JP2021047112A - Liquid measurement device and water quality measurement apparatus - Google Patents

Liquid measurement device and water quality measurement apparatus Download PDF

Info

Publication number
JP2021047112A
JP2021047112A JP2019170481A JP2019170481A JP2021047112A JP 2021047112 A JP2021047112 A JP 2021047112A JP 2019170481 A JP2019170481 A JP 2019170481A JP 2019170481 A JP2019170481 A JP 2019170481A JP 2021047112 A JP2021047112 A JP 2021047112A
Authority
JP
Japan
Prior art keywords
measuring
liquid
pipeline
sample
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019170481A
Other languages
Japanese (ja)
Other versions
JP7266297B2 (en
Inventor
信夫 松岡
Nobuo Matsuoka
信夫 松岡
健太 西田
kenta Nishida
健太 西田
光一 片山
Koichi Katayama
光一 片山
翔 郭
Xiang Guo
翔 郭
信治 羽谷
Shinji Hatani
信治 羽谷
光明 菅原
Mitsuaki Sugawara
光明 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anatec Yanaco Corp
Original Assignee
Anatec Yanaco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anatec Yanaco Corp filed Critical Anatec Yanaco Corp
Priority to JP2019170481A priority Critical patent/JP7266297B2/en
Publication of JP2021047112A publication Critical patent/JP2021047112A/en
Application granted granted Critical
Publication of JP7266297B2 publication Critical patent/JP7266297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

To provide a liquid measurement device and a water quality measurement apparatus which can automatically and accurately measure a measurement object liquid even when the performance of a pump fluctuates.SOLUTION: A TOC measurement apparatus 1 comprises: a pump 16A which can switch between the normal driving of suctioning the air from a pipe line 22A and the reverse driving of feeding the air to the pipe line 22A; an optical sensor 51 which detects a sample in the pipe line 22A; and a control device. The control device performs the first control of controlling a valve device so as to permit the flow between pipe lines 21A, 22A and restrict the flow between pipe lines 22A, 23A and normally driving the pump 16A, the second control of reversely driving the pump 16A at the low speed on the basis of the detection of the liquid level of the sample by an optical sensor 51 during the first control, and the third control of controlling the valve device so as to restrict the flow between the pipe lines 21A, 22A and permit the flow between the pipe lines 22A, 23A on the basis of the re-detection of the liquid level of the sample by the optical sensor 51 during the second control and reversely driving the pump 16A.SELECTED DRAWING: Figure 1

Description

本発明は、被計量液を計量する液体計量装置およびこれを備えた水質測定装置に関するものである。 The present invention relates to a liquid measuring device for measuring a liquid to be measured and a water quality measuring device including the liquid measuring device.

水質測定装置として、例えば試料である水に含まれる有機炭素の濃度を測定する全有機炭素測定装置が知られている(例えば特許文献1参照)。 As a water quality measuring device, for example, a total organic carbon measuring device for measuring the concentration of organic carbon contained in water as a sample is known (see, for example, Patent Document 1).

特許文献1には、マイクロシリンジを用いて所定量の試料を反応槽に注入し、定量ポンプを用いて所定量の酸溶液を反応槽に注入し、さらに、他の定量ポンプを用いて所定量の酸化剤溶液を反応槽に注入する全有機炭素測定装置が記載されている。 In Patent Document 1, a predetermined amount of sample is injected into a reaction vessel using a microsyringe, a predetermined amount of an acid solution is injected into a reaction vessel using a metering pump, and a predetermined amount is further injected using another metering pump. A total organic carbon measuring device for injecting the oxidant solution of the above into a reaction vessel is described.

特開昭63−173962号公報Japanese Unexamined Patent Publication No. 63-173962

しかしながら、特許文献1の構成では、マイクロシリンジを用いて被計量液である試料を計量する必要があり、試料を自動で計量することができないという問題があった。そこで、酸溶液および酸化剤溶液と同様に、定量ポンプを用いて試料を計量することが考えられるが、定量ポンプの性能が低下した場合には精確に計量できないという問題がある。 However, in the configuration of Patent Document 1, it is necessary to measure the sample as the liquid to be measured using a microsyringe, and there is a problem that the sample cannot be measured automatically. Therefore, it is conceivable to measure the sample using a metering pump as in the case of the acid solution and the oxidizing agent solution, but there is a problem that the sample cannot be accurately measured when the performance of the metering pump deteriorates.

本発明は、上記事情に鑑みてなされたものであって、ポンプの性能が変動する場合であっても被計量液を自動で精確に計量できる液体計量装置および水質測定装置を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid measuring device and a water quality measuring device capable of automatically and accurately measuring a liquid to be measured even when the performance of a pump fluctuates. And.

上記課題を解決するため、請求項1に記載の液体計量装置は、被計量液を貯留する貯留部と、前記貯留部に接続された一次管路と、前記被計量液を計量するための計量管路と、計量後の前記被計量液が流れる二次管路と、前記計量管路から空気を吸い込む正転駆動と前記計量管路に空気を送り込む逆転駆動とに切り替え可能なポンプと、前記一次管路と前記計量管路との間における前記被計量液の流れと、前記計量管路と前記二次管路との間における前記被計量液の流れとを制御するバルブ装置と、前記計量管路内に流れる前記被計量液を検出するセンサ装置と、前記センサ装置による前記被計量液の検出結果に基づいて、前記ポンプおよび前記バルブ装置を制御する制御装置とを備え、前記制御装置は、(1)前記一次管路と前記計量管路との間における前記被計量液の流れを許容するとともに前記計量管路と前記二次管路との間における前記被計量液の流れを制限するように前記バルブ装置を制御し、前記ポンプを正転駆動させる第1制御と、(2)前記第1制御中に前記センサ装置が前記被計量液の液面を検知したことに基づいて、前記ポンプを前記第1制御に比べて低速で逆転駆動させる第2制御と、(3)前記第2制御中に前記センサ装置が前記被計量液の液面を再び検知したことに基づいて、前記一次管路と前記計量管路との間における前記被計量液の流れを制限するとともに前記計量管路と前記二次管路との間における前記被計量液の流れを許容するように前記バルブ装置を制御し、前記ポンプを逆転駆動させる第3制御とを行うことを特徴とする。 In order to solve the above problems, the liquid measuring device according to claim 1 has a storage unit for storing the liquid to be measured, a primary conduit connected to the storage unit, and a measurement for measuring the liquid to be measured. A pump that can be switched between a pipeline, a secondary pipeline through which the liquid to be measured flows after measurement, a forward rotation drive that sucks air from the measurement pipeline, and a reverse rotation drive that sends air to the measurement pipeline, and the above. A valve device for controlling the flow of the liquid to be measured between the primary pipeline and the measuring pipeline and the flow of the liquid to be measured between the measuring pipeline and the secondary pipeline, and the weighing. The control device includes a sensor device that detects the liquid to be measured flowing in the pipeline and a control device that controls the pump and the valve device based on the detection result of the liquid to be measured by the sensor device. , (1) Allow the flow of the liquid to be measured between the primary pipe and the measuring pipe, and limit the flow of the liquid to be measured between the measuring pipe and the secondary pipe. Based on the first control of controlling the valve device and driving the pump in the forward direction, and (2) the sensor device detecting the liquid level of the liquid to be measured during the first control. The primary control is based on the second control in which the pump is reversely driven at a lower speed than the first control, and (3) the sensor device detects the liquid level of the liquid to be measured again during the second control. The valve device is provided so as to limit the flow of the liquid to be measured between the conduit and the measuring pipeline and to allow the flow of the liquid to be measured between the measuring pipeline and the secondary pipeline. It is characterized in that it controls and performs a third control for reversely driving the pump.

請求項2に記載の液体計量装置は、請求項1に記載の液体計量装置において、前記一次管路と前記計量管路とを接続する中間管路をさらに備え、前記中間管路には、当該中間管路の内径を拡大させて形成された気泡低減部が設けられていることを特徴とする。 The liquid measuring device according to claim 2 further includes an intermediate line connecting the primary line and the measuring line in the liquid measuring device according to claim 1, and the intermediate line is provided with the intermediate line. It is characterized in that a bubble reducing portion formed by enlarging the inner diameter of the intermediate pipeline is provided.

請求項3に記載の液体計量装置は、請求項1または2に記載の液体計量装置において、前記貯留部として、有機炭素を含む試料を前記被計量液として貯留する試料貯留部と、酸を溶質とする酸溶液を前記被計量液として貯留する酸溶液貯留部と、酸化剤を溶質とする酸化剤溶液を前記被計量液として貯留する酸化剤溶液貯留部とを備え、前記一次管路として、前記試料貯留部に接続された試料一次管路と、前記酸溶液貯留部に接続された酸溶液一次管路と、前記酸化剤溶液貯留部に接続された酸化剤溶液一次管路とを備え、前記計量管路として、前記試料を計量するための試料計量管路と、前記酸溶液を計量するための酸溶液計量管路と、前記酸化剤溶液を計量するための酸化剤溶液計量管路とを備え、前記センサ装置は、前記試料計量管路内に流れる前記試料を検出する試料センサと、前記酸溶液計量管路内に流れる前記酸溶液を検出する酸溶液センサと、前記酸化剤溶液計量管路内に流れる前記酸化剤溶液を検出する酸化剤溶液センサとを備えていることを特徴とする。 The liquid measuring device according to claim 3 is the liquid measuring device according to claim 1 or 2, wherein as the storage unit, a sample storage unit that stores a sample containing organic carbon as the measurement liquid and a solute of an acid. An acid solution storage unit for storing the acid solution to be measured as the measurement liquid and an oxidant solution storage unit for storing the oxidant solution containing the oxidant as the solute as the measurement liquid are provided as the primary pipeline. A sample primary conduit connected to the sample storage portion, an acid solution primary pipeline connected to the acid solution storage portion, and an oxidant solution primary pipeline connected to the oxidant solution storage portion are provided. As the measuring pipeline, a sample measuring pipeline for measuring the sample, an acid solution measuring pipeline for measuring the acid solution, and an oxidizing agent solution measuring pipeline for measuring the oxidizing agent solution. The sensor device includes a sample sensor that detects the sample flowing in the sample measuring pipeline, an acid solution sensor that detects the acid solution flowing in the acid solution measuring pipeline, and an oxidizing agent solution weighing. It is characterized by including an oxidant solution sensor that detects the oxidant solution flowing in the pipeline.

