【発明の効果】以上の通り、本発明においては、1系列
のオゾン水濃度測定系統のみによってオゾン濃度の測定
を行うものであるから、測定セルは1つのみとなる。従
って、図7に示した2つのセルを使用する従来方式と比
べると、単にコスト低減に寄与するのみならず、従来方
式では異なる性質の水を夫々のセルに流通する関係上、
使用するうちにセル内面に次第に汚れが蓄積し、しかも
その汚れの度合いが異なるため、汚れによる紫外線吸収
度合いも変化してくるので、両セルの透過紫外線強度の
比較に次第に誤差が生じる事になるが、本発明では、1
つの測定セルのみを使用するので、セル内面に汚れが生
じても、その汚れによる透過紫外線強度の影響は、基準
値設定時もオゾン水測定時も同一条件となるので、汚れ
による測定誤差が生じ難くなっている。この意味から、
長期使用家庭における信頼性は向上する事になる。
As described above, in the present invention, since the ozone concentration is measured only by one series of ozone water concentration measuring systems, only one measuring cell is required. Therefore, as compared with the conventional method using two cells shown in FIG. 7, not only does it contribute to cost reduction, but also in the conventional method, water having different properties is distributed to each cell.
During use, dirt gradually accumulates on the inner surface of the cell, and since the degree of dirt is different, the degree of absorption of ultraviolet light by dirt also changes, so that errors gradually occur in the comparison of the transmitted ultraviolet intensity of both cells. However, in the present invention, 1
Since only one measurement cell is used, even if dirt is generated on the inner surface of the cell, the influence of the transmitted ultraviolet intensity due to the dirt is the same under both the reference value setting and the ozone water measurement. It has become difficult. In this sense,
Reliability in long-term homes will be improved.

【0044】又、図8に示した従来の方式と比べると、
1つのセルを使用する点では同一であるが、本発明方式
では高価なハーフミラーは必要ではなく、又、紫外線セ
ンサは1つのみでよく、更に比較回路も不要となるの
で、大幅なコスト低減が可能となる。
Also, as compared with the conventional method shown in FIG.
It is the same in that one cell is used, but the method of the present invention does not require an expensive half mirror, and requires only one ultraviolet sensor and further eliminates the need for a comparison circuit, thus significantly reducing cost. Becomes possible.

【0045】以上の通り、本発明方式では、一系列の測
定系統のみでオゾン濃度の測定が可能となるので、オゾ
ン水濃度測定装置を従来法に比して安価に供給する事が
可能となる。この結果、オゾン水製造装置に付設するオ
ンライン計測装置として極めて有効な測定装置として使
用可能であり、オゾン水製造装置のコスト低減に大きく
寄与する事が期待される。
As described above, in the method of the present invention, the ozone concentration can be measured with only one series of measurement systems, so that the ozone water concentration measuring device can be supplied at a lower cost than the conventional method. . As a result, it can be used as an extremely effective measuring device as an online measuring device attached to the ozone water producing device, and is expected to greatly contribute to cost reduction of the ozone water producing device.

【0046】オゾン水製造装置のコスト低減が可能とな
る結果、安価にオゾン水製造装置を市場に供給する事が
可能となり、殺菌や洗浄等の分野に飛躍的にオゾン水の
使用が普及する事も期待され、この結果、食中毒の発生
や病原菌の拡散等が未然に防止され、国民の健康,安全
の管理に大きく寄与する事が期待される。
As a result of reducing the cost of the ozone water producing apparatus, it becomes possible to supply the ozone water producing apparatus to the market at a low cost, and the use of ozone water is dramatically spread in fields such as sterilization and cleaning. As a result, it is expected that the occurrence of food poisoning and the spread of pathogenic bacteria will be prevented beforehand, and will greatly contribute to the health and safety management of the people.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るオゾン水濃度測定方式の一例を示
す概念図である。
FIG. 1 is a conceptual diagram showing an example of an ozone water concentration measuring method according to the present invention.

【図2】本発明に係るオゾン水濃度測定方式の他の例を
示す概念図である。
FIG. 2 is a conceptual diagram showing another example of the ozone water concentration measuring method according to the present invention.

【図3】図2におけるオゾン濃度演算方法の一例を示す
出力−濃度グラフである。
FIG. 3 is an output-concentration graph showing an example of an ozone concentration calculation method in FIG. 2;

【図4】本発明で使用する電解式オゾン水製造装置の要
部概念図である。
FIG. 4 is a conceptual diagram of a main part of an electrolytic ozone water producing apparatus used in the present invention.

