JP2001174431A - Apparatus and method for measuring residual chlorine concentration in acidic liquid - Google Patents

Apparatus and method for measuring residual chlorine concentration in acidic liquid

Info

Publication number
JP2001174431A
JP2001174431A JP36227899A JP36227899A JP2001174431A JP 2001174431 A JP2001174431 A JP 2001174431A JP 36227899 A JP36227899 A JP 36227899A JP 36227899 A JP36227899 A JP 36227899A JP 2001174431 A JP2001174431 A JP 2001174431A
Authority
JP
Japan
Prior art keywords
working electrode
residual chlorine
potential
electrode
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36227899A
Other languages
Japanese (ja)
Inventor
Fumio Nakayama
文雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP36227899A priority Critical patent/JP2001174431A/en
Publication of JP2001174431A publication Critical patent/JP2001174431A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for measuring the residual chlorine concentration in an acidic liquid capable of easily and stably measuring the residual chlorine concentration even when a liquid to be measured is in ether of a water flow state and a static water state. SOLUTION: The apparatus for measuring residual chlorine concentration in an acidic liquid comprises a controller 11 for controlling a voltage between a working electrode 3 and a reference electrode 5 to a predetermined voltage, and an arithmetic unit 9 for calculating the residual chlorine concentration from a current value. The apparatus further comprises a flow rate sensor 10 for detecting whether the liquid to be measured is the water flow rate or the static water state. When the sensor 10 senses the water flow rate of the liquid, the controller 11 applies a predetermined voltage corresponding to the maximum value of an electrolytic reduction current to detect the mean value of the reduction current. When the sensor 10 senses a static water state, the controller 11 sweeps the voltage between the electrodes 3 and 5 to detect the maximum value of the electrolytic reduction current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸性を示す被測定
液、特にpHが5.5以下の酸性の被処理液に含まれる
残留塩素の濃度を作用電極での還元反応により求める装
置に係り、被測定液が通水状態又は静水状態のどちらの
状態にあるかを判断して高精度の検出を可能にする酸性
液中の残留塩素濃度測定装置及び測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for determining the concentration of residual chlorine contained in a liquid to be measured exhibiting acidity, particularly, an acidic liquid to be treated having a pH of 5.5 or less by a reduction reaction at a working electrode. The present invention also relates to an apparatus and a method for measuring the concentration of residual chlorine in an acidic liquid, which makes it possible to determine whether the liquid to be measured is in a flowing state or a still water state and to perform highly accurate detection.

【0002】[0002]

【従来の技術】近年、被測定液に含まれる測定対象成分
を管路内に設けた作用電極と対極とを用いて、電解酸化
または還元させ、その時に流れる電流値の濃度依存性を
利用して濃度を連続して測定する種々の装置が開発され
ている。
2. Description of the Related Art In recent years, components to be measured contained in a liquid to be measured are electrolytically oxidized or reduced by using a working electrode and a counter electrode provided in a pipe, and the concentration dependence of a current value flowing at that time is utilized. Various devices have been developed for continuously measuring concentrations.

【0003】特開平8−278284号公報(以下イ号
公報という)には、筒状フィルタの内部に試料液管路、
外側に対極室を形成し、試料液管路に作用電極をフィル
タに接触させて配置することで装置の構造的強度を高
め、かつ作用電極と対極との位置関係を安定化させるこ
とで測定精度の安定性を高めることができるように構成
された測定装置が開示されている。
[0003] Japanese Patent Application Laid-Open No. 8-278284 (hereinafter referred to as “A”) discloses a sample liquid pipe inside a cylindrical filter.
A counter electrode chamber is formed on the outside, and the working electrode is placed in contact with the filter in the sample liquid line to increase the structural strength of the device and to stabilize the positional relationship between the working electrode and the counter electrode for measurement accuracy. There is disclosed a measuring device configured so as to be able to increase the stability of the measuring device.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の装
置は、以下の課題を有していた。
However, the conventional apparatus has the following problems.

【0005】(1)イ号公報に記載の測定装置は、構造
的強度の向上により耐久性を持たせ、かつ電極間の位置
関係を安定させたことで高精度測定を図るものである
が、管路内の被測定液の流量が変化するとそれに伴い電
極間の酸化還元電流値も変化するため、連続的にかつ安
定して被測定液中の対象物質の濃度を計測するためには
管路内の流量を一定に規制するために流量調整弁などの
機構等を付加するなどの必要があった。
[0005] (1) The measuring device described in the Japanese Patent Publication No. A is intended to provide high durability by improving the structural strength and to stabilize the positional relationship between the electrodes. When the flow rate of the liquid to be measured in the pipe changes, the oxidation-reduction current value between the electrodes also changes.Therefore, in order to continuously and stably measure the concentration of the target substance in the liquid to be measured, the pipe is required. It was necessary to add a mechanism such as a flow control valve in order to regulate the flow rate in the chamber to a constant value.

【0006】(2)被測定液が通水時と静水時の場合と
では残留塩素の還元電流特性が異なり、酸性を示す被処
理液であれば、どのような場合でも残留塩素濃度を測定
するこはできなかった。
(2) The reduction current characteristic of residual chlorine is different between the case where the liquid to be measured is flowing water and the case where the liquid is still water, and the residual chlorine concentration is measured in any case of the liquid to be treated which shows acidity. I couldn't do this.

【0007】本発明は上記従来の問題点を解決するもの
で、被測定液が通水状態、静水状態のいずれであっても
容易にかつ安定して残留塩素濃度を測定できる酸性液中
の残留塩素濃度測定装置及び測定方法を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and it is easy to measure the residual chlorine concentration easily and stably even when the liquid to be measured is in a flowing state or a still water state. An object of the present invention is to provide a chlorine concentration measuring device and a measuring method.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、本発明の酸性液中の残留塩素濃度測定装置は、被測
定液が導入されるセルと、前記セル内に設けられた作用
電極、対極及び前記作用電極の電位を所定の電位にする
ための基準となる電位を発生する参照電極と、前記参照
電極に対する前記作用電極の電位を所定の電位に制御す
るために前記作用電極と前記対極間の電圧を調整する可
変電源部と、前記作用電極を流れる電流値を検出できる
電流検知部と、前記可変電源部を制御して、前記作用電
極と前記参照電極間の電圧を所定の電圧に制御する制御
部と、前記電流値から残留塩素濃度を算出する演算部と
を備えた酸性液中の残留塩素濃度測定装置であって、前
記被測定液が通水状態か静水状態かを検出できる流量検
知部を備え、前記流量検知部が通水状態であることを検
知すると、前記制御部が電解還元電流の最大値に対応し
た所定の電圧を印加して前記電解還元電流の平均値を検
出し、前記流量検知部が静水状態を検知すると前記制御
部が前記作用電極と前記参照電極間の電圧を掃引して前
記電解還元電流の極大値を検出することを特徴としてい
る。
In order to achieve this object, the apparatus for measuring the residual chlorine concentration in an acidic solution according to the present invention comprises a cell into which a liquid to be measured is introduced, and a working electrode provided in the cell. A reference electrode that generates a reference potential for setting the potential of the counter electrode and the working electrode to a predetermined potential, and the working electrode and the working electrode for controlling the potential of the working electrode with respect to the reference electrode to a predetermined potential. A variable power supply unit for adjusting the voltage between the counter electrodes, a current detection unit capable of detecting a current value flowing through the working electrode, and controlling the variable power supply unit so that a voltage between the working electrode and the reference electrode is a predetermined voltage. A residual chlorine concentration measuring apparatus for measuring the residual chlorine concentration in an acidic solution, comprising: a control unit for controlling the residual liquid concentration in the acidic liquid; and a calculating unit for calculating the residual chlorine concentration from the current value. Equipped with a flow rate detector capable of When the amount detection unit detects that the water is flowing, the control unit applies a predetermined voltage corresponding to the maximum value of the electrolytic reduction current to detect the average value of the electrolytic reduction current, and the flow rate detection unit When detecting a hydrostatic state, the control unit sweeps a voltage between the working electrode and the reference electrode to detect a local maximum value of the electrolytic reduction current.

【0009】これにより、被測定液が通水状態、静水状
態のいずれであっても容易にかつ安定して残留塩素濃度
を測定することができる。
Thus, the residual chlorine concentration can be easily and stably measured regardless of whether the liquid to be measured is in a flowing state or a still water state.

【0010】[0010]

【発明の実施の形態】請求項1に記載の酸性液中の残留
塩素濃度測定装置は、被測定液が導入されるセルと、前
記セル内に設けられた作用電極、対極及び前記作用電極
の電位を所定の電位にするための基準となる電位を発生
する参照電極と、前記参照電極に対する前記作用電極の
電位を所定の電位に制御するために前記作用電極と前記
対極間の電圧を調整する可変電源部と、前記作用電極を
流れる電流値を検出できる電流検知部と、前記可変電源
部を制御して、前記作用電極と前記参照電極間の電圧を
所定の電圧に制御する制御部と、前記電流値から残留塩
素濃度を算出する演算部とを備えた酸性液中の残留塩素
濃度測定装置であって、前記被測定液が通水状態か静水
状態かを検出できる流量検知部を備え、前記流量検知部
が通水状態であることを検知すると、前記制御部が電解
還元電流の最大値に対応した所定の電圧を印加して前記
電解還元電流の平均値を検出し、前記流量検知部が静水
状態を検知すると前記制御部が前記作用電極と前記参照
電極間の電圧を掃引して前記電解還元電流の極大値を検
出するように構成されている。
An apparatus for measuring the concentration of residual chlorine in an acidic liquid according to the present invention comprises a cell into which a liquid to be measured is introduced, a working electrode provided in the cell, a counter electrode, and the working electrode. A reference electrode for generating a reference potential for setting the potential to a predetermined potential; and adjusting a voltage between the working electrode and the counter electrode to control the potential of the working electrode with respect to the reference electrode to a predetermined potential. A variable power supply unit, a current detection unit that can detect a current value flowing through the working electrode, a control unit that controls the variable power supply unit, and controls a voltage between the working electrode and the reference electrode to a predetermined voltage, A residual chlorine concentration measurement device in an acidic liquid, comprising a calculation unit for calculating a residual chlorine concentration from the current value, comprising a flow rate detection unit capable of detecting whether the liquid to be measured is in a flowing state or a still water state, The flow rate detector is in a water-passing state. When the control unit detects the average value of the electrolytic reduction current by applying a predetermined voltage corresponding to the maximum value of the electrolytic reduction current, and when the flow rate detection unit detects a hydrostatic state, the control unit The voltage between the working electrode and the reference electrode is swept to detect a maximum value of the electrolytic reduction current.

