JP3476061B2 - Water vapor partial pressure measurement method and water vapor partial pressure measurement sensor - Google Patents

Water vapor partial pressure measurement method and water vapor partial pressure measurement sensor

Info

Publication number
JP3476061B2
JP3476061B2 JP19702298A JP19702298A JP3476061B2 JP 3476061 B2 JP3476061 B2 JP 3476061B2 JP 19702298 A JP19702298 A JP 19702298A JP 19702298 A JP19702298 A JP 19702298A JP 3476061 B2 JP3476061 B2 JP 3476061B2
Authority
JP
Japan
Prior art keywords
water vapor
atmosphere
partial pressure
voltage
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19702298A
Other languages
Japanese (ja)
Other versions
JP2000028577A (en
Inventor
元昭 飯尾
辰行 奥野
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP19702298A priority Critical patent/JP3476061B2/en
Publication of JP2000028577A publication Critical patent/JP2000028577A/en
Application granted granted Critical
Publication of JP3476061B2 publication Critical patent/JP3476061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水蒸気分圧計測技
術に関する。
TECHNICAL FIELD The present invention relates to a water vapor partial pressure measuring technique.

【0002】[0002]

【従来の技術】限界電流式センサは気体中の酸素濃度測
定の分野で主に使われている。このものは基準ガス(酸
素濃度既知ガス)を不要としながら、その出力(電流
値)が酸素濃度にほぼ比例し、しかも応答性に優れ、高
温に耐える等の特長を有し、各種用途への応用開発が活
発に行われている。このような限界電流式のセンサにお
いて、酸素イオンを透過する固体電解質に印加する電圧
を調整することにより、気体中の酸素のみならず水蒸気
に対しても感度を持たせるようにできることが知られて
いた。すなわち、燃焼排ガスのような水蒸気が多量に含
まれる雰囲気中で限界電流式センサに監視電圧として比
較的高い電圧を印加した場合、水蒸気が次の化学式
(I)のように分解還元されて精製した酸素ガスにより
出力が上昇する。
2. Description of the Related Art Limiting current type sensors are mainly used in the field of measuring oxygen concentration in gas. This product does not require a reference gas (gas with a known oxygen concentration), but its output (current value) is almost proportional to the oxygen concentration, has excellent responsiveness, and can withstand high temperatures. Applied development is actively carried out. In such a limiting current type sensor, it is known that by adjusting the voltage applied to the solid electrolyte that allows oxygen ions to permeate, it is possible to have sensitivity not only to oxygen in the gas but also to water vapor. It was That is, when a relatively high voltage is applied as a monitoring voltage to the limiting current type sensor in an atmosphere containing a large amount of water vapor such as combustion exhaust gas, the water vapor is decomposed and reduced as in the following chemical formula (I) to be purified. Output increases due to oxygen gas.

【0003】[0003]

【化1】2H2O→2H2+O2 (I)[Chemical formula 1] 2H 2 O → 2H 2 + O 2 (I)

【0004】この上昇した出力分が水蒸気濃度に対応す
るため、印加電極を上記水蒸気の分解が生じない比較的
低い電圧及び水蒸気の分解が生じる比較的高い電圧と切
り替えて、あるいは、電極を2対設けてそれぞれ高低の
電圧を印加して、水蒸気分圧を測定することができる。
しかしながら、上記測定は、被測定雰囲気に酸素ガスが
存在する場合の限界電流値の差を検出しているため、被
測定雰囲気に酸素が存在しない場合、また、被測定雰囲
気が還元雰囲気である場合には測定不可となる。
Since the increased output corresponds to the water vapor concentration, the application electrode is switched to a relatively low voltage at which the decomposition of water vapor does not occur and a relatively high voltage at which the decomposition of water vapor occurs, or two pairs of electrodes are used. The water vapor partial pressure can be measured by providing high and low voltages respectively provided.
However, since the above-mentioned measurement detects the difference in the limiting current value when oxygen gas exists in the measured atmosphere, when oxygen does not exist in the measured atmosphere, or when the measured atmosphere is a reducing atmosphere. Cannot be measured.

【0005】[0005]

