JP2008111721A - Method and instrument for continuously measuring concentration of total organic carbon - Google Patents

Method and instrument for continuously measuring concentration of total organic carbon Download PDF

Info

Publication number
JP2008111721A
JP2008111721A JP2006294610A JP2006294610A JP2008111721A JP 2008111721 A JP2008111721 A JP 2008111721A JP 2006294610 A JP2006294610 A JP 2006294610A JP 2006294610 A JP2006294610 A JP 2006294610A JP 2008111721 A JP2008111721 A JP 2008111721A
Authority
JP
Japan
Prior art keywords
flow rate
sample liquid
measurement
flow
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006294610A
Other languages
Japanese (ja)
Other versions
JP4926650B2 (en
Inventor
Atsushi Tanaka
敦志 田中
Tadashi Kono
忠司 河野
Toshio Morita
敏夫 森田
Shigeyuki Akiyama
重之 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Advanced Techno Co Ltd
Original Assignee
Horiba Advanced Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Advanced Techno Co Ltd filed Critical Horiba Advanced Techno Co Ltd
Priority to JP2006294610A priority Critical patent/JP4926650B2/en
Publication of JP2008111721A publication Critical patent/JP2008111721A/en
Application granted granted Critical
Publication of JP4926650B2 publication Critical patent/JP4926650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous TOC concentration measuring instrument capable of always holding the concentration of TOC to a highly precise measuring state even during continuous use over a long time by stably keeping the passing flow rate of the measuring state constant even with respect to a small flow rate of a high-viscosity and high-temperature sample liquid while simplifying constitution to achieve the cost reduction of the whole of the measuring instrument. <P>SOLUTION: The continuous TOC concentration measuring instrument is constituted by incorporating a flow rate measuring part 5, which is constituted so that air is sucked in the measuring flow 7 of the sample liquid to be measured by the reversal of a tubing pump 6 and a present flow rate is measured from the time required in the flow of the sample liquid, which flows in a forward direction by the return to forward rotation thereafter, between two photosensors 14a and 14b, and a feedback-type flow rate control system 8 for automatically correcting the flow rate of the sample liquid on the basis of the measured flow rate. The measurement of the flow rate and the automatic correction operation of the flow rate are performed during continuous measurement periodically and automatically. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば半導体の洗浄に用いられる純水や製薬用水の清浄度などの水質管理に好適なものであって、各種の半導体製造工程や製薬プロセス工程で使用される液に含まれている有機成分中の全有機炭素(Total Organic Carbon:以下、TOCと称する)濃度を連続的に測定する連続式TOC濃度測定方法及びその装置に関する。   The present invention is suitable for water quality management such as the purity of pure water and pharmaceutical water used for semiconductor cleaning, for example, and is included in liquids used in various semiconductor manufacturing processes and pharmaceutical process processes. The present invention relates to a continuous TOC concentration measuring method and apparatus for continuously measuring the concentration of total organic carbon (hereinafter referred to as TOC) in organic components.

この種の連続式TOC濃度測定装置として、従来、図7の概略フロー図に示すように、測定対象となる試料液を吸引する吸引ポンプ(図7では記載を省略する)と、このポンプにより吸引された試料液が導入される石英セル構造の反応管21と該反応管21内を通過流動する試料液に紫外線(以下、UVと称する)を照射して有機成分を酸化させる低圧UVランプ22と前記反応管21の前後に設置されてUV照射前後の試料液の導電率を検出する二つの導電率センサ23,23とを備えてなるUV酸化−導電率検出方式のTOC濃度測定部20と、このTOC濃度測定部20への試料液の入口側に試料液圧力を略一定に維持するために設置されたレギュレータ24と、前記TOC濃度測定部20の送出側に取り付けられて前記レギュレータ24と連係して試料液の流量を一定に保つ流量計25a付属のニードル弁などのオリフィス25とから構成された連続式TOC濃度測定装置が知られている(例えば、特許文献1参照)。なお、図7において、26はレギュレータ24の送出側に分岐接続されたバイパス流路で、このバイパス流路26には比抵抗計27が介在されている。   As a continuous TOC concentration measuring apparatus of this type, as shown in the schematic flow chart of FIG. 7, a suction pump (not shown in FIG. 7) for sucking a sample liquid to be measured, and a suction by this pump are conventionally used. A reaction tube 21 having a quartz cell structure into which the sample solution is introduced, and a low-pressure UV lamp 22 that irradiates the sample solution flowing through the reaction tube 21 with ultraviolet rays (hereinafter referred to as UV) to oxidize organic components. A UV oxidation-conductivity detection type TOC concentration measurement unit 20 provided with two conductivity sensors 23, 23 installed before and after the reaction tube 21 to detect the conductivity of the sample solution before and after UV irradiation; A regulator 24 installed to keep the sample solution pressure substantially constant on the inlet side of the sample solution to the TOC concentration measuring unit 20, and a regulator 24 attached to the sending side of the TOC concentration measuring unit 20 4 linkage to the sample liquid flow rate a continuous TOC concentration measuring device composed of the orifice 25. such as flow meters 25a supplied needle valve kept constant is known (for example, see Patent Document 1). In FIG. 7, reference numeral 26 denotes a bypass passage branched and connected to the delivery side of the regulator 24, and a specific resistance meter 27 is interposed in the bypass passage 26.

ところで、上記したUV酸化−導電率検出方式の連続式TOC濃度測定装置においては、TOC濃度測定部を通過する試料液の流速及び流量がUV酸化効率、ひいては測定精度に与える影響が大きいために、長時間に亘って連続測定する場合の計測値を安定化するには、前記測定部を通過する試料液の流量を計測し、その計測流量に基づいて前記測定部に対する試料液の通過流量を予め設定した一定流量に維持管理することが非常に重要であり、この重要事項を達成するために、特許文献1等に示す従来装置では、装置に付属の流量計(フローメータ)の表示を測定者等が定期的に読み取ってニードル弁などのオリフィス開度を手動で調整して流量補正する方法が採用されていた。   By the way, in the above-mentioned continuous TOC concentration measurement device of the UV oxidation-conductivity detection method, the flow rate and flow rate of the sample liquid passing through the TOC concentration measurement unit has a great influence on the UV oxidation efficiency, and thus the measurement accuracy. In order to stabilize the measurement value in the case of continuous measurement over a long period of time, the flow rate of the sample liquid passing through the measurement unit is measured, and the flow rate of the sample liquid passing through the measurement unit is previously determined based on the measurement flow rate. It is very important to maintain and maintain a constant flow rate that has been set, and in order to achieve this important matter, the conventional device shown in Patent Document 1 and the like displays the flow meter attached to the device as a measurer. Etc. are regularly read, and a method of manually adjusting the orifice opening of the needle valve or the like to correct the flow rate has been adopted.

特開2004−177164号公報JP 2004-177164 A

しかしながら、上記の特許文献1で提案されているような従来の連続式TOC濃度測定装置では、試料液の元圧が、例えば0.05MPaを超える高いものでなければ、レギュレータが正常に動作せず安定した調圧機能が発揮されないために、試料液の流量を一定に保てず流量変動が激しい。それゆえに、5〜10ml/min.の少流量範囲では計測すべき流量が不安定で、場合によっては流量停止(ゼロ)の可能性もあるので、流量計測そのものの精度が低く、その結果、計測流量に基づく流量補正精度も低くなり、たとえ高頻度に流量管理を行ったとしても、連続測定の所期のTOC濃度の測定精度に大きなばらつきが生じるという問題があった。   However, in the conventional continuous TOC concentration measuring apparatus as proposed in Patent Document 1 above, the regulator does not operate normally unless the source pressure of the sample liquid is higher than, for example, 0.05 MPa. Since the stable pressure regulation function is not demonstrated, the flow rate of the sample liquid cannot be kept constant and the flow rate fluctuation is severe. Therefore, 5-10 ml / min. In the low flow rate range, the flow rate to be measured is unstable, and in some cases the flow rate may be stopped (zero). Therefore, the accuracy of the flow rate measurement itself is low, and as a result, the flow rate correction accuracy based on the measured flow rate is also low. Even if the flow rate is managed at a high frequency, there is a problem that the measurement accuracy of the intended TOC concentration varies greatly.