【0011】これによって以下の作用が得られる。As a result, the following effects can be obtained.

【0012】(a)被測定液の流量を検知する流量検知
部と、作用電極及び参照電極間の電位を所定値に設定す
る可変電源部の制御部を備えているので、制御部がセル
内の被処理液が静水状態が通水状態かを判断して、それ
ぞれの状態で最適の測定を行うことができる。
(A) Since the control unit includes a flow rate detection unit for detecting the flow rate of the liquid to be measured and a control unit for a variable power supply unit for setting the potential between the working electrode and the reference electrode to a predetermined value, the control unit is provided inside the cell. It is possible to determine whether the liquid to be treated is in a hydrostatic state or a flowing state, and to perform optimal measurement in each state.

【0013】(b)被測定液の流量信号が実質的にゼロ
に等しいときには、被測定液が静水状態にあるので、参
照電極に対する作用電極の電位を一定速度で掃引し、電
位変化によって得られる電流値変化から電流の極大値を
検出するから、この極大値を与える電位が被測定液中の
残留塩素濃度を検出するための最適な電位として利用で
きる。
(B) When the flow rate signal of the liquid to be measured is substantially equal to zero, since the liquid to be measured is in a hydrostatic state, the potential of the working electrode with respect to the reference electrode is swept at a constant speed and obtained by a change in potential. Since the maximum value of the current is detected from the change in the current value, the potential giving this maximum value can be used as the optimal potential for detecting the residual chlorine concentration in the liquid to be measured.

【0014】ここで、被測定液としては、その水素イオ
ン濃度指数(pH)は5.5以下である酸性域のものを
用いる。この領域ではpHに対してCl2とHClOが
共存し、ClO-は存在しなくなる。そこで、液中のC
2の還元電流を測定すれば、存在比率から全残留濃度
が測定できる。なお、pHが2より低い場合には、強い
酸性により、装置に耐酸性が要求され、製造コストが高
くなるので好ましくない。逆にpHが5.5を超えるよ
うな被測定液を用いる場合には、例えば作用電極と参照
電極間の電位を一定速度で増加させたときに、作用電極
及び対極間の電流値に極大値が現れる傾向が少なくなる
ので、検出が難しくなる。
Here, as the liquid to be measured, a liquid in an acidic region whose hydrogen ion concentration index (pH) is 5.5 or less is used. In this region coexist Cl 2 and HClO against pH, ClO - is no longer present. Therefore, C in the liquid
If the reduction current of l 2 is measured, the total residual concentration can be measured from the abundance ratio. In addition, when the pH is lower than 2, strong acidity requires acid resistance of the device, which increases the production cost, which is not preferable. Conversely, when a liquid to be measured whose pH exceeds 5.5 is used, for example, when the potential between the working electrode and the reference electrode is increased at a constant rate, the current value between the working electrode and the counter electrode becomes a maximum value. Is less likely to appear, making detection difficult.

【0015】(c)被測定液の流量信号がゼロを超える
ときには、被測定液が通水状態であるので、参照電極に
対する作用電極の電位を所定の電位に制御して、電解還
元電流の時間平均に基づいて残留塩素濃度を換算するか
ら、通水時でも高精度の濃度測定が可能になる。
(C) When the flow rate signal of the liquid to be measured exceeds zero, the liquid to be measured is in a flowing state, so that the potential of the working electrode with respect to the reference electrode is controlled to a predetermined potential, and the time of the electrolytic reduction current is reduced. Since the residual chlorine concentration is converted based on the average, highly accurate concentration measurement can be performed even when water is passed.

【0016】作用電極は、白金、金、カーボン等の固体
電極からなる。また、対極は、その材質を作用電極と同
じ種類の固体電極として構成され、作用電極に対して1
0〜100倍程度の十分大きな表面積を持たせるように
するのが望ましい。これによって作用電極での還元反応
をスムーズかつ効率的に起こさせることができる。な
お、対極と、これに対向して配置される作用電極との間
隔は5〜20mmとすることが好ましい。
The working electrode comprises a solid electrode of platinum, gold, carbon, or the like. The counter electrode is formed of a solid electrode of the same material as that of the working electrode.
It is desirable to have a sufficiently large surface area of about 0 to 100 times. This allows the reduction reaction at the working electrode to occur smoothly and efficiently. The distance between the counter electrode and the working electrode disposed opposite thereto is preferably 5 to 20 mm.

【0017】参照電極は、例えばセル中に配置され、例
えば支持塩として塩化カリウムを含む内部液と、被測定
液の水素イオン濃度に依らず一定の電位を生じる電気的
安定性の高いカロメル電極、Pt電極、Ag/AgCl
電極等がからなる基準電極と、内部液と基準電極を収納
する容器と、被測定液と内部液に接し、導通性を持たせ
るための吸水性を有する多孔質ポリエチレン、多孔質ポ
リエステル、多孔質アクリル等の多孔質高分子、吸水性
を有するアルミナ系、シリカ系、ジルコニア系等の多孔
質セラミックからなる液絡とから構成されている。な
お、以上の材質の参照電極を用いるのが望ましいが、代
用が可能であればその他の構成、又は材質のものでもよ
い。作用電極、対極および参照電極の材質および組合せ
は、還元電流を得る構成の材質であればよく、特に限定
されるものではない。
The reference electrode is disposed, for example, in a cell, and comprises, for example, an internal solution containing potassium chloride as a supporting salt, a calomel electrode having a high electric stability which generates a constant potential regardless of the hydrogen ion concentration of the solution to be measured, Pt electrode, Ag / AgCl
A reference electrode composed of electrodes and the like, a container for accommodating the internal liquid and the reference electrode, and a porous polyethylene, a porous polyester, and a porous material that are in contact with the liquid to be measured and the internal liquid and have water absorbency for imparting conductivity. It is composed of a porous polymer such as acryl and a liquid junction made of a porous ceramic such as alumina, silica or zirconia having water absorbency. Although it is desirable to use a reference electrode made of the above material, any other configuration or material may be used as long as substitution is possible. The material and combination of the working electrode, the counter electrode, and the reference electrode are not particularly limited as long as they are materials having a configuration for obtaining a reduction current.

【0018】流量検知部は、例えば流速の変化による圧
力差を測定する絞り流量計、電磁誘導現象を利用した電
磁流量計、流体の振動現象を利用した渦流量計、流体に
より作用する力を利用したタービン流量計等を用いるこ
とができ、この出力を電気信号に変換した流量信号を制
御部で取得することができる。
The flow rate detecting unit is, for example, a throttle flow meter that measures a pressure difference due to a change in flow velocity, an electromagnetic flow meter that uses an electromagnetic induction phenomenon, a vortex flow meter that uses a vibration phenomenon of a fluid, and a force that acts on the fluid. A flow rate signal obtained by converting the output into an electric signal can be obtained by the control unit.

【0019】ここで、通水状態と静水状態とにおける測
定原理及び測定方法の違いについて説明する。電気化学
的に濃度測定を行うのは濃度測定の常套手段である。こ
の内、残留塩素濃度の測定に関して、pHがどのような
値を持つかで、残留塩素濃度を測定するのに、液体中の
塩素ガスCl2とHClO、ClO-とHClOはpH毎
にどちらかの組み合わせが存在し、かつ、そのpHでは
それぞれが平衡しており、その電解還元電流を測定すれ
ば換算で残留塩素濃度を算出できる。但し、このHCl
Oは電極反応に寄与しない。そして、Cl2とHClO
の組み合わせはpHが5.5以下に存在し、ClO-
HClOの組み合わせはpHが5.5以上に存在する。
従って、pH5.5以下の酸性液、従って概ねほとんど
の酸性液の残留塩素濃度測定装置は、Cl2を測定すれ
ば、残留塩素全体の濃度測定が可能になる。
Here, the difference between the measurement principle and the measurement method in the flowing state and the still water state will be described. Performing concentration measurement electrochemically is a common means of concentration measurement. Of this, regarding the measurement of residual chlorine concentration, in either has any value pH is to measure the residual chlorine concentration, chlorine gas Cl 2 and HClO in the liquid, ClO - and HClO are either each pH And their equilibrium at their pH, and the residual chlorine concentration can be calculated in terms of conversion by measuring the electrolytic reduction current. However, this HCl
O does not contribute to the electrode reaction. And Cl 2 and HClO
Is present at a pH of 5.5 or less, and the combination of ClO 2 - and HClO is present at a pH of 5.5 or more.
Therefore, the apparatus for measuring the residual chlorine concentration of an acidic solution having a pH of 5.5 or less, and thus almost all acidic solutions, can measure the concentration of the entire residual chlorine by measuring Cl 2 .

【0020】液中の塩素ガス(Cl2)を測定する場
合、測定装置が通水状態で測定するのと、静水状態で測
定するのとでは換算方法が以下のように異なっている。
When measuring chlorine gas (Cl 2 ) in a liquid, the conversion method is different between the measurement in a flowing state and the measurement in a still water state as follows.

【0021】通水状態では、通水量が変化すると換算式
が変化する。即ち、所定の還元電位(還元電流の中で極
大値を与える電位で、Cl2の場合+0.4V(参照電
極がAg/AgClのとき))を印加して流れる電解還
元電流(通水量の変化に対応した各還元電流の経時変化
は若干の変動があるもののほぼ一定で直線状に変化す
る。そこでこの間の平均値を測定値として採用する。)
から残留塩素濃度を換算することができる。通水状態で
は電極周りに新しい液体が補給され、測定すべき塩素ガ
スが電極の周囲で常時十分な状態であり、これが経時変
化のほとんどない理由であり、還元反応が激しく起こる
上記の還元電位では電解還元電流の平均値が他の電位の
電解還元電流と比較して極大値を持つことになる。
In the water flow state, the conversion formula changes when the water flow rate changes. That is, a predetermined reduction potential (a potential giving a maximum value among the reduction currents, +0.4 V in the case of Cl 2 (when the reference electrode is Ag / AgCl)) is applied to flow the electrolytic reduction current (change in water flow rate) The change with time of each reduction current corresponding to (1) varies linearly and almost constant, although there is a slight variation. Therefore, the average value during this period is adopted as the measured value.)
Can be used to calculate the residual chlorine concentration. In the flowing state, new liquid is replenished around the electrode, and the chlorine gas to be measured is always sufficient around the electrode, which is the reason that there is almost no change with time. The average value of the electrolytic reduction current has a maximum value as compared with the electrolytic reduction current of another potential.

