JPS5863854A - Automatic chemical analyzing apparatus - Google Patents

Automatic chemical analyzing apparatus

Info

Publication number
JPS5863854A
JPS5863854A JP16206781A JP16206781A JPS5863854A JP S5863854 A JPS5863854 A JP S5863854A JP 16206781 A JP16206781 A JP 16206781A JP 16206781 A JP16206781 A JP 16206781A JP S5863854 A JPS5863854 A JP S5863854A
Authority
JP
Japan
Prior art keywords
reagent
time
absorbance
calibration curve
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16206781A
Other languages
Japanese (ja)
Other versions
JPH0126507B2 (en
Inventor
Takeshi Sakamaki
坂巻 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP16206781A priority Critical patent/JPS5863854A/en
Publication of JPS5863854A publication Critical patent/JPS5863854A/en
Publication of JPH0126507B2 publication Critical patent/JPH0126507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Abstract

PURPOSE:To obtain an automatic analyzing apparatus in which reqiurements for labors, time and cost are reduced, in absorbance measurement for clinical examinations etc., by finding a characteristic of the secular change of a reagent under a fixed condition preliminarily and providing a means for making a calibration curve basing on said characteristic. CONSTITUTION:In the case where a characteristic of a reagent for absorbance measurement for an analysis of components in blood serum etc. is varied with the elapse of time after adjustment even when said reagent is kept at a constant low temperature, a tray 1 for keeping a vessel 1a containing the reagent at a constant low temperature and a tray 2 accommodating a sample vessel 2a in which a sample such as blood serum etc. is placed is kept at a constant temperature by means of a computer (CPU) 14, respectively and the absorbance increased or decreased with the time elapsed after adjusting the reagent preliminarily, is measured and is stored in the CPU14. Hereby, a calibration curve is made automatically at the measured date and hour by said data and the measurement is performed by reducing remarkably labors and time of the calibration of the apparatus etc.

Description

【発明の詳細な説明】 本発明は自動化学分析装置に関するものである。[Detailed description of the invention] The present invention relates to an automatic chemical analyzer.

臨床検査等に用いられる自動化学分析装置は分析対象と
する検体の血清(以下サンプルともいう)に分析項目に
対応する試薬を混ぜて反応させ、これを測光して吸光度
を求め、予じめ当該試薬と当該標準物質例えば標準血清
とKよって求められている検量線から前記吸光度に対応
するサンプルの濃度を求めることによって自動的に分析
を行なう装置である。
Automatic chemical analyzers used in clinical tests, etc. mix the serum of the specimen to be analyzed (hereinafter also referred to as sample) with a reagent corresponding to the analysis item, react it, measure the light of this to determine the absorbance, and measure the absorbance in advance. This is an apparatus that automatically performs analysis by determining the concentration of a sample corresponding to the absorbance from a calibration curve determined from a reagent and a standard substance such as standard serum and K.

しかしながら前記試薬は一般に2〜8℃の低温保存して
も劣化するため、ある時間間隔で標準血清を用いて検f
[+IJの作成を行なわなければならない。
However, the reagents generally deteriorate even when stored at low temperatures of 2 to 8 degrees Celsius, so they are tested using standard serum at certain time intervals.
[+IJ must be created.

ところでこのような検を線の作成は、従来にあっては毎
日性なわれ、しかも標準血清は高価であり、かつ冷蔵保
存しても変性するため用時調製となり、労力的にも経済
的にも大きな負担となっていた口 本発明は上記事情に基づいてなされたものであり、予じ
め一定条件のもとで求めた試薬の経時的劣化特性に基づ
いた検量線の作成を行なうことができ、装置の校正に要
する労力的経済的負担を軽減することのできる自動化学
分析装fftを提供することを目的とするものである。
By the way, in the past, the preparation of such test lines was carried out every day, and standard serum was expensive and denatured even when stored in the refrigerator, so it had to be prepared immediately before use, making it labor-intensive and economical. The present invention was made based on the above circumstances, and it is necessary to create a calibration curve based on the aging characteristics of the reagent determined in advance under certain conditions. The object of the present invention is to provide an automatic chemical analysis device fft that can reduce the labor and economic burden required for device calibration.