請求項4に記載の液体計量装置は、請求項3に記載の液体計量装置において、前記貯留部として、前記試料を希釈するための希釈水を前記被計量液として貯留する希釈水貯留部を備え、前記一次管路として、前記希釈水貯留部に接続された希釈水一次管路を備え、前記計量管路として、前記希釈水を計量するための希釈水計量管路を備え、前記センサ装置は、前記希釈水計量管路内に流れる前記希釈水を検出する希釈水センサを備えていることを特徴とする。 The liquid measuring device according to claim 4 includes a diluted water storage unit for storing diluted water for diluting the sample as the liquid to be measured in the liquid measuring device according to claim 3. The sensor device is provided with a diluted water primary pipeline connected to the diluted water storage portion as the primary pipeline, and a diluted water measuring pipeline for measuring the diluted water as the measuring pipeline. The diluted water sensor for detecting the diluted water flowing in the diluted water measuring pipeline is provided.

請求項5に記載の液体計量装置は、請求項4に記載の液体計量装置において、前記二次管路と前記試料計量管路と前記希釈水計量管路とが直列に接続されていることを特徴とする。 The liquid measuring device according to claim 5 is the liquid measuring device according to claim 4, wherein the secondary line, the sample measuring line, and the diluted water measuring line are connected in series. It is a feature.

請求項6に記載の液体計量装置は、請求項1〜5のいずれか一項に記載の液体計量装置において、前記バルブ装置は、前記一次管路と前記計量管路と前記二次管路とが接続された三方向電磁弁を備えていることを特徴とする。 The liquid measuring device according to claim 6 is the liquid measuring device according to any one of claims 1 to 5, wherein the valve device includes the primary pipeline, the measuring pipeline, and the secondary pipeline. It is characterized by having a three-way solenoid valve connected to the valve.

請求項7に記載の水質測定装置は、請求項1〜6のいずれか一項に記載の液体計量装置を備えていることを特徴とする。 The water quality measuring device according to claim 7 is characterized by including the liquid measuring device according to any one of claims 1 to 6.

本発明によれば、ポンプの性能が変動する場合であっても被計量液を自動で精確に計量できる液体計量装置および水質測定装置を提供することができる。 According to the present invention, it is possible to provide a liquid measuring device and a water quality measuring device capable of automatically and accurately measuring a liquid to be measured even when the performance of a pump fluctuates.

本発明の一実施形態に係る液体計量装置を備えた水質測定装置の概要図である。It is a schematic diagram of the water quality measuring apparatus provided with the liquid measuring apparatus which concerns on one Embodiment of this invention. 同実施形態に係る気泡低減部の断面図である。It is sectional drawing of the bubble reduction part which concerns on the same embodiment. 同実施形態に係る水質測定装置の概略構成をブロック図である。It is a block diagram of the schematic structure of the water quality measuring apparatus which concerns on the same embodiment. 同実施形態に係る水質測定装置による全有機炭素の測定の流れを示すフローチャートである。It is a flowchart which shows the flow of the measurement of total organic carbon by the water quality measuring apparatus which concerns on this embodiment. (A)〜(D)は、同実施形態に係る試料の計量および移送の流れを示す概要図である。(A) to (D) are schematic views showing the flow of measurement and transfer of a sample according to the same embodiment. (A)〜(D)は、同実施形態に係る酸溶液の計量および移送の流れを示す概要図である。(A) to (D) are schematic views showing the flow of measurement and transfer of the acid solution according to the same embodiment. (A)〜(D)は、同実施形態に係る酸化剤溶液の計量および移送の流れを示す概要図である。(A) to (D) are schematic views showing the flow of measurement and transfer of the oxidizing agent solution according to the same embodiment. (A)〜(D)は、同実施形態に係る洗浄水の計量および移送の流れを示す概要図である。(A) to (D) are schematic views showing the flow of measurement and transfer of wash water according to the same embodiment.

図面を参照して、本発明の一実施形態に係る液体計量装置および水質測定装置を説明する。水質測定装置である全有機炭素測定装置1(以下「TOC測定装置1」)は、水中の全有機炭素(TOC:Total Organic Carbon)の濃度を連続的または周期的に測定するための自動計測器である。TOC測定装置1は、試料等の被計量液を計量する液体計量装置を内蔵している。 The liquid measuring device and the water quality measuring device according to the embodiment of the present invention will be described with reference to the drawings. The total organic carbon measuring device 1 (hereinafter referred to as “TOC measuring device 1”), which is a water quality measuring device, is an automatic measuring device for continuously or periodically measuring the concentration of total organic carbon (TOC) in water. Is. The TOC measuring device 1 has a built-in liquid measuring device that measures a liquid to be measured such as a sample.

図1に示すように、TOC測定装置1は、試料貯留部11A、酸溶液貯留部11B、酸化剤溶液貯留部11C、洗浄水貯留部11D、スパン校正液貯留部11E、混合部12、加熱部13、水分除去部14、二酸化炭素検出部15、ポンプ16A,16B、二酸化炭素除去部17、廃液貯留部18、および、排出管19を備えている。 As shown in FIG. 1, the TOC measuring device 1 includes a sample storage unit 11A, an acid solution storage unit 11B, an oxidant solution storage unit 11C, a washing water storage unit 11D, a span calibration liquid storage unit 11E, a mixing unit 12, and a heating unit. It includes 13, a water removing unit 14, a carbon dioxide detecting unit 15, pumps 16A and 16B, a carbon dioxide removing unit 17, a waste liquid storage unit 18, and a discharge pipe 19.

試料貯留部11A、酸溶液貯留部11B、酸化剤溶液貯留部11C、洗浄水貯留部11D、および、スパン校正液貯留部11Eは、被計量液を貯める貯留部(以下「貯留部11」)を構成している。 The sample storage unit 11A, the acid solution storage unit 11B, the oxidant solution storage unit 11C, the washing water storage unit 11D, and the span calibration liquid storage unit 11E have storage units (hereinafter referred to as “storage units 11”) for storing the liquid to be measured. It is configured.

試料貯留部11Aは、水質測定の対象となる有機炭素を含む水を試料として貯留するタンクにより構成されている。試料貯留部11Aには流量調整バルブ(不図示)を介して水が導かれ、所定量を超える水は試料貯留部11Aから還流されるように構成されている。 The sample storage unit 11A is composed of a tank that stores water containing organic carbon, which is the target of water quality measurement, as a sample. Water is guided to the sample storage unit 11A via a flow rate adjusting valve (not shown), and water exceeding a predetermined amount is recirculated from the sample storage unit 11A.

酸溶液貯留部11Bは、無機炭素(IC)除去用の酸溶液を貯留する保存容器により構成されている。酸溶液は、純水を溶媒とし酸を溶質とする水溶液であり、酸としては、例えば、硫酸、塩酸、または、リン酸等の無機酸を使用する。酸溶液中の酸の濃度は、酸溶液を試料に混合したときに試料の水素イオン指数(pH)が十分低下するように予め調整されている。 The acid solution storage unit 11B is composed of a storage container for storing an acid solution for removing inorganic carbon (IC). The acid solution is an aqueous solution using pure water as a solvent and an acid as a solute, and as the acid, for example, an inorganic acid such as sulfuric acid, hydrochloric acid, or phosphoric acid is used. The concentration of the acid in the acid solution is adjusted in advance so that the hydrogen ion index (pH) of the sample is sufficiently lowered when the acid solution is mixed with the sample.

酸化剤溶液貯留部11Cは、酸化剤溶液を貯留する保存容器により構成されている。酸化剤溶液は、純水を溶媒とし酸化剤を溶質とする水溶液であり、酸化剤としては、例えば、過硫酸ナトリウム(ペルオキソニ硫酸ナトリウム)または過硫酸カリウム(ペルオキソニ硫酸カリウム)を使用する。酸化剤溶液中の酸化剤の濃度は、酸化剤を試料に混合して加熱したときに試料中の有機炭素が十分酸化できるように予め調整されている。 The oxidant solution storage unit 11C is composed of a storage container for storing the oxidant solution. The oxidant solution is an aqueous solution using pure water as a solvent and an oxidant as a solute, and as the oxidant, for example, sodium persulfate (sodium peroxodisulfate) or potassium persulfate (potassium peroxodisulfate) is used. The concentration of the oxidizing agent in the oxidizing agent solution is adjusted in advance so that the organic carbon in the sample can be sufficiently oxidized when the oxidizing agent is mixed with the sample and heated.

洗浄水貯留部11Dは、試料が通過する管路内壁や電磁弁内部、および、混合部12の内部を洗浄するための洗浄水を貯留するタンクにより構成されている。洗浄水としては、例えば、水道水、または、イオン交換法により得られたイオン交換水や逆浸透膜を用いる濾過により得られたRO水等の純水を使用する。純水は、低濃度の全有機炭素を測定する際に使用することが好ましい。 The wash water storage unit 11D is composed of a tank for storing wash water for cleaning the inner wall of the pipeline through which the sample passes, the inside of the solenoid valve, and the inside of the mixing unit 12. As the wash water, for example, tap water, ion-exchanged water obtained by an ion exchange method, or pure water such as RO water obtained by filtration using a reverse osmosis membrane is used. Pure water is preferably used when measuring low concentrations of total organic carbon.

スパン校正液貯留部11Eは、スパン校正を行うためのスパン校正液を貯留する保存容器により構成されている。スパン校正液は、純水を溶媒としフタル酸水素カリウムを溶質とする水溶液である。 The span calibration liquid storage unit 11E is composed of a storage container for storing the span calibration liquid for performing span calibration. The span calibration solution is an aqueous solution containing pure water as a solvent and potassium hydrogen phthalate as a solute.

混合部12は、液体収容部であって、計量後の被計量液を収容する容器により構成されている。混合部12の内部では、計量後の試料と計量後の酸溶液が混合され、通気処理による無機炭素の除去後に試料と計量後の酸化剤溶液が混合される。また、混合部12は、加熱部13で生じた試料の蒸気を二酸化炭素検出部15に導く流路を構成している。 The mixing unit 12 is a liquid storage unit, and is composed of a container for storing the liquid to be measured after measurement. Inside the mixing section 12, the sample after weighing and the acid solution after weighing are mixed, and after the inorganic carbon is removed by aeration treatment, the sample and the oxidizing agent solution after weighing are mixed. Further, the mixing unit 12 constitutes a flow path that guides the vapor of the sample generated in the heating unit 13 to the carbon dioxide detection unit 15.

加熱部13は、酸化剤溶液が混合された試料を加熱するための発熱体13Aを備えたオートクレーブにより構成されている。加熱部13は、試料を加熱することで試料中の有機炭素を酸化させ、二酸化炭素を含んだ試料の蒸気を発生させる。 The heating unit 13 is composed of an autoclave provided with a heating element 13A for heating a sample mixed with an oxidizing agent solution. The heating unit 13 oxidizes the organic carbon in the sample by heating the sample, and generates vapor of the sample containing carbon dioxide.