【0022】静水状態では、作用電極と参照電極間の電
圧を掃引して極大値を検出し、この極大値を与える電流
値から濃度を換算する(掃引電位に対する還元電流の変
化は極大値を持つ曲線となる)静水状態であるから、電
極の周囲のイオンがまず拡散し、次いで液中の塩素ガス
Cl2が拡散して電子を電極で受け取って還元反応を起
こし、極大値を形成した後、反応が終了する。なお、C
lO-を測定する場合は、還元電流にCl2を測定すると
きに利用できる極大値が出現し難くなる傾向にある。
In the hydrostatic state, the voltage between the working electrode and the reference electrode is swept to detect a local maximum value, and the concentration is converted from the current value giving the local maximum value (the change in the reduction current with respect to the sweep potential has a local maximum value). Since it is in a hydrostatic state, ions around the electrode diffuse first, then chlorine gas Cl 2 in the liquid diffuses, receives electrons at the electrode, causes a reduction reaction, and forms a maximum value. The reaction ends. Note that C
lO - When measuring tend to maximum value that can be used when measuring the Cl 2 in reduction current is less likely to appear.

【0023】請求項2に記載の酸性液中の残留塩素濃度
測定装置は、被測定液が導入されるセルと、前記セル内
に設けられた作用電極、対極及び前記作用電極の電位を
所定の電位にするための基準となる電位を発生する参照
電極と、前記参照電極に対する前記作用電極の電位を所
定の電位に制御するために前記作用電極と前記対極間の
電圧を調整する可変電源部と、前記作用電極を流れる電
流値を検出できる電流検知部と、前記可変電源部を制御
して、前記作用電極と前記参照電極間の電圧を所定の電
圧に制御する制御部と、前記電流値から残留塩素濃度を
算出する演算部とを備えた酸性液中の残留塩素濃度測定
装置であって、前記被測定液が通水状態か静水状態かを
検出できる流量検知部を備え、前記流量検知部が通水状
態であることを検知すると、前記制御部が電解還元電流
の最大値に対応した所定の電圧を印加して前記電解還元
電流の平均値を検出するように構成されている。
According to a second aspect of the present invention, there is provided an apparatus for measuring the concentration of residual chlorine in an acidic liquid, wherein a cell into which the liquid to be measured is introduced, and a potential of a working electrode, a counter electrode, and the working electrode provided in the cell are set to predetermined values. A reference electrode that generates a reference potential for setting a potential, and a variable power supply unit that adjusts a voltage between the working electrode and the counter electrode to control a potential of the working electrode with respect to the reference electrode to a predetermined potential. A current detection unit that can detect a current value flowing through the working electrode, a control unit that controls the variable power supply unit to control a voltage between the working electrode and the reference electrode to a predetermined voltage, and A residual chlorine concentration measuring apparatus for measuring the residual chlorine concentration in an acidic liquid, comprising: a calculating unit for calculating the residual chlorine concentration, wherein the flow rate detecting unit includes a flow rate detecting unit capable of detecting whether the measured liquid is in a flowing state or a still water state. Check that Then, the control unit is configured to detect an average value of a predetermined said electrolytic reduction current voltage is applied to corresponding to the maximum value of the electrolytic reduction current.

【0024】これによって、以下の作用が得られる。As a result, the following effects can be obtained.

【0025】被測定液の流量を検知する流量検知部と、
作用電極及び参照電極間の電位を所定値に設定する可変
電源部の制御部を備えているので、制御部がセル内の被
処理液が静水状態が通水状態かを判断して、通水状態の
ときに通水時に最適となる測定を行うから、静水状態で
通水時に最適の制御をするようなことがない。
A flow rate detector for detecting the flow rate of the liquid to be measured;
Since the control unit of the variable power supply unit that sets the potential between the working electrode and the reference electrode to a predetermined value is provided, the control unit determines whether the liquid to be treated in the cell is in a hydrostatic state or not. Since optimal measurement is performed when water is passed in the state, optimal control is not performed when water is passed in the still water state.

【0026】請求項3に記載の酸性液中の残留塩素濃度
測定装置は、請求項1又は2において、前記流量検知部
が検出した流量検知信号によって前記演算部が前記平均
値を補正して残留塩素濃度を算出するように構成されて
いる。
According to a third aspect of the present invention, in the apparatus for measuring a residual chlorine concentration in an acidic liquid according to the first or second aspect, the arithmetic unit corrects the average value based on the flow rate detection signal detected by the flow rate detection unit, and the residual value is determined. It is configured to calculate the chlorine concentration.

【0027】これによって、請求項1又は2の作用の
他、以下の作用が得られる。
Thus, the following operation is obtained in addition to the operation of the first or second aspect.

【0028】通水時には被測定液の流量が変化しても、
流量の変化に対応して残留塩素濃度を補正することがで
きる。
At the time of passing water, even if the flow rate of the liquid to be measured changes,
The residual chlorine concentration can be corrected according to the change in the flow rate.

【0029】請求項4に記載の酸性液中の残留塩素濃度
測定装置は、被測定液が導入されるセルと、前記セル内
に設けられた作用電極、対極及び前記作用電極の電位を
所定の電位にするための基準となる電位を発生する参照
電極と、前記参照電極に対する前記作用電極の電位を所
定の電位に制御するために前記作用電極と前記対極間の
電圧を調整する可変電源部と、前記作用電極を流れる電
流値を検出できる電流検知部と、前記可変電源部を制御
して、前記作用電極と前記参照電極間の電圧を所定の電
圧に制御する制御部と、前記電流値から残留塩素濃度を
算出する演算部とを備えた酸性液中の残留塩素濃度測定
装置であって、前記被測定液が通水状態か静水状態かを
検出できる流量検知部を備え、前記流量検知部が静水状
態を検知すると前記制御部が前記作用電極と前記参照電
極間の電圧を掃引して前記電解還元電流の極大値を検出
するように構成されている。
According to a fourth aspect of the present invention, there is provided an apparatus for measuring the concentration of residual chlorine in an acidic solution, wherein a cell into which the liquid to be measured is introduced, and a potential of a working electrode, a counter electrode, and the working electrode provided in the cell are set to predetermined values. A reference electrode that generates a reference potential for setting a potential, and a variable power supply unit that adjusts a voltage between the working electrode and the counter electrode to control a potential of the working electrode with respect to the reference electrode to a predetermined potential. A current detection unit that can detect a current value flowing through the working electrode, a control unit that controls the variable power supply unit to control a voltage between the working electrode and the reference electrode to a predetermined voltage, and A residual chlorine concentration measuring apparatus for measuring the residual chlorine concentration in an acidic liquid, comprising: a calculating unit for calculating the residual chlorine concentration, wherein the flow rate detecting unit includes a flow rate detecting unit capable of detecting whether the measured liquid is in a flowing state or a still water state. Before detecting a still water condition Controller by sweeping the voltage between the reference electrode and the working electrode is configured to detect a maximum value of the electrolytic reduction current.

【0030】これによって、以下の作用が得られる。As a result, the following effects can be obtained.

【0031】被測定液の流量を検知する流量検知部と、
作用電極と参照電極間の電位を所定値に設定する可変電
源部の制御部を備えているので、制御部がセル内の被処
理液が静水状態が通水状態かを判断して、静水状態のと
きに静水時に最適となる測定を行うから、通水状態で静
水時に最適の制御をするようなことがない。
A flow rate detector for detecting the flow rate of the liquid to be measured;
Since the control unit of the variable power supply unit that sets the potential between the working electrode and the reference electrode to a predetermined value is provided, the control unit determines whether the liquid to be treated in the cell is in a hydrostatic state or not, and In this case, the optimum measurement is performed when the water is still.

【0032】請求項5に記載の酸性液中の残留塩素濃度
測定装置は、請求項1乃至4のいずれか1項において、
前記電流値を残留塩素濃度に換算する換算テーブルが通
水状態と静水状態に対応してそれぞれ設けられると共
に、前記演算部が前記流量検知部からの流量信号に基づ
いて一の換算テーブルを選択して残留塩素濃度を算出す
るように構成されている。
According to a fifth aspect of the present invention, there is provided an apparatus for measuring the concentration of residual chlorine in an acidic liquid according to any one of the first to fourth aspects.
A conversion table for converting the current value to the residual chlorine concentration is provided for each of the flowing state and the still water state, and the calculation unit selects one conversion table based on a flow signal from the flow detection unit. To calculate the residual chlorine concentration.

【0033】これによって、請求項1乃至4のいずれか
の作用の他、以下の作用が得られる。即ち、静水状態と
通水状態に対応して換算テーブルを設けているから、流
量信号に応じて直ちに静水状態、通水状態の換算テーブ
ルを選択することができ、通水状態のときには流量信号
から流量を把握して流量に対応した補正を換算テーブル
上で行うことができる。
Thus, in addition to the function of any one of claims 1 to 4, the following function is obtained. That is, since the conversion table is provided corresponding to the still water state and the water flow state, the conversion table of the still water state and the water flow state can be immediately selected according to the flow rate signal. The flow rate can be grasped and the correction corresponding to the flow rate can be performed on the conversion table.

【0034】請求項6に記載の酸性液中の残留塩素濃度
測定方法装置は、請求項1乃至5のいずれか1項におい
て、前記参照電極に対する前記作用電極の電位を検出す
る電圧検出部を備え、前記電圧検出部で検出した電位に
前記制御部が前記可変電源部の電圧を制御するように構
成されている。
According to a sixth aspect of the present invention, there is provided a method for measuring a residual chlorine concentration in an acidic liquid according to any one of the first to fifth aspects, further comprising a voltage detecting unit for detecting a potential of the working electrode with respect to the reference electrode. The control unit is configured to control the voltage of the variable power supply unit to a potential detected by the voltage detection unit.

【0035】これによって、請求項1乃至5のいずれか
の作用の他、以下の作用が得られる。即ち、参照電極に
対する作用電極の電位を検出する電圧検出部を備えてい
るので、印加している電圧状態が把握できるため測定異
常を発見し易くできる。
Thus, in addition to the function of any one of the first to fifth aspects, the following function can be obtained. That is, since the voltage detecting unit for detecting the potential of the working electrode with respect to the reference electrode is provided, the applied voltage state can be grasped, so that a measurement abnormality can be easily found.