ここで先ず一定条件のもとで求めた試薬の経時的な劣化
に基づいた検量線の求め万の原理について説明する。一
般に試薬は保存温度が変われば劣化特性すなわち、試薬
の吸光度(以下試薬ブランク値とも称する)或いは試薬
の反応特性が変化するので試薬の保存温度は一定の低温
(以下保存温度という)に保持されている。また測光部
における分析に際しては試薬とサンプルとの化学反応を
進めるため、試薬は所定の反応温度に保持されるものと
する。これらの条件に基づき、例えば測定成分濃度C1
の標準血清に関する反応の経時的変化を吸光度の変化と
して表わせば第1図に示す反応曲線llを得ることかで
鼻る。また前記調製した試薬を保存温度でIll、時間
保存した後に前記同様の反応温度下で反応を進めれば第
1図に示す反応曲線12を得ることができる。第1図に
示す吸光度Bは試薬ブランク値であり、吸光度lt+Δ
B1は′1゛11M1定温度で保存された場合の試薬ブ
ランク値であり、吸光度Mは前記調製時の試薬を混合し
て成る測定取分濃度C1の標準面7に全1.時間反応さ
せた後の吸光度であり、吸光度M+ΔM1はT1時間保
存された後の測定成分濃度C1の標準血清をt1時間反
応させた後の吸光度である。そしてこの反応的all。
First, the principle of determining a calibration curve based on the deterioration of a reagent over time determined under certain conditions will be explained. In general, if the storage temperature of a reagent changes, the deterioration characteristics, i.e., the absorbance of the reagent (hereinafter also referred to as the reagent blank value) or the reaction characteristics of the reagent will change, so the storage temperature of the reagent is kept at a constant low temperature (hereinafter referred to as the storage temperature). There is. Furthermore, in order to proceed with the chemical reaction between the reagent and the sample during analysis in the photometry section, the reagent is maintained at a predetermined reaction temperature. Based on these conditions, for example, the concentration of the component to be measured C1
If the time-dependent change in the reaction with respect to the standard serum is expressed as a change in absorbance, the reaction curve shown in FIG. 1 can be obtained. Furthermore, if the prepared reagent is stored at the storage temperature for a period of time and then the reaction is allowed to proceed at the same reaction temperature as described above, the reaction curve 12 shown in FIG. 1 can be obtained. The absorbance B shown in FIG. 1 is a reagent blank value, and the absorbance lt+Δ
B1 is the reagent blank value when stored at a constant temperature of '1'11M1, and the absorbance M is the total 1. It is the absorbance after reacting for a time, and the absorbance M+ΔM1 is the absorbance after reacting for a time t1 with a standard serum having a measurement component concentration C1 that has been stored for a time T1. And this reactive all.

12から第2図に示すように試薬調製時の検量線1・1
と、試薬調製時からIll 1時間保存された後の検量
線L2が求められる。この検量線IJlは次に示す(1
)式、検量線L2は(2)式のように表わすことができ
る。
As shown in Figure 2 from 12, the calibration curve 1.1 during reagent preparation.
Then, the calibration curve L2 after storage for 1 hour from the time of reagent preparation is obtained. This calibration curve IJl is shown below (1
), the calibration curve L2 can be expressed as in equation (2).

・・・・・・(2) (ただしXはサンプルの濃度であり、Eは測定吸光度で
ある。) 上記(1)式及び(2)式から明らかなように試薬調製
時から一定時間経過する毎例えば12時間毎に試薬調製
時の吸光度を基準にしてこの試薬の吸光度の増減量(以
下試薬吸光度増減量ともいう)ΔBl・・・ルと、これ
と同じ試薬を混合して成る標準物質例えば標準血清の吸
光度の増減量(以下標準血清吸光度増減量ともいう)4
M1・・・ルとを予じめ求めておけば、これらと試薬調
製時よりの経過時間とに基づいて検量線を作成すること
ができる。さらに前記試薬吸光度増減量ΔL3t・・・
ルと標準面7H吸光度増減量ΔMt・・・ルとが試薬調
製時よりの経過時間に比例して増減するものであれば、
各々の比例定数(以下補正係数ともいう)と調製時より
の経過時間とから検を線を作成することができる。以−
にの原理説明で明ら入を経時的に一定条件のもとで求め
ておき、これら双方或いは一方と試薬調製時よりの経過
時間とによって検を線の作成を行なおうとするものであ
る。
......(2) (However, X is the concentration of the sample, and E is the measured absorbance.) As is clear from equations (1) and (2) above, a certain period of time has elapsed since the time of reagent preparation. For example, every 12 hours, a standard material is prepared by mixing the same reagent as the absorbance increase/decrease (hereinafter also referred to as reagent absorbance increase/decrease) ΔBl... based on the absorbance at the time of reagent preparation. Increase or decrease in absorbance of standard serum (hereinafter also referred to as standard serum absorbance increase or decrease) 4
If M1...le is determined in advance, a calibration curve can be created based on these and the elapsed time from the time of reagent preparation. Further, the reagent absorbance increase/decrease ΔL3t...
If the standard surface 7H absorbance increase/decrease ΔMt...le increases or decreases in proportion to the elapsed time from the time of reagent preparation,
A test line can be created from each proportionality constant (hereinafter also referred to as a correction coefficient) and the elapsed time from the time of preparation. From now on
In the principle explained above, the clear entry is determined over time under certain conditions, and a test line is created using one or both of these and the elapsed time from the time of reagent preparation.