【発明が解決しようとする課題】本発明は、限界電流式
センサを用いて、酸素が存在しない雰囲気、及び、還元
雰囲気における水蒸気分圧測定を行うことができる水蒸
気分圧計測方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a water vapor partial pressure measuring method capable of measuring the water vapor partial pressure in an oxygen-free atmosphere and a reducing atmosphere by using a limiting current sensor. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明の水蒸気分圧計測
方法は上記課題を解決するため、請求項1に記載の通り
限界電流式センサ素子を用いる水蒸気分圧計測方法であ
って、被測定雰囲気を判断して、該センサ素子電極に印
加する電圧を調整することを構成として有する。また、
本発明の水蒸気分圧計測センサは請求項3に記載の通
り、一対の電極を有し、これら電極間に監視電圧を印加
する限界電流式センサ素子を用いる水蒸気分圧計測セン
サであって、該電極間に印加する電圧を変化させる印加
電圧制御手段と、該電極間に流れる電流を検出する電流
測定手段と、この電流測定手段により測定された電流値
と該電極間に印加された電圧とから被測定雰囲気を判断
する雰囲気判断手段と、雰囲気判断手段が検知した雰囲
気に対応する検量線により電流測定手段により検出され
た電流値から水蒸気分圧を算出する水蒸気分圧算出手段
とを有する水蒸気分圧計測センサである。
In order to solve the above-mentioned problems, a method for measuring a partial pressure of water vapor according to the present invention is a method for measuring a partial pressure of water vapor using a limiting current type sensor element as set forth in claim 1, wherein The configuration is such that the atmosphere is judged and the voltage applied to the sensor element electrode is adjusted. Also,
As described in claim 3, the water vapor partial pressure measuring sensor of the present invention is a water vapor partial pressure measuring sensor having a pair of electrodes and using a limiting current type sensor element for applying a monitoring voltage between the electrodes. From the applied voltage control means for changing the voltage applied between the electrodes, the current measuring means for detecting the current flowing between the electrodes, the current value measured by the current measuring means and the voltage applied between the electrodes Water vapor content having an atmosphere determining means for determining the atmosphere to be measured and a water vapor partial pressure calculating means for calculating a water vapor partial pressure from the current value detected by the current measuring means by a calibration curve corresponding to the atmosphere detected by the atmosphere determining means It is a pressure measurement sensor.

【0007】[0007]

【発明の実施の形態】本発明に用いる限界電流式センサ
素子の一例について図1を用いて説明する。このものは
多孔質基板を気体の拡散律速のために用いるものであ
り、一対の電極を有し、これら電極間に監視電圧を印加
する限界電流式センサ素子である。ジルコニア製の固体
電解質を挟んで多孔性(通気性)を有する白金製の陰極
と陽極とが設けられていて、さらにこの陽極側を覆うよ
うに多孔質アルミナ基板が設けられている。多孔質アル
ミナ基板の多面には白金ヒータがあって、ジルコニア固
体電解質の温度を酸素イオン伝導に適した温度(600
〜700℃)に保たれている。各電極及びヒータにはリ
ード線が接続されていて、外部の電源あるいは電流測定
手段等と電気的接続が容易にできるようになっている。
BEST MODE FOR CARRYING OUT THE INVENTION An example of a limiting current type sensor element used in the present invention will be described with reference to FIG. This is a limiting current type sensor element which uses a porous substrate for controlling the diffusion of gas and has a pair of electrodes and applies a monitoring voltage between these electrodes. A zirconia solid electrolyte is sandwiched between a porous cathode and an anode made of platinum, and a porous alumina substrate is provided so as to cover the anode side. There are platinum heaters on many sides of the porous alumina substrate, and the temperature of the zirconia solid electrolyte is set to a temperature suitable for oxygen ion conduction (600
The temperature is maintained at ~ 700 ° C). Lead wires are connected to each of the electrodes and the heater so that they can be easily electrically connected to an external power source or current measuring means.

【0008】固体電解質に電圧が印加されると、陽極側
に存在する酸素原子を有するガス分子が分解され、発生
した酸素イオンが固体電解質を伝導して陰極側に運ばれ
て陰極で酸素ガスを形成する。このように、陽極側の酸
素原子を有するガス分子は徐々に減少するが、ここでア
ルミナ多孔質基板の孔によって外気(被測定ガス)から
供給される。このときの供給は拡散支配であり、その量
は被測定ガス中の酸素原子を有するガス分子の濃度に依
存するため、系に流れる電流を測定することにより、酸
素原子を有するガス分子の濃度を知ることができる。
When a voltage is applied to the solid electrolyte, gas molecules having oxygen atoms existing on the anode side are decomposed, and the generated oxygen ions are conducted through the solid electrolyte and are carried to the cathode side, so that oxygen gas is generated at the cathode. Form. Thus, the gas molecules having oxygen atoms on the anode side gradually decrease, but here, they are supplied from the outside air (gas to be measured) through the pores of the alumina porous substrate. The supply at this time is diffusion-controlled, and its amount depends on the concentration of gas molecules having oxygen atoms in the measured gas.Therefore, by measuring the current flowing through the system, the concentration of gas molecules having oxygen atoms can be determined. I can know.