【0036】請求項7に記載の酸性液中の残留塩素濃度
測定方法は、被測定液が入れらるセル内が通水状態か静
水状態かを検知し、通水状態である場合には作用電極と
参照電極間に電解還元電流の最大値に対応した所定の電
圧を印加して前記電解還元電流の平均値を検出し、静水
状態である場合は前記作用電極と前記参照電極間の電圧
を掃引して前記電解還元電流の極大値を検出し、前記平
均値又は前記極大値から残留塩素濃度を換算するように
構成されている。
The method for measuring the residual chlorine concentration in an acidic liquid according to the present invention detects whether the cell in which the liquid to be measured is put is in a flowing state or a still water state, and operates when the cell is in a flowing state. An average value of the electrolytic reduction current is detected by applying a predetermined voltage corresponding to the maximum value of the electrolytic reduction current between the electrode and the reference electrode, and when in a hydrostatic state, the voltage between the working electrode and the reference electrode is determined. The maximum value of the electrolytic reduction current is detected by sweeping, and the residual chlorine concentration is converted from the average value or the maximum value.

【0037】これによって、以下の作用が得られる。As a result, the following effects can be obtained.

【0038】セル内が通水状態か静水状態かを検知し、
それぞれの状態で最適で固有の測定方法を採用し、精度
の高い残留塩素濃度を算出することができる。
Detecting whether the inside of the cell is in a water passing state or a still water state,
It is possible to calculate the residual chlorine concentration with high accuracy by adopting an optimal and unique measurement method in each state.

【0039】以下、本発明の実施の形態について、図1
〜図5を用いて説明する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG.

【0040】(実施の形態1)図1は本発明の実施の形
態1の残留塩素濃度測定装置を示す構成図である。
(Embodiment 1) FIG. 1 is a configuration diagram showing a residual chlorine concentration measuring apparatus according to Embodiment 1 of the present invention.

【0041】図1において、1は被測定液が通水され、
被測定液中の残留塩素濃度を計測するためのセル、2は
セル1内に残留塩素等を含む被測定液を導入、排出する
ための管路、3は被測定液の電極反応により被測定液中
に含まれる残留塩素を検出するための作用電極、4はセ
ル1内に固定され、作用電極3と電気的に接続されてい
る対極、5は作用電極3の電位の基準となる参照電極、
6は参照電極5を基準として作用電極3と参照電極5と
の電位差を示す電圧検出部となる電圧計、7は作用電極
3と対極4との間の電圧を可変制御する可変電源部、8
は作用電極3上での電極反応で生じる電解還元電流を測
定するための電流検出部、9は電流検出部8で測定され
た電解還元電流に基づいて残留塩素濃度を演算する演算
部、10は被測定液が流れるセル1の内部或いは管路2
のいずれかに配置され、セル1内の被測定液が静水状態
か通水状態かを検知し、通水状態のときには流量に対応
した流量信号を出力できる流量検知部、11は流量検知
部10から出力された流量信号に基づいて可変電源部7
を制御し、作用電極3と参照電極5との電位差を制御す
るための制御部である。
In FIG. 1, reference numeral 1 denotes the passage of the liquid to be measured,
A cell for measuring the residual chlorine concentration in the liquid to be measured, a pipe 2 for introducing and discharging the liquid to be measured containing residual chlorine and the like into the cell 1, and a cell 3 for measuring by the electrode reaction of the liquid to be measured. A working electrode 4 for detecting residual chlorine contained in the liquid, a counter electrode 4 is fixed in the cell 1 and is electrically connected to the working electrode 3, and a reference electrode 5 is a reference of the potential of the working electrode 3. ,
Reference numeral 6 denotes a voltmeter serving as a voltage detecting unit that indicates a potential difference between the working electrode 3 and the reference electrode 5 with reference to the reference electrode 5; 7, a variable power supply unit that variably controls a voltage between the working electrode 3 and the counter electrode 4;
Is a current detector for measuring an electrolytic reduction current generated by an electrode reaction on the working electrode 3; 9 is a calculator for calculating the residual chlorine concentration based on the electrolytic reduction current measured by the current detector 8; Inside the cell 1 or pipe 2 through which the liquid to be measured flows
And a flow detecting unit which detects whether the liquid to be measured in the cell 1 is in a hydrostatic state or a flowing state, and can output a flow signal corresponding to the flow rate in the flowing state. Power supply unit 7 based on the flow signal output from
And a controller for controlling the potential difference between the working electrode 3 and the reference electrode 5.

【0042】このように構成された酸性液中の残留塩素
濃度測定装置について、その動作等を図2〜5を用いて
説明する。
The operation and the like of the apparatus for measuring the concentration of residual chlorine in an acidic liquid thus constructed will be described with reference to FIGS.

【0043】図2は静水状態で参照電極に対する作用電
極の電位Vを一定の掃引速度で掃引したときの還元電流
値Aと電位Vとの関係を示すグラフであり、図3はこの
時の還元電流値Aと残留塩素濃度Cとの関係を示すグラ
フである。図4は通水状態で参照電極に対する作用電極
の電位Vを一定に保持したときの還元電流値Aと時間T
との関係を示すグラフであり、図5はこの時の還元電流
値Aと残留塩素濃度Cとの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the reduction current value A and the potential V when the potential V of the working electrode with respect to the reference electrode is swept at a constant sweep rate in a hydrostatic state. FIG. 4 is a graph showing a relationship between a current value A and a residual chlorine concentration C. FIG. 4 shows the reduction current value A and the time T when the potential V of the working electrode with respect to the reference electrode is kept constant in the flowing state.
FIG. 5 is a graph showing the relationship between the reduction current value A and the residual chlorine concentration C at this time.

【0044】図1に示すように、残留塩素を含み酸性域
にある被測定液が管路2によりセル1内に導入される。
セル1内には、被測定液の電極反応により残留塩素の濃
度を検出するための作用電極3と、作用電極3に対向し
て配置される対極4と、作用電極3の電位の基準となる
参照電極5とが浸漬配置されている。
As shown in FIG. 1, a liquid to be measured containing residual chlorine and located in an acidic region is introduced into a cell 1 through a pipe 2.
In the cell 1, a working electrode 3 for detecting the concentration of residual chlorine by an electrode reaction of the liquid to be measured, a counter electrode 4 disposed opposite to the working electrode 3, and a reference for the potential of the working electrode 3. The reference electrode 5 is immersed in the arrangement.

【0045】作用電極3と対極4とは電気的に接続さ
れ、作用電極3には参照電極5に対して所定の電位Vが
印加されているので、セル1内に被測定液を導入するこ
とにより、被測定液の通水状態又は残留塩素濃度に応じ
て作用電極3と対極4間には電解還元電流が流れて、そ
の時に発生した還元電流値の濃度依存性を利用して被測
定液中に含まれる残留塩素濃度を算出できる。
The working electrode 3 and the counter electrode 4 are electrically connected, and a predetermined potential V is applied to the working electrode 3 with respect to the reference electrode 5. As a result, an electrolytic reduction current flows between the working electrode 3 and the counter electrode 4 in accordance with the flow state of the liquid to be measured or the residual chlorine concentration, and the concentration of the liquid to be measured is determined by utilizing the concentration dependency of the reduction current value generated at that time. The concentration of residual chlorine contained therein can be calculated.

【0046】作用電極3には、被測定液中に含まれる残
留塩素を還元するのに必要な電位が可変電源部7により
印加されており、被測定液中の残留塩素Cl2を作用電
極3上で電解還元させ、この時に生じる還元電流値Aを
電流検出部8により検出し、この還元電流値Aに基づい
て演算部9により残留塩素の濃度を算出できる構成とな
っている。作用電極3への印加電位を設定するために、
電位の基準となる参照電極5を用いており、参照電極5
に対する作用電極3の電位Vを電圧計6で検知すること
できる。また、セル1内の被測定液が静水状態か通水状
態かに従い、制御部11により電圧計6の出力を所定の
掃引速度で掃引させたり、還元反応を起こす電位に維持
させることのできる可変電源部7を備えた構成となって
いる。
A potential necessary for reducing residual chlorine contained in the liquid to be measured is applied to the working electrode 3 by the variable power supply unit 7, and the residual chlorine Cl 2 in the liquid to be measured is applied to the working electrode 3. Electrolytic reduction is performed above, the reduction current value A generated at this time is detected by the current detection unit 8, and the calculation unit 9 can calculate the concentration of residual chlorine based on the reduction current value A. In order to set the applied potential to the working electrode 3,
The reference electrode 5 serving as a reference for the potential is used.
Of the working electrode 3 can be detected by the voltmeter 6. Further, depending on whether the liquid to be measured in the cell 1 is in a hydrostatic state or a flowing state, the control unit 11 allows the output of the voltmeter 6 to be swept at a predetermined sweeping speed or to maintain the potential at which a reduction reaction occurs. The power supply unit 7 is provided.

【0047】被測定液の通水状態を検知するための流量
検知部10が、セル1内または管路2のいずれかに配置
してあり、流量検知部10からの流量信号により静水状
態か通水状態かを判断し、作用電極3に印加する電位を
印加する可変電源部7を制御する制御部11がマイコン
等で構成されている。
A flow detecting unit 10 for detecting the flow state of the liquid to be measured is disposed in either the cell 1 or the pipe line 2. A control unit 11 that determines whether the state is in the water state and controls the variable power supply unit 7 that applies a potential to be applied to the working electrode 3 includes a microcomputer or the like.

【0048】作用電極3の電位は、参照電極5との間に
設けられた電圧計6によって検知できる。制御部11
は、可変電源部7の出力を調節して作用電極3の印加電
位を制御し、流量状態に応じて電圧計6の示す電位Vを
変化させることができる。
The potential of the working electrode 3 can be detected by a voltmeter 6 provided between the working electrode 3 and the reference electrode 5. Control unit 11
Can control the potential applied to the working electrode 3 by adjusting the output of the variable power supply unit 7 and change the potential V indicated by the voltmeter 6 according to the flow rate state.