【図5】本発明に係る電解式オゾン水製造装置の制御例
を示すフロー図である。
FIG. 5 is a flowchart showing a control example of the electrolytic ozone water producing apparatus according to the present invention.

【図6】本発明の実施例を示すタイムチャートである。FIG. 6 is a time chart showing the embodiment of the present invention.

【図7】従来のオゾン水濃度測定方式の一例を示す概念
図である。
FIG. 7 is a conceptual diagram showing an example of a conventional ozone water concentration measurement method.

【図8】従来の他のオゾン水濃度測定方式を示す概念図
である。
FIG. 8 is a conceptual diagram showing another conventional ozone water concentration measurement method.

【符号の説明】[Explanation of symbols]

1 UVランプ 2 UVランプ用電源 3,3’ 紫外線吸収測定用セル 4,4’ 紫外線センサ 5,5’ プリアンプ 6,6’ 対数増幅器 7 CPU 8 表示器 9 気液分離器 10 オゾン水製造装置 DESCRIPTION OF SYMBOLS 1 UV lamp 2 Power supply for UV lamps 3, 3 'Cell for measuring ultraviolet absorption 4, 4' Ultraviolet sensor 5, 5 'Preamplifier 6, 6' Logarithmic amplifier 7 CPU 8 Display 9 Gas-liquid separator 10 Ozone water producing apparatus

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25B 15/02 302 C25B 15/02 302 G01N 21/33 G01N 21/33 Fターム(参考) 2G058 BA08 GA06 GB10 GD02 2G059 AA01 BB04 CC08 DD01 DD02 DD12 EE01 FF04 GG10 HH03 KK01 MM01 MM03 MM05 MM09 MM10 MM15 NN01 NN02 PP04 4D061 DB07 EA03 EB04 EB13 EB17 EB19 EB30 EB35 EB37 GA30 GC02 GC12 GC14 GC20 4G042 CB23 CE01 4K021 AA01 AA09 AB15 BA02 BC01 BC09 CA06 CA09 CA11 DB05 DB31 DB43 DC07 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C25B 15/02 302 C25B 15/02 302 G01N 21/33 G01N 21/33 F-term (Reference) 2G058 BA08 GA06 GB10 GD02 2G059 AA01 BB04 CC08 DD01 DD02 DD12 EE01 FF04 GG10 HH03 KK01 MM01 MM03 MM05 MM09 MM10 MM15 NN01 NN02 PP04 4D061 DB07 EA03 EB04 CA13 BC01 BC01 GC02 GC02 GC01 GC02 GC01 GC02 GC02 DB05 DB31 DB43 DC07