【0009】ここで酸素ガス濃度が21%あるいは4%
と残余の窒素ガスとからなる2種の酸化性雰囲気(それ
ぞれ21%O2/N2及び4%O2/N2として示す)、窒
素ガス雰囲気(N2Pureとして示す)及び、水素ガ
ス1%と残余の窒素ガスとからなる還元性雰囲気からな
る還元性雰囲気(1%H2/N2として示す)中に上記限
界電流式センサ素子を設置し、印加電圧をー0.6V付
近から0.6V付近まで掃引した時の電流値の変化を調
べた結果を図2に示す。ここで、酸化性雰囲気中では正
電圧を印加したとき、すなわち通常の測定と同様の方向
に電圧を印加したときに第1象限にその酸素濃度に応じ
た限界電流値が得られる。このとき還元性雰囲気では電
流値はほぼ0で変化しない。また窒素ガス中、すなわち
酸化性でも還元性でもない雰囲気では若干電流は流れる
ものの、その値は酸化性雰囲気での電流値に比べて低
い。
Here, the oxygen gas concentration is 21% or 4%
And a balance of nitrogen gas, two oxidizing atmospheres (shown as 21% O 2 / N 2 and 4% O 2 / N 2 respectively ), a nitrogen gas atmosphere (shown as N 2 Pure), and hydrogen gas 1 % And the balance of nitrogen gas, the limiting current type sensor element is installed in a reducing atmosphere (shown as 1% H 2 / N 2 ), and the applied voltage is from about −0.6 V to 0. FIG. 2 shows the result of examining the change in the current value when the voltage was swept up to around 0.6V. Here, when a positive voltage is applied in an oxidizing atmosphere, that is, when a voltage is applied in the same direction as in normal measurement, a limiting current value corresponding to the oxygen concentration is obtained in the first quadrant. At this time, the current value is almost 0 in the reducing atmosphere and does not change. Although a small amount of current flows in nitrogen gas, that is, in an atmosphere that is neither oxidizing nor reducing, the value thereof is lower than the current value in an oxidizing atmosphere.

【0010】一方、印加電圧が負である時、酸化性雰囲
気では電流値は電圧の低下と共に低くなり、また、還元
性雰囲気では還元ガス(水素や炭化水素など)の濃度に
応じた限界電流特性が第3象限に現われることが判る。
しかしまた窒素ガス中、すなわち酸化性でも還元性でも
ない雰囲気では若干電流はほぼ0となる。この性質を利
用して、被測定雰囲気を判断することができ、その雰囲
気に応じてセンサ素子電極に印加する電圧を調整するこ
とにより被測定雰囲気中の水蒸気分圧を測定することが
できる。
On the other hand, when the applied voltage is negative, the current value decreases as the voltage decreases in an oxidizing atmosphere, and the limiting current characteristic according to the concentration of reducing gas (hydrogen, hydrocarbon, etc.) in a reducing atmosphere. Can be seen in the third quadrant.
However, the current is slightly zero in nitrogen gas, that is, in an atmosphere that is neither oxidizing nor reducing. Utilizing this property, the atmosphere to be measured can be determined, and the partial pressure of water vapor in the atmosphere to be measured can be measured by adjusting the voltage applied to the sensor element electrode according to the atmosphere.

【0011】[0011]

【実施例】以下に本発明の水蒸気分圧計測方法について
具体例を挙げて説明する。なお、図1に示される限界電
流式センサを用いて、以下の検討を行った。 [雰囲気に対する判断]図2を用いて上記したように、
被測定雰囲気中で限界電流式センサ素子に対する印加電
圧を例えば0.5V(酸化雰囲気における酸素濃度測定
時に通常印加する電圧を正とする)としたそのときの電
流値が、窒素雰囲気での電流値より大きい場合に、被測
定雰囲気は酸化性雰囲気であると判断され、窒素雰囲気
での電流値より小さい場合には還元性雰囲気であると判
断される。
EXAMPLES The method for measuring the partial pressure of water vapor according to the present invention will be described below with reference to specific examples. The following studies were conducted using the limiting current type sensor shown in FIG. [Judgment regarding atmosphere] As described above with reference to FIG.
The current value at the time when the applied voltage to the limiting current type sensor element in the atmosphere to be measured is 0.5 V (the voltage normally applied when measuring the oxygen concentration in the oxidizing atmosphere is positive) is the current value in the nitrogen atmosphere. When it is larger, the measured atmosphere is judged to be an oxidizing atmosphere, and when it is smaller than the current value in the nitrogen atmosphere, it is judged to be a reducing atmosphere.