水分除去部14は、ミストキャッチャーにより構成されている。水分除去部14は、蒸気中の液体の粒子を捕集することによって、二酸化炭素検出部15に送られる試料の蒸気から水分を除去する。 The water removing unit 14 is composed of a mist catcher. The water removal unit 14 removes water from the vapor of the sample sent to the carbon dioxide detection unit 15 by collecting liquid particles in the vapor.

二酸化炭素検出部15は、試料の蒸気に含まれる二酸化炭素を検出する非分散型赤外線式(NDIR式)ガス分析計により構成されている。二酸化炭素検出部15は、試料の蒸気から二酸化炭素を検出することで、試料に含まれていた全有機炭素の濃度を測定し、その測定結果を出力する。 The carbon dioxide detection unit 15 is composed of a non-dispersive infrared type (NDIR type) gas analyzer that detects carbon dioxide contained in the vapor of the sample. The carbon dioxide detection unit 15 measures the concentration of total organic carbon contained in the sample by detecting carbon dioxide from the vapor of the sample, and outputs the measurement result.

ポンプ16Aは、空気の流路を形成するチューブを備えたペリスタルティックポンプ(いわゆるしごきポンプ)により構成されている。ポンプ16Aは、ローターが回転駆動することによりチューブの圧縮および弛緩を行い、ローターがチューブを圧縮して(押し潰して)空気を送り込むとともに、圧縮されたチューブを弛緩(復元)する際に発生する負圧によって空気を吸い込む。ポンプ16Aが単位時間あたりに空気を移送する容量は、ローターの回転速度により変化する。また、少なくともポンプ16Aは、ローターの回転方向を切り替えることにより、計量管路および加熱管路(後述する管路22A〜22D,27)から空気を吸い込む正転駆動と、計量管路および加熱管路に空気を送り込む逆転駆動とに切り替え可能に構成されている。 The pump 16A is composed of a peristaltic pump (so-called ironing pump) provided with a tube forming an air flow path. The pump 16A is generated when the rotor is rotationally driven to compress and relax the tube, and the rotor compresses (crushes) the tube to send air and relaxes (restores) the compressed tube. Inhale air by negative pressure. The capacity of the pump 16A to transfer air per unit time varies depending on the rotation speed of the rotor. Further, at least the pump 16A has a forward rotation drive for sucking air from the measuring pipe and the heating pipe (pipes 22A to 22D, 27 described later) by switching the rotation direction of the rotor, and the measuring pipe and the heating pipe. It is configured to be switchable to reverse drive that sends air to.

ポンプ16Bは、ダイアフラムを備えた電磁式エアーポンプにより構成されている。ポンプ16Bは、電磁石によりダイアフラムを振動させ、計量管路および加熱管路(後述する管路22A〜22D,27)等に空気を送り込む。 The pump 16B is composed of an electromagnetic air pump provided with a diaphragm. The pump 16B vibrates the diaphragm with an electromagnet and sends air into the measuring pipe and the heating pipe (pipes 22A to 22D, 27 described later) and the like.

二酸化炭素除去部17は、ポンプ16A,16Bが移送する空気から二酸化炭素を除去する二酸化炭素除去管により構成されている。二酸化炭素除去部17は、二酸化炭素を吸収する吸収剤として例えばソーダライムを備えている。 The carbon dioxide removing unit 17 is composed of a carbon dioxide removing pipe that removes carbon dioxide from the air transferred by the pumps 16A and 16B. The carbon dioxide removing unit 17 includes, for example, soda lime as an absorbent that absorbs carbon dioxide.

廃液貯留部18は、混合部12内の残留液を廃液として貯めるタンクにより構成されている。廃液貯留部18に溜まった廃液は、TOC測定装置1の保守作業者によって適宜廃棄される。 The waste liquid storage unit 18 is composed of a tank that stores the residual liquid in the mixing unit 12 as waste liquid. The waste liquid collected in the waste liquid storage unit 18 is appropriately disposed of by a maintenance worker of the TOC measuring device 1.

排出管19は、混合部12内で発生した無機炭素由来の二酸化炭素、水分除去部14で捕集された水、および、後述する管路24内の残留液を排出する配管である。 The discharge pipe 19 is a pipe that discharges carbon dioxide derived from inorganic carbon generated in the mixing section 12, water collected by the moisture removing section 14, and residual liquid in the pipeline 24 described later.

また、図1に示すように、TOC測定装置1は、管路21A〜21E,22A〜22D,23A〜23C,24〜27、バルブ31〜39,41〜47、および、光センサ51〜54を備えている。 Further, as shown in FIG. 1, the TOC measuring device 1 includes pipelines 21A to 21E, 22A to 22D, 23A to 23C, 24 to 27, bulbs 31 to 39, 41 to 47, and optical sensors 51 to 54. I have.

管路21A〜21Eは、貯留部11に接続された一次管路を構成している。管路21Aは、試料貯留部11Aに接続された試料一次管路である。管路21Bは、酸溶液貯留部11Bに接続された酸溶液一次管路である。管路21Cは、酸化剤溶液貯留部11Cに接続された酸化剤溶液一次管路である。管路21Dは、洗浄水貯留部11Dに接続された洗浄水一次管路である。管路21Eは、スパン校正液貯留部11Eに接続されたスパン校正液一次管路である。管路21A〜21Eは、それぞれ、1対1で対応するバルブ37,35,36,34,38に接続されている(図1参照)。 The pipelines 21A to 21E form a primary pipeline connected to the storage unit 11. The pipeline 21A is a sample primary pipeline connected to the sample storage unit 11A. The pipeline 21B is an acid solution primary pipeline connected to the acid solution storage unit 11B. The conduit 21C is an oxidant solution primary conduit connected to the oxidant solution storage portion 11C. The pipeline 21D is a primary rinse water pipeline connected to the wash water storage unit 11D. The pipeline 21E is a span calibration fluid primary pipeline connected to the span calibration fluid storage unit 11E. The pipelines 21A to 21E are connected to the corresponding valves 37, 35, 36, 34, 38 on a one-to-one basis (see FIG. 1).

管路22A〜22Dは、被計量液を計量するための計量管路を構成しており、透光性を有している。管路22Aは、試料を計量するための試料計量管路であって、スパン校正液を計量するためのスパン校正液計量管路を兼ねている。管路22Bは、酸溶液を計量するための酸溶液計量管路である。管路22Cは、酸化剤溶液を計量するための酸化剤溶液計量管路である。管路22Dは、洗浄水を計量するための洗浄水計量管路である。管路22A〜22Dのポンプ16A側の端部は、それぞれ、1対1で対応するバルブ34,32,33,31に接続されており、管路22A〜22Dの混合部12側の端部は、それぞれ、1対1で対応するバルブ39,35,36,34に接続されている(図1参照)。管路22Aと管路22Dとは、バルブ34を介して直列に接続されているため、管路22Aには洗浄水が流れる。 The pipelines 22A to 22D form a measuring conduit for measuring the liquid to be measured, and have translucency. The conduit 22A is a sample measuring conduit for measuring a sample, and also serves as a span calibration liquid measuring conduit for measuring the span calibration liquid. Pipeline 22B is an acid solution measuring pipe for measuring the acid solution. The conduit 22C is an oxidant solution measuring conduit for measuring the oxidant solution. Pipeline 22D is a washwater measuring pipe for measuring wash water. The ends of the pipelines 22A to 22D on the pump 16A side are connected to the corresponding valves 34, 32, 33, 31 on a one-to-one basis, and the ends of the pipelines 22A to 22D on the mixing portion 12 side are connected. , Are connected to the corresponding valves 39, 35, 36, 34 on a one-to-one basis (see FIG. 1). Since the pipeline 22A and the pipeline 22D are connected in series via a valve 34, wash water flows through the pipeline 22A.

管路23A〜23Cは、混合部12に接続された計量後の被計量液が流れる二次管路を構成している。管路23Aと管路22Aと管路22Dとは、バルブ34,39を介して直列に接続されており、管路23Aには、計量後の試料、洗浄水、および、スパン校正液が流れる。管路23Bには、計量後の酸溶液が流れる。管路23Cには、計量後の酸化剤溶液が流れる。管路23A〜23Cは、それぞれ、1対1で対応するバルブ39,35,36に接続されている(図1参照)。 The pipelines 23A to 23C form a secondary pipeline connected to the mixing unit 12 through which the liquid to be measured flows. The pipe line 23A, the pipe line 22A, and the pipe line 22D are connected in series via valves 34 and 39, and the sample after measurement, the washing water, and the span calibration liquid flow through the pipe line 23A. The acid solution after weighing flows through the pipeline 23B. The oxidant solution after weighing flows through the conduit 23C. The pipelines 23A to 23C are connected to the corresponding valves 39, 35, 36 on a one-to-one basis (see FIG. 1), respectively.

管路24は、一次管路と計量管路とを接続する中間管路を構成している。管路24は、バルブ37,38に接続されるとともに、接続点Pで管路22Aに接続されている。管路24には、この管路24の内径を拡大させて形成された気泡低減部24Aが設けられている。気泡低減部24Aについては、図2を参照して後述する。 The pipeline 24 constitutes an intermediate pipeline connecting the primary pipeline and the measuring pipeline. The pipeline 24 is connected to the valves 37 and 38 and is connected to the pipeline 22A at the connection point P. The pipeline 24 is provided with a bubble reducing portion 24A formed by enlarging the inner diameter of the pipeline 24. The bubble reduction unit 24A will be described later with reference to FIG.

管路25は、試料等の被計量液や試料の蒸気等を移送するために、ポンプ16A,16Bとバルブ31〜33,41とに接続されている。管路26は、混合部12とバルブ42とに接続されている。管路27は、試料を加熱するための加熱管路であり、発熱体13Aの周囲に設けられており、管路27のポンプ16A,16B側の端部はバルブ41に接続され、管路27の混合部12側の端部はバルブ42に接続されている。 The pipeline 25 is connected to the pumps 16A and 16B and the valves 31 to 33 and 41 in order to transfer the liquid to be measured such as the sample and the vapor of the sample. The pipeline 26 is connected to the mixing portion 12 and the valve 42. The pipeline 27 is a heating pipeline for heating the sample, is provided around the heating element 13A, and the ends of the pipeline 27 on the pump 16A and 16B sides are connected to the valve 41 and the pipeline 27 is connected to the valve 41. The end of the mixing portion 12 side is connected to the valve 42.

