JPS5942255B2 - Liquid sample concentration measuring device - Google Patents

Liquid sample concentration measuring device

Info

Publication number
JPS5942255B2
JPS5942255B2 JP6265677A JP6265677A JPS5942255B2 JP S5942255 B2 JPS5942255 B2 JP S5942255B2 JP 6265677 A JP6265677 A JP 6265677A JP 6265677 A JP6265677 A JP 6265677A JP S5942255 B2 JPS5942255 B2 JP S5942255B2
Authority
JP
Japan
Prior art keywords
measuring device
concentration measuring
liquid sample
cell
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6265677A
Other languages
Japanese (ja)
Other versions
JPS53147596A (en
Inventor
徳弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP6265677A priority Critical patent/JPS5942255B2/en
Publication of JPS53147596A publication Critical patent/JPS53147596A/en
Publication of JPS5942255B2 publication Critical patent/JPS5942255B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Description

【発明の詳細な説明】 本発明は臨床検査用の自動測定装置に関し、特に血液成
分の中でヘモグロビン濃度など液体試料の濃度を測定す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic measuring device for clinical testing, and more particularly to a device for measuring the concentration of a liquid sample, such as the concentration of hemoglobin among blood components.

従来、血液に関するパラメータの自動化が進み、省力化
が可能になる反面、液体のフローシステムで構成される
ために生ずる様々な問題点例えば前回の分析試料の残渣
、気泡の混入、測定溶液の不均一性などによる測定誤差
が生ずる欠点があつた。
Conventionally, automation of blood-related parameters has progressed, making it possible to save labor, but on the other hand, various problems arise due to the configuration of a liquid flow system, such as residues from the previous analysis sample, inclusion of air bubbles, and non-uniformity of the measurement solution. The disadvantage was that measurement errors could occur due to factors such as gender.

、特にヘモグロビン濃度の測定に関しては、前回分析し
た試料の系統内に残留することによる影響を少なくする
ために、前回の試料を清浄水で洗い流す方法などがとら
れているが、残留した清浄水の水滴が次の測定に影響を
与えるなどの欠点があり、残留する水滴の量は装置の吸
引圧力などによつても変化し、また洗浄の効果等も測定
球料の粘度の影響を受けるなど、単に一定の時間あるい
は所定量の清浄水を測定系統に流すだけではすべての測
定試料に対して効果的にカバーしきれないという欠点が
あつた。本発明濃度測定装置は上記欠点を解消し、ヘモ
グロビン濃度測定に限らず、比較的高濃度の液体の濃度
を測定する他の分野にも用いられるような装置を提供す
る。
In particular, when measuring hemoglobin concentration, methods such as rinsing out the previous sample with clean water are used to reduce the effects of the previously analyzed sample remaining in the system. There are disadvantages such as water droplets affecting the next measurement, the amount of remaining water droplets changes depending on the suction pressure of the device, and the cleaning effect is also affected by the viscosity of the measurement ball. There is a drawback that simply flowing clean water for a certain amount of time or a predetermined amount through the measurement system cannot effectively cover all the measurement samples. The concentration measuring device of the present invention eliminates the above-mentioned drawbacks and provides a device that can be used not only for measuring hemoglobin concentration but also for other fields of measuring the concentration of relatively high-concentration liquids.

以下図面の実施例に基づいて本発明装置を説明する。The apparatus of the present invention will be explained below based on the embodiments shown in the drawings.

第1図は本発明の構成を示すブロック図であり、第2図
は第1図の測定ブロックの一実施例を一部断面で示すブ
ロック図である。
FIG. 1 is a block diagram showing the configuration of the present invention, and FIG. 2 is a block diagram showing an embodiment of the measuring block of FIG. 1, partially in cross section.

本発明の濃度測定装置は清浄液タンク1、試料導入パイ
プ2、清浄液導入パイプ3、バルブ4、測定ブロック5
、排出パイプ6、バルブT)演算回路8、警報回路9、
警報装置10、測定値記録表示回路11等で構成され、
さらに測定ブロック5はフローセル12、光源用電源回
路13、光源14、15、光学フィルタ16、17、受
光素子18、19、プリアンプ20、21等で構成され
る。
The concentration measuring device of the present invention includes a cleaning liquid tank 1, a sample introduction pipe 2, a cleaning liquid introduction pipe 3, a valve 4, and a measurement block 5.
, discharge pipe 6, valve T) arithmetic circuit 8, alarm circuit 9,
Consists of an alarm device 10, a measured value recording display circuit 11, etc.
Furthermore, the measurement block 5 includes a flow cell 12, a light source power supply circuit 13, light sources 14 and 15, optical filters 16 and 17, light receiving elements 18 and 19, preamplifiers 20 and 21, and the like.

フローセル12は一つの流体通路に二つの光学軸22、
23を有し別々に光学測定が可能なように二系統に構成
され、かつそれぞれの光学軸が横切る空間が狭い通路2
4を通して接続され内部の液体が静止している時には二
つの空間内の液体が容易に混合しない形状をなしている
The flow cell 12 has two optical axes 22 in one fluid passage,
23, the passage 2 is configured into two systems so that optical measurements can be made separately, and the space across which the respective optical axes intersect is narrow.
4, and when the liquid inside is stationary, the liquid in the two spaces has a shape that does not easily mix.

フローセル12に液を充満する場合、気泡が発生しにく
く、かつ発生しても容易に排出されるようにするには液
を下方から導入する。
When filling the flow cell 12 with liquid, the liquid is introduced from below in order to prevent bubbles from being generated and to easily drain them even if bubbles are generated.

また液の残留を少なくするためには液を上方から導入す
るが、一般には気泡の発生が問題となることが多いから
下方から液を導入する方法がより多く用いられている。
本発明装置においては上記いずれの方法を用いた場合で
も測定精度に影響を与えないよう考慮されている。
Further, in order to reduce the amount of liquid remaining, the liquid is introduced from above, but in general, the generation of bubbles often becomes a problem, so a method of introducing the liquid from below is more commonly used.
In the apparatus of the present invention, consideration is given so that measurement accuracy will not be affected even when any of the above methods is used.

第1図において、試料導入パイプ2から試料が導入され
る前にまず清浄液タンク1から清浄液導入パイプ3およ
びバルブ4を通じて測定プロツク5に清浄液が導入され
ると第2図に示すフローセル12の内部に清浄液が充満
し、二つの光学軸22,23の測光が行われる。
In FIG. 1, before a sample is introduced from the sample introduction pipe 2, the cleaning liquid is first introduced from the cleaning liquid tank 1 into the measuring block 5 through the cleaning liquid introduction pipe 3 and the valve 4, and the flow cell 12 shown in FIG. The inside of the lens is filled with cleaning liquid, and photometry of the two optical axes 22 and 23 is performed.

これは零点調整に相当し、この時の両光学軸の光量は等
しくなければならない。もし気泡が発生した場合、気泡
は上方へ向かうために両光軸の間の光量のバランスがく
ずれ演算回路8から警報回路9に信号が伝達され警報装
置10によつて音あるいはランプ等による警報が発せら
れ、清浄液の再導入が行われる。零点調整が終了すると
排出パイプ6およびバルブ7から液が排出される。
This corresponds to zero point adjustment, and the amount of light on both optical axes at this time must be equal. If bubbles are generated, the bubbles move upward, causing an imbalance in the amount of light between the two optical axes, and a signal is transmitted from the arithmetic circuit 8 to the alarm circuit 9, and the alarm device 10 issues an alarm by sound or lamp. The cleaning fluid is then re-introduced. When the zero point adjustment is completed, the liquid is discharged from the discharge pipe 6 and valve 7.