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 測定セル中(3)にオゾン水を連続的に
通水しつつ紫外線を透過させて、オゾンによる紫外線吸
収量に基づいてオゾン水濃度を測定するオゾン水濃度連
続測定方法において、 オゾン水製造装置(10)によるオゾン水の製造運転直
前に、該装置に原水の通水のみを行う事により該装置
(10)から前記測定セル(3)に供給される実質的に
オゾンを含有していない前記原水の紫外線吸収量を測定
し、得られたオゾン水濃度をゼロ点として記憶させ、 前記オゾン水製造装置(10)のオゾン水製造運転開始
後に該装置(10)から前記測定セル(3)に供給され
るオゾン水の濃度を、前記ゼロ点を基準にして計測する
様にしてなる事を特徴とするオゾン水濃度連続測定方
法。
1. An ozone water concentration continuous measurement method for measuring the concentration of ozone water based on the amount of ultraviolet light absorbed by ozone, wherein ultraviolet light is transmitted while continuously passing ozone water through a measurement cell (3). Immediately before the operation of producing ozone water by the ozone water producing device (10), substantially only ozone is supplied from the device (10) to the measuring cell (3) by passing only raw water through the device. Measuring the ultraviolet absorption amount of the raw water that has not been performed, storing the obtained ozone water concentration as a zero point, and starting the ozone water production operation of the ozone water production device (10) from the device (10) to the measurement cell. (3) A method for continuously measuring the concentration of ozone water, wherein the concentration of ozone water supplied is measured based on the zero point.
【請求項2】 前記オゾン水製造運転開始後のオゾン水
の濃度測定は、該運転開始後、所定時間経過した後に開
始する様にしてなる請求項1に記載のオゾン水濃度連続
測定方法。
2. The method for continuously measuring ozone water concentration according to claim 1, wherein the measurement of the concentration of ozone water after the start of the operation for producing ozone water is started after a predetermined time has elapsed after the start of the operation.
【請求項3】 前記測定セル(3)に紫外線を入射する
紫外線発生装置近傍の環境温度を測定し、該環境温度の
変化によって前記ゼロ点を補正する様にしてなる請求項
1又は2に記載のオゾン水濃度連続測定方法。
3. The method according to claim 1, wherein an environmental temperature near an ultraviolet ray generator for injecting ultraviolet light into the measuring cell is measured, and the zero point is corrected by a change in the environmental temperature. Ozone water concentration continuous measurement method.
【請求項4】 紫外線を発生するUVランプ(1)と、
該UVランプから所定の紫外線を発生させるための安定
化電源(2)と、前記UVランプ(1)からの紫外線を
透過させ且つオゾン水製造装置(10)から供給される
オゾン水を連続的に通水させる測定セル(3)と、該測
定セル(3)を透過した透過紫外線強度を測定する紫外
線センサ(4)と、該透過紫外線強度に基づいてオゾン
水濃度を演算するコンピュータ(7)とを有し、 該コンピュータ(7)には、前記オゾン水製造装置(1
0)によるオゾン水の製造運転直前に該装置に原水の通
水のみを行い、前記紫外線センサ(4)で測定された透
過紫外線強度に基づいて演算されたオゾン水濃度をゼロ
点として記憶するゼロ点記憶手段と、該ゼロ点を基準に
して前記オゾン水製造装置(10)のオゾン水製造運転
開始後に該装置(10)から前記測定セル(3)に供給
されるオゾン水の濃度を演算するオゾン水濃度演算手段
とを設けてなる事を特徴とするオゾン水濃度連続測定装
置。
4. A UV lamp (1) for generating ultraviolet light,
A stabilized power supply (2) for generating a predetermined ultraviolet ray from the UV lamp and an ozone water which transmits the ultraviolet ray from the UV lamp (1) and is supplied from an ozone water producing apparatus (10) continuously. A measuring cell (3) for passing water, an ultraviolet sensor (4) for measuring the intensity of transmitted ultraviolet light transmitted through the measuring cell (3), and a computer (7) for calculating an ozone water concentration based on the transmitted ultraviolet light intensity. The ozone water producing apparatus (1) is provided in the computer (7).
Immediately before the production operation of ozone water according to 0), only the raw water is passed through the device, and the ozone water concentration calculated based on the transmitted ultraviolet intensity measured by the ultraviolet sensor (4) is stored as a zero point. Point storage means, and calculates the concentration of ozone water supplied from the device (10) to the measurement cell (3) after the operation of the ozone water production device (10) is started based on the zero point. An ozone water concentration continuous measuring device comprising an ozone water concentration calculating means.
【請求項5】 前記紫外線センサ(4)から前記コンピ
ュータ(7)に送信される前記透過紫外線強度に比例し
て設定された電圧信号を、プリアンプ(5)で増幅した
後、対数増幅器(6)を経て前記コンピュータ(7)に
送信する様にしてなる請求項4に記載のオゾン水濃度連
続測定装置。
5. A preamplifier (5) amplifies a voltage signal set in proportion to the transmitted ultraviolet light intensity transmitted from the ultraviolet sensor (4) to the computer (7), and then a logarithmic amplifier (6). The continuous ozone water concentration measuring apparatus according to claim 4, wherein the ozone water concentration is continuously transmitted to the computer (7).
【請求項6】 前記紫外線センサ(4)から前記コンピ