バルブ31〜39は、一次管路と計量管路との間における被計量液の流れと、計量管路と二次管路との間における被計量液の流れとを制御するバルブ装置(以下「バルブ装置30」)を構成している。 The valves 31 to 39 are valve devices that control the flow of the liquid to be measured between the primary pipe and the measuring pipe and the flow of the liquid to be measured between the measuring pipe and the secondary pipe (hereinafter, "" It constitutes a valve device 30 ").

バルブ31〜33は、それぞれ二方向電磁弁により構成されている。バルブ31は、管路25と管路22Dとの間における流体(空気)の流れを制御する。バルブ32は、管路25と管路22Bとの間における流体(空気)の流れを制御する。バルブ33は、管路25と管路22Cとの間における流体(空気)の流れを制御する。 The valves 31 to 33 are each composed of a two-way solenoid valve. The valve 31 controls the flow of fluid (air) between the pipeline 25 and the pipeline 22D. The valve 32 controls the flow of fluid (air) between the pipeline 25 and the pipeline 22B. The valve 33 controls the flow of fluid (air) between the pipeline 25 and the pipeline 22C.

バルブ34〜36は、それぞれ、一次管路と計量管路と二次管路とが接続された三方向電磁弁により構成されている。バルブ34は、管路21Dと管路22Dとの間における流体(洗浄水)の流れを制御するとともに、管路22Dと管路22A,23Aとの間における流体(洗浄水および空気)の流れを制御する。バルブ35は、管路21Bと管路22Bとの間における流体(酸溶液)の流れを制御するとともに、管路22Bと管路23Bとの間における流体(酸溶液および空気)の流れを制御する。バルブ36は、管路21Cと管路22Cとの間における流体(酸化剤溶液)の流れを制御するとともに、管路22Cと管路23Cとの間における流体(酸化剤溶液および空気)の流れを制御する。 The valves 34 to 36 are each composed of a three-way solenoid valve in which the primary pipeline, the measuring pipeline, and the secondary pipeline are connected. The valve 34 controls the flow of the fluid (washing water) between the pipeline 21D and the pipeline 22D, and also controls the flow of the fluid (washing water and air) between the pipeline 22D and the pipelines 22A and 23A. Control. The valve 35 controls the flow of the fluid (acid solution) between the pipeline 21B and the pipeline 22B, and controls the flow of the fluid (acid solution and air) between the pipeline 22B and the pipeline 23B. .. The valve 36 controls the flow of the fluid (oxidizing agent solution) between the pipeline 21C and the conduit 22C, and also controls the flow of the fluid (oxidizing agent solution and air) between the conduit 22C and the conduit 23C. Control.

バルブ37〜39は、それぞれ二方向電磁弁により構成されている。バルブ37は、管路21Aと管路24,22Aとの間における流体(試料)の流れを制御する。バルブ38は、管路21Eと管路24,22Aとの間における流体(スパン校正液)の流れを制御する。バルブ39は、管路22Aと管路23Aとの間における流体(試料、洗浄水、スパン校正液、および、空気)の流れを制御する。 The valves 37 to 39 are each composed of a two-way solenoid valve. The valve 37 controls the flow of fluid (sample) between the pipelines 21A and the pipelines 24 and 22A. The valve 38 controls the flow of fluid (span calibration liquid) between the pipeline 21E and the pipelines 24 and 22A. The valve 39 controls the flow of fluids (sample, wash water, span calibration fluid, and air) between the conduit 22A and the conduit 23A.

バルブ41〜47は、それぞれ二方向電磁弁により構成されている。バルブ41は、管路25と管路27との間における流体(空気)の流れを制御し、バルブ42は、管路26と管路27との間における流体(試料および空気)の流れを制御する。 The valves 41 to 47 are each composed of a two-way solenoid valve. The valve 41 controls the flow of fluid (air) between the conduit 25 and the conduit 27, and the valve 42 controls the flow of the fluid (sample and air) between the conduit 26 and the conduit 27. To do.

バルブ43は、混合部12と水分除去部14との間における流体(試料の蒸気)の流れを制御し、バルブ44は、混合部12と排出管19との間における流体(無機炭素由来の二酸化炭素を含む気体)の流れを制御する。バルブ45は、混合部12と廃液貯留部18との間における流体(残留液)の流れを制御し、バルブ46は、管路24と排出管19との間における流体(残留液)の流れを制御する。バルブ47は、ポンプ16Aから送られる空気がポンプ16Bに流入することを防止するために、ポンプ16Bと管路25との間における流体(空気)の流れを制御する。 The valve 43 controls the flow of the fluid (sample vapor) between the mixing section 12 and the moisture removing section 14, and the valve 44 controls the fluid (dioxide derived from inorganic carbon) between the mixing section 12 and the discharge pipe 19. Control the flow of (gas containing carbon). The valve 45 controls the flow of the fluid (residual liquid) between the mixing unit 12 and the waste liquid storage unit 18, and the valve 46 controls the flow of the fluid (residual liquid) between the pipeline 24 and the discharge pipe 19. Control. The valve 47 controls the flow of fluid (air) between the pump 16B and the pipeline 25 in order to prevent the air sent from the pump 16A from flowing into the pump 16B.

光センサ51〜54は、計量管路に流れる被計量液を検出するセンサ装置(以下「センサ装置50」)を構成している。光センサ51〜54は、それぞれ、計量管路を挟んで対向するように配置された発光部および受光部を備えており、発光部は、所定光量の検知光を発光し、受光部は、検知光を受光するように構成されている。光センサ51〜54は、それぞれ、受光部による検知光の受光結果に基づいて、被計量液を検出する。 The optical sensors 51 to 54 constitute a sensor device (hereinafter referred to as “sensor device 50”) for detecting the liquid to be measured flowing in the measuring conduit. The optical sensors 51 to 54 each include a light emitting unit and a light receiving unit arranged so as to face each other across the measuring tube. The light emitting unit emits a predetermined amount of detection light, and the light receiving unit detects. It is configured to receive light. Each of the optical sensors 51 to 54 detects the liquid to be measured based on the light receiving result of the detected light by the light receiving unit.

光センサ51は、管路22A内に流れる試料を検出する試料センサであり、管路22A内に流れるスパン校正液を検出するスパン校正液センサを兼ねている。光センサ51は、所定量の試料を計量できるように、接続点Pから計量目標値に応じた距離をあけて管路22Aの近傍に設けられている。 The optical sensor 51 is a sample sensor that detects a sample flowing in the conduit 22A, and also serves as a span calibration liquid sensor that detects a span calibration fluid flowing in the conduit 22A. The optical sensor 51 is provided in the vicinity of the conduit 22A at a distance from the connection point P according to the measurement target value so that a predetermined amount of sample can be measured.

光センサ52は、管路22B内に流れる酸溶液を検出する酸溶液センサである。光センサ52は、所定量の酸溶液を計量できるように、バルブ35から計量目標値に応じた距離をあけて管路22Bの近傍に設けられている。 The optical sensor 52 is an acid solution sensor that detects an acid solution flowing in the conduit 22B. The optical sensor 52 is provided in the vicinity of the pipeline 22B at a distance from the bulb 35 according to the measurement target value so that a predetermined amount of the acid solution can be measured.

光センサ53は、管路22C内に流れる酸化剤溶液を検出する酸化剤溶液センサである。光センサ53は、所定量の酸化剤溶液を計量できるように、バルブ36から計量目標値に応じた距離をあけて管路22Cの近傍に設けられている。 The optical sensor 53 is an oxidant solution sensor that detects the oxidant solution flowing in the conduit 22C. The optical sensor 53 is provided in the vicinity of the pipeline 22C at a distance from the bulb 36 according to the measurement target value so that a predetermined amount of the oxidant solution can be measured.

光センサ54は、管路22D内に流れる洗浄水を検出する洗浄水センサである。光センサ54は、所定量の洗浄水を計量できるように、バルブ34から計量目標値に応じた距離をあけて管路22Dの近傍に設けられている。 The optical sensor 54 is a wash water sensor that detects the wash water flowing in the conduit 22D. The optical sensor 54 is provided in the vicinity of the pipeline 22D at a distance from the bulb 34 according to the measurement target value so that a predetermined amount of washing water can be measured.

図2(A)および(B)を参照して気泡低減部24Aの作用を説明する。
図2(A)に示すように、試料貯留部21Aから管路22Aに試料が移送されるとき、表面張力によって試料が薄い膜のように形成されることがあるため、試料の先頭部分に気泡が生じることがあり、短い区間において複数の試料の液面が存在する。気泡低減部24Aでは、薄い膜状に形成された試料が気泡低減部24Aの内壁に沿って下方の試料と合流するように落ちるため、図2(B)に示すように、試料の先頭部分に生じた気泡を解消することができる。こうして、気泡低減部24Aは、管路24を流れる被計量液(試料およびスパン校正液)に発生する気泡を低減し、被計量液の液面を整える。
The operation of the bubble reducing unit 24A will be described with reference to FIGS. 2 (A) and 2 (B).
As shown in FIG. 2A, when the sample is transferred from the sample storage portion 21A to the conduit 22A, the sample may be formed like a thin film due to surface tension, so that air bubbles are formed at the head portion of the sample. May occur, and there are multiple sample liquid levels in a short interval. In the bubble reduction section 24A, the sample formed in the form of a thin film falls along the inner wall of the bubble reduction section 24A so as to merge with the sample below. The generated air bubbles can be eliminated. In this way, the bubble reduction unit 24A reduces the bubbles generated in the liquid to be measured (sample and span calibration liquid) flowing through the pipeline 24, and prepares the liquid level of the liquid to be measured.

また、図3に示すように、TOC測定装置1は、加熱部13、ポンプ16A,16B、および、バルブ31〜39,41〜47を制御する制御装置60を備えている。制御装置60は、被計量液を計量するために、センサ装置50による被計量液の検出に基づいて、バルブ装置30およびポンプ16Aを制御する。 Further, as shown in FIG. 3, the TOC measuring device 1 includes a heating unit 13, pumps 16A and 16B, and a control device 60 for controlling valves 31 to 39 and 41 to 47. The control device 60 controls the valve device 30 and the pump 16A based on the detection of the liquid to be measured by the sensor device 50 in order to measure the liquid to be measured.

以上のような構成において、本実施形態のTOC測定装置1が備える液体計量装置は、貯留部11、ポンプ16A、管路21A〜21E,22A〜22D,23A〜23C、バルブ装置30、および、センサ装置50により構成されている。 In the above configuration, the liquid measuring device included in the TOC measuring device 1 of the present embodiment includes a storage unit 11, a pump 16A, pipelines 21A to 21E, 22A to 22D, 23A to 23C, a valve device 30, and a sensor. It is composed of a device 50.