この時フローセル12の上方から液を排出する場合は、
液が水滴となつて残留するが次の試料溶液の初めの部分
とともに外部へ移送、排出される。試料は試料導入パイ
プ2及びバルブ4を通じてフローセル12の内部へ導入
される。この時フローセル12に残留する液が多すぎた
場合、試料の初めの部分でも充分に排出されず、このた
めに二つの光学軸22,23に不均衡が生ずるが、さら
に試料の導入が続けられ、平衡に達するまで続く。これ
は気泡が混入した場合でも同じように気泡がぬけてしま
うまで続けられる。また測定装置に何らかの異状が生じ
た場合、例えば漏れが生じた場合、あるいは試料が均一
に混合していない場合などは、いつまでも光学軸22,
23の間が平衡に達せず、警報回路9が異状を検知し警
報装置10が警報を発する。粘度の非常に高い試料をの
ぞいて通常は所定量の試料の吸引だけで充分に平衡に達
し、光学軸22,23の間の光量が平衡に達すると、受
光素子18,19、プリアンプ20,21の出力は演算
回路8を経て測定値記録表示回路11に送られ測定結果
として記録されあるいは表示される。
At this time, when discharging the liquid from above the flow cell 12,
The liquid remains as water droplets, but is transferred and discharged to the outside together with the first part of the next sample solution. A sample is introduced into the flow cell 12 through the sample introduction pipe 2 and valve 4. If there is too much liquid remaining in the flow cell 12 at this time, even the initial part of the sample will not be sufficiently drained, which will cause an imbalance between the two optical axes 22 and 23, but the sample will continue to be introduced. , continues until equilibrium is reached. Even if air bubbles are mixed in, this process continues until the air bubbles are removed. In addition, if some abnormality occurs in the measuring device, for example, if a leak occurs or if the sample is not mixed uniformly, the optical axis 22
23 does not reach equilibrium, the alarm circuit 9 detects an abnormality, and the alarm device 10 issues an alarm. Except for samples with very high viscosity, it is usually sufficient to reach equilibrium just by suctioning a predetermined amount of the sample, and when the amount of light between the optical axes 22 and 23 reaches equilibrium, the light receiving elements 18 and 19 and the preamplifiers 20 and 21 The output is sent to the measurement value recording/display circuit 11 via the arithmetic circuit 8 and recorded or displayed as a measurement result.

測定が終了すると、フローセル12の内部から試料が排
出され、続いて清浄液タンク1から清浄液が導入されて
フローセル12の洗浄および零点調整が行われる。
When the measurement is completed, the sample is discharged from the inside of the flow cell 12, and then a cleaning liquid is introduced from the cleaning liquid tank 1 to clean the flow cell 12 and adjust the zero point.

以上をくり返すことによつて順次試料の測定が行われる
〇以上のように本発明によれば従来の自動分析装置の多
くが、時間によつて弁を開放したりあるいは液体の移送
を行つていたのに対し、本装置においては外部の温度や
試料の粘度などによる測定条件の変動に対応してそれぞ
れの測定を確実に行うことができるため、より精度の高
い測定が可能であり、また異状を速かに検知し警報を発
することができ、さらに本実施例に示されている形状に
よらずメインのフローセル及び副次的なフローセルの二
個のフローセルで構成することも可能であるなど、自動
血液分析装置等の濃度測定装置として用いることは非常
に効果的である。
By repeating the above steps, samples are sequentially measured.As described above, according to the present invention, most conventional automatic analyzers open valves or transfer liquid depending on the time. In contrast, this device can reliably perform each measurement in response to fluctuations in measurement conditions due to external temperature, sample viscosity, etc., making it possible to perform more accurate measurements. It is possible to quickly detect an abnormality and issue an alarm, and it is also possible to configure it with two flow cells, a main flow cell and a secondary flow cell, regardless of the shape shown in this example. It is very effective to use it as a concentration measuring device such as an automatic blood analyzer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すプロツク図であり、第2図
は第1図の測定プロツクの一実施例を示すプロツク図で
ある。 1・・・・・・清浄液タンク、5・・・・・・測定プロ
ツク、8・・・・・・演算回路、9・・・・・・警報回
路、10・・・・・・警報装置、11・・・・・・測定
値記録表示回路、12・・・・・・フローセス。
FIG. 1 is a block diagram showing the configuration of the present invention, and FIG. 2 is a block diagram showing an embodiment of the measurement block shown in FIG. 1...Cleaning liquid tank, 5...Measurement block, 8...Arithmetic circuit, 9...Alarm circuit, 10...Alarm device , 11...Measurement value recording and display circuit, 12...Flow process.

Claims (1)

【特許請求の範囲】 1 一つの流体通路に縦続に二以上複数個のセルをそれ
ぞれ落差をもたせて連結配置し、各セルに投光する光源
と、各セルを通過した光を受光し光電変換する受光素子
を各セル毎に設定し、前記受光素子の各出力が全て一致
する時、測定値表示を行ない、一致しない時、警報を出
すようにした液体試料の濃度測定装置。 2 フローセルの各セルを狭くなされた通路をもつて連
結した特許請求範囲第1項記載の液体試料の濃度測定装
置。
[Claims] 1. Two or more cells are connected and arranged in series in one fluid passage with a difference in head, and a light source emits light to each cell, and a light source that receives light passing through each cell and converts it into electricity. A concentration measuring device for a liquid sample, in which a light-receiving element is set for each cell, and when the outputs of the light-receiving elements all match, a measured value is displayed, and when they do not match, an alarm is issued. 2. The liquid sample concentration measuring device according to claim 1, wherein each cell of the flow cell is connected with a narrow passageway.
JP6265677A 1977-05-27 1977-05-27 Liquid sample concentration measuring device Expired JPS5942255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6265677A JPS5942255B2 (en) 1977-05-27 1977-05-27 Liquid sample concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6265677A JPS5942255B2 (en) 1977-05-27 1977-05-27 Liquid sample concentration measuring device

Publications (2)

Publication Number Publication Date
JPS53147596A JPS53147596A (en) 1978-12-22
JPS5942255B2 true JPS5942255B2 (en) 1984-10-13

Family

ID=13206567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6265677A Expired JPS5942255B2 (en) 1977-05-27 1977-05-27 Liquid sample concentration measuring device

Country Status (1)

Country Link
JP (1) JPS5942255B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631627A (en) * 1979-08-23 1981-03-31 Nippon Steel Corp Detection system for failed operation of oxygen gas analyzer
JPS6082945A (en) * 1983-10-14 1985-05-11 Matsushita Electric Ind Co Ltd Device for measuring transmittance

Also Published As

Publication number Publication date
JPS53147596A (en) 1978-12-22

Similar Documents

Publication Publication Date Title
US3498110A (en) Method and apparatus for measuring the gas and vapor permeability of films
US5230863A (en) Method of calibrating an automatic chemical analyzer
SU999954A3 (en) Blood analysis device
US7332128B2 (en) Fiber-optic dissolution systems devices, and methods
US20220042972A1 (en) Method of detecting presence or absence of a clot in a liquid sample analyzer
US6632679B1 (en) Method to determine the speed of sedimentation of blood and other parameters correlated thereto, and relative apparatus
US20220099656A1 (en) Method of detecting the presence or absence of a clot in a liquid sample analyzer
JPS589050A (en) Method and apparatus for measuring content of endotoxin
JPS5942255B2 (en) Liquid sample concentration measuring device
KR20150070081A (en) Total nitrogen and total phosphorus measuring device which has low measurement error and which is easy to make maintenance
KR100421105B1 (en) Validation method of single or mixed dye solution comprising single or mixed dye
CN103487352B (en) A kind of intelligence of dope viscosity analyzer is cleaned inspection control system and detecting and control method thereof
JPS5863854A (en) Automatic chemical analyzing apparatus
Bennet et al. Calibration, calibration drift and specimen interaction in autoanalyser systems
US4577969A (en) Testing method for subjects to be tested and a device for said method
US9746485B2 (en) Automatic blood coagulation analysis device
CN217443329U (en) Dissolved oxygen sensor calibration and detection device
JPS6131959A (en) Method for measuring ph of electroplating liquid
JPS6353488B2 (en)
JPS60165552A (en) Automatic biochemical analysis device
JPS6073359A (en) Automatic chemical analytical apparatus
Isherwood et al. Factors affecting the precision and accuracy of Po2, measurements using the clark electrode
CN116448721A (en) Calibration method of turbidity sensor under pressure
JPH0515081Y2 (en)
JPS6093940A (en) Sampling apparatus