JPS6383661A - Method for measuring humidity by using solid electrolyte - Google Patents

Method for measuring humidity by using solid electrolyte

Info

Publication number
JPS6383661A
JPS6383661A JP61227960A JP22796086A JPS6383661A JP S6383661 A JPS6383661 A JP S6383661A JP 61227960 A JP61227960 A JP 61227960A JP 22796086 A JP22796086 A JP 22796086A JP S6383661 A JPS6383661 A JP S6383661A
Authority
JP
Japan
Prior art keywords
solid electrolyte
anode
ion conductivity
cathode
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61227960A
Other languages
Japanese (ja)
Inventor
Toshio Usui
俊雄 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61227960A priority Critical patent/JPS6383661A/en
Publication of JPS6383661A publication Critical patent/JPS6383661A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • G01N27/4072Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure characterized by the diffusion barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enable accurate measurement of several % or below of the absolute humidity by using a solid electrolyte having hydrogen ion conductivity and oxygen ion conductivity in combination and making selective use of only the oxygen ion conductivity. CONSTITUTION:Porous platinum electrodes are provided on both faces of the solid electrolyte 1 consisting of perovskite type oxide such as; for example, BaCeO3, having hydrogen ion conductivity and oxygen ion conductivity of both 1 hydrogen ion transference number and oxygen ion transference number in combination. One of said electrodes is used as an anode and the other as a cathode 3. A cap 5 formed with a microhole 4 is joined as a gas diffusion control layer to the solid electrolyte 1 to cover the anode 2. A DC voltage is impressed between the anode 2 and the cathode 3 in the gas to be measured. Decomposition of H2O in the anode 2 is suppressed by the microhole 4 and since the generation of a hydrogen ion H<+> is negligible, the absolute humidity is detectable from the limiting current an which the output current with the oxygen ion O<2-> generated by electrolysis on the cathode 3 as a carrier is satd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は気体中に含まれる水分の量、すなわち絶対湿度
を測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the amount of moisture contained in a gas, that is, absolute humidity.

(従来の技術) 気体中の湿度を測定する計器類には種々あり、新しい湿
度センサも開発されているが、これら従来の湿度センサ
はほとんどすべて相対湿度を測定するものであり、絶対
湿度を測定するものとしては僅かに水の赤外線吸収スペ
クトルを利用した赤外線吸収湿度計が知られている。
(Prior technology) There are various instruments that measure humidity in gas, and new humidity sensors have also been developed, but almost all of these conventional humidity sensors measure relative humidity, not absolute humidity. As a device that does this, an infrared absorption hygrometer that uses the infrared absorption spectrum of water is known.

(発明が解決しようとする問題点) 水の赤外線吸収スペクトルを利用した測定方法による場
合は比較的低濃度(ρpmf+JI域)の水蒸気の測定
は精度よく行ない得るが、パーセントオーダの水蒸気の
濃度測定はほとんど行ない得ないのが実情である。
(Problems to be Solved by the Invention) When using a measurement method that utilizes the infrared absorption spectrum of water, water vapor at a relatively low concentration (ρpmf+JI range) can be measured with high accuracy, but the concentration of water vapor on the order of percent cannot be measured. The reality is that it is almost impossible to do so.

(問題点を解決するための手段及び作用)本発明はこの
ような状況の下に種々検討の結果なされたもので、水素
イオン伝導性と酸素イオン伝導性とを合わせ持つ固体電
解質を用いて、酸素イオン伝導性のみを選択的に利用し
て湿度を測定する方法を提供するものである。例えばB
aCeO3の如きペロプスカイト型酸化物からなる固体
電解質を用い、その両面に多孔性電極を設け、さらに、
アノード側に気体拡散制御層を設け、両電極間に直流電
圧を印加したとき酸素イオンをキャリヤとする電流が飽
和した限界電流から絶対湿度を検出するものである。
(Means and effects for solving the problems) The present invention was developed as a result of various studies under these circumstances, and uses a solid electrolyte that has both hydrogen ion conductivity and oxygen ion conductivity. The present invention provides a method for measuring humidity by selectively utilizing only oxygen ion conductivity. For example, B
A solid electrolyte made of a perovskite oxide such as aCeO3 is used, porous electrodes are provided on both sides of the electrolyte, and further,
A gas diffusion control layer is provided on the anode side, and when a DC voltage is applied between both electrodes, the absolute humidity is detected from the limit current at which the current with oxygen ions as carriers is saturated.

(実施例) 第1図は、本発明による湿度測定に用いた湿度センサ素
子の断面図であり、1は水素イオン輸率及び酸素イオン
輸率が共に1である水素イオン伝導性と酸素イオン伝導
性とを合わせ持つ、例えばBaCeO3(D如きペロプ
スカイト型酸化物からなる固体電解質であり、この両面
に多孔質なる白金製電極を設け、その一方をアノード2
、他方をカソード3とし、気体拡散制御層として微小孔
4が形成されたキャップ5がアノード2を蔽うように固
体電解質1に接合されたものであり、本発明による湿度
測定方法は上記の如き湿度センサを用いて湿度を測定す
るものである。
(Example) FIG. 1 is a cross-sectional view of a humidity sensor element used for humidity measurement according to the present invention. It is a solid electrolyte made of a perovskite type oxide such as BaCeO3 (D), which has both properties and properties, and porous platinum electrodes are provided on both sides of the electrolyte, and one side is connected to the anode 2.
, the other is a cathode 3, and a cap 5 in which micropores 4 are formed as a gas diffusion control layer is bonded to the solid electrolyte 1 so as to cover the anode 2. Humidity is measured using a sensor.

この原理を述べると、被測定気体中においてアノード2
とカソード3との間に直流電圧を印加すると、各電極上
では次の反応が起こる。
To explain this principle, the anode 2 in the gas to be measured.
When a DC voltage is applied between the cathode 3 and the cathode 3, the following reaction occurs on each electrode.

カソード   HzO+2e−−’82 +O”−+1
)アノード   H20→1八Q2+’lH”    
f21しかし、アノードでのHtOの分解は気体拡散制
御層としてのキャップ5の微小孔4によって抑制される
ので酸素イオン(O2−)に比して水素イオン(H゛)
は無視できるほど少なくなる。従って、はとんど酸素イ
オン(Ol−)のみの電荷の移動により電流が流れ、印
加電圧を高くすると第2図に示す如く上記の出力電流は
増大し、電極の三相界面への水分の拡散量が限界に達す
ると出力電流は飽和するに至る。この飽和した電流を限
界電流と呼ぶが、この限界電流値rLは第3図に示す如
く絶対湿度と比例関係にある。従って、この関係をあら
かじめ求めておけば測定した限界電流値から絶対湿度を
知ることができる。
Cathode HzO+2e--'82 +O"-+1
) Anode H20→18Q2+'lH”
f21 However, since the decomposition of HtO at the anode is suppressed by the micropores 4 of the cap 5 as a gas diffusion control layer, hydrogen ions (H゛) are more concentrated than oxygen ions (O2-).
becomes negligible. Therefore, current flows mostly due to the movement of charges of oxygen ions (Ol-), and when the applied voltage is increased, the above output current increases as shown in Figure 2, and moisture flows to the three-phase interface of the electrode. When the amount of diffusion reaches its limit, the output current reaches saturation. This saturated current is called a limiting current, and this limiting current value rL has a proportional relationship with absolute humidity as shown in FIG. Therefore, if this relationship is determined in advance, the absolute humidity can be determined from the measured limiting current value.

前述の如く酸素が存在しない雰囲気中では印加電圧が第
2図における■。以下では水が電気分解しないので出力
電流が観察されず、従って、■。
As mentioned above, in an atmosphere without oxygen, the applied voltage is indicated by ■ in FIG. Below, no output current is observed because the water does not electrolyze, and therefore ■.

以上の電圧を印加して測定する。なお、理論的にはV、
 #1.I Vであることが知られている。
Measure by applying the above voltage. In addition, theoretically V,
#1. It is known that IV.

酸素を含む雰囲気中では酸素が酸素イオンとなる電圧と
、水が分解して酸素イオンが発生する電圧は異なるので
、第4図の如く二段の平坦部をもつ電流特性となる。酸
素が存在するとカソード側では次の反応が起こる。
In an atmosphere containing oxygen, the voltage at which oxygen becomes oxygen ions and the voltage at which water decomposes and generates oxygen ions are different, resulting in a current characteristic with two flat parts as shown in FIG. In the presence of oxygen, the following reaction occurs on the cathode side.