【0049】ここで、流量検知部10からの流量信号が
実質的にゼロに等しい場合には、制御部11を用いて以
下のように動作させることができる。即ち、作用電極3
の電極表面近傍に存在する残留塩素を検出するために、
制御部11により、参照電極5の電位を基準として作用
電極3の電位を一定の掃引速度で掃引できるように、作
用電極3と対極4間の電圧を可変電源部7を用いて制御
する。こうして、参照電極5に対して設定される作用電
極3への印加電位を一定速度で掃引するので、残留塩素
が作用電極3上で還元される。作用電極3上での電極反
応により生じる電流が電流検出部8により検知され、演
算部9により残留塩素濃度に換算される。
Here, when the flow signal from the flow detecting unit 10 is substantially equal to zero, the following operation can be performed using the control unit 11. That is, the working electrode 3
In order to detect residual chlorine existing near the electrode surface of
The control unit 11 controls the voltage between the working electrode 3 and the counter electrode 4 using the variable power supply unit 7 so that the potential of the working electrode 3 can be swept at a constant sweep speed based on the potential of the reference electrode 5. In this way, the potential applied to the working electrode 3 set with respect to the reference electrode 5 is swept at a constant speed, so that residual chlorine is reduced on the working electrode 3. The current generated by the electrode reaction on the working electrode 3 is detected by the current detection unit 8 and converted into the residual chlorine concentration by the calculation unit 9.

【0050】また、セル1中に導入された被測定液が通
水状態にあるときは以下のように動作する。即ち、作用
電極3の電極表面と接触する残留塩素を検出するため
に、参照電極5の電位を基準として作用電極3の電位を
一定値に印加する。Cl2の場合は+0.4Vである
(参照電極がAg/AgClのとき)。参照電極5に対
する作用電極3への印加電位を示す電圧計6が一定の電
位を維持するように制御部11によって可変電源部7を
制御すると、還元電流を電流検出部8により検出するこ
とができる。ここでの印加電位は、印加する電位に対し
て電解還元電流の平均値が極大となる電位であり、被測
定液中に含まれる残留塩素の濃度をもっとも精度良く検
出しうる電位である。
When the liquid to be measured introduced into the cell 1 is in a flowing state, the following operation is performed. That is, in order to detect residual chlorine that comes into contact with the electrode surface of the working electrode 3, the potential of the working electrode 3 is applied to a constant value with reference to the potential of the reference electrode 5. In the case of Cl 2 , it is +0.4 V (when the reference electrode is Ag / AgCl). When the control section 11 controls the variable power supply section 7 so that the voltmeter 6 indicating the applied potential to the working electrode 3 with respect to the reference electrode 5 maintains a constant potential, the reduction current can be detected by the current detection section 8. . The applied potential here is a potential at which the average value of the electrolytic reduction current becomes maximum with respect to the applied potential, and is a potential at which the concentration of residual chlorine contained in the liquid to be measured can be detected most accurately.

【0051】さらに、作用電極3で検出される還元電流
Aは、セル1内の被測定液が静水状態か通水状態か、お
よびその流量の増減に応じて変化する。流量の増減に関
しては、測定対象物質である残留塩素が作用電極3上で
還元される際に、印加される電位、及びそのときの還元
電流値がそれぞれ変化して、セル1を流れる被測定液の
流量および残留塩素濃度に比例した電流勾配を有するこ
ととなる。
Further, the reduction current A detected by the working electrode 3 changes depending on whether the liquid to be measured in the cell 1 is in a hydrostatic state or a flowing state, and in accordance with an increase or decrease in the flow rate. With respect to the increase and decrease of the flow rate, when the residual chlorine as the substance to be measured is reduced on the working electrode 3, the applied potential and the reduction current value at that time change, and the liquid to be measured flowing through the cell 1 And a current gradient proportional to the residual chlorine concentration.

【0052】演算部9には、流量信号に応じてこの電流
値Aから被測定液中に含まれる対象物質の濃度を算出す
るための換算テーブルが設けられている。
The calculating section 9 is provided with a conversion table for calculating the concentration of the target substance contained in the liquid to be measured from the current value A according to the flow signal.

【0053】図2に、セル1または管路2に設けた流量
検知部10からの流量信号が実質的にゼロで静水状態で
あるとき、参照電極に対する作用電極3の電位を一定の
掃引速度により掃引した時の還元電流値Aと電位Vとの
関係を示す。
In FIG. 2, when the flow rate signal from the flow rate detection unit 10 provided in the cell 1 or the pipe line 2 is substantially zero and in a hydrostatic state, the potential of the working electrode 3 with respect to the reference electrode is changed at a constant sweep speed. 4 shows the relationship between the reduction current value A and the potential V when sweeping.

【0054】図2に示されるように、被測定液中に含ま
れる残留塩素が還元される電流値Aは、作用電極3の電
位の掃引によって出力が変化していき、Cl2に固有の
電位(+0.8V近傍)において還元電流値Aが極大と
なる限界電流値Acを示す。この限界電流値Acを与え
る電位Vcが、被測定液に含まれるCl2の作用電極3
における電極反応を最も代表できるもので、得られた電
流値Acと残留塩素濃度Cとの濃度依存性により、被測
定液に含まれる残留塩素の濃度を算出することができ
る。
As shown in FIG. 2, the current value A at which the residual chlorine contained in the liquid to be measured is reduced changes as the output of the potential of the working electrode 3 changes due to the sweeping of the potential of the working electrode 3, and the potential specific to Cl 2. (Approximately +0.8 V) indicates a limit current value Ac at which the reduction current value A is maximized. The potential Vc giving this limit current value Ac is equal to the working electrode 3 of Cl 2 contained in the liquid to be measured.
And the concentration dependence of the obtained current value Ac and the residual chlorine concentration C can be used to calculate the concentration of residual chlorine contained in the liquid to be measured.

【0055】なお、図2において、曲線は、それぞれ残
留塩素濃度が0mg/L、12mg/L、24mg/
L、40mg/L、50mg/Lの場合のデータを示し
ている。
In FIG. 2, the curves show the residual chlorine concentrations of 0 mg / L, 12 mg / L, and 24 mg / L, respectively.
L, 40 mg / L and 50 mg / L are shown.

【0056】したがって、図2に示されるように、制御
部11が参照電極5に対する作用電極3の電位を一定の
掃引速度により掃引したときに得られた還元電流値Aと
電位Vとの関係から、演算部9が限界電流Acを検出
し、図3に示すように、この限界電流値Acと被測定液
中に含まれる残留塩素の濃度Cとの関係を与える換算テ
ーブルを用いて、常に安定して精度よく残留塩素濃度を
求めることができる。図3においては、参照電極5がA
g/AgCl電極であり、作用電極3の電位として+
0.8Vを印加したときの極大値を与える電流値が限界
電流Acである。
Therefore, as shown in FIG. 2, the relationship between the reduction current value A and the potential V obtained when the control section 11 sweeps the potential of the working electrode 3 with respect to the reference electrode 5 at a constant sweep speed. The arithmetic unit 9 detects the limiting current Ac, and as shown in FIG. 3, always obtains a stable value by using a conversion table which gives a relationship between the limiting current value Ac and the concentration C of the residual chlorine contained in the liquid to be measured. Thus, the residual chlorine concentration can be accurately obtained. In FIG. 3, the reference electrode 5 is A
g / AgCl electrode, and the potential of the working electrode 3 is +
The current value that gives the maximum value when 0.8 V is applied is the limit current Ac.

【0057】セル1または管路2に設けた流量検知部1
0から流量信号が出力され、セル1中に導入された被測
定液が通水状態にあるとき、参照電極5の電位に対する
作用電極3の電位を一定として連続的に印加させた時に
得られた還元電流値Aと時間Tとの関係を図4に示す。
図4において、曲線は、それぞれ残留塩素濃度が0mg
/L、5mg/L、13mg/L、42mg/L、50
mg/L、73mg/Lである場合のデータを示してい
る。
The flow rate detector 1 provided in the cell 1 or the pipe 2
A flow signal was output from 0, and when the liquid to be measured introduced into the cell 1 was in a flowing state, the potential was obtained when the potential of the working electrode 3 was kept constant with respect to the potential of the reference electrode 5 and was continuously applied. FIG. 4 shows the relationship between the reduction current value A and the time T.
In FIG. 4, the curves each show a residual chlorine concentration of 0 mg.
/ L, 5 mg / L, 13 mg / L, 42 mg / L, 50
The data in the cases of mg / L and 73 mg / L are shown.

【0058】図4では、作用電極3と対極4との間に設
けた可変電源部7の出力電位を制御することにより、参
照電極5と作用電極3との間に設けた電圧計6の指示電
圧を一定となるように制御して、作用電極3の還元電流
を検出する電流検出部8により得られた電流値の経時変
化を示す。いずれのデータも還元電流が時間的に若干変
動するが、基本的には一定を値をもつことを示してい
る。そこで、本発明では、通水状態のときには、電解還
元電流の平均値をとって残留塩素の換算に用いるもので
ある。
In FIG. 4, by controlling the output potential of the variable power supply section 7 provided between the working electrode 3 and the counter electrode 4, the indication of the voltmeter 6 provided between the reference electrode 5 and the working electrode 3 is obtained. The change with time of the current value obtained by the current detection unit 8 that controls the voltage to be constant and detects the reduction current of the working electrode 3 is shown. Each data shows that the reduction current slightly varies with time, but basically has a constant value. Therefore, in the present invention, in the water-flowing state, the average value of the electrolytic reduction current is obtained and used for conversion of residual chlorine.

【0059】したがって、図5に示されるように、参照
電極5に対する作用電極3の電位を一定の電位としたと
きの還元電流の平均値と残留塩素濃度との関係から、一
定電圧下で得られた還元電流により被測定液中に含まれ
る残留塩素の濃度を常に安定して精度よく算出すること
ができる。
Accordingly, as shown in FIG. 5, the relationship between the average value of the reduction current and the residual chlorine concentration when the potential of the working electrode 3 with respect to the reference electrode 5 is constant is obtained at a constant voltage. The concentration of residual chlorine contained in the liquid to be measured can be constantly and accurately calculated by the reduced current.

【0060】なお、図5における3直線はそれぞれセル
中を流れる被測定液の流量が0.2L/min、0.5
L/min、1.0L/minである場合のデータを示
しており、これによって、残留塩素濃度が還元電流に対
して比例関係で表されることが分かる。
The three straight lines in FIG. 5 indicate that the flow rate of the liquid to be measured flowing through the cell is 0.2 L / min and 0.5 L / min, respectively.
The data for L / min and 1.0 L / min are shown, from which it can be seen that the residual chlorine concentration is expressed in a proportional relationship to the reduction current.

