JPH06102270A - Quantity of carbon measuring equipment - Google Patents

Quantity of carbon measuring equipment

Info

Publication number
JPH06102270A
JPH06102270A JP25021392A JP25021392A JPH06102270A JP H06102270 A JPH06102270 A JP H06102270A JP 25021392 A JP25021392 A JP 25021392A JP 25021392 A JP25021392 A JP 25021392A JP H06102270 A JPH06102270 A JP H06102270A
Authority
JP
Japan
Prior art keywords
carbon
sample solution
sample
organic carbon
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25021392A
Other languages
Japanese (ja)
Inventor
Terufumi Iwata
照史 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP25021392A priority Critical patent/JPH06102270A/en
Publication of JPH06102270A publication Critical patent/JPH06102270A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To measure the quantity of organic carbon in a sample liquid accurately by eliminating the influence of variation of elements (e.g. organic carbon contained in reaction liquid) other than organic and inorganic carbons in the sample liquid. CONSTITUTION:A sample liquid is measured through first and second measuring systems 100, 101. In the first system 100, inorganic carbon is removed and carbon dioxide is produced from organic carbon and then the concentration of carbon dioxide is measured. In the second system 101, carbon is removed entirely and then the concentration of carbon dioxide is measured similarly to the first system 100. Measurements are fed to an operating means 53 where the measurement of the second system 101 is subtracted from the measurement of the first system 100. In this regard, the operating means 53 employs the measurement of first system 101 as a reference value for zero point adjustment thus dealing with the variation of elements other than organic and inorganic carbons in the sample liquid effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素量を高い感度で測
定でき、かつゼロ点設定を正確に行うことが可能な炭素
量測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon content measuring device capable of measuring carbon content with high sensitivity and capable of accurately setting a zero point.

【0002】[0002]

【従来の技術】従来、この種の炭素量測定装置としては
特開平4−52555に示すものが知られている。この
炭素量測定装置は、酸性溶液及び酸化剤等の反応液を試
料液に添加する反応液供給手段と、反応液が供給された
試料液に不活性ガスを送り込んで撹拌し、該試料液に含
有される無機体炭素を、不活性ガスとともに外部に追い
出す脱気器と、反応液が添加されかつ無機体炭素が除去
された試料液を加熱して、該試料液に含有される有機炭
素から二酸化炭素を生成する反応器と、該反応器にて生
成された二酸化炭素を抽出する抽出器と、該抽出器にて
抽出された二酸化炭素量を測定する測定手段(例えば、
赤外線吸光度計、ガスクロマトグラフ等)とから構成さ
れたものであって、前記脱気器には、有機炭素測定用の
反応液(強酸である硫酸、酸化剤であるペルオキソ二硫
酸ナトリウムを共に含む)を供給する第1の供給手段
と、ゼロ点校正用の反応液(硫酸等の強酸のみを含み、
酸化剤を含まない)を供給する第2の供給手段とがそれ
ぞれ設けられたものである。
2. Description of the Related Art Conventionally, as this type of carbon amount measuring device, the one disclosed in Japanese Patent Laid-Open No. 4-52555 is known. This carbon content measuring device is a reaction solution supply means for adding a reaction solution such as an acidic solution and an oxidizing agent to a sample solution, and an inert gas is fed into the sample solution to which the reaction solution has been supplied to stir the sample solution. A deaerator for expelling the contained inorganic carbon to the outside together with an inert gas, and a sample solution from which the reaction solution has been added and the inorganic carbon has been removed are heated to remove the inorganic carbon from the organic carbon contained in the sample solution. A reactor for producing carbon dioxide, an extractor for extracting the carbon dioxide produced in the reactor, and a measuring means for measuring the amount of carbon dioxide extracted by the extractor (for example,
Infrared spectrophotometer, gas chromatograph, etc.), wherein the deaerator contains a reaction liquid for measuring organic carbon (sulfuric acid, which is a strong acid, and sodium peroxodisulfate, which is an oxidizing agent). And a reaction solution for zero-point calibration (containing only strong acid such as sulfuric acid,
Second supply means for supplying (containing no oxidizer).

【0003】そして、以上のように構成された炭素量測
定装置では、第2の供給手段からゼロ点校正用の反応液
を試料液に供給し、このゼロ点校正用の反応液によっ
て、無機体炭素のみを脱気した試料液により測定手段の
ゼロ点調整を行い、一方、ゼロ点調整後は、第1の供給
手段から有機炭素測定用の反応液を試料液に供給し、こ
の有機炭素測定用の反応液によって、無機体炭素を脱気
した後、有機炭素から生成した二酸化炭素を測定手段に
より測定し、これにより該二酸化炭素量から有機炭素の
定量値を算出するようにしている。
In the carbon content measuring apparatus constructed as described above, the reaction liquid for zero point calibration is supplied to the sample liquid from the second supply means, and the inorganic liquid is supplied by the reaction liquid for zero point calibration. The zero point of the measuring means is adjusted by the sample solution degassing only carbon, and after the zero point adjustment, the reaction solution for measuring organic carbon is supplied to the sample solution from the first supplying means to measure the organic carbon. After degassing the inorganic carbon with the reaction liquid for use, the carbon dioxide produced from the organic carbon is measured by the measuring means, and thereby the quantitative value of the organic carbon is calculated from the amount of the carbon dioxide.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記のよう
に構成された炭素量測定装置では、試料液中の有機炭素
がどのくらい含まれているかは、該試料液中の無機体炭
素を除去した後に、有機炭素から二酸化炭素を生成し
て、この二酸化炭素量を測定し、この二酸化炭素量か
ら、前記ゼロ点調整時に得た検出値を差し引くことによ
り求められていた。従って、上記炭素量測定装置では、
測定途中において、例えば、試料液中の無機体炭素及び
有機炭素以外の要素(例えば、試料液の供給量や、反応
液に含まれていた有機炭素量、上述の測定手段に対する
水分干渉影響の度合)が変動した場合には、実際には試
料液中の有機炭素量が変化していないにもかかわらず、
測定手段での測定値が変化してしまい、その結果、該有
機炭素量の測定を正確に行えないという問題があった。
By the way, in the carbon content measuring apparatus configured as described above, how much organic carbon is contained in the sample solution is determined after the inorganic carbon in the sample solution is removed. , Carbon dioxide is generated from organic carbon, the amount of carbon dioxide is measured, and the detection value obtained at the time of the zero point adjustment is subtracted from the amount of carbon dioxide. Therefore, in the above carbon content measuring device,
During the measurement, for example, elements other than inorganic carbon and organic carbon in the sample solution (for example, the amount of the sample solution supplied, the amount of organic carbon contained in the reaction solution, and the degree of the influence of moisture interference on the above-mentioned measuring means). ) Fluctuates, even though the amount of organic carbon in the sample solution does not actually change,
There is a problem that the measured value by the measuring means changes, and as a result, the amount of organic carbon cannot be measured accurately.