図4を参照して、全有機炭素の測定の流れの一例を説明する。
まず、TOC測定装置1は、試料を計量し、混合部12に試料を移送する(ステップS1)。具体的には、制御装置60が、試料貯留部11Aから管路22Aに試料を移送し、さらに、管路22Aから混合部12に所定量の試料を移送するように、バルブ装置30およびポンプ16Aを制御する。
An example of the flow of measurement of total organic carbon will be described with reference to FIG.
First, the TOC measuring device 1 measures the sample and transfers the sample to the mixing unit 12 (step S1). Specifically, the valve device 30 and the pump 16A so that the control device 60 transfers the sample from the sample storage unit 11A to the conduit 22A, and further transfers a predetermined amount of the sample from the conduit 22A to the mixing unit 12. To control.

図5を参照して、ステップS1における試料の計量動作についてさらに詳しく説明する。図5中の矢印は、試料の流れを示している。図5(A)に示すように、制御装置60は、管路25,22D,22Aが連通するようにバルブ31を制御し、さらに、管路21Aと管路24,22Aとの間における試料の流れを許容するとともに管路22Aと管路23Aとの間における試料の流れを制限するようにバルブ37を制御し、管路22Aから空気を吸い込むようにポンプ16Aを正転駆動させる第1制御を行って、試料貯留部11Aから管路22Aに試料を移送する。光センサ51が試料の液面を検出したことに基づいてポンプ16Aの正転駆動を停止させると、図5(B)に示すように、試料の高速の移送により試料の液面が光センサ51から離れる。そこで、制御装置60は、第1制御中に光センサ51が試料の液面を検出したことに基づいて、図5(C)に示すように管路22A内の試料を減量するために、ポンプ16Aを正転駆動から低速の逆転駆動に切り替え、ポンプ16Aを第1制御に比べて低速で逆転駆動させる第2制御を行って、光センサ51が試料の液面を再び検出するまで管路22Aから試料貯留部11Aに過剰分の試料を移送する。そして、図5(D)に示すように、制御装置60は、第2制御中に光センサ51が試料の液面を再び検出したことに基づいて、管路21Aと管路24,23Aとの間における試料の流れを制限するとともに管路22Aと管路23Aとの間における試料の流れを許容するようにバルブ37,39を制御し、管路22Aに空気を送り込むようにポンプ16Aを逆転駆動させる第3制御を行って、管路22Aから混合部12に試料を移送する。 The sample weighing operation in step S1 will be described in more detail with reference to FIG. The arrows in FIG. 5 indicate the flow of the sample. As shown in FIG. 5A, the control device 60 controls the valve 31 so that the pipelines 25, 22D, and 22A communicate with each other, and further, the sample between the pipelines 21A and the pipelines 24, 22A. The first control is to control the valve 37 so as to allow the flow and limit the flow of the sample between the pipe 22A and the pipe 23A, and to drive the pump 16A in the forward direction so as to suck air from the pipe 22A. Then, the sample is transferred from the sample storage unit 11A to the conduit 22A. When the forward rotation drive of the pump 16A is stopped based on the detection of the liquid level of the sample by the optical sensor 51, the liquid level of the sample becomes the optical sensor 51 due to the high-speed transfer of the sample as shown in FIG. 5 (B). Stay away from. Therefore, the control device 60 pumps to reduce the amount of the sample in the pipeline 22A as shown in FIG. 5C based on the fact that the optical sensor 51 detects the liquid level of the sample during the first control. The 16A is switched from the forward rotation drive to the low speed reverse rotation drive, the pump 16A is reverse-driven at a lower speed than the first control, and the second control is performed until the optical sensor 51 detects the liquid level of the sample again. The excess sample is transferred from the sample storage unit 11A to the sample storage unit 11A. Then, as shown in FIG. 5D, the control device 60 connects the pipelines 21A and the conduits 24 and 23A based on the fact that the optical sensor 51 detects the liquid level of the sample again during the second control. The valves 37 and 39 are controlled so as to limit the flow of the sample between the pipes 22A and allow the flow of the sample between the pipes 22A and the pipe 23A, and the pump 16A is reversely driven so as to send air into the pipe 22A. The sample is transferred from the pipeline 22A to the mixing unit 12 by performing the third control.

次いで、TOC測定装置1は、酸溶液を計量し、混合部12に酸溶液を移送する(ステップS2)。具体的には、制御装置60が、酸溶液貯留部11Bから管路22Bに酸溶液を移送し、さらに、管路22Bから混合部12に所定量の酸溶液を移送するように、バルブ装置30およびポンプ16Aを制御する。 Next, the TOC measuring device 1 measures the acid solution and transfers the acid solution to the mixing unit 12 (step S2). Specifically, the valve device 30 is such that the control device 60 transfers the acid solution from the acid solution storage unit 11B to the pipeline 22B, and further transfers a predetermined amount of the acid solution from the pipeline 22B to the mixing unit 12. And control the pump 16A.

図6を参照して、ステップS2における酸溶液の計量動作についてさらに詳しく説明する。図6中の矢印は、酸溶液の流れを示している。図6(A)に示すように、制御装置60は、バルブ32を制御し、管路22Cから空気を吸い込むようにポンプ16Aを正転駆動させる第1制御を行って、酸溶液貯留部11Bから管路22Bに酸溶液を移送する。光センサ52が酸溶液の液面を検出したことに基づいてポンプ16Aの正転駆動を停止させると、図6(B)に示すように、酸溶液の高速の移送により酸溶液の液面が光センサ52から離れた状態となるため、制御装置60は、光センサ52が酸溶液の液面を検出したことに基づいて、図6(C)に示すように管路22B内の酸溶液を減量するために、ポンプ16Aを第1制御に比べて低速で逆転駆動させる第2制御を行って、管路22Bから酸溶液貯留部11Bに過剰分の酸溶液を移送する。そして、図6(D)に示すように、制御装置60は、第2制御中に光センサ52が酸溶液の液面を再び検出したことに基づいて、バルブ35を制御し、管路22Bに空気を送り込むようにポンプ16Aを逆転駆動させる第3制御を行って、管路22Bから混合部12に酸溶液を移送する。 The measurement operation of the acid solution in step S2 will be described in more detail with reference to FIG. The arrows in FIG. 6 indicate the flow of the acid solution. As shown in FIG. 6A, the control device 60 controls the valve 32 and performs the first control to drive the pump 16A in the forward rotation so as to suck air from the pipeline 22C, from the acid solution storage unit 11B. The acid solution is transferred to the line 22B. When the forward rotation drive of the pump 16A is stopped based on the fact that the optical sensor 52 detects the liquid level of the acid solution, the liquid level of the acid solution is raised by the high-speed transfer of the acid solution as shown in FIG. 6 (B). Since the state is separated from the optical sensor 52, the control device 60 applies the acid solution in the conduit 22B as shown in FIG. 6C based on the fact that the optical sensor 52 detects the liquid level of the acid solution. In order to reduce the weight, the second control is performed in which the pump 16A is reversely driven at a lower speed than the first control, and the excess acid solution is transferred from the pipeline 22B to the acid solution storage portion 11B. Then, as shown in FIG. 6D, the control device 60 controls the valve 35 based on the fact that the optical sensor 52 detects the liquid level of the acid solution again during the second control, and enters the pipeline 22B. The acid solution is transferred from the pipe line 22B to the mixing unit 12 by performing the third control of reversely driving the pump 16A so as to send air.

次いで、TOC測定装置1は、通気処理を行って試料に含まれる無機炭素を除去する(ステップS3)。具体的には、制御装置60が、管路25,27,26が連通するようにバルブ41,42を制御し、二酸化炭素が除去された空気を混合部12内の試料に通すために、管路27内に空気を送り込むようにポンプ16Aを制御するとともに、混合部12内で発生した二酸化炭素を含む気体が排出されるようにバルブ44を制御する。 Next, the TOC measuring device 1 performs aeration treatment to remove inorganic carbon contained in the sample (step S3). Specifically, the control device 60 controls the valves 41 and 42 so that the pipelines 25, 27, and 26 communicate with each other, and the pipes for passing the carbon dioxide-removed air through the sample in the mixing unit 12. The pump 16A is controlled so as to send air into the path 27, and the valve 44 is controlled so that the gas containing carbon dioxide generated in the mixing unit 12 is discharged.

次いで、TOC測定装置1は、酸化剤溶液を計量し、混合部12に酸化剤溶液を移送する(ステップS4)。具体的には、制御装置60が、酸化剤溶液貯留部11Cから管路22Cに酸化剤溶液を移送し、さらに、管路22Cから混合部12に所定量の酸化剤溶液を移送するように、バルブ装置30およびポンプ16Aを制御する。 Next, the TOC measuring device 1 measures the oxidant solution and transfers the oxidant solution to the mixing unit 12 (step S4). Specifically, the control device 60 transfers the oxidant solution from the oxidant solution storage section 11C to the conduit 22C, and further transfers a predetermined amount of the oxidant solution from the conduit 22C to the mixing section 12. It controls the valve device 30 and the pump 16A.

図7を参照して、ステップS4における酸化剤溶液の計量動作についてさらに詳しく説明する。図7中の矢印は、酸化剤溶液の流れを示している。図7(A)に示すように、制御装置60は、バルブ33を制御し、管路22Cから空気を吸い込むようにポンプ16Aを正転駆動させる第1制御を行って、酸化剤溶液貯留部11Cから管路22Cに酸化剤溶液を移送する。光センサ53が酸化剤溶液の液面を検出したことに基づいてポンプ16Aの正転駆動を停止させると、図7(B)に示すように、酸化剤溶液の高速の移送により酸化剤溶液の液面が光センサ53から離れた状態となるため、制御装置60は、光センサ53が酸化剤溶液の液面を検出したことに基づいて、図7(C)に示すように管路22C内の酸化剤溶液を減量するために、ポンプ16Aを第1制御に比べて低速で逆転駆動させる第2制御を行って、管路22Cから酸化剤溶液貯留部11Cに過剰分の酸化剤溶液を移送する。そして、図7(D)に示すように、制御装置60は、第2制御中に光センサ53が酸化剤溶液の液面を再び検出したことに基づいて、バルブ36を制御し、管路22Cに空気を送り込むようにポンプ16Aを逆転駆動させる第3制御を行って、管路22Cから混合部12に酸化剤溶液を移送する。 The measurement operation of the oxidizing agent solution in step S4 will be described in more detail with reference to FIG. 7. The arrows in FIG. 7 indicate the flow of the oxidant solution. As shown in FIG. 7A, the control device 60 controls the valve 33 and performs the first control to drive the pump 16A in the forward rotation so as to suck air from the pipeline 22C, and performs the first control to drive the oxidant solution storage unit 11C. The oxidant solution is transferred from the pipe to the line 22C. When the forward rotation drive of the pump 16A is stopped based on the fact that the optical sensor 53 detects the liquid level of the oxidant solution, as shown in FIG. 7 (B), the oxidant solution is transferred by high-speed transfer of the oxidant solution. Since the liquid level is separated from the optical sensor 53, the control device 60 is inside the conduit 22C as shown in FIG. 7C based on the fact that the optical sensor 53 detects the liquid level of the oxidant solution. In order to reduce the amount of the oxidant solution in the above, the pump 16A is reversely driven at a lower speed than the first control to perform the second control, and the excess oxidant solution is transferred from the conduit 22C to the oxidant solution storage portion 11C. To do. Then, as shown in FIG. 7 (D), the control device 60 controls the valve 36 based on the fact that the optical sensor 53 detects the liquid level of the oxidant solution again during the second control, and the pipeline 22C. The oxidant solution is transferred from the pipeline 22C to the mixing unit 12 by performing the third control of reversely driving the pump 16A so as to send air into the mixing section 12.