【0061】既述したように、作用電極3への印加電位
は、印加する電位に対して、還元電流の平均値が極大値
となる限界電流値Acを与える電位であり、図5の場
合、参照電極5をAg/AgCl電極として用いている
ので、作用電極3の参照電極5に対する電位として+
0.4V近傍の電圧を印加したときの値を示している。
As described above, the applied potential to the working electrode 3 is a potential that gives a limit current value Ac at which the average value of the reduction current becomes a maximum value with respect to the applied potential. Since the reference electrode 5 is used as an Ag / AgCl electrode, the potential of the working electrode 3 with respect to the reference electrode 5 is +
The values when a voltage near 0.4 V is applied are shown.

【0062】さらに、図5に示されるように、流量検知
部10からの流量信号に応じて、電流検出部8により検
出した還元電流の平均値のその流量依存性から、検知し
た流量および還元電流の平均値を求め、換算テーブルに
より演算部9が検出した電流値を濃度に演算するとき、
流量を考慮して補正を行えば、通水時の流量変化にも対
応して、残留塩素濃度を常に安定して精度良く計測する
ことができる。
Further, as shown in FIG. 5, in response to the flow rate signal from the flow rate detecting section 10, the average flow rate of the reducing current detected by the current detecting section 8 is determined based on the flow rate. When the current value detected by the calculation unit 9 is calculated from the conversion table to the density using the conversion table,
If the correction is performed in consideration of the flow rate, the residual chlorine concentration can always be stably and accurately measured in response to the flow rate change during the passage of water.

【0063】以上のように本実施の形態1によれば、被
測定液が静水状態にあるか通水状態にあるかで、それぞ
れの状態での最適な測定を行うことができ、通水か静水
かの影響を受けずに、容易にかつ安定して還元電流を検
出し、残留塩素濃度を精度よく算出することができる。
As described above, according to the first embodiment, the optimum measurement can be performed in each state depending on whether the liquid to be measured is in a still water state or in a flowing state. The reduction current can be easily and stably detected without being affected by the still water, and the residual chlorine concentration can be accurately calculated.

【0064】(実施の形態2)図6は本発明の実施の形
態2の残留塩素濃度測定装置を示す構成図である。
(Embodiment 2) FIG. 6 is a block diagram showing a residual chlorine concentration measuring apparatus according to Embodiment 2 of the present invention.

【0065】図6において、12はデジタル信号をアナ
ログ信号に変換するD/Aコンバータ、13は流量検知
部10からのアナログ信号を制御部11にデジタル信号
に変換して出力するA/Dコンバータ、14は電流検出
部8のアナログ信号をデジタル信号に変換するA/Dコ
ンバータ、15は電流検出部8に組み込まれた電圧増幅
回路である。なお以下の説明において、実施の形態1と
同様の機能を有するものについては同一の符号を付して
その説明を省略する。
In FIG. 6, 12 is a D / A converter for converting a digital signal into an analog signal, 13 is an A / D converter for converting an analog signal from the flow rate detecting section 10 to a control section 11 and outputting the digital signal, Reference numeral 14 denotes an A / D converter for converting an analog signal of the current detection unit 8 into a digital signal, and reference numeral 15 denotes a voltage amplification circuit incorporated in the current detection unit 8. In the following description, components having the same functions as in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0066】実施の形態1においては、参照電極に対す
る作用電極の電位を電圧計6で検出して、この検出した
電位が所定の電位になるように可変電源部7の電圧を制
御部11が制御した。しかし、実施の形態2では電圧計
を特別に設けることなく、参照電極に対する作用電極の
電位を制御部11の出力する所定の電位に制御するよう
にしたものである。
In the first embodiment, the potential of the working electrode with respect to the reference electrode is detected by the voltmeter 6, and the voltage of the variable power supply 7 is controlled by the control unit 11 so that the detected potential becomes a predetermined potential. did. However, in the second embodiment, the potential of the working electrode with respect to the reference electrode is controlled to a predetermined potential output from the control unit 11 without specially providing a voltmeter.

【0067】実施の形態2の可変電源部7は、対極側オ
ペアンプ16と作用電極側オペアンプ17から構成され
る。対極側オペアンプ16は、作用電極3の電位を掃引
するために所定の掃引電位になるような電圧が+入力端
子に入力される。なお、D/Aコンバータ12は掃引用
の電圧に変換するものである。参照電極5は−入力端子
に接続されている。このとき、オペアンプのイマジナリ
ーショートによって、対極4の電圧が調整され、+入力
端子に入力された掃引電位と参照電極5は同一電位とな
る。
The variable power supply unit 7 according to the second embodiment includes a counter electrode side operational amplifier 16 and a working electrode side operational amplifier 17. The opposite-side operational amplifier 16 is supplied with a voltage to the + input terminal so as to have a predetermined sweep potential in order to sweep the potential of the working electrode 3. The D / A converter 12 converts the voltage into a sweeping voltage. The reference electrode 5 is connected to the negative input terminal. At this time, the voltage of the counter electrode 4 is adjusted due to the imaginary short of the operational amplifier, and the sweep potential input to the + input terminal and the reference electrode 5 become the same potential.

【0068】次に、作用電極側オペアンプ17は出力が
−入力端子にフィードバックされており、ホロアを構成
している。
Next, the output of the operational electrode side operational amplifier 17 is fed back to the negative input terminal, thereby forming a follower.

【0069】この+入力端子はD/Aコンバータ12を
介して制御部11に接続され、掃引時に作用電極3に所
定の電位を出力する。このようにして、作用電極3は相
対的にみて参照電極5に対して掃引されることになる。
This + input terminal is connected to the control section 11 via the D / A converter 12, and outputs a predetermined potential to the working electrode 3 during sweeping. In this way, the working electrode 3 is swept relative to the reference electrode 5.

【0070】作用電極3と対極4間を流れる還元電流を
検出するために、作用電極側オペアンプ17の出力は抵
抗Rによって電圧として検出される。これは、電圧増幅
回路15とA/Dコンバータ14を介して演算部9に送
られ、演算部9は還元電流と掃引電位の関係を一旦メモ
リに記憶する。なお、このような掃引を行うのは、流量
検知部10がセル1を被測定液が流れていないことを検
出(即ち静水状態であることを検出)したときに制御部
11が可変電源部7に命じるものである。演算部9は掃
引電位と還元電流との関係から、還元電流の極大値を検
出し、この極大値を残留塩素濃度に換算する。
In order to detect the reduction current flowing between the working electrode 3 and the counter electrode 4, the output of the working electrode side operational amplifier 17 is detected as a voltage by the resistor R. This is sent to the calculation unit 9 via the voltage amplification circuit 15 and the A / D converter 14, and the calculation unit 9 temporarily stores the relationship between the reduction current and the sweep potential in the memory. It should be noted that such a sweep is performed when the control unit 11 detects that the liquid to be measured is not flowing through the cell 1 (that is, detects that it is in a still water state) by the flow rate detection unit 10. Command. The calculation unit 9 detects a maximum value of the reduction current from the relationship between the sweep potential and the reduction current, and converts the maximum value into a residual chlorine concentration.

【0071】もし、流量検知部10がセル1を被測定液
が流れていると検出したら、通水状態であるから、制御
部11は作用電極側オペアンプ17の+入力端子と対極
側オペアンプ16の+入力端子とに、既知の還元電位
(還元電流の中で極大値を与える電位、液中のCl2
スの場合(参照電極がAg/AgCl電極)、+0.4
V近傍の値となる差を与える電位をそれぞれ入力する。
If the flow rate detecting section 10 detects that the liquid to be measured is flowing through the cell 1, the control section 11 is in the water-passing state, and the control section 11 determines the + input terminal of the working electrode side operational amplifier 17 and the counter electrode side operational amplifier 16. A known reduction potential (a potential giving a maximum value among reduction currents, a Cl 2 gas in a liquid (a reference electrode is an Ag / AgCl electrode)), and +0.4
A potential which gives a difference near V is input.

【0072】上記掃引電位で説明したのと同じように、
参照電極5に対する作用電極3の電位はこの所定の還元
電位に調整される。このとき作用電極3と対極4間を流
れる還元電流は若干の時間的変動はあるもののほぼ一定
で、電流検出部8が検出した電流値は演算部9で平均さ
れ、演算部9はこの平均値を用いて残留塩素の濃度を換
算することができる。
As described for the sweep potential,
The potential of the working electrode 3 with respect to the reference electrode 5 is adjusted to this predetermined reduction potential. At this time, the reduction current flowing between the working electrode 3 and the counter electrode 4 is almost constant although there is a slight temporal variation, and the current value detected by the current detection unit 8 is averaged by the calculation unit 9, and the calculation unit 9 calculates the average value Can be used to convert the concentration of residual chlorine.

【0073】[0073]

【発明の効果】請求項1に記載の酸性液中の残留塩素濃
度測定装置によれば、これによって以下の効果が得られ
る。
According to the apparatus for measuring the concentration of residual chlorine in an acidic liquid according to the present invention, the following effects can be obtained.

【0074】(a)被測定液の流量を検知する流量検知
部と、作用電極及び参照電極間の電位を所定値に設定す
る可変電源部の制御部を備えているので、制御部がセル
内の被処理液が静水状態が通水状態かを判断して、それ
ぞれの状態で最適の測定を行うことができる。
(A) Since there is provided a flow rate detecting section for detecting the flow rate of the liquid to be measured and a control section for a variable power supply section for setting the potential between the working electrode and the reference electrode to a predetermined value, the control section is provided inside the cell. It is possible to determine whether the liquid to be treated is in a hydrostatic state or a flowing state, and to perform optimal measurement in each state.

【0075】(b)被測定液の流量信号が実質的にゼロ
に等しいときには、被測定液が静水状態にあるので、参
照電極に対する作用電極の電位を一定速度で掃引し、電
位変化によって得られる電流値変化から電流の極大値を
検出するから、この極大値を与える電位が被測定液中の
残留塩素濃度を検出するための最適な電位として利用で
きる。
(B) When the flow rate signal of the liquid to be measured is substantially equal to zero, since the liquid to be measured is in a hydrostatic state, the potential of the working electrode with respect to the reference electrode is swept at a constant speed, and is obtained by a change in potential. Since the maximum value of the current is detected from the change in the current value, the potential giving this maximum value can be used as the optimal potential for detecting the residual chlorine concentration in the liquid to be measured.