【0005】この発明は、上記の事情に鑑みてなされた
ものであって、試料液中の無機体炭素及び有機炭素以外
の要素(例えば、試料液の供給量や、反応液に含まれて
いた有機炭素量、上述の測定手段に対する水分干渉影響
の度合)が変動した場合に、この変動の影響を排除し、
これによって、試料液中に含まれる有機炭素量を正確に
測定することができる炭素量測定装置の提供を目的とす
る。
The present invention has been made in view of the above circumstances, and is an element other than the inorganic carbon and the organic carbon in the sample solution (for example, the supply amount of the sample solution or the reaction solution). When the amount of organic carbon, the degree of moisture interference influence on the above-mentioned measuring means) changes, the influence of this change is eliminated,
Thus, it is an object of the present invention to provide a carbon amount measuring device capable of accurately measuring the amount of organic carbon contained in a sample liquid.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明では、試料液に酸性溶液及び酸化剤を供給する
第1の供給手段を有し、該試料液に不活性ガスを送り込
み、前記第1の供給手段により供給された酸性溶液と該
不活性ガスにより試料液中の無機体炭素を除去し、次
に、試料液を加熱して試料液中の有機炭素と前記第1の
供給手段より供給された酸化剤とを反応させることによ
り、試料液中の有機炭素から二酸化炭素を生成する第1
の系統と、該第1の系統の試料液と同一の試料液に酸性
溶液及び酸化剤を供給する第2の供給手段を有し、該試
料液を加熱して前記試料液中の有機炭素と前記第2の供
給手段より供給された酸化剤とを反応させることによ
り、該試料液中の有機炭素から二酸化炭素を生成し、該
二酸化炭素等の無機体炭素を含んだ試料液に不活性ガス
を送り込み、前記第2の供給手段より供給された酸性溶
液と該不活性ガスにより試料液中の無機体炭素を除去す
る第2の系統と、前記第1の系統を経由した試料液中に
含まれる気体と前記第2の系統を経由した試料液中に含
まれる気体とを比較することにより、前記第1の系統の
試料液中に含まれる有機炭素量を求める有機炭素量演算
手段とを具備するようにしている。
In order to achieve the above object, the present invention has a first supply means for supplying an acidic solution and an oxidizing agent to a sample solution, and sends an inert gas to the sample solution, Inorganic carbon in the sample solution is removed by the acidic solution and the inert gas supplied by the first supply means, and then the sample solution is heated to organic carbon in the sample solution and the first supply. A first method for producing carbon dioxide from organic carbon in a sample liquid by reacting with an oxidizing agent supplied from the first means.
And a second supply means for supplying an acidic solution and an oxidizing agent to the same sample solution as the sample solution of the first system, and heating the sample solution to remove organic carbon in the sample solution. By reacting with the oxidizing agent supplied from the second supply means, carbon dioxide is generated from the organic carbon in the sample solution, and an inert gas is added to the sample solution containing inorganic carbon such as carbon dioxide. And a second system for removing inorganic carbon in the sample solution by the acidic solution and the inert gas supplied from the second supply means, and a second solution contained in the sample solution via the first system. The amount of organic carbon contained in the sample liquid of the first system by comparing the gas contained in the sample liquid that has passed through the second system with the organic carbon amount computing means. I am trying to do it.

【0007】[0007]

【作用】この発明によれば、第1の系統においては、試
料液に不活性ガスが送り込まれて、第1の供給手段によ
り供給された酸性溶液と該不活性ガスにより試料液中の
無機体炭素が除去され、次に、試料液が加熱されて、試
料液中の有機炭素と前記第1の供給手段より供給された
酸化剤とが反応されることにより、試料液中の有機炭素
から二酸化炭素が生成される。第2の系統においては、
第1の系統と同系統の試料液が加熱されて、該試料液中
の有機炭素と第2の供給手段より供給された酸化剤とが
反応することにより、該試料液中の有機炭素から二酸化
炭素が生成され、更に、該二酸化炭素等の無機体炭素を
含んだ試料液に不活性ガスが送り込まれ、前記第2の供
給手段より供給された酸性溶液と該不活性ガスにより試
料液中の無機体炭素が除去される。一方、有機炭素量演
算手段では、前記第1の系統を経由した試料液中に含ま
れる気体と前記第2の系統を経由した試料液中に含まれ
る気体とが比較されることにより、前記第1の系統の試
料液中に含まれる有機炭素量を求めることができる。
According to the present invention, in the first system, the inert gas is fed to the sample solution, and the acidic solution supplied by the first supply means and the inorganic substance in the sample solution are supplied by the inert gas. The carbon is removed, and then the sample solution is heated to react the organic carbon in the sample solution with the oxidizing agent supplied from the first supply means, so that the organic carbon in the sample solution is oxidized. Carbon is produced. In the second line,
The sample solution of the same system as the first system is heated, and the organic carbon in the sample solution reacts with the oxidant supplied from the second supply means, so that the organic carbon in the sample solution is oxidized. Carbon is further generated, and an inert gas is sent to the sample solution containing the inorganic carbon such as carbon dioxide, and the acidic solution and the inert gas supplied from the second supply means Inorganic carbon is removed. On the other hand, in the organic carbon amount calculating means, the gas contained in the sample liquid passing through the first system is compared with the gas contained in the sample liquid passing through the second system, thereby The amount of organic carbon contained in the sample liquid of the system 1 can be determined.