以下本発明の自動化学分析装置ifを図面をか照しなが
ら説明する。
The automatic chemical analyzer if of the present invention will be explained below with reference to the drawings.

第6図は本発明の一実施例であるディスクIJ−トタイ
ブの自動化学分析装置の概略説明図である。
FIG. 6 is a schematic explanatory diagram of an automatic chemical analyzer for a disk IJ type, which is an embodiment of the present invention.

図において1は種々の試薬を入れた試薬容器1αが収納
されて図示しない電子冷却素子によって試薬が一定の低
温に恒温保持されるようになっている試薬トレーであり
、2は分析対象となる試料例えば血清等(以下サンプル
という)を入れたサンプル容器2αが収納されているサ
ンプルトレーであり、各々は適宜の手段を介して図示矢
印E方向、F方向に往復移動可能になっている。そして
これらの上方にはノズルブロック6が一対のガイドレー
ル4に沿って往復移動可能に設けられ、ノズルブロック
6には1本のサンプリングノズル6αと2本の試薬ノズ
ル6hとが上下動可能に設けられている。
In the figure, 1 is a reagent tray in which reagent containers 1α containing various reagents are stored and the reagents are kept at a constant low temperature by an electronic cooling element (not shown), and 2 is a sample to be analyzed. For example, it is a sample tray in which sample containers 2α containing serum or the like (hereinafter referred to as samples) are housed, and each can be moved back and forth in the directions of arrows E and F in the figure through appropriate means. Above these, a nozzle block 6 is provided so as to be movable back and forth along a pair of guide rails 4, and one sampling nozzle 6α and two reagent nozzles 6h are provided on the nozzle block 6 so as to be movable up and down. It is being

このノズルブロック6の近傍にはサンプリングポンプ5
と試薬ポンプ6とが配置され、これらによってサンプル
容器2cL・内のサンプルと試薬容器1aへ内の試薬と
が前記サンプリングノズルろαと試薬ノズル3hとに所
定量吸引されるようになっている。
A sampling pump 5 is located near this nozzle block 6.
and a reagent pump 6 are arranged so that a predetermined amount of the sample in the sample container 2cL and the reagent in the reagent container 1a are sucked into the sampling nozzle filter α and the reagent nozzle 3h.

そして前記ガイドレール4の右端部には、前記吸引され
たサンプルと試薬とが分注される複数の反応容器7を第
6図示G方向に間欠的に回転移動させるとともにこれら
の反応容器7を一定温度に保持しながら分注された前記
試薬とサンプルとを反応させる反応槽8が配置されてい
る。この反応槽8の右端部には前記反応容器7に分注さ
れて反応されたサンプルと試薬とをザクシミ1ンボンノ
9を介して吸引するサクションノズル10が設ffうれ
At the right end of the guide rail 4, a plurality of reaction containers 7 into which the aspirated sample and reagent are dispensed are intermittently rotated in the direction G in FIG. A reaction tank 8 is arranged in which the dispensed reagent reacts with the sample while maintaining the temperature. A suction nozzle 10 is installed at the right end of the reaction tank 8 for sucking the sample and reagent dispensed into the reaction container 7 and reacted through the slit holder 9.