また、微少流量ないし少流量範囲の流体(試料液)の流量計測に適したものとして、ケーシング内で各種形状のロータを回転させるように構成された、いわゆる、タービン羽型流量計を用いることも考えられるが、このタービン羽型流量計は構造が複雑で高価であるだけでなく、温度や粘度に影響されやすく、高粘度液や高温度液などの幅広い液を測定対象とするTOC濃度測定用途には不向きである。   In addition, a so-called turbine blade type flow meter configured to rotate a rotor of various shapes in a casing may be used as one suitable for flow measurement of a fluid (sample liquid) in a minute flow rate or a low flow rate range. This turbine wing type flow meter is not only complicated and expensive, but it is also sensitive to temperature and viscosity, and is used for measuring TOC concentration for a wide range of liquids such as high viscosity liquid and high temperature liquid. Not suitable for.

本発明は上述の実情に鑑みてなされたもので、その目的は、構成のシンプル化及び装置全体の低コスト化を図りつつ、少流量範囲に設定された試料液でも、また、あらゆる粘度、温度の試料液であっても、その流量を高精度に計測し得て長時間に亘る連続測定時における測定部の通過流量を確実かつ安定よく一定に維持管理できて、所期のTOC濃度を常に精度よい測定状態に保つことができる連続式TOC濃度測定方法及びその装置を提供することにある。   The present invention has been made in view of the above-described circumstances, and its purpose is to simplify the configuration and reduce the cost of the entire apparatus. Even if it is a sample liquid, it is possible to measure the flow rate with high precision, and to maintain and manage the flow rate of the measurement part during long-term continuous measurement reliably and stably, so that the desired TOC concentration is always maintained. An object of the present invention is to provide a continuous TOC concentration measurement method and apparatus capable of maintaining a precise measurement state.

上記目的を達成するために、本発明に係る連続式TOC濃度測定方法は、測定対象となる試料液を吸引する吸引ポンプと、このポンプにより吸引された試料液に紫外線を照射して試料液に含まれる有機成分を酸化させ、前記紫外線照射前後の前記試料液の導電率の差に基づいて前記有機成分中のTOC濃度を測定する測定部と、前記試料液の圧力を正圧に維持する減圧機構とから形成される測定フローに、設定流量の前記試料液を連続的に流動させることにより、前記試料液中のTOC濃度を連続測定する方法であって、連続測定工程中に、前記吸引ポンプを逆転させて前記測定フローに空気を吸引した後、吸引ポンプを正転に戻して試料液を順方向に流動させ、この順方向への試料液の一定距離間の流動に要する時間から流量を計測する流量計測工程と、この流量計測工程での計測流量に基づいて、前記吸引ポンプの回転数を調整して前記測定部に対する試料液の通過流量を前記設定流量に自動的に補正する流量制御工程とを行うことを特徴としている(請求項1)。   In order to achieve the above object, a continuous TOC concentration measuring method according to the present invention includes a suction pump for sucking a sample liquid to be measured, and irradiating the sample liquid sucked by the pump with ultraviolet rays to the sample liquid. A measurement unit that oxidizes an organic component contained therein and measures a TOC concentration in the organic component based on a difference in conductivity of the sample solution before and after the ultraviolet irradiation, and a reduced pressure that maintains the pressure of the sample solution at a positive pressure And a continuous flow of the sample liquid at a set flow rate in a measurement flow formed by a mechanism to continuously measure the TOC concentration in the sample liquid, wherein the suction pump The suction pump is returned to the normal rotation to cause the sample liquid to flow in the forward direction, and the flow rate is determined from the time required for the flow of the sample liquid in a certain distance in the forward direction. Flow to measure And a flow rate control step of automatically correcting the passage flow rate of the sample liquid to the measurement unit to the set flow rate by adjusting the rotation speed of the suction pump based on the measured flow rate in the flow rate measurement step. (Claim 1).

また、上記と同一の目的を達成するため、本発明に係る連続式TOC濃度測定装置は、測定対象となる試料液を吸引する吸引ポンプと、このポンプにより吸引された試料液に紫外線を照射して試料液に含まれる有機成分を酸化させ、前記紫外線照射前後の前記試料液の導電率の差に基づいて前記有機成分中のTOC濃度を測定する測定部と、前記試料液の圧力を正圧に維持する減圧機構とから測定フローを形成し、この測定フローに設定流量の前記試料液を連続的に流動させることにより、前記試料液中の全有機炭素濃度を連続測定するように構成されている連続式TOC濃度測定装置であって、前記測定フローに、前記吸引ポンプを逆転させて前記測定フローに空気を吸引し、その後、再び吸引ポンプを正転に戻して試料液を順方向に流動させ、この順方向への試料液の一定距離間の流動に要する時間から流量を計測する流量計測手段と、この流量計測手段による計測流量に基づいて、前記吸引ポンプの回転数を調整して前記測定部に対する試料液の通過流量を前記設定流量に自動的に補正する流量制御手段とを組み込んでいることを特徴としている。(請求項5)   In order to achieve the same object as described above, the continuous TOC concentration measuring device according to the present invention irradiates the sample liquid sucked by the pump with ultraviolet light for sucking the sample liquid to be measured, and ultraviolet light. A measurement unit that oxidizes an organic component contained in the sample solution and measures a TOC concentration in the organic component based on a difference in conductivity of the sample solution before and after the ultraviolet irradiation, and a positive pressure of the sample solution A measurement flow is formed from the decompression mechanism that maintains the flow rate, and the sample liquid at a set flow rate is continuously flowed into the measurement flow, thereby continuously measuring the total organic carbon concentration in the sample liquid. A continuous TOC concentration measuring apparatus, wherein the suction pump is reversed in the measurement flow to suck air into the measurement flow, and then the suction pump is returned to the normal rotation again to flow the sample liquid in the forward direction. The flow rate measuring means for measuring the flow rate from the time required for the flow of the sample liquid in a forward direction in the forward direction, and the rotation speed of the suction pump is adjusted based on the measured flow rate by the flow rate measuring means, It is characterized by incorporating flow rate control means for automatically correcting the flow rate of the sample solution to the measurement unit to the set flow rate. (Claim 5)