【0008】すなわち、この発明の炭素量測定装置で
は、第1の系統と並行して設けられる、第2の系統をゼ
ロ点調整用の系統とすることができ、これによって、試
料液中の無機体炭素及び有機炭素以外の要素(例えば、
試料液の供給量や、反応液に含まれていた有機炭素量、
上述の測定手段に対する水分干渉影響の度合)が変動し
て、第1の系統に影響を与えた場合であっても、これに
応じて、第2の系統に対しても同様に影響を与えるとと
もに、有機炭素量演算手段にてこれら影響を相殺するこ
とができ、その結果として試料液中の有機炭素を正確に
測定できる。
That is, in the carbon content measuring apparatus of the present invention, the second system, which is provided in parallel with the first system, can be used as a system for zero point adjustment. Elements other than airframe carbon and organic carbon (eg,
The amount of sample liquid supplied, the amount of organic carbon contained in the reaction liquid,
Even if the above-mentioned influence of moisture interference on the measuring means is varied to affect the first system, the second system is also affected accordingly. The organic carbon amount calculating means can offset these effects, and as a result, the organic carbon in the sample liquid can be accurately measured.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1に基づいて説
明する。まず、この図において符号1で示すものは、無
機体炭素及び有機炭素が含有された試料液が供給される
流路であって、この流路1を通じて供給された試料液
は、ポンプ2によって脱気器3に送られるようになって
いる。また、ポンプ2と脱気器3との間に位置する流路
4には反応液供給手段5が設けられており、この反応液
供給手段5は、反応液が貯留される貯留容器6と、該貯
留容器6と流路4とを接続する流路7と、貯留容器6内
の反応液を流路7を通じて流路4に供給し、これにより
流路4内において試料液中に反応液を添加させるポンプ
8とから構成されている。また、この反応液供給手段5
には、貯留容器6内の反応液を供給する流路9と、ポン
プ10とが更に1系統設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. First, the reference numeral 1 in this figure is a flow path through which a sample solution containing inorganic carbon and organic carbon is supplied, and the sample solution supplied through this flow path 1 is removed by a pump 2. It is designed to be sent to the airway 3. Further, a reaction liquid supply means 5 is provided in the flow path 4 located between the pump 2 and the deaerator 3, and the reaction liquid supply means 5 includes a storage container 6 in which the reaction liquid is stored, The flow path 7 connecting the storage container 6 and the flow path 4 and the reaction liquid in the storage container 6 are supplied to the flow path 4 through the flow path 7, whereby the reaction liquid is added to the sample solution in the flow path 4. And a pump 8 for adding. Also, this reaction liquid supply means 5
In addition, one system is further provided with a flow path 9 for supplying the reaction liquid in the storage container 6 and a pump 10.

【0010】なお、前記貯留容器6に貯留される反応液
は、試料液に含有される無機体炭素であり、かつ弱酸で
ある二酸化炭素を追い出すための硫酸等の強酸溶液と、
試料液に含有される有機炭素から無機体炭素である二酸
化炭素を生成させるためのペルオキソ二硫化カリウム等
の酸化剤とにより構成されている。また、前記脱気器3
は、反応液が添加された試料液が貯留され、かつその下
部にヘリウム、窒素等の不活性ガスを送り込む流路11
が接続されたものであって、該流路11を通じて供給さ
れた不活性ガスは、脱気器3の内部で気泡状となって、
試料液と反応液との混合液を互いに撹拌混合し、該反応
液中の強酸により、試料液中の二酸化炭素(無機体炭
素)を脱気するようにしている。なお、流路11の途中
に設けられたものは、不活性ガスの流量を調整するため
の流量制御手段12である。
The reaction solution stored in the storage container 6 is a strong acid solution such as sulfuric acid for expelling carbon dioxide which is an inorganic carbon contained in the sample solution and which is a weak acid.
It is composed of an oxidizing agent such as potassium peroxodisulfide for producing carbon dioxide which is an inorganic carbon from the organic carbon contained in the sample liquid. Also, the deaerator 3
Is a flow path 11 in which the sample solution to which the reaction solution has been added is stored, and an inert gas such as helium or nitrogen is sent to the lower part thereof.
And the inert gas supplied through the flow path 11 becomes a bubble inside the deaerator 3,
The mixed liquid of the sample liquid and the reaction liquid is stirred and mixed with each other, and carbon dioxide (inorganic carbon) in the sample liquid is degassed by the strong acid in the reaction liquid. In addition, what is provided in the middle of the flow path 11 is a flow rate control means 12 for adjusting the flow rate of the inert gas.