吸引されたサンプルと試薬とを測光する測光部11に連
通されている。なお測光1lls 11と前記反応槽8
とは恒温槽12によって一定の反応温度に保持されるよ
うになっている。1だ前記側′yt′、部11には光源
11αとディテクタ11bとが内蔵されており、さらに
このディテクタ11Aよりの電気信−号を”/f)変換
するへ弔変換器13と、A//r)変換器よりの出力等
を入力するCPU14と、このCI’U l 4に種々
のデータを入力するため図示しないテンキーを備えた操
作パネル15とが設けられている。ここで前記CPU1
4の機能について説明する。先ず分析項目に応じて所定
の検J[Mが作成されるようにな増減骨Δ131・・1
と標準面/H吸光度増減mΔM1・・−T1.とがCP
o 14内の記憶装置に記憶され、これら試薬の調製時
からの経過時間によって所定の両増減計ΔB1・・・ル
・ΔMl・・1を記憶装置から読出して前記検量線の作
成を自動的に行なってサンプルの濃度演算ができるよう
になっている。なお前記保持温度と反応温度とに関する
一定条件は、前記試薬トレー1に設けられている図示し
ない電子冷却素子と恒温槽12とをCPU 14で制御
することにより忠実に再現されるようになっている。こ
のように予じめ一定条件のもとで求めた試薬の経時的な
吸光度の変化に基づいて検量線の作成を行なう検量線作
成手段は本実施例においてはCPU14の機能として内
蔵されている。
It communicates with a photometry section 11 that measures the photometry of the aspirated sample and reagent. In addition, photometry 1lls 11 and the reaction tank 8
The reaction temperature is maintained at a constant temperature by a constant temperature bath 12. A light source 11α and a detector 11b are built in the section 11 on the side 'yt', and a converter 13 for converting the electrical signal from the detector 11A into "/f)", /r) A CPU 14 for inputting the output from the converter, etc., and an operation panel 15 equipped with a numeric keypad (not shown) for inputting various data to the CI'U l 4 are provided.Here, the CPU 1
Function 4 will be explained. First, a predetermined test J[M is created according to the analysis item, so that bone increase/decrease Δ131...1
and standard surface/H absorbance increase/decrease mΔM1...-T1. Toga CP
o The calibration curve is automatically created by reading predetermined increase/decrease meters ΔB1, ΔMl, .1 from the memory device according to the elapsed time from the time of preparation of these reagents. You can calculate the concentration of the sample by doing this. Note that the fixed conditions regarding the holding temperature and the reaction temperature are faithfully reproduced by controlling an electronic cooling element (not shown) provided in the reagent tray 1 and a constant temperature bath 12 by the CPU 14. . In this embodiment, a calibration curve creation means for creating a calibration curve based on the change in absorbance of a reagent over time determined in advance under certain conditions is incorporated as a function of the CPU 14.

次にこのようにして構成された自動化学分析装置の作用
について説明する。先ず前記操作パネル15を介して分
析項目に対応する指示データがCPU 14に入力され
ることにより前記試薬トレー1とサンプルトレー2とが
第6図示矢印E方向。
Next, the operation of the automatic chemical analyzer constructed in this way will be explained. First, instruction data corresponding to an analysis item is input to the CPU 14 via the operation panel 15, so that the reagent tray 1 and the sample tray 2 are moved in the direction of the sixth arrow E in the figure.

F方向に移動され、前記試薬ポンプ6とサンプリングポ
ンプ5とを介してノズルブロック乙の試薬ノズル3bと
サンプリングノズル6aに分析項目に対応する試薬とサ
ンプルとが吸引され、吸引された試薬とサンプルとが反
応槽8内の反応容器7に分注されて反応が進められる。
The reagent and sample corresponding to the analysis item are moved in the F direction, and the reagent and sample corresponding to the analysis item are sucked into the reagent nozzle 3b and the sampling nozzle 6a of the nozzle block B through the reagent pump 6 and sampling pump 5. is dispensed into the reaction vessel 7 in the reaction tank 8, and the reaction proceeds.

そして反応された試薬トザンプルとがザクジョンノズル
10を介して測光部11に吸引され、前記光源11αよ
りの透過データがディテクタ1 l b VC検知され
、’A>変換器13を介して測光データがCPU 14
 K入力される。
The reacted reagent sample is then sucked into the photometry section 11 through the xenon nozzle 10, the transmission data from the light source 11α is detected by the detector 1lbVC, and the photometry data is transmitted through the converter 13. CPU 14
K is input.