次いで、TOC測定装置1は、混合部12から加熱部13に酸化剤溶液が混合された試料を移送する(ステップS5)。具体的には、制御装置60が、管路25,27,26が連通するようにバルブ41,42を制御し、管路27内の試料を吸い込むようにポンプ16Aを正転駆動させる制御を行うことで、混合部12から管路27に試料を移送する。また、制御装置60は、試料が管路27に到達するとポンプ16Aの駆動を停止させ、管路25と管路27との間における流体の流れを制限するとともに管路26と管路27との間における流体の流れを制限するようにバルブ41,42を制御する。 Next, the TOC measuring device 1 transfers the sample mixed with the oxidant solution from the mixing unit 12 to the heating unit 13 (step S5). Specifically, the control device 60 controls the valves 41 and 42 so that the pipelines 25, 27 and 26 communicate with each other, and controls the pump 16A to drive the pump 16A in the forward direction so as to suck the sample in the pipeline 27. As a result, the sample is transferred from the mixing unit 12 to the pipeline 27. Further, the control device 60 stops the drive of the pump 16A when the sample reaches the pipe line 27, limits the flow of the fluid between the pipe line 25 and the pipe line 27, and causes the pipe line 26 and the pipe line 27 to be connected to each other. The valves 41, 42 are controlled to limit the flow of fluid between them.

次いで、TOC測定装置1は、試料中の有機炭素が二酸化炭素となるように試料を加熱する(ステップS6)。具体的には、制御装置60が、試料を例えば120℃で30分間加熱するように加熱部13を制御する。このとき、管路27がバルブ41,42によって閉じられているため、管路27内の試料は加圧され、有機炭素の酸化が促進される。制御装置60は、試料の加熱後、管路27がバルブ41,42によって閉じられた状態を所定時間維持し、試料が所定温度(約60℃)となるように加熱部13および管路27内の試料を冷却する。 Next, the TOC measuring device 1 heats the sample so that the organic carbon in the sample becomes carbon dioxide (step S6). Specifically, the control device 60 controls the heating unit 13 so as to heat the sample at, for example, 120 ° C. for 30 minutes. At this time, since the pipeline 27 is closed by the valves 41 and 42, the sample in the pipeline 27 is pressurized and the oxidation of organic carbon is promoted. After heating the sample, the control device 60 maintains the state in which the conduit 27 is closed by the valves 41 and 42 for a predetermined time, and the inside of the heating unit 13 and the conduit 27 so that the sample reaches a predetermined temperature (about 60 ° C.). Cool the sample.

そして、TOC測定装置1は、試料の蒸気に含まれる二酸化炭素を検出して、試料に含まれていた全有機炭素の濃度を測定する(ステップS7)。具体的には、制御装置60が、管路25,27,26が連通するようにバルブ41,42を制御し、かつ、混合部12と水分除去部14との間における試料の蒸気の流れが許容されるようにバルブ43を制御し、管路27内に空気を送り込むようにポンプ16Aを駆動させることで、混合部12および水分除去部14を経由して二酸化炭素検出部15に試料の蒸気を移送する。二酸化炭素検出部15は、試料の蒸気から二酸化炭素を検出することで、蒸気に含まれる二酸化炭素の濃度を測定し、その二酸化炭素の濃度に基づき、試料に含まれていた全有機炭素の濃度を算出する。 Then, the TOC measuring device 1 detects carbon dioxide contained in the vapor of the sample and measures the concentration of total organic carbon contained in the sample (step S7). Specifically, the control device 60 controls the valves 41 and 42 so that the pipelines 25, 27, and 26 communicate with each other, and the flow of sample vapor between the mixing unit 12 and the water removing unit 14 flows. By controlling the valve 43 as permissible and driving the pump 16A to send air into the pipeline 27, the vapor of the sample is sent to the carbon dioxide detection unit 15 via the mixing unit 12 and the water removing unit 14. To transfer. The carbon dioxide detection unit 15 measures the concentration of carbon dioxide contained in the vapor by detecting carbon dioxide from the vapor of the sample, and based on the concentration of the carbon dioxide, the concentration of all organic carbon contained in the sample. Is calculated.

また、図4に示す一連の動作が行われる前に、TOC測定装置1は、管路22A,23Aの内壁、バルブ39の内部、および、混合部12の内部を洗浄し、さらに、二酸化炭素を含まない空気により残留液を除去する。具体的には、制御装置60が、洗浄水貯留部11Dから管路22Dに洗浄水を移送し、さらに、管路22Dから混合部12に洗浄水を移送するように、バルブ装置30およびポンプ16Aを制御する。次いで、制御装置60が、混合部12から廃液貯留部18に残留液を移送できるように、バルブ45を制御し、さらに、管路22A〜22D,26,27に空気を送り込むように、バルブ31〜33,35,36,39,41〜43,46,47およびポンプ16B等を制御する。 Further, before the series of operations shown in FIG. 4 is performed, the TOC measuring device 1 cleans the inner walls of the pipelines 22A and 23A, the inside of the valve 39, and the inside of the mixing unit 12, and further removes carbon dioxide. Remove the residual liquid with free air. Specifically, the valve device 30 and the pump 16A so that the control device 60 transfers the wash water from the wash water storage unit 11D to the pipeline 22D, and further transfers the wash water from the pipeline 22D to the mixing unit 12. To control. Next, the valve 31 controls the valve 45 so that the control device 60 can transfer the residual liquid from the mixing unit 12 to the waste liquid storage unit 18, and further sends air to the pipelines 22A to 22D, 26, 27. ~ 33, 35, 36, 39, 41 to 43, 46, 47, pump 16B, etc. are controlled.

図8を参照して、管路22A,23A、バルブ39、および、混合部12の洗浄時における洗浄水の計量動作について詳しく説明する。図8中の矢印は、洗浄水の流れを示している。図8(A)に示すように、制御装置60は、バルブ31,34を制御し、管路22Dから空気を吸い込むようにポンプ16Aを正転駆動させる第1制御を行って、洗浄水貯留部11Dから管路22Dに洗浄水を移送する。光センサ54が洗浄水の液面を検出したことに基づいてポンプ16Aの正転駆動を停止させると、図8(B)に示すように、洗浄水の高速の移送により洗浄水の液面が光センサ54から離れた状態となるため、制御装置60は、光センサ54が洗浄水の液面を検出したことに基づいて、図8(C)に示すように管路22B内の洗浄水を減量するために、ポンプ16Aを第1制御に比べて低速で逆転駆動させる第2制御を行って、管路22Dから洗浄水貯留部11Dに過剰分の洗浄水を移送する。そして、図8(D)に示すように、制御装置60は、第2制御中に光センサ54が洗浄水の液面を再び検出したことに基づいて、バルブ39を制御し、管路22Dに空気を送り込むようにポンプ16Aを逆転駆動させる第3制御を行って、管路22Dから管路22A,23Aを経由して混合部12に洗浄水を移送する。 With reference to FIG. 8, the measurement operation of the washing water at the time of washing the pipelines 22A and 23A, the valve 39, and the mixing unit 12 will be described in detail. The arrows in FIG. 8 indicate the flow of wash water. As shown in FIG. 8 (A), the control device 60 controls the valves 31 and 34, performs the first control to drive the pump 16A in the forward rotation so as to suck air from the pipeline 22D, and performs the first control to drive the pump 16A in the forward rotation. The wash water is transferred from 11D to the pipeline 22D. When the forward rotation drive of the pump 16A is stopped based on the detection of the level of the wash water by the optical sensor 54, the level of the wash water is raised by the high-speed transfer of the wash water as shown in FIG. 8 (B). Since the state is separated from the optical sensor 54, the control device 60 uses the cleaning water in the conduit 22B as shown in FIG. 8C based on the detection of the cleaning water level by the optical sensor 54. In order to reduce the weight, the second control is performed in which the pump 16A is reversely driven at a lower speed than the first control, and the excess wash water is transferred from the pipeline 22D to the wash water storage unit 11D. Then, as shown in FIG. 8D, the control device 60 controls the valve 39 based on the fact that the optical sensor 54 detects the liquid level of the washing water again during the second control, and enters the pipeline 22D. The third control for reversely driving the pump 16A so as to send air is performed, and the washing water is transferred from the pipeline 22D to the mixing unit 12 via the pipelines 22A and 23A.

また、TOC測定装置1は、上記ステップS1の動作に代えて、制御装置60が、洗浄水貯留部11Dから管路22Dに洗浄水を移送し、さらに、管路22Dから混合部12に洗浄水を移送するように、バルブ装置30およびポンプ16Aを制御することで、洗浄水貯留部11Dに貯留している純水をゼロ校正液として利用し、ゼロ校正を行う。さらに、TOC測定装置1は、上記ステップS1の動作に代えて、スパン校正液貯留部11Eから混合部12にスパン校正液を移送するとともに、上記ステップS3〜S8の動作を行うことで、スパン校正を行う。スパン校正液の計量動作は、上記ステップS1においてバルブ37に代えてバルブ38を制御することによって行うことができる。 Further, in the TOC measuring device 1, instead of the operation in step S1, the control device 60 transfers the washing water from the washing water storage unit 11D to the pipeline 22D, and further, the cleaning water is transferred from the pipeline 22D to the mixing unit 12. By controlling the valve device 30 and the pump 16A so as to transfer the water, the pure water stored in the washing water storage unit 11D is used as the zero calibration solution to perform zero calibration. Further, the TOC measuring device 1 transfers the span calibration liquid from the span calibration liquid storage unit 11E to the mixing unit 12 instead of the operation in step S1 and performs the operations in steps S3 to S8 to perform span calibration. I do. The measurement operation of the span calibration liquid can be performed by controlling the valve 38 instead of the valve 37 in step S1.