上記のような特徴構成を有する請求項1及び請求項5に係る本発明によれば、試料液を測定フローに順方向に連続的に流動させTOC濃度測定部に対して設定流量の試料液を通過させることにより、試料液中のTOC濃度の連続測定を可能としつつ、その連続測定中の任意の時期、例えば吸引ポンプによる流量が低下する、あるいは、変動する期間内で吸引ポンプを逆転させ、再び正転させるといった簡単なポンプ回転方向切換手段を導入するだけで、高価な流量計を用いることも、また、余分な手数を要することもなく、測定フローにおける現在流量を計測し、かつ、その計測流量に基づく流量補正によって、測定フローの流量を自動的かつ正確に初期の設定流量に維持管理することができる。特に、上記のようなポンプ回転方向切換手段及び試料液の一定距離間の流動所要時間から流量を計測する流量計測手段を採用することにより、たとえ5〜10ml/min.程度の少流量範囲に設定された試料液であっても、また、高粘度液や高温液であっても、狭い許容誤差範囲(±3%、この値は後述の実験結果を参照)に収まるだけの高精度な流量計測を行え、それに伴って、TOC濃度測定部における試料液の通過流量を安定化できる。したがって、特別な流量計を用いないシンプルかつ低コストなものでありながらも、長時間に亘る連続測定において所期のTOC濃度測定を常に精度よい状態に保つことができるという効果を奏する。   According to the first and fifth aspects of the present invention having the above-described characteristic configuration, the sample liquid is continuously flowed in the forward direction in the measurement flow, and the sample liquid having a set flow rate is supplied to the TOC concentration measurement unit. By allowing the TOC concentration in the sample liquid to pass continuously, the suction pump is reversed at any time during the continuous measurement, for example, when the flow rate by the suction pump decreases or fluctuates, It is possible to measure the current flow rate in the measurement flow without using an expensive flow meter and without extra effort, simply by introducing a simple pump rotation direction switching means that rotates forward again. By the flow rate correction based on the measured flow rate, the flow rate of the measurement flow can be automatically and accurately maintained at the initial set flow rate. In particular, by adopting the above-described pump rotation direction switching means and the flow rate measuring means for measuring the flow rate from the time required for the flow of the sample liquid over a certain distance, 5 to 10 ml / min. Even if the sample liquid is set to a small flow rate range, high viscosity liquid or high temperature liquid, it is within a narrow tolerance range (± 3%, refer to the experimental results described later). Therefore, the flow rate of the sample liquid in the TOC concentration measurement unit can be stabilized. Therefore, although it is simple and low-cost without using a special flow meter, there is an effect that an intended TOC concentration measurement can always be kept in a precise state in continuous measurement over a long period of time.

本発明において、前記吸引ポンプとして、流量可変型チュービングポンプを用いるとともに、前記減圧機構として、単一キャピラリーを用いることにより(請求項2,6)、低圧条件下においても、また、微少異物(ゴミやパーティクル粒子など)や気泡の影響による流量の変動を抑制して少流量の試料液を安定よくTOC濃度測定部に対して通過させることができ、上述の高精度な流量計測、それに基づく流量補正の頻度を減少しつつも、TOC濃度の連続測定精度の一層の向上を期することができる。   In the present invention, a variable flow rate tubing pump is used as the suction pump, and a single capillary is used as the pressure reducing mechanism (Claims 2 and 6). , Particle particles, etc.) and fluctuations in flow rate due to the influence of bubbles can be suppressed, and a small flow rate of sample liquid can be passed stably through the TOC concentration measurement unit. In addition, the accuracy of continuous measurement of the TOC concentration can be further improved.

また、本発明において、前記流量計測工程及び流量制御工程が、連続測定工程中の所定の時間間隔毎に自動的、定期的に行われるように、つまり、前記流量計測手段及び流量制御手段が、連続測定中の所定の時間間隔毎に定期的に動作さるようにプログラムされていることが望ましい(請求項3,7)。この場合は、測定者等が流量管理のために流量計を読み取り、それに応じて手動で流量補正するといった面倒を一切要することなく、また、それを失念していたとしても、連続測定中の所定の時間間隔で流量計測、流量補正が自動的、定期的に実施されるので、メンテナンスフリーで長期間に亘って連続測定が行われる場合でも高精度なTOC濃度測定を確実に保つことができる。   Further, in the present invention, the flow rate measurement step and the flow rate control step are automatically and periodically performed at predetermined time intervals in the continuous measurement step, that is, the flow rate measurement unit and the flow rate control unit are It is desirable to be programmed to operate periodically at predetermined time intervals during continuous measurement (claims 3 and 7). In this case, there is no need for the operator to read the flow meter for flow rate management and manually correct the flow rate accordingly, and even if it is forgotten, the predetermined measure during continuous measurement is not required. Since the flow rate measurement and flow rate correction are automatically and periodically performed at the time intervals of, high-precision TOC concentration measurement can be reliably maintained even when continuous measurement is performed over a long period of time without maintenance.

さらに、本発明において、前記流量計側工程での流量計測に、前記測定フローに接続された球状計量管と該計量管の出入口部に設けられた二つのフォトセンサと前記二つのフォトセンサによる試料液検知信号の入力時間差及び前記球状計量管体積から試料液の流量を演算する演算部とからなる流量計測手段を用いることにより(請求項4,8)、流量計測精度のより一層の向上を図ることができる。つまり、精度のよい流量計測の再現性を確保することができる。   Furthermore, in the present invention, for the flow rate measurement in the flow meter side step, a spherical measuring tube connected to the measurement flow, two photosensors provided at the entrance and exit of the measuring tube, and a sample by the two photosensors By using a flow rate measuring means comprising an input time difference of the liquid detection signal and a calculation unit for calculating the flow rate of the sample liquid from the spherical measuring tube volume (claims 4 and 8), the flow rate measurement accuracy is further improved. be able to. That is, reproducibility of accurate flow rate measurement can be ensured.

以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は本発明に係る連続式TOC濃度測定方法に用いられる連続式TOC濃度測定装置の概略構成図である。この連続式TOC濃度測定装置1は、測定対象となる試料液Aを底部より供給する試料液供給口部2aとオーバーフロー状態に排出する排出口部2bとを有して常に一定量の試料液Aを収容するオーバーフロー槽2と、このオーバーフロー槽2から前記試料液Aを吸引する吸引ポンプ3と、この吸引ポンプ3により吸引された試料液AにUVを照射して該試料液に含まれる有機物を酸化させ、前記UV照射前後の試料液の導電率の差に基づいて前記有機成分中のTOC濃度を測定する測定部4と、前記試料液Aの流量を計測する流量計測部5と、前記試料液Aの圧力を正圧に保持する減圧機構6とからサンプリング測定フロー7を形成し、このサンプリング測定フロー7に前記試料液Aを連続的に流動させることにより、前記試料液A中のTOC濃度を連続測定するように構成されている。なお、図1において、9は連続式TOC濃度測定装置1の使用前に、該装置1の校正を行うべくサンプリング測定フロー7に校正液を導入するための三方弁である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a continuous TOC concentration measuring apparatus used in a continuous TOC concentration measuring method according to the present invention. This continuous TOC concentration measuring apparatus 1 has a sample liquid supply port portion 2a for supplying a sample liquid A to be measured from the bottom and a discharge port portion 2b for discharging the sample liquid A to an overflow state. An overflow tank 2 for storing the sample liquid, a suction pump 3 for sucking the sample liquid A from the overflow tank 2, and UV irradiation of the sample liquid A sucked by the suction pump 3 to irradiate the organic matter contained in the sample liquid. A measurement unit 4 that measures the TOC concentration in the organic component based on a difference in conductivity of the sample solution before and after the UV irradiation, a flow rate measurement unit 5 that measures the flow rate of the sample solution A, and the sample A sampling measurement flow 7 is formed from the decompression mechanism 6 that maintains the pressure of the liquid A at a positive pressure, and the sample liquid A is continuously flowed into the sampling measurement flow 7, whereby T in the sample liquid A And it is configured so that the C concentration measured continuously. In FIG. 1, reference numeral 9 denotes a three-way valve for introducing a calibration solution into the sampling measurement flow 7 in order to calibrate the device 1 before using the continuous TOC concentration measuring device 1.