ュータ(7)に送信される前記透過紫外線強度に比例し
て設定された電圧信号を、プリアンプ(5)で増幅して
送信する様にしてなる請求項4に記載のオゾン水濃度連
続測定装置。
6. A preamplifier (5) amplifies and transmits a voltage signal set in proportion to the transmitted ultraviolet intensity transmitted from the ultraviolet sensor (4) to the computer (7). The continuous measurement apparatus for ozone water concentration according to claim 4.
【請求項7】 前記UVランプ(1)の近傍の温度を計
測する温度測定手段(18)を有し、前記コンピュータ
(7)には、該温度測定手段(18)で測定された温度
に基づいて前記ゼロ点を補正するゼロ点補正手段が設け
られている請求項4乃至6のいずれかに記載のオゾン水
濃度連続測定装置。
7. A temperature measuring means (18) for measuring a temperature in the vicinity of the UV lamp (1), wherein the computer (7) has a temperature based on the temperature measured by the temperature measuring means (18). The ozone water concentration continuous measurement apparatus according to any one of claims 4 to 6, further comprising a zero point correction means for correcting the zero point.
【請求項8】 前記オゾン水製造装置(10)から供給
されるオゾン水を、気液分離器(9)を通して気相分を
分離し、液相分のみを前記測定セル(3)に供給する様
にしてなる請求項4乃至7のいずれかに記載のオゾン水
濃度連続測定装置。
8. The ozone water supplied from the ozone water producing device (10) is separated into a gas phase component through a gas-liquid separator (9), and only the liquid phase component is supplied to the measurement cell (3). The ozone water concentration continuous measuring device according to any one of claims 4 to 7, wherein
【請求項9】 測定セル(3)中にオゾン水を連続的に
通水しつつ紫外線を透過させてオゾンによる紫外線吸収
量に基づいてオゾン水濃度を連続的に測定しつつオゾン
水製造装置(10)の運転制御を行うオゾン水製造装置
の運転制御方法において、 該オゾン水製造装置(10)によるオゾン水の製造運転
直前に、該装置に原水の通水のみを行う事により該装置
(10)から前記測定セル(3)に供給される実質的に
オゾンを含有していない前記原水の透過紫外線強度を測
定し、該透過紫外線強度に基づいてコンピュータ(7)
によって演算されたオゾン水濃度をゼロ点として記憶さ
せ、 前記オゾン水製造装置(10)のオゾン水製造運転開始
後に該装置(10)から前記測定セル(3)に供給され
るオゾン水の濃度を、前記ゼロ点を基準にして前記透過
紫外線強度に基づいて前記コンピュータ(7)で演算す
ると共に、 該オゾン水濃度の変化に基づいて前記オゾン水製造装置
(10)の運転条件を変化させて生成オゾン水濃度が所
定範囲となる様に制御する事を特徴とするオゾン水製造
装置の運転制御方法。
9. An ozone water producing apparatus (10) which continuously transmits ozone water through a measuring cell (3), transmits ultraviolet light, and continuously measures ozone water concentration based on the amount of ultraviolet light absorbed by ozone. In the operation control method of the ozone water producing apparatus for performing the operation control of 10), the apparatus (10) is provided with only the flow of the raw water to the apparatus immediately before the operation of producing the ozone water by the ozone water producing apparatus (10). ), The transmitted UV intensity of the raw water substantially free of ozone supplied to the measuring cell (3) is measured, and the computer (7) is operated based on the transmitted UV intensity.
The ozone water concentration calculated by the above is stored as a zero point. The ozone water concentration supplied from the device (10) to the measurement cell (3) after the ozone water production operation of the ozone water production device (10) is started. The calculation is performed by the computer (7) based on the transmitted ultraviolet intensity with reference to the zero point, and the operating condition of the ozone water producing apparatus (10) is changed based on the change of the ozone water concentration. An operation control method for an ozone water producing apparatus, characterized in that the ozone water concentration is controlled to be within a predetermined range.
【請求項10】 前記オゾン水製造装置が電解式オゾン
水製造装置であり、前記制御される運転条件が、電流
値,電圧値,原水供給量,固体高分子電解質膜に対する
電極の押圧力の1以上である請求項9に記載のオゾン水
製造装置の運転制御方法。
10. The ozone water producing apparatus is an electrolytic ozone water producing apparatus, and the controlled operating conditions include one of a current value, a voltage value, a raw water supply amount, and a pressing force of an electrode against a solid polymer electrolyte membrane. The operation control method for an ozone water producing apparatus according to claim 9, which is as described above.
【請求項11】 前記電解式オゾン水製造装置(10)
によるオゾン水の製造運転前に、ゼロ点の設定がなされ
ているか否かを判断し、該ゼロ点設定がなされている場
合には、これを判断して該オゾン水製造装置の電解装置
に通電を開始する様にしてなる請求項10に記載のオゾ
ン水製造装置の運転制御方法。
11. The electrolytic ozone water producing apparatus (10).
Before the production operation of ozone water by the above, it is determined whether or not a zero point has been set, and if the zero point has been set, this is determined and the electrolytic device of the ozone water production device is energized. The operation control method for an ozone water producing apparatus according to claim 10, wherein the operation is started.