【0076】(c)被測定液の流量信号がゼロを超える
ときには、被測定液が通水状態であるので、参照電極に
対する作用電極の電位を所定の電位に制御して、電解還
元電流の時間平均に基づいて残留塩素濃度を換算するか
ら、通水時でも高精度の濃度測定が可能になる。
(C) When the flow rate signal of the liquid to be measured exceeds zero, since the liquid to be measured is in a flowing state, the potential of the working electrode with respect to the reference electrode is controlled to a predetermined potential, and the time of the electrolytic reduction current is reduced. Since the residual chlorine concentration is converted based on the average, highly accurate concentration measurement can be performed even when water is passed.

【0077】請求項2に記載の酸性液中の残留塩素濃度
測定装置によれば、これによって以下の効果が得られ
る。
According to the apparatus for measuring the residual chlorine concentration in an acidic liquid according to the second aspect, the following effects can be obtained.

【0078】被測定液の流量を検知する流量検知部と、
作用電極及び参照電極間の電位を所定値に設定する可変
電源部の制御部を備えているので、制御部がセル内の被
処理液が静水状態が通水状態かを判断して、通水状態の
ときに通水時に最適となる測定を行うから、静水状態で
通水時に最適の制御をするようなことがない。
A flow rate detector for detecting the flow rate of the liquid to be measured,
Since the control unit of the variable power supply unit that sets the potential between the working electrode and the reference electrode to a predetermined value is provided, the control unit determines whether the liquid to be treated in the cell is in a hydrostatic state or not. Since optimal measurement is performed when water is passed in the state, optimal control is not performed when water is passed in the still water state.

【0079】請求項3に記載の酸性液中の残留塩素濃度
測定装置によれば、これによって請求項1又は2の効果
の他、以下の効果が得られる。
According to the apparatus for measuring the residual chlorine concentration in an acidic liquid according to the third aspect, the following effects can be obtained in addition to the effects of the first or second aspect.

【0080】通水時には被測定液の流量が変化しても、
流量の変化に対応して残留塩素濃度を補正することがで
きる。
At the time of passing water, even if the flow rate of the liquid to be measured changes,
The residual chlorine concentration can be corrected according to the change in the flow rate.

【0081】請求項4に記載の酸性液中の残留塩素濃度
測定装置によれば、これによって以下の効果が得られ
る。
According to the apparatus for measuring the residual chlorine concentration in an acidic liquid according to the fourth aspect, the following effects can be obtained.

【0082】被測定液の流量を検知する流量検知部と、
作用電極と参照電極間の電位を所定値に設定する可変電
源部の制御部を備えているので、制御部がセル内の被処
理液が静水状態が通水状態かを判断して、静水状態のと
きに静水時に最適となる測定を行うから、通水状態で静
水時に最適の制御をするようなことがない。
A flow rate detector for detecting the flow rate of the liquid to be measured,
Since the control unit of the variable power supply unit that sets the potential between the working electrode and the reference electrode to a predetermined value is provided, the control unit determines whether the liquid to be treated in the cell is in a hydrostatic state or not, and In this case, the optimum measurement is performed when the water is still, so that there is no case where the optimal control is performed when the water is still flowing while the water is flowing.

【0083】請求項5に記載の酸性液中の残留塩素濃度
測定装置によれば、これによって請求項1乃至4のいず
れかの効果の他、以下の効果が得られる。
According to the apparatus for measuring the concentration of residual chlorine in an acidic liquid according to the fifth aspect, the following effects can be obtained in addition to the effects of any of the first to fourth aspects.

【0084】静水状態と通水状態に対応して換算テーブ
ルを設けているから、流量信号に応じて直ちに静水状
態、通水状態の換算テーブルを選択することができ、通
水状態のときには流量信号から流量を把握して流量に対
応した補正を換算テーブル上で行うことができる。
Since the conversion tables are provided in correspondence with the still water state and the water passing state, the conversion table for the still water state and the water passing state can be immediately selected according to the flow rate signal. Thus, the flow rate can be grasped, and the correction corresponding to the flow rate can be performed on the conversion table.

【0085】請求項6に記載の酸性液中の残留塩素濃度
測定装置によれば、これによって請求項1乃至5のいず
れかの効果の他、以下の効果が得られる。
According to the apparatus for measuring the residual chlorine concentration in an acidic liquid according to the sixth aspect, the following effects can be obtained in addition to the effects of the first to fifth aspects.

【0086】参照電極に対する作用電極の電位を検出す
る電圧検出部を備えているので、印加している電圧状態
が把握できるため測定異常を発見し易くできる。
Since the voltage detecting section for detecting the potential of the working electrode with respect to the reference electrode is provided, the state of the applied voltage can be grasped, so that a measurement abnormality can be easily found.

【0087】請求項7に記載の酸性液中の残留塩素濃度
測定方法によれば、これによって以下の効果が得られ
る。
According to the method for measuring the residual chlorine concentration in an acidic liquid according to the seventh aspect, the following effects can be obtained.

【0088】セル内が通水状態か静水状態かを検知し、
それぞれの状態で最適で固有の測定方法を採用し、精度
の高い残留塩素濃度を算出することができる。
Detecting whether the inside of the cell is in a water passing state or a still water state,
It is possible to calculate the residual chlorine concentration with high accuracy by adopting an optimal and unique measurement method in each state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の残留塩素濃度測定装置
を示す構成図
FIG. 1 is a configuration diagram showing a residual chlorine concentration measuring device according to a first embodiment of the present invention.

【図2】静水状態で参照電極に対する作用電極の電位V
を一定の掃引速度で掃引したときの還元電流値Aと電位
Vとの関係を示すグラフ
FIG. 2 shows a potential V of a working electrode with respect to a reference electrode in a hydrostatic state.
Graph showing the relationship between the reduction current value A and the potential V when sweeping is performed at a constant sweep speed.

【図3】還元電流値Aと残留塩素濃度Cとの関係を示す
グラフ
FIG. 3 is a graph showing a relationship between a reduction current value A and a residual chlorine concentration C;

【図4】通水状態で参照電極に対する作用電極の電位V
を一定に保持したときの還元電流値Aと時間Tとの関係
を示すグラフ
FIG. 4 shows a potential V of a working electrode with respect to a reference electrode in a flowing state.
Graph showing the relationship between the reduction current value A and the time T when the temperature is kept constant.

【図5】還元電流値Aと残留塩素濃度Cとの関係を示す
グラフ
FIG. 5 is a graph showing a relationship between a reduction current value A and a residual chlorine concentration C.

【図6】本発明の実施の形態2の残留塩素濃度測定装置
を示す構成図
FIG. 6 is a configuration diagram showing a residual chlorine concentration measuring device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セル 2 管路 3 作用電極 4 対極 5 参照電極 6 電圧計 7 可変電源部 8 電流検出部 9 演算部 10 流量検知部 11 制御部 12 D/Aコンバータ 13 A/Dコンバータ 14 A/Dコンバータ 15 電圧増幅回路 16 対極側オペアンプ 17 作用電極側オペアンプ Reference Signs List 1 cell 2 conduit 3 working electrode 4 counter electrode 5 reference electrode 6 voltmeter 7 variable power supply unit 8 current detection unit 9 calculation unit 10 flow detection unit 11 control unit 12 D / A converter 13 A / D converter 14 A / D converter 15 Voltage amplification circuit 16 Op amp on the opposite electrode side 17 Op amp on the working electrode side