前記TOC濃度測定部4は、図2に示すように、スパイラル石英管またはセル長さが1〜3mmの石英セル構造の反応管4Aと該反応管4A内を通過流動する試料液AにUVを照射する3〜15W程度の低圧UVランプ4Bと前記反応管4Aの前後にそれぞれ設置されてUV照射前後の試料液の導電率を検出する二つの導電率センサ4C,4Cとを備え、前記二つの導電率センサ4C,4Cにより検出されたUV照射前後の導電率の差を演算することによって、UV照射により酸化された有機成分中のTOC濃度を測定するように構成されている。   As shown in FIG. 2, the TOC concentration measuring unit 4 applies UV to a spiral quartz tube or a reaction tube 4A having a quartz cell structure with a cell length of 1 to 3 mm and a sample liquid A flowing through the reaction tube 4A. A low-pressure UV lamp 4B of about 3 to 15 W to be irradiated and two conductivity sensors 4C and 4C which are respectively installed before and after the reaction tube 4A and detect the conductivity of the sample solution before and after the UV irradiation, By calculating the difference in conductivity before and after UV irradiation detected by the conductivity sensors 4C and 4C, the TOC concentration in the organic component oxidized by UV irradiation is measured.

前記吸引ポンプ3としては、最大吐出圧能力が0.3〜0.4MPaで、その使用吐出圧を最大吐出能力の約1/10〜1/20の0.03〜0.08MPa範囲に設定した流量可変型チュービングポンプが用いられる。このチュービングポンプ3と前記流量計測部5との間には、後述するような具体構成を有する前記流量計測部5による計測流量に基づいて前記サンプリング測定フロー7の流量が初期設定流量に自動補正されるように、チュービングポンプ3のローラ回転数を自動調整するコントローラ(CPUであり、以下、CPUと称する)8Aを含むフィードバック式流量制御系8が設けられている。   As the suction pump 3, the maximum discharge pressure capacity is 0.3 to 0.4 MPa, and the use discharge pressure is set in the range of 0.03 to 0.08 MPa, which is about 1/10 to 1/20 of the maximum discharge capacity. A variable flow rate tubing pump is used. Between the tubing pump 3 and the flow rate measuring unit 5, the flow rate of the sampling measurement flow 7 is automatically corrected to the initial set flow rate based on the measured flow rate by the flow rate measuring unit 5 having a specific configuration as described later. As shown, a feedback flow rate control system 8 including a controller (CPU, hereinafter referred to as CPU) 8A that automatically adjusts the roller rotation speed of the tubing pump 3 is provided.

前記サンプリング測定フロー7内における試料液Aの圧力を正圧に保持する減圧機構6としては、漸減圧型の減圧機構部品の一つで、絞り機構である単一キャピラリーを使用している。この単一キャピラリー6は、上述したチュービングポンプ3の吐出圧の設定使用範囲(0.03〜0.08MPa)で流量5〜10ml/min.においてサンプリング測定フロー7内に気泡を発生しない、また、混入している気泡や微少異物を付着させないで円滑に通過排出させるに足りる与圧を維持させ得るという条件、並びに、そのような与圧を維持するためにハーゲン−ポアズイユの法則により規定される長さ、具体的には、内径比の4乗倍、つまり、内径の16倍の長さの条件を共に満足するうえで、内径0.5mm/外径1.5mmで、長さが約100〜10000mm、好ましくは内径0.5mm/外径1.5mmで、長さが500〜1000mmサイズに設定されているものの使用が適切である。因みに、内径が1.0mmサイズの単一キャピラリーを使用すると、その長さが800〜10000mmにもなり、該キャピラリーを一直線に伸ばして使用する場合でも装置内の空間内に幾重にも丸く束ねて収納する場合でも、大きな空間スペースを要するとともに、材料コスト的にも高くなるという問題がある。   As the decompression mechanism 6 for maintaining the pressure of the sample liquid A in the sampling measurement flow 7 at a positive pressure, it is one of gradually decompression type decompression mechanism parts, and a single capillary as a throttling mechanism is used. The single capillary 6 has a flow rate of 5 to 10 ml / min. In the set use range (0.03 to 0.08 MPa) of the discharge pressure of the tubing pump 3 described above. In the sampling measurement flow 7, a condition that air bubbles are not generated and a sufficient pressure to smoothly pass and discharge without adhering air bubbles and minute foreign matters can be maintained, and such a pressure is set. In order to satisfy both the length defined by Hagen-Poiseuille's law, specifically the fourth power of the inner diameter ratio, that is, the length of 16 times the inner diameter, the inner diameter is 0.5 mm. / The outer diameter is 1.5 mm and the length is about 100 to 10,000 mm, preferably the inner diameter is 0.5 mm / the outer diameter is 1.5 mm and the length is set to a size of 500 to 1000 mm. Incidentally, when a single capillary having an inner diameter of 1.0 mm is used, the length becomes 800 to 10000 mm. Even when the capillary is used in a straight line, it is bundled in a space several times in the space in the apparatus. Even when stored, there is a problem that a large space is required and the material cost is increased.

前記流量計測部5は次のように構成されている。即ち、前記TOC濃度測定部4よりも下流位置のサンプリング測定フロー7に三方切替弁10及び空気配管11を介して空気吸込トラップ12が連通接続されているとともに、前記三方切替弁10とTOC濃度測定部4との間のサンプリング測定フロー7部分にはガラス球計量管13が直列に接続され、このガラス球計量管13の出入口部、つまり、上流部と下流部にはそれぞれフォトセンサ14a,14bが取り付けられている。この流量計測部5では、後述するような前記三方切替弁10の切替動作及び前記チュービングポンプ3の正逆転切替動作に伴って前記ガラス球計量管13内を順方向(図1中の矢印x方向)に流動する試料液の先端面を前記二つのフォトセンサ14a,14bが順次検知し、それら二つの試料液面検知信号Sa,Sbを演算部となる前記CPU8Aに入力することにより、前記ガラス球計量管13の体積(既知)と前記両試料液面検知信号Sa,Sbの入力時間差、つまり、試料液が一定距離を隔てて取り付けられている二つのフォトセンサ14a,14b間を順方向xに流動するのに要する時間から試料液の流量を演算し計測するように構成されている。   The flow rate measuring unit 5 is configured as follows. That is, an air suction trap 12 is connected to a sampling measurement flow 7 downstream of the TOC concentration measuring unit 4 through a three-way switching valve 10 and an air pipe 11, and the three-way switching valve 10 and the TOC concentration measurement. A glass bulb measuring tube 13 is connected in series to the portion 7 of the sampling measurement flow 7 between the photosensors 14a and 14b at the inlet / outlet portion of the glass bulb measuring tube 13, that is, the upstream portion and the downstream portion, respectively. It is attached. In the flow rate measuring unit 5, the glass bulb measuring tube 13 is moved forward (in the direction of the arrow x in FIG. 1) in accordance with the switching operation of the three-way switching valve 10 and the forward / reverse switching operation of the tubing pump 3 as described later. ) Are sequentially detected by the two photosensors 14a and 14b, and the two sample liquid level detection signals Sa and Sb are input to the CPU 8A serving as a calculation unit, whereby the glass bulb The input time difference between the volume (known) of the measuring tube 13 and the sample liquid level detection signals Sa and Sb, that is, the two photosensors 14a and 14b to which the sample liquid is attached at a predetermined distance in the forward direction x. The flow rate of the sample solution is calculated and measured from the time required to flow.