上記実施形態においては以下の効果が得られる。
(1)センサ装置50による被計量液(試料、酸溶液、酸化剤溶液、洗浄水、および、スパン校正液)の検出結果に基づいて、一次管路(管路21A〜21E)から計量管路(管路22A〜22D)に被計量液を移送した後、過剰分の被計量液は計量管路から排出され、所定量の被計量液が計量管路から二次管路(管路23A〜23C)に移送される。このため、ポンプ16Aの性能が変動する場合であっても被計量液を自動で精確に計量できる。
In the above embodiment, the following effects can be obtained.
(1) Based on the detection result of the liquid to be measured (sample, acid solution, oxidizing agent solution, washing water, and span calibration liquid) by the sensor device 50, from the primary pipe (pipes 21A to 21E) to the measuring pipe. After the liquid to be measured is transferred to (pipes 22A to 22D), the excess liquid to be measured is discharged from the measuring pipe, and a predetermined amount of the liquid to be measured is discharged from the measuring pipe to the secondary pipe (pipeline 23A to 23A). Transferred to 23C). Therefore, even when the performance of the pump 16A fluctuates, the liquid to be measured can be automatically and accurately measured.

(2)中間管路(管路24)には、中間管路の内径を拡大させて形成された気泡低減部24Aが設けられているため、被計量液(試料およびスパン校正液)の液面を整えることができ、被計量液をより精確に計量できる。 (2) Since the intermediate pipeline (pipeline 24) is provided with the bubble reducing portion 24A formed by enlarging the inner diameter of the intermediate pipeline, the liquid level of the liquid to be measured (sample and span calibration liquid) is provided. Can be adjusted, and the liquid to be measured can be measured more accurately.

(3)二次管路(管路23A)と試料計量管路(管路22A)と洗浄水計量管路(管路22D)とが直列に接続されているため、洗浄水貯留部から二次管路までの流路と試料貯留部から二次管路までの流路とを共通化することができる。 (3) Since the secondary pipeline (pipeline 23A), the sample measuring pipeline (pipeline 22A), and the washing water measuring pipeline (pipeline 22D) are connected in series, the secondary pipeline (pipeline 22D) is connected to the secondary pipeline (pipeline 22D). The flow path to the pipeline and the flow path from the sample storage section to the secondary pipeline can be shared.

(4)バルブ装置30は、一次管路(管路21B,21C)と計量管路(管路22B,22C)と二次管路(管路23B,23C)とが接続された三方向電磁弁(バルブ35,36)を備えているため、二方向電磁弁のみにより構成される場合に比べて、バルブ装置30の構成を簡略化できる。 (4) The valve device 30 is a three-way solenoid valve in which the primary pipeline (pipeline 21B, 21C), the measuring pipeline (pipeline 22B, 22C), and the secondary pipeline (pipeline 23B, 23C) are connected. (Valves 35 and 36) are provided, so that the configuration of the valve device 30 can be simplified as compared with the case where the valve device 30 is composed of only the two-way solenoid valve.

本発明は、上記実施例に限定されるものではなく、上記構成を変更することもできる。例えば、以下のように変更して実施することもでき、以下の変更を組み合わせて実施することもできる。 The present invention is not limited to the above embodiment, and the above configuration can be changed. For example, the following changes can be made and implemented, or the following changes can be combined and implemented.

・ポンプの構成を適宜変更してもよい。すなわち、例えば、ポンプ16A,16Bと性能または用途の異なるポンプをさらに追加してもよく、ポンプ16A,16Bを、それらの性能を備えた1つのポンプにより構成してもよい。 -The pump configuration may be changed as appropriate. That is, for example, pumps having different performances or uses from the pumps 16A and 16B may be further added, and the pumps 16A and 16B may be composed of one pump having those performances.

・洗浄水を、試料を希釈するための希釈水として利用してもよく、洗浄水貯留部11Dを希釈水貯留部とし、管路22Dを希釈水計量管路とし、光センサ54を希釈水センサとして用いてもよい。この場合、ステップS1後かつステップS2前に、TOC測定装置1は、希釈水を計量し、混合部12に希釈水溶液を移送する(ステップS1.5)。ステップS1.5における希釈水の計量動作は、上記実施形態で説明した洗浄水の計量動作と同様にして行われる。すなわち、制御装置60が、洗浄水貯留部11Dから管路22Dに希釈水を移送するように、バルブ31,34およびポンプ16A等を制御し、さらに、管路22Dから混合部12に所定量の希釈水を移送するように、バルブ31,39およびポンプ16A等を制御する。 -The washing water may be used as dilution water for diluting the sample, the washing water storage portion 11D is used as the dilution water storage portion, the conduit 22D is used as the dilution water measuring conduit, and the optical sensor 54 is used as the dilution water sensor. May be used as. In this case, after step S1 and before step S2, the TOC measuring device 1 measures the diluted water and transfers the diluted aqueous solution to the mixing unit 12 (step S1.5). The operation of measuring the diluted water in step S1.5 is performed in the same manner as the operation of measuring the washing water described in the above embodiment. That is, the control device 60 controls the valves 31, 34, the pump 16A, and the like so as to transfer the diluted water from the wash water storage unit 11D to the pipeline 22D, and further, a predetermined amount of the diluted water is transferred from the pipeline 22D to the mixing unit 12. The valves 31, 39, pump 16A, etc. are controlled so as to transfer the diluted water.

・上記ステップS1において、管路22Aから試料貯留部11Aに過剰分の試料を移送せずに、管路24と排出管19との間における流体の流れを許容するようにバルブ46を制御することで、管路22Aから排出管19に過剰分の試料を移送するように構成してもよい。 -In step S1, the valve 46 is controlled so as to allow the flow of fluid between the pipeline 24 and the discharge pipe 19 without transferring the excess sample from the pipeline 22A to the sample storage portion 11A. Therefore, the excess sample may be transferred from the pipeline 22A to the discharge pipe 19.

・管路22Aをバルブ31に接続してもよい。この場合、洗浄水貯留部11D、管路22D、バルブ34、および、光センサ54を省くことができる。 -Pipe line 22A may be connected to valve 31. In this case, the wash water storage unit 11D, the pipeline 22D, the bulb 34, and the optical sensor 54 can be omitted.

1 全有機炭素測定装置(水質測定装置)
11A 試料貯留部(貯留部)
11B 酸溶液貯留部(貯留部)
11C 酸化剤溶液貯留部(貯留部)
11D 洗浄水貯留部(貯留部)
11E スパン校正液貯留部(貯留部)
16A,16B ポンプ
21A〜21E 管路(一次管路)
22A〜22D 管路(計量管路)
23A〜23C 管路(二次管路)
24 管路(中間管路)
24A 気泡低減部
25〜27 管路
31〜39 バルブ(バルブ装置)
41〜47 バルブ
51〜54 光センサ(センサ装置)
60 制御装置
1 Total organic carbon measuring device (water quality measuring device)
11A Sample storage section (storage section)
11B Acid solution storage unit (storage unit)
11C Oxidizing agent solution storage unit (storage unit)
11D Washing water storage unit (storage unit)
11E span calibration liquid storage unit (storage unit)
16A, 16B Pumps 21A-21E Pipeline (primary pipe line)
22A-22D pipeline (measuring pipeline)
23A-23C pipeline (secondary pipeline)
24 pipeline (intermediate pipeline)
24A Bubble reduction unit 25-27 Pipeline 31-39 Valve (valve device)
41-47 bulbs 51-54 optical sensor (sensor device)
60 Control device

Claims (7)

被計量液を貯留する貯留部と、
前記貯留部に接続された一次管路と、
前記被計量液を計量するための計量管路と、
計量後の前記被計量液が流れる二次管路と、
前記計量管路から空気を吸い込む正転駆動と前記計量管路に空気を送り込む逆転駆動とに切り替え可能なポンプと、
前記一次管路と前記計量管路との間における前記被計量液の流れと、前記計量管路と前記二次管路との間における前記被計量液の流れとを制御するバルブ装置と、
前記計量管路内に流れる前記被計量液を検出するセンサ装置と、
前記センサ装置による前記被計量液の検出結果に基づいて、前記ポンプおよび前記バルブ装置を制御する制御装置とを備え、
前記制御装置は、
(1)前記一次管路と前記計量管路との間における前記被計量液の流れを許容するとともに前記計量管路と前記二次管路との間における前記被計量液の流れを制限するように前記バルブ装置を制御し、前記ポンプを正転駆動させる第1制御と、
(2)前記第1制御中に前記センサ装置が前記被計量液の液面を検知したことに基づいて、前記ポンプを前記第1制御に比べて低速で逆転駆動させる第2制御と、
(3)前記第2制御中に前記センサ装置が前記被計量液の液面を再び検知したことに基づいて、前記一次管路と前記計量管路との間における前記被計量液の流れを制限するとともに前記計量管路と前記二次管路との間における前記被計量液の流れを許容するように前記バルブ装置を制御し、前記ポンプを逆転駆動させる第3制御とを行う
ことを特徴とする液体計量装置。
A storage unit that stores the liquid to be measured and
The primary pipeline connected to the storage section and
A measuring pipe for measuring the liquid to be measured and
The secondary pipeline through which the liquid to be measured flows after weighing, and
A pump that can be switched between a forward rotation drive that sucks air from the measuring line and a reverse drive that sends air to the measuring line.
A valve device that controls the flow of the liquid to be measured between the primary pipe and the measuring pipe and the flow of the liquid to be measured between the measuring pipe and the secondary pipe.
A sensor device that detects the liquid to be measured flowing in the measuring conduit, and
A control device for controlling the pump and the valve device based on the detection result of the liquid to be measured by the sensor device is provided.
The control device is
(1) To allow the flow of the liquid to be measured between the primary pipe and the measuring pipe and to limit the flow of the liquid to be measured between the measuring pipe and the secondary pipe. The first control that controls the valve device and drives the pump in the forward direction,
(2) A second control in which the pump is reversely driven at a lower speed than the first control based on the detection of the liquid level of the liquid to be measured by the sensor device during the first control.
(3) The flow of the liquid to be measured is restricted between the primary pipe and the measuring pipe based on the fact that the sensor device detects the liquid level of the liquid to be measured again during the second control. At the same time, the valve device is controlled so as to allow the flow of the liquid to be measured between the measuring pipe and the secondary pipe, and a third control for reversely driving the pump is performed. Liquid weighing device.
前記一次管路と前記計量管路とを接続する中間管路をさらに備え、
前記中間管路には、当該中間管路の内径を拡大させて形成された気泡低減部が設けられている
ことを特徴とする請求項1に記載の液体計量装置。
An intermediate pipeline connecting the primary pipeline and the measuring pipeline is further provided.
The liquid measuring device according to claim 1, wherein the intermediate pipeline is provided with a bubble reducing portion formed by enlarging the inner diameter of the intermediate pipeline.
前記貯留部として、有機炭素を含む試料を前記被計量液として貯留する試料貯留部と、酸を溶質とする酸溶液を前記被計量液として貯留する酸溶液貯留部と、酸化剤を溶質とする酸化剤溶液を前記被計量液として貯留する酸化剤溶液貯留部とを備え、
前記一次管路として、前記試料貯留部に接続された試料一次管路と、前記酸溶液貯留部に接続された酸溶液一次管路と、前記酸化剤溶液貯留部に接続された酸化剤溶液一次管路とを備え、
前記計量管路として、前記試料を計量するための試料計量管路と、前記酸溶液を計量するための酸溶液計量管路と、前記酸化剤溶液を計量するための酸化剤溶液計量管路とを備え、
前記センサ装置は、前記試料計量管路内に流れる前記試料を検出する試料センサと、前記酸溶液計量管路内に流れる前記酸溶液を検出する酸溶液センサと、前記酸化剤溶液計量管路内に流れる前記酸化剤溶液を検出する酸化剤溶液センサとを備えている
ことを特徴とする請求項1または2に記載の液体計量装置。
As the storage unit, a sample storage unit that stores a sample containing organic carbon as the measurement liquid, an acid solution storage unit that stores an acid solution containing an acid as a solute, and an oxidizing agent as the solute. It is provided with an oxidant solution storage unit that stores the oxidant solution as the liquid to be measured.
As the primary pipeline, a sample primary pipeline connected to the sample storage unit, an acid solution primary pipeline connected to the acid solution storage unit, and an oxidant solution primary pipeline connected to the oxidant solution storage unit. Equipped with a pipeline,
The measuring line includes a sample measuring line for measuring the sample, an acid solution measuring line for measuring the acid solution, and an oxidant solution measuring line for measuring the oxidant solution. With
The sensor device includes a sample sensor that detects the sample flowing in the sample measuring tube, an acid solution sensor that detects the acid solution flowing in the acid solution measuring tube, and the oxidizing agent solution measuring tube. The liquid measuring apparatus according to claim 1 or 2, further comprising an oxidant solution sensor for detecting the oxidant solution flowing in the liquid.
前記貯留部として、前記試料を希釈するための希釈水を前記被計量液として貯留する希釈水貯留部を備え、
前記一次管路として、前記希釈水貯留部に接続された希釈水一次管路を備え、
前記計量管路として、前記希釈水を計量するための希釈水計量管路を備え、
前記センサ装置は、前記希釈水計量管路内に流れる前記希釈水を検出する希釈水センサを備えている
ことを特徴とする請求項3に記載の液体計量装置。
As the storage unit, a diluting water storage unit for storing the diluted water for diluting the sample as the liquid to be measured is provided.
As the primary pipeline, a diluted water primary pipeline connected to the diluted water storage unit is provided.
As the measuring pipe, a diluted water measuring pipe for measuring the diluted water is provided.
The liquid measuring device according to claim 3, wherein the sensor device includes a diluted water sensor that detects the diluted water flowing in the diluted water measuring pipeline.
前記二次管路と前記試料計量管路と前記希釈水計量管路とが直列に接続されている
ことを特徴とする請求項4に記載の液体計量装置。
The liquid measuring device according to claim 4, wherein the secondary pipe, the sample measuring pipe, and the diluted water measuring pipe are connected in series.
前記バルブ装置は、前記一次管路と前記計量管路と前記二次管路とが接続された三方向電磁弁を備えている
ことを特徴とする請求項1〜5のいずれか一項に記載の液体計量装置。
The valve device according to any one of claims 1 to 5, wherein the valve device includes a three-way solenoid valve in which the primary line, the measuring line, and the secondary line are connected. Liquid weighing device.
請求項1〜6のいずれか一項に記載の液体計量装置を備える
ことを特徴とする水質測定装置。
A water quality measuring device including the liquid measuring device according to any one of claims 1 to 6.
JP2019170481A 2019-09-19 2019-09-19 Liquid metering device and water quality measuring device Active JP7266297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019170481A JP7266297B2 (en) 2019-09-19 2019-09-19 Liquid metering device and water quality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019170481A JP7266297B2 (en) 2019-09-19 2019-09-19 Liquid metering device and water quality measuring device

Publications (2)

Publication Number Publication Date
JP2021047112A true JP2021047112A (en) 2021-03-25
JP7266297B2 JP7266297B2 (en) 2023-04-28

Family

ID=74876250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170481A Active JP7266297B2 (en) 2019-09-19 2019-09-19 Liquid metering device and water quality measuring device

Country Status (1)

Country Link
JP (1) JP7266297B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116559122A (en) * 2023-06-01 2023-08-08 上海勘测设计研究院有限公司 Test device and method for rapidly judging water transparency influence factors

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281185U (en) * 1975-12-15 1977-06-17
JPS6291818A (en) * 1985-10-18 1987-04-27 Sumitomo Electric Ind Ltd Constant rate pump
JPH06102270A (en) * 1992-09-18 1994-04-15 Tokico Ltd Quantity of carbon measuring equipment
JPH1164327A (en) * 1997-08-25 1999-03-05 Mitsubishi Heavy Ind Ltd Method for measuring calorific value of fuel black liquor of soda recovering boiler
JP2000321111A (en) * 1999-05-11 2000-11-24 Dkk Corp Liquid metering apparatus
JP2006064687A (en) * 2004-08-30 2006-03-09 Kaken:Kk Cartridge-type liquid delivering pump with automatic liquid supply function
JP2008111721A (en) * 2006-10-30 2008-05-15 Horiba Advanced Techno Co Ltd Method and instrument for continuously measuring concentration of total organic carbon
JP2011220944A (en) * 2010-04-13 2011-11-04 C Uyemura & Co Ltd Automatic titration analyzer, automatic titration analysis method, automatic analysis management system of process liquid and automatic titration analysis method of process liquid
JP2014184108A (en) * 2013-02-22 2014-10-02 Kawasumi Lab Inc Liquid level adjusting device
US20160018376A1 (en) * 2014-05-23 2016-01-21 Hach Company Measurement of total organic carbon
JP2017190999A (en) * 2016-04-13 2017-10-19 株式会社島津製作所 Total organic carbon measurement device and carbon dioxide extraction method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281185U (en) * 1975-12-15 1977-06-17
JPS6291818A (en) * 1985-10-18 1987-04-27 Sumitomo Electric Ind Ltd Constant rate pump
JPH06102270A (en) * 1992-09-18 1994-04-15 Tokico Ltd Quantity of carbon measuring equipment
JPH1164327A (en) * 1997-08-25 1999-03-05 Mitsubishi Heavy Ind Ltd Method for measuring calorific value of fuel black liquor of soda recovering boiler
JP2000321111A (en) * 1999-05-11 2000-11-24 Dkk Corp Liquid metering apparatus
JP2006064687A (en) * 2004-08-30 2006-03-09 Kaken:Kk Cartridge-type liquid delivering pump with automatic liquid supply function
JP2008111721A (en) * 2006-10-30 2008-05-15 Horiba Advanced Techno Co Ltd Method and instrument for continuously measuring concentration of total organic carbon
JP2011220944A (en) * 2010-04-13 2011-11-04 C Uyemura & Co Ltd Automatic titration analyzer, automatic titration analysis method, automatic analysis management system of process liquid and automatic titration analysis method of process liquid
JP2014184108A (en) * 2013-02-22 2014-10-02 Kawasumi Lab Inc Liquid level adjusting device
US20160018376A1 (en) * 2014-05-23 2016-01-21 Hach Company Measurement of total organic carbon
JP2017190999A (en) * 2016-04-13 2017-10-19 株式会社島津製作所 Total organic carbon measurement device and carbon dioxide extraction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116559122A (en) * 2023-06-01 2023-08-08 上海勘测设计研究院有限公司 Test device and method for rapidly judging water transparency influence factors
CN116559122B (en) * 2023-06-01 2024-03-29 上海勘测设计研究院有限公司 Test device and method for rapidly judging water transparency influence factors

Also Published As

Publication number Publication date
JP7266297B2 (en) 2023-04-28

Similar Documents

Publication Publication Date Title
JP5292923B2 (en) Microorganism detection method, microorganism detection apparatus, and slurry supply apparatus using the same
JP6394263B2 (en) Water quality analyzer
CN109580321A (en) A kind of fluid path air bubble eliminating device and method
JP2006263136A (en) Liquid level detecting device and method
JP2021047112A (en) Liquid measurement device and water quality measurement apparatus
JP2010119592A (en) Endoscope washing/sterilizing apparatus
JP5553705B2 (en) Reagent preparation device
JP2021047114A (en) Water quality measuring device
KR101302734B1 (en) Tro sensor with quantity of flow and fluid pressure buffer chamber
JP2017064600A (en) Washing method of reverse osmosis membrane module
US20160101389A1 (en) Method of performing a cleaning operation on a water filtration device
KR20200083254A (en) METHOD AND APPARATUS FOR MEASURING TOTAL ORGANIC CARBON BY COMBUSTION OXIDATION USING PROPORTIONAl CONTROL SAMPLE PRECISION INJECTION METHOD AND DOUBLE COOLING GAS-LIQUID SEPARATION
JP2021032783A (en) Fluid transfer device
CN112304882B (en) Analysis device
WO2017026138A1 (en) Endoscope reprocessor and failure detection method
TWM555355U (en) System for adding disinfectant
JP4763991B2 (en) Film breakage detection apparatus and detection method thereof
KR20170101935A (en) Method of obtaining or maintaining optical transmittance into deaerated liquid
JP2012176360A (en) Production unit of gas dissolved water
KR101238961B1 (en) Tracer Analysis System
JP2021047113A (en) Water quality measuring device
JP2021021699A (en) Total nitrogen and total phosphorous analyzer
JP2011177654A (en) Filtration apparatus
JP4486742B2 (en) Liquid concentration meter
WO2022014371A1 (en) Cell unit, measurement device, and substrate processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7266297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150