【請求項12】 紫外線吸収法により連続的にオゾン水
中のオゾン濃度を測定し、これによって電解式オゾン水
製造装置(10)の運転を制御する運転制御装置におい
て、 オゾン水を連続的に通水しつつ紫外線を透過させてオゾ
ンによる紫外線吸収量に基づいてオゾン濃度を演算する
オゾン水濃度測定手段(M)と、 前記電解式オゾン水製造装置(10)によるオゾン水の
製造運転直前の該装置に通水された実質的にオゾンを含
有していない原水のオゾン水濃度を、前記オゾン濃度測
定手段(M)によって測定し、該測定値をオゾン濃度の
ゼロ点として設定すると共にこれを記憶するゼロ点記憶
手段と、 該ゼロ点設定の有無を確認するゼロ設定確認手段(6
2)と、 該ゼロ点設定を確認すると前記電解式オゾン水製造装置
の電解装置に通電を開始する通電開始手段(65)と、 該電解式オゾン水製造装置(10)により生成したオゾ
ン水濃度を前記オゾン濃度測定手段(M)によって連続
的に測定すると共に、測定されたオゾン水濃度が所定の
範囲内にあるか否かを判断する濃度判定手段(68)
と、 該濃度判定手段(68)によって所定の範囲外と判断さ
れた場合には、制御すべき制御要素が制御限界内にある
か否かを判断する限界判定手段(69)と、 該限界判定手段(69)によって制御要素が制御限界内
にあると判断された場合には、所定の制御信号を出力す
る制御信号出力手段(70)と、 前記限界判定手段(69)によって制御要素が制御限界
に達していると判断された場合には、電解式オゾン水製
造装置の固体高分子電解質膜に再生処理等の予め設定さ
れた工程(72)に移行する様にしてなる事を特徴とす
る電解式オゾン水製造装置の運転制御装置。
12. An operation control device for continuously measuring the ozone concentration in ozone water by an ultraviolet absorption method and thereby controlling the operation of the electrolytic ozone water production device (10). An ozone water concentration measuring means (M) for calculating the ozone concentration based on the amount of ultraviolet light absorbed by ozone while transmitting ultraviolet light, and the device immediately before the operation of producing ozone water by the electrolytic ozone water production device (10) The ozone water concentration of the raw water which does not substantially contain ozone is measured by the ozone concentration measuring means (M), and the measured value is set as a zero point of the ozone concentration and stored. Zero point storage means, and zero setting confirmation means (6) for confirming whether or not the zero point is set.
2), when the zero point setting is confirmed, an energization start means (65) for starting energization of the electrolysis apparatus of the electrolytic ozone water producing apparatus, and an ozone water concentration generated by the electrolytic ozone water producing apparatus (10). Is continuously measured by the ozone concentration measuring means (M), and the concentration determining means (68) determines whether or not the measured ozone water concentration is within a predetermined range.
A limit determining means (69) for determining whether the control element to be controlled is within a control limit when the density determining means (68) determines that the control element is out of the predetermined range; When it is determined by the means (69) that the control element is within the control limit, the control signal output means (70) for outputting a predetermined control signal, and the control element is controlled by the limit determination means (69). If it is determined that the temperature has reached the predetermined value, the process proceeds to a preset process (72) such as a regeneration process for the solid polymer electrolyte membrane of the electrolytic ozone water producing apparatus. Operation control device for the ozone water production system.
【請求項13】 前記制御要素が、電流値,電圧値,原
水供給量,固体高分子電解質膜に対する電極の押圧力で
あり、これらの1以上を所定の範囲内で制御する様にし
てなる請求項12に記載の電解式オゾン水製造装置の運
転制御装置。
13. The control element is a current value, a voltage value, a raw water supply amount, a pressing force of an electrode against a solid polymer electrolyte membrane, and one or more of these are controlled within a predetermined range. Item 13. An operation control device for an electrolytic ozone water producing apparatus according to Item 12.
【請求項14】 前記通電開始手段によって前記オゾン
水製造装置によるオゾン水の製造が開始された後、所定
時間(ts )が経過するまで前記オゾン濃度測定手段
(M)によるオゾン水濃度の測定を禁止する測定禁止手
段(66)が設けられている請求項12又は13に記載
の電解式オゾン水製造装置の運転制御装置。
14. After the production of ozone water by the ozone water production device is started by the energization start means, the ozone water concentration is measured by the ozone concentration measurement means (M) until a predetermined time (ts) elapses. The operation control device of the electrolytic ozone water producing apparatus according to claim 12 or 13, further comprising a measurement inhibiting means (66) for inhibiting the measurement.
JP2000067197A 2000-03-07 2000-03-07 Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus Expired - Lifetime JP3405707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067197A JP3405707B2 (en) 2000-03-07 2000-03-07 Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000067197A JP3405707B2 (en) 2000-03-07 2000-03-07 Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus

Publications (2)

Publication Number Publication Date
JP2001255271A true JP2001255271A (en) 2001-09-21
JP3405707B2 JP3405707B2 (en) 2003-05-12

Family

ID=18586431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067197A Expired - Lifetime JP3405707B2 (en) 2000-03-07 2000-03-07 Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus

Country Status (1)

Country Link
JP (1) JP3405707B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207056A (en) * 2007-02-23 2008-09-11 Tamura Teco:Kk Ozone water producing apparatus
JP2008209125A (en) * 2007-02-23 2008-09-11 Tamura Teco:Kk Dissolved ozone densitometer and vegetables washing method
JP2012041572A (en) * 2010-08-13 2012-03-01 Nikka Micron Kk Ozone water generator
JP2013200276A (en) * 2012-03-26 2013-10-03 Ihi Shibaura Machinery Corp Method of measuring dissolved ozone concentration in ozone water
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207056A (en) * 2007-02-23 2008-09-11 Tamura Teco:Kk Ozone water producing apparatus
JP2008209125A (en) * 2007-02-23 2008-09-11 Tamura Teco:Kk Dissolved ozone densitometer and vegetables washing method
JP4722868B2 (en) * 2007-02-23 2011-07-13 株式会社タムラテコ How to wash vegetables
JP2012041572A (en) * 2010-08-13 2012-03-01 Nikka Micron Kk Ozone water generator
JP2013200276A (en) * 2012-03-26 2013-10-03 Ihi Shibaura Machinery Corp Method of measuring dissolved ozone concentration in ozone water
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JP3405707B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
US5644070A (en) Ozone concentration sensor
US20160367775A1 (en) Systems And Methods for Compensating Long Term Sensitivity Drift Of Electrochemical Gas Sensors Exposed to Nitric Oxide
JPH11313885A (en) Dialyzed patient&#39;s blood parameter determining method and device therefor
JP2007024891A (en) Method of measuring presence and concentration of object to be measured, and gas sensor assembly
JP2001255271A (en) Ozone water concentration continuous measuring method and its device and operation control method and device of ozone water manufacturing device
CN1841059A (en) Method of checking the function of a sensor
JP2023552886A (en) Nitric oxide measurement
CA2240147C (en) A method and apparatus for measuring ethanol vapour concentration
JP4926650B2 (en) Continuous total organic carbon concentration measuring method and apparatus
JP2008008668A (en) Sensor element degradation determination apparatus and sensor element degradation determination method
JPH1015069A (en) System for predicting concentration of no2
US7949477B2 (en) Method for monitoring an arrangement for determining the concentration of an analyte in a body fluid
EP2853888A2 (en) Measuring method for chlorine and pH
JP3934546B2 (en) Photometric device
JP4232186B2 (en) Apparatus and method for measuring dissolved nitrogen concentration in ultrapure water
JPH091138A (en) Detection of end point of ion exchange type pure water-producing apparatus
JP3209488B2 (en) End point detection method and apparatus for ion exchange type pure water production equipment
JP2019211293A (en) Starting method of gas sensor and gas sensor
JP2000221165A (en) Apparatus for measuring concentration of residual chlorine
JPH0692960B2 (en) Method for measuring pH of electric plating solution
JP2010175320A (en) Gas detector
JP2010032453A (en) Concentration measuring device of electrolyte solution and water softening system
US20180328839A1 (en) Online linearization of an optical sensor
JPS59128432A (en) Gas concentration measuring device
WO2023281815A1 (en) Method for measuring dissolved gas concentration, apparatus for measuring dissolved hydrogen concentration, and apparatus for producing water for preparation of dialysate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3405707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

EXPY Cancellation because of completion of term