カソード  ’/z Ox +2e−−’  O”−(
31第4図において(1)の領域は上記の反応(3)に
より酸素イオンが発生する領域であり、(II)の領域
はこの反応(3)に水が分解して酸素イオンが発生する
前記の反応口)が加わる領域である。従って、この場合
は印加電圧を切り替えることによって二段の飽和電流を
測定してその差へ■、を限界電流値として求め、第3図
の関係から絶対湿度を知ることができる。従って、前記
の酸素を含まない雰囲気中の湿度の測定は、上記の酸素
を含む雰囲気中での測定における酸素が0である場合と
して測定すればよい。
Cathode '/z Ox +2e--' O”-(
31 In Figure 4, the region (1) is the region where oxygen ions are generated by the above reaction (3), and the region (II) is the region where water decomposes during this reaction (3) and oxygen ions are generated. This is the area where the reaction port) is added. Therefore, in this case, the two-stage saturation current is measured by switching the applied voltage, and the difference between them is determined as the limiting current value, and the absolute humidity can be determined from the relationship shown in FIG. Therefore, the humidity in the oxygen-free atmosphere may be measured on the assumption that the oxygen content in the oxygen-containing atmosphere is 0.

ところで、本実施例では、アノード面への気体拡散制限
手段として、微小孔が形成されたキャップをカソード上
に被冠させているが、気体拡散を制御する手段としては
種々の実施例を用いることが可能である。例えば、多孔
質セラミックなどでカソード全面あるいは一部を覆って
もよいし、アノード上に薄板を若干の間隙をもたせて載
置し、その間隙の気体拡散制御作用を利用したものなど
、アノード面への気体拡散を制限する手段をすべて含む
ものである。
Incidentally, in this embodiment, a cap in which micropores are formed is placed over the cathode as means for restricting gas diffusion to the anode surface, but various embodiments may be used as means for controlling gas diffusion. is possible. For example, the whole or part of the cathode may be covered with porous ceramic, or a thin plate may be placed on the anode with a slight gap, and the gas diffusion control effect of the gap may be used to cover the anode surface. This includes all means for limiting gas diffusion.

(発明の効果) ペロプスカイト型酸化物よりなる固体電解質はほとんど
大部分のものが水素イオンと酸素イオン両方の伝導性を
有するものが多く、本発明においてはこのような固体電
解質を用いるので材料の選択が容易で、また、従来の赤
外線吸収スペクトルを利用する方法ではppm領域の絶
対湿度しか精度よく測定できなかったが、本発明では数
%以下の絶対湿度を精度よく測定することができる。
(Effects of the Invention) Most solid electrolytes made of perovskite oxides have conductivity for both hydrogen ions and oxygen ions, and since such solid electrolytes are used in the present invention, the material It is easy to select, and while conventional methods using infrared absorption spectra could only accurately measure absolute humidity in the ppm range, the present invention can accurately measure absolute humidity of several percent or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による湿度測定に用いる湿度センサ素子
の断面図、第2図は本発明に係る湿度センサの印加電圧
と出力電流との関係を示すグラフ、第3図は同じく限界
電流値と絶対湿度との関係を示すグラフ、第4図は同し
く酸素を含む雰囲気中での印加電圧と出力電流との関係
を示すグラフである。 1:固体電解質、2ニアノード、3:カソード、4:微
小孔、5:気体拡散制御層としてのキャップ。 代理人  弁理士  竹 内  9 第1図 第 2図 E’Fカロ勾1万E
FIG. 1 is a cross-sectional view of a humidity sensor element used for humidity measurement according to the present invention, FIG. 2 is a graph showing the relationship between applied voltage and output current of the humidity sensor according to the present invention, and FIG. 3 is a graph showing the relationship between the limiting current value and the output current. A graph showing the relationship with absolute humidity, and FIG. 4 is a graph showing the relationship between applied voltage and output current in an oxygen-containing atmosphere. 1: solid electrolyte, 2 near node, 3: cathode, 4: micropore, 5: cap as gas diffusion control layer. Agent Patent Attorney Takeuchi 9 Figure 1 Figure 2 E'F Calorie 10,000 E

Claims (2)

【特許請求の範囲】[Claims] (1)水素イオン伝導性と酸素イオン伝導性とを合わせ
持った固体電解質の両面に多孔性電極を設け、その一方
をアノード、他方をカソードとし、アノードを蔽う気体
拡散制御層を設けて、両電極間に直流電圧を印加し、雰
囲気中に含まれる水分がカソード上で電気分解すること
により生ずる酸素イオン(O^2^−)をキャリヤとす
る出力電流により湿度を検出することを特徴とする固体
電解質を用いた湿度測定方法。
(1) Porous electrodes are provided on both sides of a solid electrolyte that has both hydrogen ion conductivity and oxygen ion conductivity, one of which is used as an anode and the other as a cathode, and a gas diffusion control layer that covers the anode is provided. Humidity is detected by applying a DC voltage between the electrodes and detecting the output current using oxygen ions (O^2^-) as carriers, which are generated by electrolyzing moisture contained in the atmosphere on the cathode. Humidity measurement method using solid electrolyte.
(2)水素イオン伝導性と酸素イオン伝導性とを合わせ
持った固体電解質がBaCeO_3の如きペロブスカイ
ト型酸化物である特許請求の範囲第1項記載の固体電解
質を用いた湿度測定方法。
(2) A humidity measuring method using a solid electrolyte according to claim 1, wherein the solid electrolyte having both hydrogen ion conductivity and oxygen ion conductivity is a perovskite oxide such as BaCeO_3.
JP61227960A 1986-09-29 1986-09-29 Method for measuring humidity by using solid electrolyte Pending JPS6383661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61227960A JPS6383661A (en) 1986-09-29 1986-09-29 Method for measuring humidity by using solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227960A JPS6383661A (en) 1986-09-29 1986-09-29 Method for measuring humidity by using solid electrolyte

Publications (1)

Publication Number Publication Date
JPS6383661A true JPS6383661A (en) 1988-04-14

Family

ID=16868953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227960A Pending JPS6383661A (en) 1986-09-29 1986-09-29 Method for measuring humidity by using solid electrolyte

Country Status (1)

Country Link
JP (1) JPS6383661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677741A2 (en) * 1994-04-12 1995-10-18 Matsushita Electric Industrial Co., Ltd. Oxygen sensor
EP1635171A2 (en) * 1998-04-06 2006-03-15 Matsushita Electrical Industrial Co., Ltd Hydrocarbon sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677741A2 (en) * 1994-04-12 1995-10-18 Matsushita Electric Industrial Co., Ltd. Oxygen sensor
EP0677741A3 (en) * 1994-04-12 1996-05-01 Matsushita Electric Ind Co Ltd Oxygen sensor.
EP1635171A2 (en) * 1998-04-06 2006-03-15 Matsushita Electrical Industrial Co., Ltd Hydrocarbon sensor
EP1635171A3 (en) * 1998-04-06 2009-09-09 Panasonic Corporation Hydrocarbon sensor

Similar Documents

Publication Publication Date Title
JP3871497B2 (en) Gas sensor
US6036841A (en) Method for measuring nitrogen oxide
CA2326210A1 (en) Hydrogen gas sensor
JPS55154450A (en) Air-fuel-ratio detector
JPS634660B2 (en)
US4125374A (en) Method and apparatus for determining combustion mixture air/fuel ratio
JPH10503022A (en) Solid electrolyte sensor for measuring gaseous anhydride.
JPS5943348A (en) Air/fuel ratio sensor
US5403452A (en) Method for determining gas concentrations and gas sensor with a solid electrolyte
JPS6383661A (en) Method for measuring humidity by using solid electrolyte
JPS6394147A (en) Method for measuring humidity by using solid electrolyte
JPS57192850A (en) Detecting device for limit current system oxygen concentration performing internal resistance compensation
JP2918990B2 (en) Gas sensor
JPS6394148A (en) Method for measuring concentration of oxygen by using solid electrolyte
JPS62273443A (en) Moisture sensor element
JPS63172953A (en) Method for measuring alcohol concentration by using solid electrolyte
JPS6394146A (en) Method for measuring concentration of hydrogen by using solid electrolyte
JP2678045B2 (en) Carbon dioxide sensor
JPH0560725A (en) Gas concentration sensor
JPH03170858A (en) Sensor for measuring partial pressure of gas
JPH04363653A (en) Electrochemical gas sensor element
JP3476061B2 (en) Water vapor partial pressure measurement method and water vapor partial pressure measurement sensor
JPH0434357A (en) Humidity sensor
JPH11148916A (en) Gas sensor
JPH0298660A (en) Gas concentration sensor