この流量計測部5と前記フィードバック式流量制御系8とは、前記CPU8Aを中心にして図3に示すような信号系統に構成されている。すなわち、前記三方切替弁10は、前記CPU8Aから発信される切替信号S1により前記空気吸込トラップ12をガラス球計量管13に接続する第1状態と両者12,13の接続を断つ第2状態とに切替えられるように構成されている。また、前記チュービングポンプ3の駆動用ステッピングモータ(図示省略する)は、前記CPU8Aから発信される正転・逆転指令信号S2により正転状態と逆転状態とに切替えられ、かつ、前記流量計測部5での計測流量に基づいて前記CPU8Aから発信されるパルス信号S3によりローラ回転数が制御されて前記TOC濃度測定部4を通過する試料液流量が初期設定流量に自動補正されるように構成されている。   The flow rate measuring unit 5 and the feedback flow rate control system 8 are configured in a signal system as shown in FIG. 3 with the CPU 8A as a center. That is, the three-way switching valve 10 is switched between a first state in which the air suction trap 12 is connected to the glass bulb measuring tube 13 and a second state in which the connection between the two and 13 is cut off by a switching signal S1 transmitted from the CPU 8A. It is configured to be switched. The driving stepping motor (not shown) for driving the tubing pump 3 is switched between the normal rotation state and the reverse rotation state by the normal rotation / reverse rotation command signal S2 transmitted from the CPU 8A, and the flow rate measuring unit 5 The number of rotations of the roller is controlled by a pulse signal S3 transmitted from the CPU 8A based on the measured flow rate at, and the sample solution flow rate passing through the TOC concentration measuring unit 4 is automatically corrected to the initial set flow rate. Yes.

なお、前記流量計測部5とフィードバック式流量制御系8とは、通常の連続TOC濃度測定中の所定の時間間隔毎に流量計測及びその計測結果に基づく流量補正というシーケンシャル動作が自動的、定期的に行われるようにプログラムされている。そのプログラムされている前記時間間隔としては、前記チュービングポンプ3の流量が低下あるいは変動する期間内、通常は2〜4週間に一度程度で適切である。   The flow rate measurement unit 5 and the feedback flow rate control system 8 automatically and periodically perform sequential operations such as flow rate measurement and flow rate correction based on the measurement result at predetermined time intervals during normal continuous TOC concentration measurement. Has been programmed to be done. The programmed time interval is suitably about once every 2 to 4 weeks within a period in which the flow rate of the tubing pump 3 decreases or fluctuates.

次に、上記した連続式TOC濃度測定装置1の動作について説明する。
通常は、図4の(A)に示すように、前記三方切替弁10が上述した第2状態に切替えられているとともに、前記チュービングポンプ3が正転状態に保たれ、このチュービングポンプ3によりオーバーフロー槽2から吸引された試料液Aがサンプリング測定フロー7を順方向xに設定流量で流動し、TOC濃度測定部4を通過するとき、試料液A中のTOC濃度が連続して測定される。
Next, the operation of the continuous TOC concentration measuring apparatus 1 will be described.
Normally, as shown in FIG. 4A, the three-way switching valve 10 is switched to the second state described above, and the tubing pump 3 is kept in the forward rotation state, and the tubing pump 3 overflows. When the sample solution A sucked from the tank 2 flows through the sampling measurement flow 7 in the forward direction x at a set flow rate and passes through the TOC concentration measuring unit 4, the TOC concentration in the sample solution A is continuously measured.

上記の通常測定状態での測定が所定時間経過すると、CPU8Aからの切替信号S1により前記三方切替弁10が図4の(B)に示すように、上述した第1状態に切替えられるとともに、CPU8Aからの逆転指令信号S2により前記チュービングポンプ3が逆転して空気吸込トラップ12及び配管11を通して流量計測部5におけるガラス球計量管13内に空気が吸い込まれ、その吸い込まれた空気とともにサンプリング測定フロー7内の試料液が逆方向yに流動される。   When the measurement in the normal measurement state has elapsed for a predetermined time, the switching signal S1 from the CPU 8A switches the three-way switching valve 10 to the first state described above as shown in FIG. In response to the reverse rotation command signal S2, the tubing pump 3 reverses and the air is sucked into the glass bulb measuring tube 13 in the flow rate measuring unit 5 through the air suction trap 12 and the pipe 11, and together with the sucked air in the sampling measurement flow 7 The sample liquid flows in the reverse direction y.

この逆方向yに流動する試料液の先端面が上流側のフォトセンサ4aにより検知されるまでは図4の(B)の状態が保たれており、試料液の先端面が上流側のフォトセンサ4aにより検知されてその検知信号SaがCPU8Aに入力されると、該CPU8Aからの切替信号S1により前記三方切替弁10が図4の(C)に示すように、上記第1状態に切替えられるとともに、CPU8Aからの正転指令信号S2により前記チュービングポンプ3が正転に戻り、試料液が再び順方向xに流動開始する。   The state shown in FIG. 4B is maintained until the front end surface of the sample liquid flowing in the reverse direction y is detected by the upstream photosensor 4a, and the front end surface of the sample liquid is the upstream photosensor. When the detection signal Sa is detected by 4a and input to the CPU 8A, the three-way switching valve 10 is switched to the first state as shown in FIG. 4C by the switching signal S1 from the CPU 8A. The tubing pump 3 returns to normal rotation by the normal rotation command signal S2 from the CPU 8A, and the sample liquid starts to flow in the forward direction x again.

続いて、順方向xに流動する試料液の先端面を下流側のフォトセンサ4bが検知し、その検知信号SbがCPU8Aに入力されると、前記ガラス球計量管13の体積(既知)と前記両試料液検知信号Sa,Sbの入力時間差、つまり、試料液が一定距離を隔てて取り付けられている二つのフォトセンサ14a,14b間を順方向xに流動するのに要する時間から流量が演算されサンプリング測定フロー7における現在の試料液流量が計測される。   Subsequently, when the downstream photosensor 4b detects the front end surface of the sample liquid flowing in the forward direction x and the detection signal Sb is input to the CPU 8A, the volume (known) of the glass bulb measuring tube 13 and the above-mentioned The flow rate is calculated from the difference in input time between the sample liquid detection signals Sa and Sb, that is, the time required for the sample liquid to flow in the forward direction x between the two photosensors 14a and 14b attached at a certain distance. The current sample solution flow rate in the sampling measurement flow 7 is measured.

そして、前記流量計測部5で計測された現在流量と初期設定流量とがCPU8Aで比較され、その流量差に基づいて前記CPU8Aから発信されるパルス信号S3により前記ステッピングモータの回転数が制御されてチュービングポンプ3のローラ回転数が調整され前記TOC濃度測定部4を通過する試料液流量が初期設定流量に自動的に補正される。   Then, the CPU 8A compares the current flow rate measured by the flow rate measurement unit 5 with the initial set flow rate, and the rotation speed of the stepping motor is controlled by the pulse signal S3 transmitted from the CPU 8A based on the flow rate difference. The roller rotation speed of the tubing pump 3 is adjusted, and the sample solution flow rate passing through the TOC concentration measurement unit 4 is automatically corrected to the initial set flow rate.

上記のような流量計測及びその計測流量に基づく流量の自動補正制御が終了したのちは、図4の(A)に示すような通常のTOC濃度連続測定状態に復帰し、この通常測定状態での測定が所定時間経過すると、再び上述と同様の流量計測及び流量の自動補正制御が行われる。   After the flow rate measurement and the automatic flow rate correction control based on the measured flow rate are completed, the normal TOC concentration continuous measurement state as shown in FIG. When the measurement has elapsed for a predetermined time, the same flow rate measurement and automatic flow rate correction control as described above are performed again.