【0012】[酸化性雰囲気中における水蒸気分圧計
測]図3に酸素濃度が4%の酸素−窒素混合ガス中にお
ける水蒸気濃度に対する印加電圧と出力(電流値)の関
係を示した。図3より印加電圧0.8V付近に変曲点が
あり、乾燥雰囲気における出力電流値により補正する
と、印加電圧が0.8V以上、特に1V以上において、
水蒸気濃度によく対応した出力電流値(限界電流値)が
得られ、この出力電流値により水蒸気分圧の測定が可能
となることが判る。 [還元性雰囲気中における水蒸気分圧計測]次に還元性
雰囲気として1%の水素ガスを含む水素ガス中の水蒸気
濃度に対する印加電力と出力(電流値)への影響を調べ
た。結果を図4に、その第1象限の拡大図を図5として
示した。図5より、乾燥雰囲気をベースとして補正する
ことにより、電圧0.1V〜0.6Vの間の監視電圧を
印加することにより水蒸気濃度に応じた限界電流が得ら
れることが判る。従って、電圧0.1V〜0.6Vの間
の監視電圧を印加したときに得られる限界電流値からそ
の被測定雰囲気中における水蒸気濃度を知ることができ
る。
[Measurement of Water Vapor Partial Pressure in Oxidizing Atmosphere] FIG. 3 shows the relationship between the applied voltage and the output (current value) with respect to the water vapor concentration in an oxygen-nitrogen mixed gas having an oxygen concentration of 4%. As shown in FIG. 3, there is an inflection point near the applied voltage of 0.8 V, and when corrected by the output current value in a dry atmosphere, when the applied voltage is 0.8 V or more, particularly 1 V or more,
It can be seen that an output current value (limit current value) well corresponding to the water vapor concentration is obtained, and the water vapor partial pressure can be measured by this output current value. [Measurement of Water Vapor Partial Pressure in Reducing Atmosphere] Next, influences of applied electric power and output (current value) on water vapor concentration in hydrogen gas containing 1% hydrogen gas as a reducing atmosphere were examined. The results are shown in FIG. 4, and an enlarged view of the first quadrant is shown as FIG. From FIG. 5, it is understood that the limiting current according to the water vapor concentration can be obtained by applying the monitoring voltage between 0.1 V and 0.6 V by correcting the dry atmosphere as a base. Therefore, the water vapor concentration in the atmosphere to be measured can be known from the limiting current value obtained when the monitoring voltage between 0.1 V and 0.6 V is applied.

【0013】[非酸化性・非還元性雰囲気での水蒸気分
圧計測]一方、酸化性でも還元性でもない雰囲気(以下
「中間雰囲気」と云う)での水蒸気分圧計測について説
明する。水蒸気分圧を変化させた窒素雰囲気中でセンサ
素子への印加電圧を変化させたときの出力電流について
図6に示す。乾燥雰囲気に対する出力値をベースとして
補正した場合に、印加電圧が0.9V以上において、水
蒸気分圧に応じた限界電流値が得られることが判る。こ
のことにより0.9V〜1.2Vの印加電圧により非酸
化性・非還元性雰囲気での水蒸気分圧を計測することが
できることが判る。
[Measurement of Water Vapor Partial Pressure in Non-Oxidizing / Non-Reducing Atmosphere] Meanwhile, the measurement of water vapor partial pressure in an atmosphere that is neither oxidizing nor reducing (hereinafter referred to as "intermediate atmosphere") will be described. FIG. 6 shows the output current when the voltage applied to the sensor element is changed in a nitrogen atmosphere in which the partial pressure of water vapor is changed. It can be seen that when the correction is performed based on the output value for the dry atmosphere, the limiting current value according to the water vapor partial pressure is obtained when the applied voltage is 0.9 V or more. This shows that the partial pressure of water vapor in a non-oxidizing / non-reducing atmosphere can be measured with an applied voltage of 0.9 V to 1.2 V.

【0014】上記のようにセンサ素子電極間に測定時と
は逆の電圧を印加して被測定雰囲気が酸化性雰囲気、還
元性雰囲気あるいは中間雰囲気であるかを判断し、その
被測定雰囲気に適合する監視電圧、例えば、酸化性雰囲
気では1V以上望ましくは1.2V以上、還元性雰囲気
では0.8V以上0.6V以下の電圧を、中間雰囲気で
は0.9V以上の監視電圧を印加し、それら雰囲気に適
した検量線を用いることにより、被測定雰囲気がいかな
る雰囲気であっても水蒸気分圧を測定することができ
る。
As described above, a voltage reverse to that at the time of measurement is applied between the sensor element electrodes to judge whether the atmosphere to be measured is an oxidizing atmosphere, a reducing atmosphere or an intermediate atmosphere, and is suitable for the atmosphere to be measured. Monitoring voltage, for example, 1 V or more, preferably 1.2 V or more in an oxidizing atmosphere, 0.8 V or more and 0.6 V or less in a reducing atmosphere, and 0.9 V or more in an intermediate atmosphere. By using a calibration curve suitable for the atmosphere, the water vapor partial pressure can be measured regardless of the atmosphere to be measured.