そして使用した試薬に対応するものであって使用した試
薬の調製時からの経過時ttr+に対応する前記試薬吸
光度増減量ΔBx・・1と標準血清吸光度増減量Ail
・・九とが記憶装置から読出され、これに基づいて前記
(2)式で示したような演算がなされることにより自動
的に検量線の作成がなされてサンプルの濃度が算出され
ることとなる。このように本実施例に示した装置にあっ
ては試薬調製時よりの経過時間に基づいて自動的に検1
線の作成がなされるので、装置の校正に要する労力的経
済的負相を著しく軽減することができ、しかも4’ll
l I&の高い分析を保証することができる。
Then, the reagent absorbance increase/decrease ΔBx...1 and the standard serum absorbance increase/decrease Ail which correspond to the reagent used and correspond to the elapsed time ttr+ from the time of preparation of the used reagent
... is read out from the storage device, and based on this, calculations as shown in equation (2) above are performed to automatically create a calibration curve and calculate the concentration of the sample. Become. In this way, the device shown in this example automatically performs a test based on the elapsed time from the time of reagent preparation.
Since the lines are created, the labor and economic costs required for device calibration can be significantly reduced, and moreover,
A high analysis of lI& can be guaranteed.

なお上記実施例においては試薬を試薬トレーに設けられ
た電子冷却素子によって一定の低温に恒温保持する場合
について説明したが、装置u外部に配置した保冷庫に試
薬を低温保存し、分析時に適宜量試薬を取出して使用で
きるようにすることも可能である。
In the above example, the case where the reagents are kept at a constant low temperature by the electronic cooling element provided in the reagent tray was explained, but the reagents are stored at low temperature in a cold storage placed outside the device u, and the appropriate amount is stored at the time of analysis. It is also possible to remove the reagents and make them available for use.

また上記実施例は、予じめ試薬吸光度増減量ΔB1・・
・ルと標準血清吸光度増減量ΔMl・・ルとの双方全経
時的に求め、これら双方に基づいて検量線の作成をする
場合について説明したが、これに限定されるものではな
く例えば標準血清吸光度増減量ΔM1・・1だけを予じ
め求めておき、試薬吸光度増減量ΔB1・・1に関して
はオペレータが一定時間毎に通常の手法で行ない、これ
ら双方に基づいて検量線の作成を行なうようにすること
も可能である。特にこのようにすれば停電等により試薬
を保存する保冷庫の温度が上昇し試薬の吸光度の経時的
変化が予想外になった場合にも、異常をチェックできる
。また装置自体にドリフトがある場合、試薬ブランク値
を測定することにより、より正しい検量線が作成できる
可能性がある。
In addition, in the above embodiment, the reagent absorbance increase/decrease ΔB1...
・Increase/loss ΔMl in standard serum absorbance and standard serum absorbance ΔMl・・L are both determined over time, and a calibration curve is created based on both of these. However, the present invention is not limited to this. Only the increase/decrease ΔM1...1 is determined in advance, and the operator calculates the increase/decrease/decrease ΔB1...1 in reagent absorbance using the usual method at regular intervals, and creates a calibration curve based on both of these. It is also possible to do so. In particular, by doing this, it is possible to check for abnormalities even when the temperature of the cold storage where the reagents are stored rises due to a power outage or the like and the absorbance of the reagents changes unexpectedly over time. Furthermore, if there is drift in the device itself, it is possible to create a more accurate calibration curve by measuring a reagent blank value.

また試薬によっては・試薬自身の吸光度だけが変化し、
反応力は劣化しないものもある。この場合は前記試薬吸
光度増減量Δ13t・・・nのみをCI)Uに記憶させ
て検量線を作成することも可能である。
Also, depending on the reagent, only the absorbance of the reagent itself changes,
Some reactions do not deteriorate. In this case, it is also possible to create a calibration curve by storing only the reagent absorbance increase/decrease Δ13t...n in CI)U.