以上のように、試料液中のTOC濃度を連続測定しつつ、その連続測定中の所定時間間隔毎に、チュービングポンプ3を逆転させ、再び正転させるといった簡単なポンプ回転方向切換手段を導入するだけで、高価な流量計を用いなくとも、また、余分な手数を要することもなく、サンプリング測定フロー7における現在流量を計測し、その計測流量に基づく流量補正によって、サンプリング測定フロー7の流量を自動的かつ正確に初期の設定流量に維持管理することが可能である。これによって、TOC濃度測定部4における試料液の通過流量を常に安定化でき、長時間に亘る連続測定において所期のTOC濃度測定を常に精度よい状態に保つことができる。   As described above, a simple pump rotation direction switching means for continuously measuring the TOC concentration in the sample solution and rotating the tubing pump 3 in the reverse direction at every predetermined time interval during the continuous measurement and introducing the forward rotation again is introduced. Therefore, the flow rate of the sampling measurement flow 7 is measured by measuring the current flow rate in the sampling measurement flow 7 without using an expensive flow meter and without requiring extra labor, and by correcting the flow rate based on the measurement flow rate. It is possible to maintain the initial set flow rate automatically and accurately. As a result, the flow rate of the sample solution in the TOC concentration measuring unit 4 can be always stabilized, and the desired TOC concentration measurement can always be kept in a precise state in continuous measurement over a long period of time.

特に、ポンプ回転方向切換手段及び試料液の一定距離間の流動所要時間から流量を計測する流量計測手段を採用することにより、たとえ5〜10ml/min.程度の少流量範囲に設定された試料液であっても、また、高粘度や高温度の試料液であっても、狭い許容誤差範囲に収まるだけの高精度な流量計測を行え、それに伴って、TOC濃度測定部における試料液の通過流量を安定化し、TOC濃度の測定精度を非常に高いものに保持することができる。   In particular, by adopting flow rate measuring means for measuring the flow rate from the pump rotation direction switching means and the time required for flow of the sample liquid over a certain distance, even if it is 5 to 10 ml / min. Even if the sample liquid is set to a small flow rate range, or even if the sample liquid is high viscosity or high temperature, the flow rate can be measured with high accuracy within the narrow tolerance range. The flow rate of the sample liquid in the TOC concentration measurement unit can be stabilized, and the measurement accuracy of the TOC concentration can be kept very high.

また、本実施の形態のように、吸引ポンプとして流量可変型チュービングポンプ3を用いるとともに、減圧機構として単一キャピラリー6を用いることにより、低圧条件下においても、また、気泡や微少異物が混入していたとしても、流量の変動を抑制して少流量の試料液を安定よくTOC濃度測定部に対して通過させることが可能で、上述の流量計測、それに基づく流量補正の頻度を減少しつつも、TOC濃度の連続測定精度の一層の向上を図ることができる。   Further, as in the present embodiment, by using the variable flow rate tubing pump 3 as a suction pump and the single capillary 6 as a pressure reducing mechanism, bubbles and minute foreign matters are mixed even under low pressure conditions. Even if it is, it is possible to pass a small amount of sample liquid stably through the TOC concentration measuring unit while suppressing fluctuations in the flow rate, while reducing the frequency of the above-described flow rate measurement and the flow rate correction based thereon. Further, the continuous measurement accuracy of the TOC concentration can be further improved.

因みに、本発明者らは、ガラス球計量管13と二つのフォトセンサ14a,14bを用いた流量計測部5による計量精度を確認するために、初期設定流量7.5ml/min.のもとで約80回に亘る流量計測試験を行い、図5に示すような試験結果を得た。   Incidentally, in order to confirm the measurement accuracy by the flow rate measuring unit 5 using the glass bulb measuring tube 13 and the two photosensors 14a and 14b, the present inventors set an initial flow rate of 7.5 ml / min. Under these conditions, the flow measurement test was performed about 80 times, and the test results as shown in FIG. 5 were obtained.

図5に示す結果から、7.5ml/min.における計測値のばらつき率、すなわち、(最大値−最小値)/平均値×100を求めてみると、
7.58−7.45=0.13
0.13/7.52×100=1.73(%)
であり、5〜10ml/min.程度の少流量範囲に設定された試料液であっても、狭い許容誤差範囲(±3%)に収まるだけの高精度な流量計測が可能であることを確認した。
From the results shown in FIG. The variation rate of the measured value at, that is, (maximum value−minimum value) / average value × 100,
7.58-7.45 = 0.13
0.13 / 7.52 × 100 = 1.73 (%)
5-10 ml / min. It was confirmed that even if the sample liquid was set to a small flow rate range, it was possible to measure the flow rate with a high degree of accuracy within the narrow allowable error range (± 3%).

また、上記の流量計測結果に基づいて、サンプリング測定フロー7における試料液流量の自動補正を行う試験を、略定期的に繰り返して行い、その結果、図6に示すようなポンプ流量補正付連続データを得た。   Further, a test for automatically correcting the sample liquid flow rate in the sampling measurement flow 7 based on the above flow rate measurement result is repeated almost periodically, and as a result, continuous data with pump flow rate correction as shown in FIG. Got.

図6に示す結果、流量変化は2週間で−3%程度であり、このことから約2週間毎に流量計測及び流量補正を行えば、長期に亘る連続使用においても、流量変化を非常に少なく抑えて所期のTOC濃度測定精度を常に高く維持できることが分かった。   As a result, the change in flow rate is about −3% in 2 weeks. Therefore, if flow measurement and flow rate correction are performed about every 2 weeks, the change in flow rate is very little even in continuous use over a long period of time. It was found that the desired TOC concentration measurement accuracy can always be kept high.

なお、上記実施の形態では、連続サンプリング測定フローを採用したものについて説明したが、バッチサンプリング測定フローに適用しても、同様な効果を奏し得ることはもちろんである。   In the above-described embodiment, the continuous sampling measurement flow has been described. However, the same effect can be obtained even when applied to the batch sampling measurement flow.

また、吸引ポンプとしては、チュービングポンプの使用が最適であるが、これに限らず、正逆転切替可能で、かつ、流量可変型のものであればよく、また、減圧機構としては、単一キャピラリーの使用が最適であるが、これに限らず、例えばニードル弁などのオリフィスを用いてもよい。   In addition, the use of a tubing pump is optimal as the suction pump, but the invention is not limited to this, and any pump can be used as long as it can switch between forward and reverse rotations and has a variable flow rate. However, the present invention is not limited to this, and an orifice such as a needle valve may be used.

本発明に係る連続式TOC濃度測定方法に用いられる連続式TOC濃度測定装置の概略構成図である。It is a schematic block diagram of the continuous TOC concentration measuring apparatus used for the continuous TOC concentration measuring method which concerns on this invention. TOC濃度測定部の拡大構成図である。It is an enlarged block diagram of a TOC density | concentration measurement part. 流量計測部とフィードバック式流量制御系との概略信号系統図である。It is a schematic signal system diagram of a flow measurement part and a feedback type flow control system. (A)〜(C)は動作説明図である。(A)-(C) are operation | movement explanatory drawings. 流量計測試験を示すグラフである。It is a graph which shows a flow measurement test. 試料液流量の自動補正試験の結果を示すグラフである。It is a graph which shows the result of the automatic correction | amendment test of a sample liquid flow rate. 従来のTOC濃度測定装置の概略フロー図である。It is a schematic flowchart of the conventional TOC concentration measuring apparatus.