【0015】[実際の測定への応用]図7に本発明の水
蒸気分圧計測センサのブロック図を示す。符号1を付し
て示されているのは一対の電極を有しこれら電極間に監
視電圧を印加する限界電流式センサ素子であり、この水
蒸気分圧計測センサは、センサ素子の電極間に印加する
電圧を変化させる印加電圧制御手段αと、該電極間に流
れる電流を検出する電流測定手段βと、この電流測定手
段βにより測定された電流値と該電極間に印加された電
圧とから被測定雰囲気を判断する雰囲気判断手段γと、
雰囲気判断手段γが検知した雰囲気に対応する検量線に
より電流測定手段により検出された電流値から水蒸気分
圧を算出する水蒸気分圧算出手段δとを有する。
[Application to Actual Measurement] FIG. 7 shows a block diagram of the water vapor partial pressure measuring sensor of the present invention. Reference numeral 1 indicates a limiting current type sensor element having a pair of electrodes and applying a monitoring voltage between these electrodes. This water vapor partial pressure measuring sensor is applied between electrodes of the sensor element. Applied voltage control means α for changing the voltage to be applied, current measuring means β for detecting a current flowing between the electrodes, and a current value measured by the current measuring means β and a voltage applied between the electrodes. Atmosphere judging means γ for judging the measurement atmosphere,
The water vapor partial pressure calculating means δ calculates the water vapor partial pressure from the current value detected by the current measuring means by the calibration curve corresponding to the atmosphere detected by the atmosphere determining means γ.

【0016】図8には本発明の水蒸気分圧計測センサの
一実施例の回路図を示した。センサ素子1には電源2及
び電流計3が接続されている。電源はMPU4の出力ポ
ート4o1に接続されていてMPU4の制御に応じた電圧
をセンサ素子の電極に印加する。電流計はセンサ素子の
電極間を流れる電流値に対応する電圧に変換するもので
あって、通常既知の抵抗によって形成される。この電流
値に対応する電圧値はA/D変換機能を有する入力ポー
ト4iを介してMPU4内に取り込まれる。MPU4に
はこのほか制御プログラム、定数、検量線などが格納さ
れたROM4ro、データ、変数を保持するためのRAM
4ra、プログラムによりMPU4を制御し、入力された
データにより水蒸気分圧を算出するCPU4cp、及び、
算出された水蒸気分圧をLCD5に表示させるために出
力する出力ポートO2が設けられている。
FIG. 8 shows a circuit diagram of an embodiment of the water vapor partial pressure measuring sensor of the present invention. A power source 2 and an ammeter 3 are connected to the sensor element 1. The power source is connected to the output port 4o1 of the MPU 4 and applies a voltage according to the control of the MPU 4 to the electrode of the sensor element. The ammeter converts a current value flowing between the electrodes of the sensor element into a voltage corresponding to the current value, and is usually formed by a known resistor. The voltage value corresponding to this current value is taken into the MPU 4 via the input port 4i having an A / D conversion function. The MPU 4 also has a ROM 4ro for storing control programs, constants, calibration curves, etc., and a RAM for holding data and variables.
4ra, CPU4cp which controls MPU4 by a program and calculates the water vapor partial pressure from the input data, and
An output port O2 is provided for outputting the calculated water vapor partial pressure in order to display it on the LCD 5.

【0017】センサ素子温度690℃、水蒸気分圧計測
用監視電圧として0.3V、その印加時間を10秒、ま
た酸化還元判定用監視電圧を−0.3V、その印加時間
を2秒とし、これを繰り返した場合の水蒸気分圧計測例
のダイアグラムを図9に示す。図中、Vpは印加電圧で
あり単位はV、Ioは電極間を流れる電流値であり、S
Lはスラッシュレベルを示し、印加電圧が−0.3Vの
とき、電流値がこの値未満であるとき酸化性雰囲気と判
断され、この値より大きければ還元性雰囲気であると判
断される。一方、Jo/Rは被測定雰囲気の判断結果で
あり、0xが酸化性雰囲気、Reが還元性雰囲気を示
す。またWvは水分率測定結果である。なお、この例で
は還元性雰囲気のみ測定する例を示してある。一方、V
oは酸素に対する出力であり、酸化性雰囲気でのみ検出
される。
The sensor element temperature is 690 ° C., the monitoring voltage for measuring the partial pressure of water vapor is 0.3 V, the application time is 10 seconds, the monitoring voltage for the redox determination is −0.3 V, and the application time is 2 seconds. FIG. 9 shows a diagram of an example of measuring the partial pressure of water vapor when the above procedure is repeated. In the figure, Vp is the applied voltage, the unit is V, Io is the current value flowing between the electrodes, and S
L indicates a slash level, and when the applied voltage is -0.3 V, it is determined that the oxidizing atmosphere is an oxidizing atmosphere when the current value is less than this value, and when it is larger than this value, the reducing atmosphere is determined. On the other hand, Jo / R is the determination result of the atmosphere to be measured, where 0x represents an oxidizing atmosphere and Re represents a reducing atmosphere. Wv is the moisture content measurement result. In this example, only the reducing atmosphere is measured. On the other hand, V
o is the output for oxygen and is detected only in an oxidizing atmosphere.

【0018】この例では、酸化還元判定用監視電圧とし
てセンサ素子の電極間に2秒間、−0.3Vの電圧が印
加される。この期間の終了0.2秒前のIoの値がスラ
ッシュレベル未満であると、還元と判断され、水蒸気分
圧計測用の監視電圧である0.3Vがセンサ素子の電極
間に印加されて、このとき水蒸気分圧に対する出力(電
流)が得られることが図9により判る。
In this example, a voltage of -0.3 V is applied for 2 seconds between the electrodes of the sensor element as a redox determination monitoring voltage. If the value of Io 0.2 seconds before the end of this period is less than the slash level, it is determined to be reduction, and 0.3V, which is the monitoring voltage for measuring the partial pressure of water vapor, is applied between the electrodes of the sensor element, It can be seen from FIG. 9 that the output (current) with respect to the partial pressure of water vapor can be obtained at this time.

【0019】一方、上記酸化還元判定時のIoの値がス
ラッシュレベル超であると酸化雰囲気にあるとしてセン
サ電極間に酸素濃度計測のための電圧である0.6Vが
印加されて被測定雰囲気中の酸素濃度が測定されること
が図9により判る。また、図9により、監視電圧の切り
替え後のセンサ素子の応答がミリ秒オーダーと極めて短
いことが判る。このことから、雰囲気の変化が短い周期
で頻繁に発生する場合には、上記切り替え時間を短縮す
ることにより、精度の高い計測が可能であることも判
る。
On the other hand, when the value of Io at the time of the above-mentioned redox determination is above the slash level, it is determined that the atmosphere is in an oxidizing atmosphere, and a voltage of 0.6 V for measuring the oxygen concentration is applied between the sensor electrodes, so that the measured atmosphere It can be seen from FIG. 9 that the oxygen concentration of the is measured. Further, it can be seen from FIG. 9 that the response of the sensor element after switching the monitoring voltage is extremely short, on the order of milliseconds. From this, it is also understood that when the change of the atmosphere frequently occurs in a short cycle, the measurement can be performed with high accuracy by shortening the switching time.

【0020】以上、この本発明に係る水蒸気分圧計測セ
ンサの動作について、還元性雰囲気のみで水蒸気分圧を
測定し、酸化性雰囲気では酸素濃度を測定する例につい
て説明した。ここで、酸化性雰囲気において酸素濃度を
測定した後、印加電圧を水蒸気分圧をも測定できる電圧
に設定することにより、酸化性雰囲気における水蒸気分
圧をも測定した例について述べる。空気をベースとし
て、これに水蒸気を様々な濃度となるよう混合して作製
した試料ガスを用いて、センサ素子への印加電圧を変化
させたときの出力電流について調べた結果を図10に示
す。この図より印加電圧が1V超で水蒸気濃度の対応す
る限界電流が得られ、また、1.2V以上で水蒸気濃度
に対する限界電流の感度が良好となることが判る。な
お、0.95V付近以下で出力電流が水蒸気濃度が高い
ほど出力が低くなっているのは、試料ガス中水蒸気濃度
が高くなる物ほど相対的に酸素濃度が低くなっているた
めである。
The operation of the water vapor partial pressure measuring sensor according to the present invention has been described above with reference to an example in which the water vapor partial pressure is measured only in the reducing atmosphere and the oxygen concentration is measured in the oxidizing atmosphere. Here, an example will be described in which, after measuring the oxygen concentration in an oxidizing atmosphere, the applied voltage is set to a voltage that can also measure the water vapor partial pressure to measure the water vapor partial pressure in the oxidizing atmosphere. FIG. 10 shows the results of examining the output current when the voltage applied to the sensor element was changed using a sample gas prepared by mixing water vapor with various concentrations of air as a base. From this figure, it can be seen that when the applied voltage exceeds 1 V, the corresponding limiting current of the water vapor concentration is obtained, and when the applied voltage is 1.2 V or more, the sensitivity of the limiting current to the water vapor concentration becomes good. The reason why the output current becomes lower as the water vapor concentration is higher near 0.95 V or lower is that the oxygen concentration becomes relatively lower as the water vapor concentration in the sample gas becomes higher.

【0021】ここで、乾燥空気と、80℃の水蒸気飽和
空気とを交互に切り替えたときのセンサ出力の変化を調
べた。結果を図11に示す。なお、参考のために監視電
圧を1.2Vとしたとき(図中220秒付近以降)以外
の、0.8Vに設定したときの結果(図中50秒〜22
0秒付近)を合わせて記載してある。なお図中「乾燥」
は乾燥空気に、「飽和水蒸気」は80℃の水蒸気飽和空
気に、それぞれセンサ素子の雰囲気を切り替えたときを
示す。図10及び図11により、酸化性雰囲気でも水蒸
気濃度を測定可能であり、またそのときの応答が極めて
良好であることが判る。
Here, the change in the sensor output when the dry air and the steam saturated air at 80 ° C. were alternately switched was examined. The results are shown in Fig. 11. For reference, the result when the monitor voltage is set to 0.8V except when the monitor voltage is 1.2V (after 220 seconds in the figure) (50 seconds to 22 seconds in the figure)
(Around 0 seconds) is also described. "Dry" in the figure
Indicates that the atmosphere of the sensor element was switched to dry air, and “saturated steam” to steam saturated air at 80 ° C., respectively. From FIGS. 10 and 11, it can be seen that the water vapor concentration can be measured even in an oxidizing atmosphere, and the response at that time is extremely good.

【0022】[0022]

【発明の効果】本発明の水蒸気分圧計測方法は被測定雰
囲気が酸化性雰囲気、還元性雰囲気を問わず測定できる
優れた方法である。本発明の水蒸気分圧計測センサは、
被測定雰囲気が酸化性雰囲気、還元性雰囲気を問わず、
測定できる優れたセンサであり、また、雰囲気の頻繁な
変化にも十分対応可能なものである。
The method for measuring the partial pressure of water vapor according to the present invention is an excellent method for measuring whether the atmosphere to be measured is an oxidizing atmosphere or a reducing atmosphere. The water vapor partial pressure measuring sensor of the present invention,
Whether the atmosphere to be measured is an oxidizing atmosphere or a reducing atmosphere,
It is an excellent sensor that can be measured, and it can sufficiently cope with frequent changes in the atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる限界電流式センサ素子の一例を
示す図である。
FIG. 1 is a diagram showing an example of a limiting current type sensor element used in the present invention.

【図2】種々の雰囲気における、印加電圧をー0.6V
付近から0.6V付近まで掃引した時の電流値の変化を
調べた結果を示す図である。
[Fig. 2] Applied voltage is -0.6V in various atmospheres.
It is a figure which shows the result of having investigated the change of the electric current value at the time of sweeping from the vicinity to the vicinity of 0.6V.

【図3】酸素濃度が4%の酸素−窒素混合ガス中におけ
る水蒸気濃度に対する印加電圧と出力(電流値)の関係
を示す図である。
FIG. 3 is a diagram showing a relationship between an applied voltage and an output (current value) with respect to a water vapor concentration in an oxygen-nitrogen mixed gas having an oxygen concentration of 4%.

【図4】還元性雰囲気として1%の水素ガスを含む水素
ガス中の水蒸気濃度に対する印加電力と出力(電流値)
への影響を調べた結果を示す図である。
FIG. 4 is an applied power and an output (current value) with respect to a water vapor concentration in hydrogen gas containing 1% hydrogen gas as a reducing atmosphere.
It is a figure which shows the result of having investigated the influence on.

【図5】図4の第1象限の拡大図である。FIG. 5 is an enlarged view of the first quadrant of FIG.

【図6】水蒸気分圧を変化させた窒素雰囲気中でセンサ
素子への印加電圧を変化させたときの出力電流の変化に
ついて示す図である。
FIG. 6 is a diagram showing changes in output current when the voltage applied to the sensor element is changed in a nitrogen atmosphere in which the partial pressure of water vapor is changed.

【図7】本発明の水蒸気分圧計測センサのブロック図で
ある。
FIG. 7 is a block diagram of a water vapor partial pressure measuring sensor of the present invention.

【図8】本発明の水蒸気分圧計測センサの一実施例の回
路図を示す図である。
FIG. 8 is a diagram showing a circuit diagram of an embodiment of a water vapor partial pressure measuring sensor of the present invention.

【図9】水蒸気分圧計測例のダイアグラムの例を示す図
である。
FIG. 9 is a diagram showing an example of a diagram of a partial vapor pressure measurement example.

【図10】水蒸気濃度の異なる酸化性雰囲気での、印加
電圧とセンサ出力電流値との関係を示す図である。
FIG. 10 is a diagram showing a relationship between an applied voltage and a sensor output current value in an oxidizing atmosphere having different water vapor concentrations.

【図11】センサ素子雰囲気を乾燥空気と、80℃にお
ける水蒸気飽和空気とに切り替えたときのセンサ出力の
変化を示す図である。
FIG. 11 is a diagram showing a change in sensor output when the sensor element atmosphere is switched between dry air and steam saturated air at 80 ° C.

【符号の説明】[Explanation of symbols]

α 印加電圧制御手段 β 電流測定手段 γ 被測定雰囲気判断手段 δ 水蒸気分圧算出手段 α Applied voltage control means β current measuring means γ Measured atmosphere judgment means δ Water vapor partial pressure calculation means

フロントページの続き (56)参考文献 特開 平2−276959(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/416 G01N 27/41 Continuation of front page (56) Reference JP-A-2-276959 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 27/416 G01N 27/41

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対の電極を有し、これら電極間に監視
電圧を印加する限界電流式センサ素子を用いる水蒸気分
圧計測方法であって、該電極間に測定時とは逆の電圧を
印加して被測定雰囲気を判断し、該被測定雰囲気に適合
する監視電圧を該電極間に印加することを特徴とする水
蒸気分圧計測方法。
1. A water vapor partial pressure measuring method using a limiting current type sensor element having a pair of electrodes and applying a monitoring voltage between the electrodes, wherein a voltage opposite to that at the time of measurement is applied between the electrodes. Then, the atmosphere to be measured is determined, and a monitoring voltage suitable for the atmosphere to be measured is applied between the electrodes.
【請求項2】 被測定雰囲気が還元性雰囲気であること
を特徴とする請求項1に記載の水蒸気分圧計測方法。
2. The water vapor partial pressure measuring method according to claim 1, wherein the atmosphere to be measured is a reducing atmosphere.
【請求項3】 一対の電極を有し、これら電極間に監視
電圧を印加する限界電流式センサ素子を用いる水蒸気分
圧計測センサであって、 該電極間に印加する電圧を変化させる印加電圧制御手段
と、 該電極間に流れる電流を検出する電流測定手段と、 この電流測定手段により測定された電流値と該電極間に
印加された電圧とから被測定雰囲気を判断する雰囲気判
断手段と、 この雰囲気判断手段が検知した雰囲気に対応する検量線
により電流測定手段により検出された電流値から水蒸気
分圧を算出する水蒸気分圧算出手段とを有することを特
徴とする水蒸気分圧計測センサ。
3. A water vapor partial pressure measuring sensor using a limiting current type sensor element having a pair of electrodes and applying a monitoring voltage between the electrodes, wherein applied voltage control for changing the voltage applied between the electrodes. Means, current measuring means for detecting a current flowing between the electrodes, and atmosphere determining means for determining the atmosphere to be measured from the current value measured by the current measuring means and the voltage applied between the electrodes, A water vapor partial pressure measuring sensor, comprising: a water vapor partial pressure calculating means for calculating a water vapor partial pressure from a current value detected by the current measuring means by a calibration curve corresponding to the atmosphere detected by the atmosphere determining means.
JP19702298A 1998-07-13 1998-07-13 Water vapor partial pressure measurement method and water vapor partial pressure measurement sensor Expired - Fee Related JP3476061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19702298A JP3476061B2 (en) 1998-07-13 1998-07-13 Water vapor partial pressure measurement method and water vapor partial pressure measurement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19702298A JP3476061B2 (en) 1998-07-13 1998-07-13 Water vapor partial pressure measurement method and water vapor partial pressure measurement sensor

Publications (2)

Publication Number Publication Date
JP2000028577A JP2000028577A (en) 2000-01-28
JP3476061B2 true JP3476061B2 (en) 2003-12-10

Family

ID=16367468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19702298A Expired - Fee Related JP3476061B2 (en) 1998-07-13 1998-07-13 Water vapor partial pressure measurement method and water vapor partial pressure measurement sensor

Country Status (1)

Country Link
JP (1) JP3476061B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126886B2 (en) * 2008-04-01 2013-01-23 矢崎エナジーシステム株式会社 Gas concentration detector

Also Published As

Publication number Publication date
JP2000028577A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
CN105842311B (en) gas sensor
JP3090479B2 (en) Gas sensor
EP0807818B1 (en) Method for measuring nitrogen oxide
EP1494024B1 (en) Gas analyzer
JP5918177B2 (en) Gas sensor
US6720534B2 (en) Power supply control system for heater used in gas sensor
EP0791828A1 (en) Method for measuring nitrogen oxides
JPH09318594A (en) Gas sensor and method for measuring quantity of specific component in gas to be measured
JP3476061B2 (en) Water vapor partial pressure measurement method and water vapor partial pressure measurement sensor
JP4175767B2 (en) Gas analyzer and calibration method thereof
JP2004526966A (en) Method and apparatus for determining concentration of oxygen-containing compound in measurement gas
JP2010008121A (en) Sensor output processor and sensor output processing system
JP3563399B2 (en) Gas analyzer
Matsumoto et al. Hydrogen isotope cell and its application to hydrogen isotope sensing
JP5126886B2 (en) Gas concentration detector
RU2755639C1 (en) Amperometric method for measuring the content of carbon monoxide in inert gases
JP2001174431A (en) Apparatus and method for measuring residual chlorine concentration in acidic liquid
JP3301015B2 (en) Water vapor concentration measurement method
JPS62269054A (en) Hydrogen sensor element
JPH0219760A (en) Humidity measuring method
JPS6383661A (en) Method for measuring humidity by using solid electrolyte
Benammar et al. A zirconia-based lambda gas sensor with pseudo-reference
Kieschnick et al. Intelligent sensor system for CO 2 partial pressure measurements
JPS62273443A (en) Moisture sensor element
JPH02302659A (en) Method for detecting reducing gas in oxygen sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees