JPS6131959A - Method for measuring ph of electroplating liquid - Google Patents

Method for measuring ph of electroplating liquid

Info

Publication number
JPS6131959A
JPS6131959A JP59154929A JP15492984A JPS6131959A JP S6131959 A JPS6131959 A JP S6131959A JP 59154929 A JP59154929 A JP 59154929A JP 15492984 A JP15492984 A JP 15492984A JP S6131959 A JPS6131959 A JP S6131959A
Authority
JP
Japan
Prior art keywords
electrode
calibration
plating
temp
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59154929A
Other languages
Japanese (ja)
Other versions
JPH0692960B2 (en
Inventor
Takashi Ochiai
崇 落合
Yasuo Iguma
康夫 猪熊
Tatsuaki Shinchiyuu
真忠 達明
Yoshihiko Ishikawa
石川 ▲吉▼彦
Yoshio Horii
良雄 堀井
Satoshi Kono
河野 訓
Daizo Yagi
八木 大三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Nippon Steel Corp
Original Assignee
Horiba Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Sumitomo Metal Industries Ltd filed Critical Horiba Ltd
Priority to JP59154929A priority Critical patent/JPH0692960B2/en
Publication of JPS6131959A publication Critical patent/JPS6131959A/en
Publication of JPH0692960B2 publication Critical patent/JPH0692960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components

Abstract

PURPOSE:To eliminate the error by temp. and to measure exactly the pH of a plating liquid by drawing the sample in a plating cell into an electrode chamber provided to the outside of the plating cell and operating the signal outputs from an electrode for pH measurement and temp. detector of the electrode chamber and the temp. sensor of the plating cell. CONSTITUTION:The sample in the plating cell 1 is drawn into the electrode chamber 2 by a pump 4 and the signal outputs from the electrode 15 for pH measurement and temp. detector 6 provided to the chamber 2 and the signal output from the temp. sensor 18 of the cell 1 are inputted to an operating element 19. The error owing to the difference between the temp. in the plating cell and the temp. in the chamber 2 is corrected by the specific operation equation, by which the pH of the plating liquid in the cell is measured with good accuracy. The automatic control is executed by a program control 20 to feed respective liquids from a washing liquid tank 6, the 1st calibrating liquid tank 7 and the 2nd calibrating liquid tank to the chamber 2 and to execute washing and automatic calibration of the electrode 15 as well. The measurement of the pH of the plating liquid with high accuracy is thus made possible.

Description

【発明の詳細な説明】 〔産業上の利用性〕 本発明は電気メッキ液の田測定方法に関し、メンテナン
スが容易で高精度の自動測定が行なえるようにすること
を目的とする。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applicability] The present invention relates to a method for measuring electroplating liquid, and an object of the present invention is to enable easy maintenance and highly accurate automatic measurement.

〔従来技術〕[Prior art]

電気メッキ液の田は、電流効率、メッキ被膜の性質、メ
ッキ液の変質等に影響を及ぼすので、適正な範囲に管理
する必要がある。そのために高精度な田測定が望まれる
のであるが、電極に特性変化があるため、その校正を頻
繁に行なわない限シ精度を保つのは難かしいといえる。
The electroplating solution level affects the current efficiency, the properties of the plating film, the deterioration of the plating solution, etc., so it must be controlled within an appropriate range. For this reason, highly accurate field measurements are desired, but since the characteristics of the electrodes change, it is difficult to maintain accuracy unless calibrated frequently.

そこで、電極の自動洗浄、及び自動校正が行なえること
が測定精度を保つために必要となる。
Therefore, in order to maintain measurement accuracy, it is necessary to be able to automatically clean and calibrate the electrodes.

ところで、従来の田測定は、電極をメッキ槽に直接挿入
して行なう方法であるため、校正等の自動化が困難で、
測定精度もあまシ高く望めないものであった。
By the way, conventional field measurements are performed by inserting electrodes directly into the plating tank, which makes it difficult to automate calibration and other tasks.
The measurement accuracy was also too high to be expected.

一方、従来、メッキ槽内の試料をサンプリングする田測
定室をメッキ槽とは別個に設けて、自動洗浄、自動校正
を行ないやすくしたものもあったが、この方法ではサン
プリング過程での試料の温度変化に考慮を払っていない
ため、測定誤差が無視できず、メッキ槽内の出値を精度
よく測定することは困難であった。
On the other hand, in the past, a measurement chamber for sampling the sample in the plating tank was installed separately from the plating tank to facilitate automatic cleaning and automatic calibration, but this method Since changes were not taken into consideration, measurement errors could not be ignored, making it difficult to accurately measure the output value in the plating tank.

〔発明の目的〕[Purpose of the invention]

そこで本発明は自動洗浄、自動校正が行ないやすいと共
に、メッキ槽内の田を高精度に測定、することのできる
新規測定方法を提供するものである。
Therefore, the present invention provides a new measuring method that is easy to perform automatic cleaning and automatic calibration, and can measure the field inside the plating tank with high precision.

〔発明の構成〕[Structure of the invention]

上記目的を達成するため、本発明は、メッキ槽内の試料
をサンプリングする電極チャンバをメッキ槽とは別個に
設けて電極チャンバ内に周期的に洗浄液、校正液を導入
し、自動洗浄、自動校正を行なうようにすると共に、前
記電極チャンバに田測定用電極と温度検出器を設けて該
州測定用電極の検出信号、温度検出器の検出信号及び前
記メッキ槽内の試料の温度を示す温度信号の3者からメ
ッキ槽内の試料の出値を演算によ請求めるようにしたこ
とを要旨としている。
In order to achieve the above object, the present invention provides an electrode chamber for sampling a sample in the plating tank separately from the plating tank, periodically introduces a cleaning solution and a calibration solution into the electrode chamber, and performs automatic cleaning and automatic calibration. At the same time, the electrode chamber is provided with a temperature measurement electrode and a temperature sensor, and a detection signal of the temperature measurement electrode, a detection signal of the temperature detector, and a temperature signal indicating the temperature of the sample in the plating tank are provided. The gist is that the output value of the sample in the plating tank can be requested by calculation from three parties.

〔実施例〕〔Example〕

第1図は本発明の測定方法を実現する装置を示し、1は
メッキ槽、2はメッキ槽lとは別個に設は九電極チャン
バである。メッキ槽1内の試料(メッキ液)はメッキ液
導入弁3が開状態pときサンプリングポンプ4によって
電極チャンバ2に導入され、測定に供される。一方、測
定を終えた試料はもどシ管5を通じてメッキ槽1に戻さ
れる。
FIG. 1 shows an apparatus for realizing the measuring method of the present invention, in which 1 is a plating bath, and 2 is a nine-electrode chamber installed separately from the plating bath 1. A sample (plating solution) in the plating tank 1 is introduced into the electrode chamber 2 by the sampling pump 4 when the plating solution introduction valve 3 is in the open state p, and is subjected to measurement. On the other hand, the sample after the measurement is returned to the plating bath 1 through the return tube 5.

6は洗浄液夕/り、7は第1校正液タンク、8は第2校
正液夕/りで、各タンク内の液は各タンクの配管中に設
けられた導入弁9 、10 、 uを開き、導入ポンプ
12を作動することによシミ極チャンノ(2内に導入す
ることができる。13は圧力空気導入弁で、前記缶液を
電極チャンバ2内に導入する際、この弁も一定時間開い
て圧力空気によるバブリングを行なうようにしている。
6 is a cleaning liquid tank, 7 is a first calibration liquid tank, and 8 is a second calibration liquid tank. By operating the introduction pump 12, the electrode can be introduced into the electrode chamber 2. Reference numeral 13 denotes a pressure air introduction valve, and when introducing the canned liquid into the electrode chamber 2, this valve is also opened for a certain period of time. Bubbling is performed using pressurized air.

14は排出弁、15は電極チャンバ2内に設は死出測定
用電極、16は温度検出器である。田測定用電極自体が
温度検出器を内装している場合にはそれを用いればよく
、別個に温度検出器を設ける必要はない。17は州測定
用電極15内の比較電極に導入するKClを゛貯めたタ
ン測定用電極15と温度検出器16からの検出信号の3
者から演算によってメッキ槽l内の試料の州を算出する
演算部である。尚、メッキ槽1が一定温度に管理されて
いる場合には温度センサー18は不要でおる。その場合
は、一定温度を示す信号を抵抗器等によって作シ出し演
算部19に入力するようにすればよい。加は上記6弁、
ポンプを一定の順序にしたがって作動させ、自動洗浄、
校正液の導入、サンプリング動作を遂行するプログラム
コントローラである。
14 is a discharge valve, 15 is an electrode for measuring mortality disposed in the electrode chamber 2, and 16 is a temperature detector. If the temperature measurement electrode itself has a built-in temperature sensor, that can be used, and there is no need to provide a separate temperature sensor. Reference numeral 17 indicates a detection signal from the temperature sensor 16 and the temperature measurement electrode 15 which stores KCl to be introduced into the reference electrode in the temperature measurement electrode 15.
This is a calculation unit that calculates the state of the sample in the plating tank l by calculation from the operator. Note that if the plating bath 1 is kept at a constant temperature, the temperature sensor 18 is not necessary. In that case, a signal indicating a constant temperature may be generated by a resistor or the like and input to the calculation section 19. Add is the above 6 valves,
The pumps operate in a certain order, automatically cleaning,
This is a program controller that performs calibration solution introduction and sampling operations.

次に、プログラムコントローラによって遂行される自動
洗浄、校正液の導入、サンプリングの各動作を説明する
Next, each operation of automatic cleaning, introduction of calibration solution, and sampling performed by the program controller will be explained.

■ 自動洗浄、校正液の導入 1)排出弁14を開き、電極チャンノく2内の液を排出
した後、導入弁9を開き、導入ポンプ12を作動させる
。これによシ、洗浄液が電極チャンノ(2内に導入され
る。このとき同時に圧力空気導入弁13も開き、電極チ
ャンバ2内で洗浄液を)くプリングさせ洗浄効果を高め
る。
■ Automatic cleaning and introduction of calibration liquid 1) After opening the discharge valve 14 and discharging the liquid in the electrode channel 2, open the introduction valve 9 and operate the introduction pump 12. As a result, the cleaning liquid is introduced into the electrode chamber 2. At the same time, the pressure air introduction valve 13 is also opened, causing the cleaning liquid to be pulled inside the electrode chamber 2 to enhance the cleaning effect.

1i−)洗浄を完了すれば、排出弁14を開き、洗浄液
を排出し、次に導入弁10を開く。これによって第1校
正液が電極チャンバ2内に導入される。
1i-) When cleaning is completed, open the discharge valve 14 to drain the cleaning liquid, and then open the introduction valve 10. As a result, the first calibration liquid is introduced into the electrode chamber 2 .

この場合も圧力空気導入弁13を開き、第1の校正液を
バブリングさせる。前液の影響を除去するのに十分な時
間バブリングした後、排出弁14を開き、排出する。排
出完了後、再び導入弁10を開き、第1校正液を電極チ
ャンバ2内に導入する。そして、このときの電極チャン
バ内の液温度TAと、電極電位5Aとを検出し、その検
出信号TA、EAを演算部に入力する。
In this case as well, the pressure air introduction valve 13 is opened and the first calibration liquid is bubbled. After bubbling for a sufficient time to remove the influence of the preliquid, the discharge valve 14 is opened and discharged. After the discharge is completed, the introduction valve 10 is opened again and the first calibration liquid is introduced into the electrode chamber 2. Then, the liquid temperature TA in the electrode chamber and the electrode potential 5A at this time are detected, and the detection signals TA and EA are input to the calculation section.

1ii)検出を終わると、排出弁14を開き、第1校正
液を排出した後、導入弁11を開き、第2校正液を電極
チャンバ2内に導入する。この場合も、→の第1校正液
の場合と同様、2回導入する。
1ii) When the detection is finished, the discharge valve 14 is opened to discharge the first calibration liquid, and then the introduction valve 11 is opened to introduce the second calibration liquid into the electrode chamber 2. In this case, as in the case of the first calibration solution →, the solution is introduced twice.

1回目は前液の影響除去のため、2回目は温度TBと電
極電位EBの検出のためである。2回目の導入によって
検出された検出信号TB、EBは演算部19に入力され
る。
The first time is to remove the influence of the previous liquid, and the second time is to detect the temperature TB and the electrode potential EB. The detection signals TB and EB detected by the second introduction are input to the calculation unit 19.

■ サンプリング動作 上記動作を終わると、排出弁14を開き、第2の校正液
を排出した後、サンプリングポンプ4が作動し、メッキ
液導入弁3が開いて、試料が電極チヤンバ2内に採取さ
れる。このときの電極電位EX。
■ Sampling operation When the above operation is completed, the discharge valve 14 is opened and the second calibration solution is discharged, and then the sampling pump 4 is activated, the plating solution introduction valve 3 is opened, and a sample is collected into the electrode chamber 2. Ru. Electrode potential EX at this time.

電極チャンバ内の液温度TXl)i検出され、メッキ槽
工内の温度nを示す温度信号と共に演算部に入力される
The liquid temperature TXl)i in the electrode chamber is detected and input to the calculation unit together with a temperature signal indicating the temperature n in the plating tank.

■ 演算部での処理 上記各検出信号及び温度信号Ttが入力されると、演算
部は次の如き処理を行なう。
(2) Processing in the arithmetic unit When the above-mentioned detection signals and temperature signal Tt are input, the arithmetic unit performs the following processing.

1)校正液の田値算出 第1.第2校正液の温度検出値’l’A、’l’Bから
校正液の田値を次式に基づいて行なう。
1) Calculating the value of the calibration solution 1st. The value of the calibration liquid is determined from the detected temperature values 'l'A and 'l'B of the second calibration liquid based on the following equation.

田=智+11+OT+dT”      ・・・(1)
但し、Tは校正液の絶対温度である。上式中a。
Ta=Chi+11+OT+dT"...(1)
However, T is the absolute temperature of the calibration solution. In the above formula a.

b、c及びdは液固有の定数で、−例としてしゆう酸塩
と7タル酸塩についてのa、b、c及びdの値を次表に
示す。
b, c, and d are liquid-specific constants; the values of a, b, c, and d for oxalate and 7-talate are shown in the following table as an example.

ii)電極感度Aと不斉電位Bの算出 次一式に基づいて電極感度Aを算出する。ii) Calculation of electrode sensitivity A and asymmetric potential B Electrode sensitivity A is calculated based on the following equation.

又、次式に基づいて不斉電位Bを算出するっここに、I
IIAは第1校正液の出値、raBは第2校正液の出値
で夫々第(1)式に従って求められる。
In addition, when calculating the asymmetric potential B based on the following formula, I
IIA is the output value of the first calibration solution, and raB is the output value of the second calibration solution, which are determined according to equation (1).

αはガラス電極の温度補正係数(1/273.15 )
である。これらA、Bを算出することによって自動校正
が完了する。
α is the temperature correction coefficient of the glass electrode (1/273.15)
It is. Automatic calibration is completed by calculating these A and B.

m)電極チャンバ内の出値の算出 電極チャンバ内の出値(Fl(X)は次式によって求め
られる。
m) Calculation of the output value in the electrode chamber The output value (Fl(X)) in the electrode chamber is calculated by the following formula.

但し、Ex:電極チャンバ内試料の電極電位Tx:電極
チャンバ内試料の温度(K)iv) メッキ槽内試料の
田値の算出 上記i)〜亀)によってPHXが求まると、メッキ槽内
温度Ttを示す温度信号と共に次式に従って演算するこ
とによシメッキ槽内試料の出値を求めることができる。
However, Ex: Electrode potential of the sample in the electrode chamber Tx: Temperature of the sample in the electrode chamber (K) iv) Calculation of the temperature value of the sample in the plating tank When PHX is determined from i) to turtle) above, the temperature in the plating tank Tt The output value of the sample in the plating tank can be determined by calculating according to the following equation together with the temperature signal indicating .

11[t = F4′Ix −k (Tt −TX )
       −(5)但し、kはメッキ液の温度補正
係数である。このkはメッキ液の種類によって異なる。
11 [t = F4'Ix -k (Tt -TX)
-(5) where k is the temperature correction coefficient of the plating solution. This k varies depending on the type of plating solution.

kの値はメッキ液の分析により求めることができる。例
えばZn−pe系メッキ液の場合、kは k = 0.013−0.67Wpe3+      
 −(61で与えられる。但し、W p e K+はメ
ッキ液のFe3+濃度(W/V%)である。上記(6)
式のようにkの値がイオン濃度によって変化する場合に
は、(6)式を演算部に記憶させておくと共に、測定の
都度イオン濃度を入力してkを演算によって求めるよう
にしておけば、メッキ液のkが刻々変化してもそれに対
応してPHtを誤差なく求めることができ、便利である
The value of k can be determined by analyzing the plating solution. For example, in the case of Zn-pe based plating solution, k = 0.013-0.67Wpe3+
−(61) However, W p e K+ is the Fe3+ concentration (W/V%) of the plating solution. (6) above
If the value of k changes depending on the ion concentration as shown in the formula, it is recommended to store the formula (6) in the calculation section and calculate k by inputting the ion concentration each time a measurement is made. , even if k of the plating solution changes moment by moment, the PHt can be determined without error, which is convenient.

上記の如くして求められたmtは伝送出力として演算部
19から出力され、図外表示部にて表示される。尚、校
正中において、第1校正液から第2校正液に切替えた際
、電極電位がEAからEBに変化するが、その全変化量
の90チに達する時間を計測したシ、或いは単位時間当
シの電位変化量を計測して電極の応答速度を算出するよ
うにすれば、電極の寿命の客観的な判断に供することが
できる。
The mt obtained as described above is outputted from the calculation section 19 as a transmission output and displayed on a display section not shown. During calibration, when switching from the first calibration solution to the second calibration solution, the electrode potential changes from EA to EB. If the response speed of the electrode is calculated by measuring the amount of change in the potential of the electrode, the life of the electrode can be objectively determined.

次に、第2図は、演算部りの出力信号を用いて測定計器
の異常判断を行なう回路で、記憶部21と比較部22と
管理精度設定部器と判定部別とから構成される。記憶部
21は、前回の校正時における測定値を記憶している。
Next, FIG. 2 shows a circuit for determining abnormality of the measuring instrument using the output signal from the calculation section, and is composed of a storage section 21, a comparison section 22, a management accuracy setting section, and a determination section. The storage unit 21 stores the measured values from the previous calibration.

比較部nは、記憶部21から出力される前回の校正時の
測定値と、演算部19から出力される今回の校正時の測
定値を比較する。
The comparison unit n compares the measurement value output from the storage unit 21 during the previous calibration with the measurement value output from the calculation unit 19 during the current calibration.

通常、この比較値はある小さな範囲内の値である筈であ
るが、前回の校正と今回の校正との間に例えばガラス電
極の応答膜の破れ、汚れ、変質、比較電極の汚れ、内極
の化学変化等の異常が生じると、前記範囲を越える大き
な値となる。管理精度設定部器は、前記比較値として許
容できる最大の値が設定しである。この値は計器として
要求される測定精度から決定される。判定部Uは、比較
値が管理精度設定部局の設定値を越えているかどう・・
111 かをみ、越えている場合、異常信号を発する。このよう
にして異常動作の検出を行なうことKよシ、校正と校正
との間の測定時における計器精度を管理することができ
ると共に、要求される測定精度の範囲で出来るだけ校正
周期を長くすることができるし、またそれに伴なって高
価な校正液の有効利用が図れるといった利点がある。
Normally, this comparison value should be within a certain small range, but between the previous calibration and the current calibration, for example, there may be damage, dirt, or deterioration in the response membrane of the glass electrode, dirt on the reference electrode, or inner electrode. If an abnormality such as a chemical change occurs, the value will exceed the above range. The management accuracy setting unit is set to the maximum allowable value as the comparison value. This value is determined from the measurement accuracy required for the instrument. The judgment unit U determines whether the comparison value exceeds the setting value of the management accuracy setting department.
111, and if it exceeds it, it will issue an abnormal signal. By detecting abnormal operation in this way, it is possible to manage the accuracy of the instrument during measurements between calibrations, and to make the calibration cycle as long as possible within the required measurement accuracy range. This has the advantage that expensive calibration solutions can be used effectively.

更に次に、第3図は演算部19の出力信号を用いて校正
周期を自動調節するようにした回路で、第1比較部25
と、管理精度設定部あと第2比較部がと、周期決定部あ
とから構成されている。第1比較部25は、校正前と後
とにおける校正液の測定値の差を求める。ここで校正前
における校正液の測定値とは、不斉電位や電極感度の調
整をする前に測定した校正液の測定値をいい、校正後に
おける校正液の測定値とは、そのような調整を行なった
後の校正液の測定値をいう。管理精度設定部局は、校正
前後における校正液の測定値の差として測定精度上許容
できる限界の値が設定されている。第2比較部27は前
記比較値と管理精度設定部局の設定値とを比較する。周
期決定部器は、第2比較部27の比較結果から校正周期
を決定する。即ち、第1比較部邪の比較値が管理精度設
定部局の設定値を越えている場合には、校正周期を短か
くし、逆に比較値が設定値を越えていない場合には校正
周期を長くする。校正周期を長く或いは短かくする方法
としては、例えば校正周期を単位時開穿゛つ長く或いは
短かくするという方法によればよい。周・期決定部路で
決定された校正周期はプログラムコントローラ加に入力
され、該コントローラ20に設定された校正周期を長短
制御する。図中、29は第1警報器で、第1比較部6の
比較値が管理精度設定部局の設定値を越えた場合に作動
する。(資)は第2警報器で、校正周期が最小周期設定
部31に設定された最小校正周期よシも短かくなると作
動する。
Furthermore, FIG. 3 shows a circuit that automatically adjusts the calibration period using the output signal of the calculation section 19, and the first comparison section 25
, a management accuracy setting section, a second comparing section, and a period determining section. The first comparator 25 calculates the difference between the measured values of the calibration solution before and after calibration. Here, the measurement value of the calibration solution before calibration refers to the measurement value of the calibration solution measured before adjusting the asymmetric potential or electrode sensitivity, and the measurement value of the calibration solution after calibration refers to the measurement value of the calibration solution measured before adjusting the asymmetric potential or electrode sensitivity. This refers to the measured value of the calibration solution after performing The management accuracy setting department sets an allowable limit value in terms of measurement accuracy as the difference between the measured values of the calibration solution before and after calibration. The second comparison unit 27 compares the comparison value with the setting value of the management accuracy setting department. The cycle determination unit determines the calibration cycle from the comparison result of the second comparison unit 27. In other words, if the comparison value of the first comparison section exceeds the setting value of the management accuracy setting department, the calibration cycle is shortened, and conversely, if the comparison value does not exceed the setting value, the calibration cycle is lengthened. do. As a method of lengthening or shortening the calibration cycle, for example, a method of lengthening or shortening the calibration cycle by a unit time interval may be used. The calibration cycle determined by the cycle/period determination section is input to the program controller, and the length of the calibration cycle set in the controller 20 is controlled. In the figure, 29 is a first alarm, which is activated when the comparison value of the first comparison section 6 exceeds the setting value of the management accuracy setting section. (Main) is a second alarm, which is activated when the calibration cycle becomes shorter than the minimum calibration cycle set in the minimum cycle setting section 31.

32は比較器である。32 is a comparator.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明に係る電気メッキ液の州測定方
法によれば次のような効果がある。即ち、メッキ槽とは
別個に電極チャンバを設けたので自動洗浄、自動校正が
行ないやすいと共に、サンプリング中の試料の温度降下
による測定誤差は、メッキ槽の温度と電極チャンバ内の
温度とを把握することによシ解決でき、これによって高
精度にメッキ槽内のメッキ液の出値を測定することがで
きる。
As explained above, the method for measuring the state of an electroplating solution according to the present invention has the following effects. That is, since the electrode chamber is provided separately from the plating bath, automatic cleaning and automatic calibration are easy to perform, and measurement errors due to temperature drop of the sample during sampling can be determined by determining the temperature of the plating bath and the temperature inside the electrode chamber. In particular, this problem can be solved, and as a result, the output value of the plating solution in the plating tank can be measured with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定方法を実現するための装置を示す
構成図、第2図は第1図の装置の異常判断を行なう回路
図、第3図は第1図の装置における校正周期を調整する
回路図である。 l・・・メッキ槽、2・・・電極チャンバ。 第1図 自発手続補正書 昭和60年5月21日 昭和59年 特 許 該第154929号2・ 発明の
名称   電気メッキ液の田測定方法4、代理人 5、補正命令の日付 6、 補正により増加する発明の数 7、補正の対象 本願明細書の第8頁下から4打自の に訂正致します。
Fig. 1 is a configuration diagram showing an apparatus for realizing the measurement method of the present invention, Fig. 2 is a circuit diagram for determining abnormality in the apparatus shown in Fig. 1, and Fig. 3 shows the calibration cycle of the apparatus shown in Fig. 1. It is a circuit diagram for adjustment. l... plating tank, 2... electrode chamber. Figure 1 Voluntary procedure amendment May 21, 1985 Patent No. 154929 2 Title of invention Method for measuring electroplating liquid 4, Agent 5, Date of amendment order 6, Increased due to amendment The number of inventions to be amended, number 7, is corrected to 4 strokes from the bottom of page 8 of the specification of the present application.

Claims (1)

【特許請求の範囲】[Claims] メッキ槽内の試料をサンプリングする電極チャンバをメ
ッキ槽とは別個に設けて電極チャンバ内に周期的に洗浄
液、校正液を導入し、自動洗浄、自動校正を行なうよう
にすると共に、前記電極チャンバにpH測定用電極と温
度検出器とを設けて該pH測定用電極の検出信号、温度
検出器の検出信号及び前記メッキ槽内の試料の温度を示
す温度信号の3者からメッキ槽内の試料のpH値を演算
により求めるようにしたことを特徴とする電気メッキ液
のpH測定方法。
An electrode chamber for sampling the sample in the plating tank is provided separately from the plating tank, and a cleaning solution and a calibration solution are periodically introduced into the electrode chamber to perform automatic cleaning and automatic calibration. A pH measuring electrode and a temperature detector are provided, and the temperature of the sample in the plating tank is detected from three sources: a detection signal of the pH measuring electrode, a detection signal of the temperature detector, and a temperature signal indicating the temperature of the sample in the plating tank. A method for measuring the pH of an electroplating solution, characterized in that the pH value is determined by calculation.
JP59154929A 1984-07-24 1984-07-24 Method for measuring pH of electric plating solution Expired - Lifetime JPH0692960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59154929A JPH0692960B2 (en) 1984-07-24 1984-07-24 Method for measuring pH of electric plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59154929A JPH0692960B2 (en) 1984-07-24 1984-07-24 Method for measuring pH of electric plating solution

Publications (2)

Publication Number Publication Date
JPS6131959A true JPS6131959A (en) 1986-02-14
JPH0692960B2 JPH0692960B2 (en) 1994-11-16

Family

ID=15595027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59154929A Expired - Lifetime JPH0692960B2 (en) 1984-07-24 1984-07-24 Method for measuring pH of electric plating solution

Country Status (1)

Country Link
JP (1) JPH0692960B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002523A (en) * 2015-08-27 2015-10-28 吉首大学 Manganese electrolysis liquid supplementing system
CN105063671A (en) * 2015-08-27 2015-11-18 吉首大学 Electrolytic manganese solution supplementing device
CN105063672A (en) * 2015-08-27 2015-11-18 吉首大学 Electrolytic manganese solution supplementing device
CN107268065A (en) * 2016-05-12 2017-10-20 璧靛浆 A kind of material section electrolytic plating apparatus automatically controlled
CN115087864A (en) * 2020-03-09 2022-09-20 株式会社日立高新技术 Electrolyte concentration measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810480A (en) * 1981-07-04 1983-01-21 ファナック株式会社 Industrial robot
JPS5834350A (en) * 1981-08-25 1983-02-28 Toshiba Corp Ph measuring vessel fitted with washing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810480A (en) * 1981-07-04 1983-01-21 ファナック株式会社 Industrial robot
JPS5834350A (en) * 1981-08-25 1983-02-28 Toshiba Corp Ph measuring vessel fitted with washing machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002523A (en) * 2015-08-27 2015-10-28 吉首大学 Manganese electrolysis liquid supplementing system
CN105063671A (en) * 2015-08-27 2015-11-18 吉首大学 Electrolytic manganese solution supplementing device
CN105063672A (en) * 2015-08-27 2015-11-18 吉首大学 Electrolytic manganese solution supplementing device
CN107268065A (en) * 2016-05-12 2017-10-20 璧靛浆 A kind of material section electrolytic plating apparatus automatically controlled
CN107268065B (en) * 2016-05-12 2019-03-05 郑灵月 A kind of material section electrolytic plating apparatus of automatic control
CN115087864A (en) * 2020-03-09 2022-09-20 株式会社日立高新技术 Electrolyte concentration measuring device

Also Published As

Publication number Publication date
JPH0692960B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4218746A (en) Method and apparatus for calibrating ion concentration measurement
US5827963A (en) System and method for determining a density of a fluid
EP3853596A1 (en) Predictive lifespan of analytical sensors
EP1232382B1 (en) Method and apparatus for detection of a bubble in a liquid
US5972117A (en) Method and apparatus for monitoring generation of liquid chemical vapor
JPS6131959A (en) Method for measuring ph of electroplating liquid
CN109884341A (en) The method and system that the pressure difference zero point value of measuring wind speed is calibrated automatically
JPS6131952A (en) Concentration meter with automatic calibrating function
JP4378204B2 (en) Water quality monitoring system
JPWO2019163281A1 (en) Automatic analyzer, automatic analysis method
JPS6131951A (en) Concentration meter with abnormality judging function
US11714434B2 (en) Gas safety device
JPH01110218A (en) Gas flowmeter and gas flow rate controller
GB2256478A (en) Flow measurement device
JPH04191650A (en) Measuring apparatus for ion
US20200080982A1 (en) Dissolved oxygen measurement
JPH03264821A (en) Method for processing output signal of composite sensor
JPH0259952B2 (en)
KR102448945B1 (en) Automatic calibration method of electrochemical electrode sensor transducer through EIS measurement and algorithm method, method of diagnosing the life of electrochemical electrode sensor transducer through EIS measurement and algorithm method, and electrochemical electrode sensor transducer through EIS measurement and algorithm method Diagnosis method
US20240027388A1 (en) Auto-calibration ph sensor
KR100455309B1 (en) Solenoid valve flow measuring device and method for obtaining an accurate flow value by selecting automatically a flow tube and a flow meter according to the size of flow and the compensation of differential pressure
US20230314368A1 (en) pH SENSOR WITH SECONDARY REFERENCE ELECTRODE
KR100817297B1 (en) Apparatus for level detecting using a multi sensor for differential pressure
CN117825471A (en) Sample analyzer and control method thereof
JPS5942255B2 (en) Liquid sample concentration measuring device