符号の説明Explanation of symbols

1 連続式TOC濃度測定装置
2 オーバーフロー槽
3 チュービングポンプ
4 TOC濃度測定部
4A 反応管
4B 低圧UVランプ
4C 導電率センサ
5 流量計側部
6 単一キャピラリー
7 サンプリング測定フロー
8 フィードバック式流量制御系(流量制御手段)
8A CPU
13 ガラス球計量管
14a,14b フォトセンサ
A 試料液
DESCRIPTION OF SYMBOLS 1 Continuous TOC concentration measuring device 2 Overflow tank 3 Tubing pump 4 TOC concentration measuring part 4A Reaction tube 4B Low pressure UV lamp 4C Conductivity sensor 5 Flow meter side part 6 Single capillary 7 Sampling measurement flow 8 Feedback type flow control system (flow rate) Control means)
8A CPU
13 Glass bulb measuring tube 14a, 14b Photosensor A Sample solution

Claims (8)

測定対象となる試料液を吸引する吸引ポンプと、このポンプにより吸引された試料液に紫外線を照射して試料液に含まれる有機成分を酸化させ、前記紫外線照射前後の前記試料液の導電率の差に基づいて前記有機成分中の全有機炭素濃度を測定する測定部と、前記試料液の圧力を正圧に維持する減圧機構とから形成される測定フローに、設定流量の前記試料液を連続的に流動させることにより、前記試料液中の全有機炭素濃度を連続測定する方法であって、
連続測定工程中に、前記吸引ポンプを逆転させて前記測定フローに空気を吸引した後、吸引ポンプを正転に戻して試料液を順方向に流動させ、この順方向への試料液の一定距離間の流動に要する時間から流量を計測する流量計測工程と、この流量計測工程での計測流量に基づいて、前記吸引ポンプの回転数を調整して前記測定部に対する試料液の通過流量を前記設定流量に自動的に補正する流量制御工程とを行うことを特徴とする連続式全有機炭素濃度測定方法。
A suction pump that sucks the sample liquid to be measured, and the sample liquid sucked by this pump is irradiated with ultraviolet rays to oxidize organic components contained in the sample liquid, and the conductivity of the sample liquid before and after the ultraviolet irradiation is measured. The sample liquid at a set flow rate is continuously connected to a measurement flow formed by a measurement unit that measures the total organic carbon concentration in the organic component based on the difference and a pressure reducing mechanism that maintains the pressure of the sample liquid at a positive pressure. Is a method of continuously measuring the total organic carbon concentration in the sample liquid by flowing it,
During the continuous measurement process, after the suction pump is reversed and air is sucked into the measurement flow, the suction pump is returned to the normal rotation to cause the sample liquid to flow in the forward direction, and the constant distance of the sample liquid in the forward direction. The flow rate measuring step for measuring the flow rate from the time required for the flow between and the flow rate of the sample liquid to the measurement unit by adjusting the number of rotations of the suction pump based on the measured flow rate in the flow rate measuring step A continuous total organic carbon concentration measuring method characterized by performing a flow rate control step of automatically correcting the flow rate.
前記吸引ポンプとして、流量可変型チュービングポンプを用いるとともに、前記減圧機構として、単一キャピラリーを用いる請求項1に記載の連続式全有機炭素濃度測定方法。   The continuous total organic carbon concentration measuring method according to claim 1, wherein a variable flow rate type tubing pump is used as the suction pump, and a single capillary is used as the pressure reducing mechanism. 前記流量計測工程及び流量制御工程を、連続測定工程中の所定の時間間隔毎に自動的、定期的に行う請求項1または2に記載の連続式全有機炭素濃度測定方法。   3. The continuous total organic carbon concentration measuring method according to claim 1, wherein the flow rate measurement step and the flow rate control step are automatically and periodically performed at predetermined time intervals in the continuous measurement step. 前記流量計測工程での流量計測に、前記測定フローに接続された球状計量管と該計量管の出入口部に設けられた二つのフォトセンサと前記二つのフォトセンサによる試料液検知信号の入力時間差及び前記球状計量管体積から試料液の流量を演算する演算部とからなる流量計側手段を用いる請求項1ないし3のいずれかに記載の連続式全有機炭素濃度測定方法。   For the flow rate measurement in the flow rate measurement step, a spherical metering tube connected to the measurement flow, two photosensors provided at the entrance and exit of the metering tube, a difference in input time between sample liquid detection signals by the two photosensors, and The continuous total organic carbon concentration measuring method according to any one of claims 1 to 3, wherein a flow meter side means comprising a calculation unit for calculating the flow rate of the sample liquid from the spherical measuring tube volume is used. 測定対象となる試料液を吸引する吸引ポンプと、このポンプにより吸引された試料液に紫外線を照射して試料液に含まれる有機成分を酸化させ、前記紫外線照射前後の前記試料液の導電率の差に基づいて前記有機成分中の全有機炭素濃度を測定する測定部と、前記試料液の圧力を正圧に維持する減圧機構とから測定フローを形成し、この測定フローに設定流量の前記試料液を連続的に流動させることにより、前記試料液中の全有機炭素濃度を連続測定するように構成されている連続式全有機炭素濃度測定装置であって、
前記測定フローに、前記吸引ポンプを逆転させて前記測定フローに空気を吸引し、その後、再び吸引ポンプを正転に戻して試料液を順方向に流動させ、この順方向への試料液の一定距離間の流動に要する時間から流量を計測する流量計測手段と、この流量計測手段による計測流量に基づいて、前記吸引ポンプの回転数を調整して前記測定部に対する試料液の通過流量を前記設定流量に自動的に補正する流量制御手段とを組み込んでいることを特徴とする連続式全有機炭素濃度測定装置。
A suction pump that sucks the sample liquid to be measured, and the sample liquid sucked by this pump is irradiated with ultraviolet rays to oxidize organic components contained in the sample liquid, and the conductivity of the sample liquid before and after the ultraviolet irradiation is measured. A measurement flow is formed from a measurement unit that measures the total organic carbon concentration in the organic component based on the difference, and a decompression mechanism that maintains the pressure of the sample liquid at a positive pressure, and the sample at a set flow rate is formed in this measurement flow A continuous total organic carbon concentration measuring device configured to continuously measure the total organic carbon concentration in the sample liquid by continuously flowing the liquid,
The suction pump is reversed in the measurement flow and air is sucked into the measurement flow, and then the suction pump is returned to the normal rotation again to cause the sample liquid to flow in the forward direction. The flow rate measuring means for measuring the flow rate from the time required for the flow between distances, and the setting of the flow rate of the sample liquid to the measurement unit by adjusting the rotation speed of the suction pump based on the measured flow rate by the flow rate measuring means A continuous type total organic carbon concentration measuring device incorporating flow rate control means for automatically correcting the flow rate.
前記吸引ポンプとして、流量可変型チュービングポンプを用いるとともに、前記減圧機構として、単一キャピラリーを用いる請求項5に記載の連続式全有機炭素濃度測定装置。   6. The continuous total organic carbon concentration measuring apparatus according to claim 5, wherein a variable flow rate tubing pump is used as the suction pump, and a single capillary is used as the decompression mechanism. 前記流量計測手段及び流量制御手段が、連続測定中の所定の時間間隔毎に定期的に動作さるようにプログラムされている請求項5または6に記載の連続式全有機炭素濃度測定装置。   The continuous total organic carbon concentration measuring apparatus according to claim 5 or 6, wherein the flow rate measuring means and the flow rate control means are programmed so as to operate periodically at predetermined time intervals during continuous measurement. 前記流量計測手段が、前記測定フローに接続された球状計量管と該計量管の出入口部に設けられた二つのフォトセンサと前記二つのフォトセンサによる試料液検知信号の入力時間差及び前記球状計量管体積から試料液の流量を演算する演算部とから構成されている請求項5ないし7のいずれかに記載の連続式全有機炭素濃度測定装置。   The flow rate measuring means includes a spherical measuring tube connected to the measurement flow, two photosensors provided at the inlet / outlet of the measuring tube, a difference in input time between sample liquid detection signals by the two photosensors, and the spherical measuring tube. The continuous total organic carbon concentration measuring apparatus according to any one of claims 5 to 7, comprising a calculation unit that calculates the flow rate of the sample liquid from the volume.
JP2006294610A 2006-10-30 2006-10-30 Continuous total organic carbon concentration measuring method and apparatus Expired - Fee Related JP4926650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006294610A JP4926650B2 (en) 2006-10-30 2006-10-30 Continuous total organic carbon concentration measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006294610A JP4926650B2 (en) 2006-10-30 2006-10-30 Continuous total organic carbon concentration measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2008111721A true JP2008111721A (en) 2008-05-15
JP4926650B2 JP4926650B2 (en) 2012-05-09