【0011】一方、前記脱気器3の排出口には、無機体
炭素を除去した後の試料液を排出するための流路13が
設けられており、この流路13の末端部はポンプ14に
接続されている。また、この流路13の途中には、分岐
部15を介して別の流路16が接続され、更にこの流路
16の末端部はポンプ17に接続されている。前記ポン
プ14とポンプ17とは流量変動を最小限に抑えるため
に同一のモータ18により駆動されるものであって、前
記ポンプ17により吐出された試料液は、流路19に供
給されるようになっている。なお、本実施例では、分岐
部15から流路が分岐されて2系統となっており、以下
の説明において、ポンプ14側の流路を第1の系統10
0と表現し、ポンプ17側の流路を第2の系統101と
表現する。
On the other hand, the outlet of the deaerator 3 is provided with a channel 13 for discharging the sample liquid after removing the inorganic carbon, and the end of this channel 13 is a pump 14 It is connected to the. Further, another flow passage 16 is connected to the middle of the flow passage 13 via a branch portion 15, and the end portion of the flow passage 16 is connected to a pump 17. The pump 14 and the pump 17 are driven by the same motor 18 in order to minimize the flow rate fluctuation, and the sample solution discharged by the pump 17 is supplied to the flow path 19. Has become. In this embodiment, the flow path is branched from the branch portion 15 to form two systems, and in the following description, the flow path on the pump 14 side is the first system 10.
It is expressed as 0, and the flow path on the pump 17 side is expressed as the second system 101.

【0012】まず、ポンプ17側に位置する第2の系統
101について説明すると、ポンプ17の吐出側に接続
された流路19には、試料液の流れる方向に沿って反応
器20、冷却器21、脱気器22が順次設けられてお
り、更に、冷却器21と脱気器22との間に位置する流
路19には、反応液供給手段5の流路9が接続され、貯
留容器6からポンプ10、及び流路9を経由して試料液
中に反応液が供給されるようになっている。なお、ポン
プ10は、第1の系統100を流れる試料液に含まれる
反応液の量と同一の量の反応液を吐出する様に図示せぬ
制御手段により制御されている。反応器20は、ドラム
ヒータ20Aの周囲に流路19を螺旋状に巻回して、該
流路19内の試料液を加熱するものであって、この反応
器20において、反応液(酸化剤)と試料液中の有機炭
素とを反応させて、該有機炭素から二酸化炭素を生成す
るようにしている。
First, the second system 101 located on the pump 17 side will be described. In the flow path 19 connected to the discharge side of the pump 17, the reactor 20 and the cooler 21 are arranged along the flowing direction of the sample solution. , A deaerator 22 is sequentially provided, and the passage 19 located between the cooler 21 and the deaerator 22 is connected to the passage 9 of the reaction liquid supply means 5 and the storage container 6 The reaction liquid is supplied into the sample liquid through the pump 10 and the channel 9. The pump 10 is controlled by a control unit (not shown) so as to discharge the same amount of the reaction liquid as the amount of the reaction liquid contained in the sample liquid flowing through the first system 100. The reactor 20 spirally winds the flow path 19 around the drum heater 20A to heat the sample solution in the flow path 19, and the reaction solution (oxidizing agent) is used in the reactor 20. Carbon dioxide is produced from the organic carbon by reacting it with the organic carbon in the sample liquid.

【0013】冷却器21は、螺旋状に形成された冷却管
23と、該冷却管23に対して送風して該冷却管23を
冷却する空冷ファン24とから構成されたものである。
脱気器22は、脱気器3と同様に、試料液が貯留され、
かつその下部にヘリウム、窒素等の不活性ガスを送り込
む流路25が接続されたものであって、該流路25を通
じて供給された不活性ガスは、脱気器22の内部で気泡
状となって、試料液と反応液との混合液を互いに撹拌混
合し、該反応液中の強酸により、試料液中の二酸化炭素
(有機炭素から生成された二酸化炭素)を脱気するよう
にしている。 なお、流路25の途中に設けられたもの
は、不活性ガスの流量を調整するための流量制御手段2
6である。
The cooler 21 is composed of a cooling pipe 23 formed in a spiral shape and an air cooling fan 24 for blowing air to the cooling pipe 23 to cool the cooling pipe 23.
Like the deaerator 3, the deaerator 22 stores the sample liquid,
Further, a flow path 25 for feeding an inert gas such as helium or nitrogen is connected to the lower part thereof, and the inert gas supplied through the flow path 25 becomes a bubble inside the deaerator 22. Then, the mixed liquid of the sample liquid and the reaction liquid is stirred and mixed with each other, and carbon dioxide (carbon dioxide generated from organic carbon) in the sample liquid is degassed by the strong acid in the reaction liquid. The one provided in the middle of the flow path 25 is a flow rate control means 2 for adjusting the flow rate of the inert gas.
It is 6.

【0014】前記脱気器22の排出口には、有機炭素か
ら生成された二酸化炭素を除去した後の試料液を排出す
るための流路27が設けられており、この流路27の末
端部はポンプ28に接続されている。一方、第1の系統
100のポンプ14から吐出された試料液は、中間に配
管長調節管29を有する流路30を経由してポンプ31
に接続されている。前記配管長調節管29は、第1の系
統100の容積を第2の系統101の容積と一致させ、
これら第1の系統100と第2の系統101との測定条
件を同一とするために設けられているものである。ま
た、前記ポンプ31により吐出される試料液の流量とポ
ンプ28により吐出される試料液の流量との差をなくす
ために、ポンプ31とポンプ28とは同一のモータ32
により駆動され、ポンプ31により吐出された試料液は
流路33に供給され、ポンプ28により吐出された試料
液は流路34に供給されるようになっている。なお、第
1の系統100の流路30の途中に設けられたものは、
該流路30から溢れた試料液を外部に放出するためのオ
ーバーフロー流路35である。
At the outlet of the deaerator 22, there is provided a flow passage 27 for discharging the sample liquid after removing the carbon dioxide produced from the organic carbon, and the end portion of the flow passage 27. Is connected to the pump 28. On the other hand, the sample liquid discharged from the pump 14 of the first system 100 passes through the flow path 30 having the pipe length adjusting pipe 29 in the middle to the pump 31.
It is connected to the. The pipe length adjusting pipe 29 matches the volume of the first system 100 with the volume of the second system 101,
It is provided to make the measurement conditions of the first system 100 and the second system 101 the same. Further, in order to eliminate the difference between the flow rate of the sample liquid discharged by the pump 31 and the flow rate of the sample liquid discharged by the pump 28, the pump 31 and the pump 28 have the same motor 32.
The sample liquid discharged by the pump 31 is supplied to the flow path 33, and the sample liquid discharged by the pump 28 is supplied to the flow path 34. In addition, what is provided in the middle of the flow path 30 of the first system 100,
An overflow channel 35 for discharging the sample liquid overflowing from the channel 30 to the outside.

【0015】一方、第1の系統100の流路33と、第
2の系統101の流路34とは共に反応器36を経由し
ている。この反応器36は、一本のドラムヒータ36A
の周囲に流路33と流路34とを同じ巻数で巻回し、か
つこの卷回した箇所で流路33,34内の試料液を加熱
するものであって、特に、第1の系統100の流路33
内では、反応液(酸化剤)と試料液中の有機炭素とを反
応させて、該有機炭素から二酸化炭素を生成させるよう
にしている。
On the other hand, the flow path 33 of the first system 100 and the flow path 34 of the second system 101 both pass through the reactor 36. This reactor 36 has one drum heater 36A.
The flow path 33 and the flow path 34 are wound around the same with the same number of turns, and the sample solution in the flow paths 33 and 34 is heated at the wound position. Channel 33
Inside, the reaction liquid (oxidizing agent) is reacted with the organic carbon in the sample liquid to generate carbon dioxide from the organic carbon.

【0016】また、この反応器36を経由した第1の系
統100の流路33と、第2の系統101の流路34と
は、固定絞り37,38を経由して抽出器39にそれぞ
れ至っている。固定絞り37,38は、前記反応器36
の内部の反応圧力を高めるためのものであって、該反応
器36の温度が水の沸点を越えたとしても、反応液の気
化が起こらないようにするものである。抽出器39は、
上下に向けて設けられて、流路33,34を通じてそれ
ぞれ供給された試料液を二酸化炭素とドレン水(残査)
とに気液分離する抽出塔40,41と、これら抽出塔4
0,41の周囲に設けられて該抽出塔40,41を冷却
する冷却管42とから構成されたものである。
The flow path 33 of the first system 100 and the flow path 34 of the second system 101, which have passed through the reactor 36, reach the extractor 39 via fixed throttles 37 and 38, respectively. There is. The fixed throttles 37 and 38 correspond to the reactor 36.
The purpose of this is to increase the reaction pressure inside the reactor, and to prevent vaporization of the reaction liquid even if the temperature of the reactor 36 exceeds the boiling point of water. The extractor 39 is
Carbon dioxide and drain water (residuals) are provided for the sample liquids provided up and down and supplied through the flow paths 33 and 34, respectively.
Extraction towers 40 and 41 for gas-liquid separation into
0 and 41, and a cooling pipe 42 that cools the extraction towers 40 and 41.

【0017】また、前記抽出塔40,41の下部には、
流量を制御する流量制御手段43,44を有し、流路3
3,34から供給された試料液から、二酸化炭素を抽出
させるためのヘリウム、窒素等の不活性ガスを送り込む
流路45,46が接続され、また、該抽出塔40,41
の上部には、該抽出塔40,41内で分離された二酸化
炭素と不活性ガスを乾燥させる除湿器47,48と、不
活性ガス中の二酸化炭素の濃度を測定するための赤外線
吸光度計49,50とが順次設けられてなる流路51,
52がそれぞれ接続されている。また、これら第1の系
統100の赤外線吸光度計49にて測定された二酸化炭
素の濃度を示す測定値と、第2の系統101の赤外線吸
光度計50にて測定された二酸化炭素の濃度を示す測定
値とは共に演算手段53に供給され、この演算手段53
にて、赤外線吸光度計49での測定値から、赤外線吸光
度計50での測定値を減算することにより、試料液中の
有機炭素濃度を演算する。
Further, in the lower part of the extraction towers 40 and 41,
The flow path 3 has flow rate control means 43 and 44 for controlling the flow rate.
Flow paths 45 and 46 for feeding an inert gas such as helium and nitrogen for extracting carbon dioxide from the sample liquid supplied from 3, 34 are connected, and the extraction towers 40 and 41 are also connected.
Above the above, dehumidifiers 47 and 48 for drying the carbon dioxide and the inert gas separated in the extraction towers 40 and 41, and an infrared absorption meter 49 for measuring the concentration of carbon dioxide in the inert gas are provided. , 50, which are sequentially provided with a flow path 51,
52 are connected to each other. A measurement value indicating the concentration of carbon dioxide measured by the infrared absorption meter 49 of the first system 100 and a measurement value indicating the concentration of carbon dioxide measured by the infrared absorption meter 50 of the second system 101. The value and the value are supplied to the calculating means 53, and the calculating means 53
Then, the concentration of organic carbon in the sample solution is calculated by subtracting the measurement value of the infrared absorption meter 50 from the measurement value of the infrared absorption meter 49.

【0018】なお、図1において符号54,55で示す
ものは、抽出器39の冷却管42に対して冷却水を供
給、排出させるための流路である。また、上述した第1
の系統100及び第2の系統101において、ポンプ3
1、ポンプ28より下流側の構成は全く同一である。
In FIG. 1, reference numerals 54 and 55 are flow paths for supplying and discharging cooling water to the cooling pipe 42 of the extractor 39. Also, the above-mentioned first
In the system 100 and the second system 101 of the pump 3
1. The structure downstream of the pump 28 is exactly the same.

【0019】次に、以上のように構成された炭素量測定
装置の作用について説明する。 (1)第1の系統100について、 反応液供給手段5により試料液中に反応液が添加さ
れた後、脱気器3にて、反応液中の強酸により、弱酸で
ある試料液中の無機体炭素が脱気される。 反応器36にて試料液が加熱され、このとき反応液
中の酸化剤により、試料液中の有機炭素から二酸化炭素
が生成される。 反応器36にて生成された二酸化炭素は抽出器39
にて抽出された後、赤外線吸光度計49にてその濃度が
測定される。
Next, the operation of the carbon content measuring device configured as described above will be described. (1) Regarding the first system 100, after the reaction solution is added to the sample solution by the reaction solution supply means 5, the strong acid in the reaction solution causes no reaction in the sample solution, which is a weak acid, in the deaerator 3. Aircraft carbon is degassed. The sample liquid is heated in the reactor 36, and at this time, carbon dioxide is generated from the organic carbon in the sample liquid by the oxidizing agent in the reaction liquid. The carbon dioxide produced in the reactor 36 is extracted by the extractor 39.
After being extracted by, the concentration is measured by the infrared absorption meter 49.

【0020】(2)第2の系統101について、 反応液供給手段5により試料液中に反応液が添加さ
れた後、脱気器3にて、反応液中の強酸により、弱酸で
ある試料液中の無機体炭素が脱気される。 反応器20にて試料液が加熱され、このとき反応液
中の酸化剤により、試料液中の有機炭素から二酸化炭素
が生成される。 反応器20にて生成された二酸化炭素は、脱気器2
0の直前で反応液供給手段5により投入された反応液中
の強酸により、脱気器22にて脱気される。これによっ
て、試料液からは、無機体炭素及び有機炭素(すなわ
ち、全炭素)が除去されたことになる。 反応器36、抽出器39を経由し、元々の試料液中
に含まれていた無機体炭素及び有機炭素が除去された試
料液中の気体が赤外線吸光度計50にて測定される。こ
こで、赤外線吸光度計50にて測定された測定値は流路
9より容器6から供給された反応液に含まれる有機炭素
その他であり、分析点のブランク値(システムブラン
ク)としてキャンセルされるべき測定値である。
(2) Regarding the second system 101, after the reaction solution is added to the sample solution by the reaction solution supply means 5, the sample solution which is a weak acid by the strong acid in the reaction solution in the deaerator 3 The inorganic carbon inside is degassed. The sample liquid is heated in the reactor 20, and at this time, carbon dioxide is generated from the organic carbon in the sample liquid by the oxidizing agent in the reaction liquid. The carbon dioxide produced in the reactor 20 is removed by the deaerator 2
Immediately before 0, the strong acid in the reaction solution introduced by the reaction solution supply means 5 is degassed by the deaerator 22. As a result, inorganic carbon and organic carbon (that is, total carbon) are removed from the sample liquid. The gas in the sample solution from which the inorganic carbon and the organic carbon contained in the original sample solution have been removed is measured by the infrared absorption meter 50 via the reactor 36 and the extractor 39. Here, the measurement value measured by the infrared absorptiometer 50 is organic carbon or the like contained in the reaction liquid supplied from the container 6 through the channel 9, and should be canceled as a blank value (system blank) at the analysis point. It is a measured value.

【0021】(3)演算手段53について、第1の系統
100の赤外線吸光度計49にて測定された測定値と、
第2の系統の赤外線吸光度計50にて測定された測定値
とは共に演算手段53に供給され、この演算手段53に
て、赤外線吸光度計49による測定値から、赤外線吸光
度計50による測定値が減算されることにより、試料液
中の有機炭素濃度が演算される。すなわち、この発明の
炭素量測定装置では、第1の系統100と並行して設け
られる、第2の系統101の赤外線吸光度計50での測
定値を、ゼロ点調整用の基準値とすることができ、これ
によって、試料液中の無機体炭素及び有機炭素以外の要
素(例えば、試料液の供給量や、反応液に含まれていた
有機炭素量、上述の測定手段に対する水分干渉影響の度
合)が変動して、第1の系統100の赤外線吸光度計4
9の測定値に影響を与えた場合であっても、これに応じ
て、全く同一の条件で試料液が流通する赤外線吸光度計
50に対しても同様に影響を与えるとともに、演算手段
53にて、第1の系統100の赤外線吸光度計49によ
る測定値から、第2の系統101の赤外線吸光度計50
による測定値を減算することにより、これら影響を相殺
することができ、その結果として、試料液中の有機炭素
を正確に測定できる効果が得られるものである。なお、
本実施例では、赤外線吸光度計49,50を個別に設
け、演算手段53にて、二つの赤外線吸光度計49,5
0による測定値の差を演算することにより、試料液中の
有機炭素を測定する様にしているが、これに限るもので
はなく、例えば、特開平2−91569号に示される二
つの赤外線吸光度計が一体となった赤外線ガス分析計を
使用すれば、試料液中の有機炭素量をより正確に測定で
きる。
(3) For the calculation means 53, the measurement value measured by the infrared absorption meter 49 of the first system 100,
The measurement value measured by the infrared absorption meter 50 of the second system is supplied to the calculation means 53 together with the measurement value measured by the infrared absorption meter 49, and the measurement value measured by the infrared absorption meter 50 is calculated by the calculation means 53. By subtracting, the organic carbon concentration in the sample liquid is calculated. That is, in the carbon content measuring device of the present invention, the measurement value of the infrared absorption meter 50 of the second system 101, which is provided in parallel with the first system 100, may be used as the reference value for zero point adjustment. By this, elements other than inorganic carbon and organic carbon in the sample solution (for example, the amount of the sample solution supplied, the amount of organic carbon contained in the reaction solution, the degree of influence of moisture interference on the above-mentioned measuring means) Fluctuates, and the infrared absorption meter 4 of the first system 100
Even when the measured value of 9 is affected, the infrared absorption meter 50 in which the sample liquid flows under exactly the same conditions is similarly affected, and the calculation means 53 , The infrared absorption meter 49 of the second system 101 from the measured value by the infrared absorption meter 49 of the first system 100.
These effects can be offset by subtracting the measured value by, and as a result, the effect of accurately measuring the organic carbon in the sample solution can be obtained. In addition,
In this embodiment, the infrared absorptiometers 49 and 50 are individually provided, and the two infrared absorptiometers 49 and 5 are operated by the calculation means 53.
Although the organic carbon in the sample solution is measured by calculating the difference between the measured values depending on 0, the invention is not limited to this. For example, two infrared absorptiometers disclosed in JP-A-2-91569. The use of an infrared gas analyzer that is integrated with allows more accurate measurement of the amount of organic carbon in the sample liquid.

【0022】なお、上記実施例では、第1の系統100
において、ポンプ14とポンプ31との間に、配管長調
節管29とオーバーフロー流路35とを設け、これによ
って第1の系統100と第2の系統101との分析条件
を同じに設定するようにしたが、これに限定されず、第
2の系統101との測定条件を更に近づけるために、図
2に示すように、ポンプ14とポンプ31との間に、第
2の系統101と同様な反応器20、冷却器21、脱気
器22を順番に設けるようにしても良い。
In the above embodiment, the first system 100
In the above, the pipe length adjusting pipe 29 and the overflow passage 35 are provided between the pump 14 and the pump 31, so that the analysis conditions of the first system 100 and the second system 101 are set to be the same. However, the present invention is not limited to this, and in order to bring the measurement conditions of the second system 101 closer to each other, a reaction similar to that of the second system 101 is performed between the pump 14 and the pump 31, as shown in FIG. The device 20, the cooler 21, and the deaerator 22 may be provided in order.

【0023】また、図2のように第1の系統100に第
2の系統101と同様に反応器20及び脱気器22を設
けて炭素量測定装置を構成した場合には、第1の系統1
00の反応器20にて試料液が加熱され、このとき反応
液中の酸化剤により、試料液中の有機炭素から二酸化炭
素が生成され、この二酸化炭素を脱気器22より除去す
ることができる。この場合、第1の系統100では、試
料液中に含まれる炭素量が零の試料液が、赤外線吸光度
計49により測定され、第2の系統101では、炭素量
が零の試料水に反応液供給手段5により供給された反応
液が混合された液体が、赤外線吸光度計50により測定
される。これにより、反応液が試料液に添加された場合
の赤外線吸光度計49,50による測定値への影響を測
定することができる。具体的には、赤外線吸光度計50
による測定値から赤外線吸光度計49による測定値を減
算した値が、反応液による測定値への影響値である。従
って、この影響値をキャンセルする様に各赤外線吸光度
計49,50及び演算手段53を調整すれば、反応液に
よる試料液中の有機炭素量の測定値がより正確になる。
なお、通常の測定時においては、第1の系統100の反
応器20と脱気器22は使用せず、図1の実施例と同様
の測定方法を実施することになる。
Further, as shown in FIG. 2, when the carbon amount measuring apparatus is constructed by providing the reactor 20 and the deaerator 22 in the first system 100 as in the second system 101, the first system is used. 1
The sample liquid is heated in the reactor 20 of No. 00, carbon dioxide is generated from the organic carbon in the sample liquid by the oxidizing agent in the reaction liquid at this time, and this carbon dioxide can be removed by the deaerator 22. . In this case, in the first system 100, the sample liquid having a zero carbon content contained in the sample liquid is measured by the infrared absorptiometer 49, and in the second system 101, the reaction liquid is added to the sample water having a zero carbon content. The liquid in which the reaction liquid supplied by the supply means 5 is mixed is measured by the infrared absorption meter 50. As a result, it is possible to measure the influence of the reaction liquid added to the sample liquid on the measured values by the infrared absorptiometers 49 and 50. Specifically, the infrared absorption meter 50
The value obtained by subtracting the value measured by the infrared absorptiometer 49 from the value measured by the above is the influence value on the measured value by the reaction solution. Therefore, if the infrared absorptiometers 49 and 50 and the calculating means 53 are adjusted so as to cancel this influence value, the measured value of the amount of organic carbon in the sample solution by the reaction solution becomes more accurate.
In addition, during the normal measurement, the reactor 20 and the deaerator 22 of the first system 100 are not used, and the same measurement method as that of the embodiment of FIG. 1 is performed.

【0024】[0024]

【発明の効果】以上詳細に説明したように本発明によれ
ば、第1の系統と並行して設けられる、第2の系統をゼ
ロ点調整用の系統とすることができ、これによって、試
料液中の無機体炭素及び有機炭素以外の要素(例えば、
試料液の供給量や、反応液に含まれていた有機炭素量、
上述の測定手段に対する水分干渉影響の度合)が変動し
て、第1の系統に影響を与えた場合であっても、これに
応じて、第2の系統に対しても同様に影響を与えるとと
もに、有機炭素量演算手段にてこれら影響を相殺するこ
とができ、その結果として試料液中の有機炭素を正確に
測定できる効果が得られる。
As described in detail above, according to the present invention, the second system, which is provided in parallel with the first system, can be used as a system for adjusting the zero point. Elements other than inorganic carbon and organic carbon in the liquid (for example,
The amount of sample liquid supplied, the amount of organic carbon contained in the reaction liquid,
Even if the above-mentioned influence of moisture interference on the measuring means is varied to affect the first system, the second system is also affected accordingly. These effects can be offset by the organic carbon amount calculation means, and as a result, the effect of accurately measuring the organic carbon in the sample liquid can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す配管図。FIG. 1 is a piping diagram showing an embodiment of the present invention.

【図2】図1の他の態様を示す配管図。FIG. 2 is a piping diagram showing another embodiment of FIG.

【符号の説明】[Explanation of symbols]

7 流路(第1、第2の供給手段) 8 ポンプ(第1、第2のの供給手段) 9 流路(第2の供給手段) 10 ポンプ(第2の供給手段) 53 演算手段(炭素量演算手段) 100 第1の系統 101 第2の系統 7 Flow Path (First and Second Supply Means) 8 Pump (First and Second Supply Means) 9 Flow Path (Second Supply Means) 10 Pump (Second Supply Means) 53 Calculation Means (Carbon Quantity calculation means) 100 First system 101 Second system

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料液に酸性溶液及び酸化剤を供給する
第1の供給手段を有し、該試料液に不活性ガスを送り込
み、前記第1の供給手段により供給された酸性溶液と該
不活性ガスにより試料液中の無機体炭素を除去し、次
に、試料液を加熱して試料液中の有機炭素と前記第1の
供給手段より供給された酸化剤とを反応させることによ
り、試料液中の有機炭素から二酸化炭素を生成する第1
の系統と、 該第1の系統の試料液と同一の試料液に酸性溶液及び酸
化剤を供給する第2の供給手段を有し、該試料液を加熱
して前記試料液中の有機炭素と前記第2の供給手段より
供給された酸化剤とを反応させることにより、該試料液
中の有機炭素から二酸化炭素を生成し、該二酸化炭素等
の無機体炭素を含んだ試料液に不活性ガスを送り込み、
前記第2の供給手段より供給された酸性溶液と該不活性
ガスにより試料液中の無機体炭素を除去する第2の系統
と、 前記第1の系統を経由した試料液中に含まれる気体と前
記第2の系統を経由した試料液中に含まれる気体とを比
較することにより、前記第1の系統の試料液中に含まれ
る有機炭素量を求める有機炭素量演算手段と、からなる
炭素量測定装置。
1. A first supply means for supplying an acidic solution and an oxidant to a sample solution, wherein an inert gas is sent to the sample solution, and the acidic solution supplied by the first supply means The inorganic carbon in the sample solution is removed by the active gas, and then the sample solution is heated to react the organic carbon in the sample solution with the oxidant supplied from the first supply means to obtain a sample. First to generate carbon dioxide from organic carbon in liquid
And a second supply means for supplying an acidic solution and an oxidizing agent to the same sample solution as the sample solution of the first system, and heating the sample solution to remove organic carbon in the sample solution. By reacting with the oxidizing agent supplied from the second supply means, carbon dioxide is generated from the organic carbon in the sample solution, and an inert gas is added to the sample solution containing inorganic carbon such as carbon dioxide. Send
A second system for removing the inorganic carbon in the sample solution by the acidic solution and the inert gas supplied from the second supply means; and a gas contained in the sample solution via the first system. A carbon amount comprising: an organic carbon amount calculation means for obtaining the amount of organic carbon contained in the sample liquid of the first system by comparing with the gas contained in the sample liquid that has passed through the second system. measuring device.
JP25021392A 1992-09-18 1992-09-18 Quantity of carbon measuring equipment Withdrawn JPH06102270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25021392A JPH06102270A (en) 1992-09-18 1992-09-18 Quantity of carbon measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25021392A JPH06102270A (en) 1992-09-18 1992-09-18 Quantity of carbon measuring equipment

Publications (1)

Publication Number Publication Date
JPH06102270A true JPH06102270A (en) 1994-04-15

Family

ID=17204512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25021392A Withdrawn JPH06102270A (en) 1992-09-18 1992-09-18 Quantity of carbon measuring equipment

Country Status (1)

Country Link
JP (1) JPH06102270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047112A (en) * 2019-09-19 2021-03-25 株式会社アナテック・ヤナコ Liquid measurement device and water quality measurement apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047112A (en) * 2019-09-19 2021-03-25 株式会社アナテック・ヤナコ Liquid measurement device and water quality measurement apparatus

Similar Documents

Publication Publication Date Title
US20030159947A1 (en) Method and apparatus for determining urea concentration
US4507875A (en) Apparatus for determining the concentration of vapors in a flowing gas stream
JP3265830B2 (en) Total organic carbon meter
EP0469437B1 (en) Method of and apparatus for preparing calibration gas
KR100195892B1 (en) Method and apparatus for supplying gas to an analyzer with a very high sensitivity
EA002070B1 (en) Analyzer for continuously measuring h2s contained in a gas and device including same for regulating the air flow rate injected into an h2s sulphur oxidation reactor
US5731508A (en) Calibrating gas generator
JP3725441B2 (en) Method for analyzing impurities in a gas stream
JPS6196446A (en) Method and device for measuring and monitoring concentrationof hydrogen peroxide in liquefied reaction medium
FI67959C (en) APPARATUS AND APPARATUS FOR CONSTRUCTION OF CONCENTRATION OF ABSORBENT COMPONENTS I AND GASFORMING BLANDNING
CN1777803B (en) Hydrogen sulfide monitoring system
US5996397A (en) Reactive gas sampling/analyzing hygrometry system
JPH06102270A (en) Quantity of carbon measuring equipment
JPH0528490B2 (en)
JP2818239B2 (en) Carbon content measuring device
JP2694024B2 (en) Carbon content measuring device
JPH07174752A (en) Device for measuring carbon quantity
JPH06317577A (en) Measuring apparatus of quantity of carbon
JPS599549A (en) Measurement of gas concentration
JPH0580022A (en) Device for measuring amount of carbon
JPH01318954A (en) Carbon-quantity measuring apparatus
US20220011201A1 (en) Method and an apparatus for determining isotope relationships
SU1741105A1 (en) Device for producing of measured substance vapor supersaturation in gas flow
JPH0452555A (en) Measuring apparatus of amount of carbon
JP3081959B2 (en) Carbon content measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130