また上記実施例においては自動的に検量線を作成する場
合について説明したが、分光光度B1によって測光する
装置に適用する場合には、前記第2図に示すように経時
的に変化する検f&1を予じめ描いた図表を用意し、前
記図表中試薬調製時から分析時に至るまでの経過時間に
対応する検量線を使用してサンプルの分析を行なうよう
にすることも可能である。また試薬の吸光度とファクタ
値(標準物質の吸光度Xとその#IJlt−値yとの比
1’−’//、)とを入力して検i′線を記憶させるこ
とができる分光光度計を使用する場合には、前記試薬の
吸ft、J11とファクタ値との経時的変化を予じめ求
めておき、試薬調製時からの経過時間に対応する試薬の
吸光度とファクタ値とを前記分光光度目1に入力するこ
とによって適正圧作成された検ti金容易に記憶させて
分析を行なうよう圧することもできる。
In addition, in the above embodiment, a case was explained in which a calibration curve is automatically created, but when applied to an apparatus that measures light using spectrophotometric intensity B1, the calibration curve f&1 that changes over time as shown in FIG. It is also possible to prepare a diagram drawn in advance and analyze the sample using a calibration curve corresponding to the elapsed time from the time of reagent preparation to the time of analysis in the diagram. In addition, a spectrophotometer can be used to input the absorbance of the reagent and the factor value (the ratio of the absorbance of the standard substance When using the reagent, the changes over time in the absorbance, J11, and factor value of the reagent are determined in advance, and the absorbance and factor value of the reagent corresponding to the elapsed time from the time of reagent preparation are calculated using the spectroscopic light. By inputting the appropriate pressure once, the generated test sample can be easily stored and pressed for analysis.

以上の説明から明らかなように本発明の自動化学分析装
置にあっては、予じめ一定条件のもとで求めた試薬の経
時的な劣化特性に基づいた検量線の作成を行なうことが
でき、装置の校正に要する労力的経済的負担を軽減する
ことができるなどの優れた効果を有するものである。
As is clear from the above explanation, in the automatic chemical analyzer of the present invention, it is possible to create a calibration curve based on the deterioration characteristics over time of a reagent determined in advance under certain conditions. This method has excellent effects such as being able to reduce the labor and economic burden required for calibrating the device.

【図面の簡単な説明】 第1図は反応曲線を示す説明図、第2図は検量線を示す
説明図、第6図は本発明の一実施例であるディスクリー
トタイプの自動化学分析装置の概略説明図である。 1・・・試薬トレー、  2・・・サンプルトレー、8
・・・反応槽、  11・・・測光部、 14・・・C
PU。
[Brief Description of the Drawings] Fig. 1 is an explanatory diagram showing a reaction curve, Fig. 2 is an explanatory diagram showing a calibration curve, and Fig. 6 is a schematic diagram of a discrete type automatic chemical analyzer that is an embodiment of the present invention. It is an explanatory diagram. 1... Reagent tray, 2... Sample tray, 8
...Reaction tank, 11...Photometry section, 14...C
P.U.

Claims (1)

【特許請求の範囲】[Claims] 分析対象とする試料に試薬を混合して反応させ、これを
測光して得られる吸光度と分析項目に対応する検量線と
に基づいて前記試料の分析を行なう自動化学分析装置に
おいて、予じめ一定条件のもとで求めた前記試薬の経時
的な特性の変化に基づいて検量線の作成を行なう検量線
作成手段を設け、この検量線作成手段と試薬の調整時か
らの経過時間とに基づいて検量線を作成可能としたこと
を特徴とする自動化学分析装置。
In an automatic chemical analyzer, a sample to be analyzed is mixed with a reagent and reacted, and the sample is analyzed based on the absorbance obtained by photometry and a calibration curve corresponding to the analysis item. A calibration curve creation means is provided for creating a calibration curve based on changes in the properties of the reagent over time determined under the conditions, and based on the calibration curve creation means and the elapsed time from the time of adjustment of the reagent. An automatic chemical analyzer characterized by being capable of creating a calibration curve.
JP16206781A 1981-10-13 1981-10-13 Automatic chemical analyzing apparatus Granted JPS5863854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16206781A JPS5863854A (en) 1981-10-13 1981-10-13 Automatic chemical analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16206781A JPS5863854A (en) 1981-10-13 1981-10-13 Automatic chemical analyzing apparatus

Publications (2)

Publication Number Publication Date
JPS5863854A true JPS5863854A (en) 1983-04-15
JPH0126507B2 JPH0126507B2 (en) 1989-05-24

Family

ID=15747457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16206781A Granted JPS5863854A (en) 1981-10-13 1981-10-13 Automatic chemical analyzing apparatus

Country Status (1)

Country Link
JP (1) JPS5863854A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115866A (en) * 1983-11-28 1985-06-22 Shimadzu Corp Automatic analyzer
JPS60161560A (en) * 1983-12-08 1985-08-23 Tokuyama Soda Co Ltd Data processing device in automatic analyzing apparatus
US4678755A (en) * 1984-07-30 1987-07-07 Kabushiki Kaisha Toshiba Automatic chemical analyzer
JPS63138268A (en) * 1986-11-29 1988-06-10 Shimadzu Corp Automatic analyzing device
JP2008170191A (en) * 2007-01-09 2008-07-24 Olympus Corp Analysis device
JP2015127675A (en) * 2013-12-27 2015-07-09 株式会社堀場製作所 Analyzer and reagent deterioration level calculation method
CN113167736A (en) * 2018-11-30 2021-07-23 豪夫迈·罗氏有限公司 Method for determining the concentration of an analyte in a body fluid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028620A (en) * 1999-07-07 2000-01-28 Hitachi Ltd Multi-specimen analyzing system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115866A (en) * 1983-11-28 1985-06-22 Shimadzu Corp Automatic analyzer
JPS60161560A (en) * 1983-12-08 1985-08-23 Tokuyama Soda Co Ltd Data processing device in automatic analyzing apparatus
JPH0434699B2 (en) * 1983-12-08 1992-06-08 Nippon Tekutoron Kk
US4678755A (en) * 1984-07-30 1987-07-07 Kabushiki Kaisha Toshiba Automatic chemical analyzer
JPS63138268A (en) * 1986-11-29 1988-06-10 Shimadzu Corp Automatic analyzing device
JP2008170191A (en) * 2007-01-09 2008-07-24 Olympus Corp Analysis device
JP2015127675A (en) * 2013-12-27 2015-07-09 株式会社堀場製作所 Analyzer and reagent deterioration level calculation method
CN113167736A (en) * 2018-11-30 2021-07-23 豪夫迈·罗氏有限公司 Method for determining the concentration of an analyte in a body fluid
US11906436B2 (en) 2018-11-30 2024-02-20 Roche Diabetes Care, Inc. Method of determining a concentration of an analyte in a bodily fluid

Also Published As

Publication number Publication date
JPH0126507B2 (en) 1989-05-24

Similar Documents

Publication Publication Date Title
US4263512A (en) Colorimetric method for liquid sampler including disturbing chromogens
EP3008449B1 (en) Calibration method for photometry and associated analysis system
EP3693744A1 (en) Automatic analyzer
JP2511062B2 (en) Gas verification method and device
EP0628157A1 (en) Pipette calibration system
Linko et al. Evaluation of uncertainty of measurement in routine clinical chemistry-applications to determination of the substance concentration of calcium and glucose in serum
JP2671931B2 (en) Device and method for analyzing medical samples
JPS5863854A (en) Automatic chemical analyzing apparatus
US4309112A (en) Rate measurement analyzer
JPH0666808A (en) Chromogen measurement method
Bowie et al. Development of an aqueous temperature-indicating technique and its application to clinical laboratory instrumentation.
JPH11142412A (en) Automatic analyzer
Jaisson et al. Evaluation of the analytical performances of the Cobas c513 analyser for HbA1c assay
FI57844C (en) FOERFARANDE FOER ATT FOERBAETTRA CHEMICAL ANALYZERS DOSERINGS- OCH MAETNOGGRANHET
US20220170953A1 (en) Data analysis method, data analysis system, and computer
JPH0359461A (en) Automatic biochemical analysis apparatus
Liedtke et al. Centrifugal analysis with automated sequential reagent addition: measurement of serum calcium.
JPH0593725A (en) Prozone adjustment and analysis method in antigen-antibody reaction
US5146413A (en) Method for the determinate evaluation of a chemistry analyzer's combined diluting and analyzing systems
EP1102069A2 (en) Flow injection analyzer and flow injection analysis method
JP2508115B2 (en) Automatic biochemical analyzer
JPH04249744A (en) Automatic apparatus for biochemical analysis
JPH06249856A (en) Measurement of automatic biochemical analyzing device
Levinson Direct determination of serum chloride with a semiautomated discrete analyzer.
JPS6060558A (en) Analyzing method for plural measurements