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】被測定液が導入されるセルと、 前記セル内に設けられた作用電極、対極及び前記作用電
極の電位を所定の電位にするための基準となる電位を発
生する参照電極と、 前記参照電極に対する前記作用電極の電位を所定の電位
に制御するために前記作用電極と前記対極間の電圧を調
整する可変電源部と、 前記作用電極を流れる電流値を検出できる電流検知部
と、 前記可変電源部を制御して、前記作用電極と前記参照電
極間の電圧を所定の電圧に制御する制御部と、 前記電流値から残留塩素濃度を算出する演算部とを備え
た酸性液中の残留塩素濃度測定装置であって、 前記被測定液が通水状態か静水状態かを検出できる流量
検知部を備え、 前記流量検知部が通水状態であることを検知すると、前
記制御部が電解還元電流の最大値に対応した所定の電圧
を印加して前記電解還元電流の平均値を検出し、前記流
量検知部が静水状態を検知すると前記制御部が前記作用
電極と前記参照電極間の電圧を掃引して前記電解還元電
流の極大値を検出することを特徴とする酸性液中の残留
塩素濃度測定装置。
1. A cell into which a liquid to be measured is introduced, a working electrode provided in the cell, a counter electrode, and a reference electrode for generating a reference potential for setting the potential of the working electrode to a predetermined potential. A variable power supply unit that adjusts the voltage between the working electrode and the counter electrode to control the potential of the working electrode with respect to the reference electrode to a predetermined potential, and a current detection unit that can detect a current value flowing through the working electrode A control unit that controls the variable power supply unit to control the voltage between the working electrode and the reference electrode to a predetermined voltage; and an arithmetic unit that calculates a residual chlorine concentration from the current value. A residual chlorine concentration measuring device, comprising: a flow rate detection unit that can detect whether the liquid to be measured is in a water-flowing state or a still water state, and when the flow rate detection unit detects that the liquid is in a water-flowing state, the control unit For the maximum value of electrolytic reduction current The control unit sweeps a voltage between the working electrode and the reference electrode when the flow rate detecting unit detects a hydrostatic state by applying an appropriate predetermined voltage to detect the average value of the electrolytic reduction current, and An apparatus for measuring the concentration of residual chlorine in an acid solution, which detects a maximum value of a reduction current.
【請求項2】被測定液が導入されるセルと、 前記セル内に設けられた作用電極、対極及び前記作用電
極の電位を所定の電位にするための基準となる電位を発
生する参照電極と、 前記参照電極に対する前記作用電極の電位を所定の電位
に制御するために前記作用電極と前記対極間の電圧を調
整する可変電源部と、 前記作用電極を流れる電流値を検出できる電流検知部
と、 前記可変電源部を制御して、前記作用電極と前記参照電
極間の電圧を所定の電圧に制御する制御部と、 前記電流値から残留塩素濃度を算出する演算部とを備え
た酸性液中の残留塩素濃度測定装置であって、 前記被測定液が通水状態か静水状態かを検出できる流量
検知部を備え、 前記流量検知部が通水状態であることを検知すると、前
記制御部が電解還元電流の最大値に対応した所定の電圧
を印加して前記電解還元電流の平均値を検出することを
特徴とする酸性液中の残留塩素濃度測定装置。
2. A cell into which a liquid to be measured is introduced, a working electrode provided in the cell, a counter electrode, and a reference electrode for generating a reference potential for setting the potential of the working electrode to a predetermined potential. A variable power supply unit that adjusts the voltage between the working electrode and the counter electrode to control the potential of the working electrode with respect to the reference electrode to a predetermined potential, and a current detection unit that can detect a current value flowing through the working electrode A control unit that controls the variable power supply unit to control the voltage between the working electrode and the reference electrode to a predetermined voltage; and an arithmetic unit that calculates a residual chlorine concentration from the current value. A residual chlorine concentration measuring device, comprising: a flow rate detection unit that can detect whether the liquid to be measured is in a water-permeating state or a still water state. For the maximum value of electrolytic reduction current An apparatus for measuring the concentration of residual chlorine in an acid solution, wherein an average value of the electrolytic reduction current is detected by applying a corresponding predetermined voltage.
【請求項3】前記流量検知部が検出した流量検知信号に
よって前記演算部が前記平均値を補正して残留塩素濃度
を算出することを特徴とする請求項1又は2記載に記載
の酸性液中の残留塩素濃度測定装置。
3. The acidic liquid according to claim 1, wherein the calculating section corrects the average value based on the flow rate detection signal detected by the flow rate detecting section to calculate the residual chlorine concentration. Equipment for measuring residual chlorine concentration.
【請求項4】被測定液が導入されるセルと、 前記セル内に設けられた作用電極、対極及び前記作用電
極の電位を所定の電位にするための基準となる電位を発
生する参照電極と、 前記参照電極に対する前記作用電極の電位を所定の電位
に制御するために前記作用電極と前記対極間の電圧を調
整する可変電源部と、 前記作用電極を流れる電流値を検出できる電流検知部
と、 前記可変電源部を制御して、前記作用電極と前記参照電
極間の電圧を所定の電圧に制御する制御部と、 前記電流値から残留塩素濃度を算出する演算部とを備え
た酸性液中の残留塩素濃度測定装置であって、 前記被測定液が通水状態か静水状態かを検出できる流量
検知部を備え、 前記流量検知部が静水状態を検知すると前記制御部が前
記作用電極と前記参照電極間の電圧を掃引して前記電解
還元電流の極大値を検出することを特徴とする酸性液中
の残留塩素濃度測定装置。
4. A cell into which a liquid to be measured is introduced, a working electrode provided in the cell, a counter electrode, and a reference electrode for generating a reference potential for setting the potential of the working electrode to a predetermined potential. A variable power supply unit that adjusts the voltage between the working electrode and the counter electrode to control the potential of the working electrode with respect to the reference electrode to a predetermined potential, and a current detection unit that can detect a current value flowing through the working electrode A control unit that controls the variable power supply unit to control the voltage between the working electrode and the reference electrode to a predetermined voltage; and an arithmetic unit that calculates a residual chlorine concentration from the current value. A residual chlorine concentration measuring device, comprising: a flow rate detecting unit that can detect whether the liquid to be measured is in a flowing state or in a still water state, and when the flow rate detecting unit detects a still water state, the control unit is configured to control the working electrode and the hydrostatic state. The voltage between the reference electrodes An apparatus for measuring the residual chlorine concentration in an acid solution, wherein the maximum value of the electrolytic reduction current is detected by sweeping.
【請求項5】前記電流値を残留塩素濃度に換算する換算
テーブルが通水状態と静水状態に対応してそれぞれ設け
られると共に、前記演算部が前記流量検知部からの流量
信号に基づいて一の換算テーブルを選択して残留塩素濃
度を算出することを特徴とする請求項1乃至4のいずれ
か1項に記載の酸性液中の残留塩素濃度測定装置。
5. A conversion table for converting the current value into a residual chlorine concentration is provided for each of a water passing state and a still water state, and the calculation unit is configured to perform one of the conversion based on a flow signal from the flow detection unit. The apparatus for measuring a residual chlorine concentration in an acidic liquid according to any one of claims 1 to 4, wherein a conversion table is selected to calculate the residual chlorine concentration.
【請求項6】前記参照電極に対する前記作用電極の電位
を検出する電圧検出部を備え、前記電圧検出部で検出し
た電位に前記制御部が前記可変電源部の電圧を制御する
ことを特徴とする請求項1乃至5のいずれか1項に記載
の酸性液中の残留塩素濃度測定装置。
6. A voltage detecting section for detecting a potential of the working electrode with respect to the reference electrode, wherein the control section controls a voltage of the variable power supply section to a potential detected by the voltage detecting section. An apparatus for measuring the concentration of residual chlorine in an acidic liquid according to any one of claims 1 to 5.
【請求項7】被測定液が入れらるセル内が通水状態か静
水状態かを検知し、通水状態である場合には作用電極と
参照電極間に電解還元電流の最大値に対応した所定の電
圧を印加して前記電解還元電流の平均値を検出し、静水
状態である場合は前記作用電極と前記参照電極間の電圧
を掃引して前記電解還元電流の極大値を検出し、前記平
均値又は前記極大値から残留塩素濃度を換算することを
特徴とする酸性液中の残留塩素濃度測定方法。
7. Detecting whether the inside of the cell into which the liquid to be measured is filled is in a flowing state or a hydrostatic state, and when the state is in the flowing state, the maximum value of the electrolytic reduction current is applied between the working electrode and the reference electrode. Applying a predetermined voltage to detect the average value of the electrolytic reduction current, and when in a hydrostatic state, sweep the voltage between the working electrode and the reference electrode to detect the maximum value of the electrolytic reduction current, A method for measuring the residual chlorine concentration in an acidic liquid, comprising converting the residual chlorine concentration from an average value or the maximum value.
JP36227899A 1999-12-21 1999-12-21 Apparatus and method for measuring residual chlorine concentration in acidic liquid Pending JP2001174431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36227899A JP2001174431A (en) 1999-12-21 1999-12-21 Apparatus and method for measuring residual chlorine concentration in acidic liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36227899A JP2001174431A (en) 1999-12-21 1999-12-21 Apparatus and method for measuring residual chlorine concentration in acidic liquid

Publications (1)

Publication Number Publication Date
JP2001174431A true JP2001174431A (en) 2001-06-29

Family

ID=18476450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36227899A Pending JP2001174431A (en) 1999-12-21 1999-12-21 Apparatus and method for measuring residual chlorine concentration in acidic liquid

Country Status (1)

Country Link
JP (1) JP2001174431A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274226A (en) * 2004-03-23 2005-10-06 Akifumi Yamada Free residual chlorine concentration measuring instrument and free residual chlorine measuring method
JP2005321230A (en) * 2004-05-06 2005-11-17 Aichi Tokei Denki Co Ltd Flow rate/residual chlorine concentration measuring device, and flow rate/residual chlorine concentration measuring method of service water
JP2006026214A (en) * 2004-07-20 2006-02-02 Fado:Kk Air sterilizing and washing machine
JP2014506294A (en) * 2010-12-22 2014-03-13 テククロス・カンパニー・リミテッド Rectifier integrated electrolyzer
WO2023286400A1 (en) * 2021-07-16 2023-01-19 株式会社堀場アドバンスドテクノ Electrochemical measurement device and electrochemical measurement method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274226A (en) * 2004-03-23 2005-10-06 Akifumi Yamada Free residual chlorine concentration measuring instrument and free residual chlorine measuring method
JP2005321230A (en) * 2004-05-06 2005-11-17 Aichi Tokei Denki Co Ltd Flow rate/residual chlorine concentration measuring device, and flow rate/residual chlorine concentration measuring method of service water
JP4493010B2 (en) * 2004-05-06 2010-06-30 愛知時計電機株式会社 Flow rate / residual chlorine concentration measuring instrument and tap water flow rate / residual chlorine concentration measurement method
JP2006026214A (en) * 2004-07-20 2006-02-02 Fado:Kk Air sterilizing and washing machine
JP2014506294A (en) * 2010-12-22 2014-03-13 テククロス・カンパニー・リミテッド Rectifier integrated electrolyzer
US9394187B2 (en) 2010-12-22 2016-07-19 Techcross Co., Ltd. Electrolysis device integrating rectifier
WO2023286400A1 (en) * 2021-07-16 2023-01-19 株式会社堀場アドバンスドテクノ Electrochemical measurement device and electrochemical measurement method

Similar Documents

Publication Publication Date Title
US20070114137A1 (en) Residual chlorine measuring method and residual chlorine measuring device
US20020109511A1 (en) Method of determining a fuel concentration in the electrolyte of fuel cells operated with liquid fuel
CN112305035A (en) Method and measuring point for correcting two measured values from different analytical measuring devices
JPH07167836A (en) Method for monitoring concentration of acid in plating bath
US7123019B2 (en) Polarographic densitometer
JP2001174431A (en) Apparatus and method for measuring residual chlorine concentration in acidic liquid
JP6952578B2 (en) Oxygen concentration measuring device and oxygen concentration measuring method
US20060032743A1 (en) Electrochemical measurement apparatus
KR101459595B1 (en) Electrochemical Sensor and TRO sensor device
Schuler et al. Properties and performance of membrane-covered rapid polarographic oxygen catheter electrodes for continuous oxygen recording in vivo
JP2001108652A (en) Measuring apparatus for concentration of residual chlorine
JP3654694B2 (en) Residual chlorine measuring method and residual chlorine meter
JP2001174436A (en) Method and apparatus for measuring ion concentration
JP4414277B2 (en) Redox current measuring device and cleaning method for redox current measuring device
JP2010243452A (en) Method and instrument for continuously measuring concentration of peracetic acid
JP2004125668A (en) Oxidation-reduction potential measuring instrument
JP3476061B2 (en) Water vapor partial pressure measurement method and water vapor partial pressure measurement sensor
JP3650919B2 (en) Electrochemical sensor
Varamban et al. Simultaneous measurement of emf and short circuit current for a potentiometric sensor using perturbation technique
JP2000266722A (en) Apparatus for measuring concentration of oxidation- reduction substance
CN113176320B (en) Flow velocity compensation method and system of membraneless dissolved oxygen sensor
CA2772706A1 (en) Water analysis measurement arrangement
JPS6313486Y2 (en)
SU754296A1 (en) Oxygen content determining device
JPS6097247A (en) Continuous liquid-concentration measuring device