Family

ID=39444309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006294610A Expired - Fee Related JP4926650B2 (en) 2006-10-30 2006-10-30 Continuous total organic carbon concentration measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4926650B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058137A (en) * 2010-09-10 2012-03-22 Kurita Water Ind Ltd Method and device for measuring dissolved substance concentration
WO2013005332A1 (en) * 2011-07-07 2013-01-10 三菱重工業株式会社 Hydrogen concentration measuring apparatus and hydrogen concentration measuring method
JP2014006227A (en) * 2012-06-27 2014-01-16 Tokyo Rika Kikai Kk Flow measurement instrument and flow measurement method
US9797823B2 (en) 2014-05-27 2017-10-24 Azbil Corporation Purified water manufacturing device monitoring system and purified water manufacturing device monitoring method
JP2021047112A (en) * 2019-09-19 2021-03-25 株式会社アナテック・ヤナコ Liquid measurement device and water quality measurement apparatus
WO2022201888A1 (en) * 2021-03-26 2022-09-29 横河電機株式会社 Control device and control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021106B1 (en) * 1970-11-02 1975-07-19
JPS56147013A (en) * 1980-04-17 1981-11-14 Kyoto Denshi Kogyo Kk Detecting method for flow rate of liquid
JPH04155220A (en) * 1990-10-18 1992-05-28 Stec Kk Liquid flowmeter
JPH0612511B2 (en) * 1984-10-30 1994-02-16 富士通株式会社 A terminal device having a drawing clear copy function
JP2001153828A (en) * 1999-11-26 2001-06-08 Dkk Toa Corp Method and device for measuring organic carbon content
JP2003270018A (en) * 2002-03-15 2003-09-25 Gl Sciences Inc Method and apparatus for measurement and distribution of very small flow rate
JP2004085199A (en) * 2002-07-04 2004-03-18 Terumo Corp Flow sensor and microvolume liquid dispense pump using the same
JP2004177164A (en) * 2002-11-25 2004-06-24 Techno Morioka Kk Water quality analyzer, and analytical method for water quality

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021106B1 (en) * 1970-11-02 1975-07-19
JPS56147013A (en) * 1980-04-17 1981-11-14 Kyoto Denshi Kogyo Kk Detecting method for flow rate of liquid
JPH0612511B2 (en) * 1984-10-30 1994-02-16 富士通株式会社 A terminal device having a drawing clear copy function
JPH04155220A (en) * 1990-10-18 1992-05-28 Stec Kk Liquid flowmeter
JP2001153828A (en) * 1999-11-26 2001-06-08 Dkk Toa Corp Method and device for measuring organic carbon content
JP2003270018A (en) * 2002-03-15 2003-09-25 Gl Sciences Inc Method and apparatus for measurement and distribution of very small flow rate
JP2004085199A (en) * 2002-07-04 2004-03-18 Terumo Corp Flow sensor and microvolume liquid dispense pump using the same
JP2004177164A (en) * 2002-11-25 2004-06-24 Techno Morioka Kk Water quality analyzer, and analytical method for water quality

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058137A (en) * 2010-09-10 2012-03-22 Kurita Water Ind Ltd Method and device for measuring dissolved substance concentration
WO2013005332A1 (en) * 2011-07-07 2013-01-10 三菱重工業株式会社 Hydrogen concentration measuring apparatus and hydrogen concentration measuring method
JP2014006227A (en) * 2012-06-27 2014-01-16 Tokyo Rika Kikai Kk Flow measurement instrument and flow measurement method
US9797823B2 (en) 2014-05-27 2017-10-24 Azbil Corporation Purified water manufacturing device monitoring system and purified water manufacturing device monitoring method
JP2021047112A (en) * 2019-09-19 2021-03-25 株式会社アナテック・ヤナコ Liquid measurement device and water quality measurement apparatus
JP7266297B2 (en) 2019-09-19 2023-04-28 株式会社アナテック・ヤナコ Liquid metering device and water quality measuring device
WO2022201888A1 (en) * 2021-03-26 2022-09-29 横河電機株式会社 Control device and control method
JP2022151201A (en) * 2021-03-26 2022-10-07 横河電機株式会社 Control device and control method
JP7192906B2 (en) 2021-03-26 2022-12-20 横河電機株式会社 Control device and control method

Also Published As

Publication number Publication date
JP4926650B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4926650B2 (en) Continuous total organic carbon concentration measuring method and apparatus
JP4879485B2 (en) Sample dilution apparatus and sample dilution method
KR101626619B1 (en) Material gas concentration control system
CN100552880C (en) The method for regulating temperature of low flow rate liquid and system thereof
JP4533614B2 (en) Vacuum control system
JP4653630B2 (en) Drug dissolving device
KR20030021998A (en) Method for measuring fluid component concentrations and apparatus therefor
US20070289529A1 (en) Treatment solution supply apparatus
JP4540506B2 (en) Method and apparatus for controlling position of sample liquid flow
JP2006234650A (en) Degasifier
JP3320050B2 (en) Method and apparatus for measuring organic carbon content
JP5239053B2 (en) Method and apparatus for measuring ozone concentration
US6734021B1 (en) Method and apparatus for measuring organic carbon content
JP2008107244A (en) Method for measuring continuous type total organic carbon concentration, and device thereof
JPH1076153A (en) Automatic liquid supply device and abnormality detector
US20220349854A1 (en) Mobile system for calibrating, verifying and/or adjusting a sensor and method for calibrating, verifying and/or adjusting a sensor
JP2004319568A (en) Liquid chemical device, etching device, and method of managing concentration of etchant
KR20030067220A (en) Automatic flow rate control device for use in a gas chromatograph and gas chromatography analyzing system comprising same
JP2008064651A (en) Method and apparatus for measuring total organic carbon concentration in liquid
JP5511108B2 (en) Material gas concentration controller
US20190025267A1 (en) Automated titration in a recirculating fluid system
JP2002340787A (en) Apparatus for measuring absorbance
JPS6131959A (en) Method for measuring ph of electroplating liquid
JP7342129B2 (en) automatic analyzer
JP2007305943A (en) Substrate processor, and substrate processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20111207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4926650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees