JP2001153828A - Method and device for measuring organic carbon content - Google Patents

Method and device for measuring organic carbon content

Info

Publication number
JP2001153828A
JP2001153828A JP37597899A JP37597899A JP2001153828A JP 2001153828 A JP2001153828 A JP 2001153828A JP 37597899 A JP37597899 A JP 37597899A JP 37597899 A JP37597899 A JP 37597899A JP 2001153828 A JP2001153828 A JP 2001153828A
Authority
JP
Japan
Prior art keywords
conductivity
ultraviolet light
oxidation
flow rate
organic carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37597899A
Other languages
Japanese (ja)
Other versions
JP3320050B2 (en
Inventor
Makoto Saito
誠 斉藤
Masao Mizuno
雅夫 水野
Setsuko Kamata
世津子 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP37597899A priority Critical patent/JP3320050B2/en
Publication of JP2001153828A publication Critical patent/JP2001153828A/en
Application granted granted Critical
Publication of JP3320050B2 publication Critical patent/JP3320050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring organic content for monitoring carbon contents at a real time substantially without requiring any strict flow rate regulation. SOLUTION: This measurement device is provided with an oxidation container 10 allowing passage of a sample liquid, an ultraviolet light source 20 radiating ultraviolet light to the sample liquid inside the oxidation container 10, a lighting controlling means 21 turning off the ultraviolet light source 20 after turning it on for a fixed time, a conductivity detecting electrode 30 arranged in the vicinity of an outlet of the oxidation container 10, and a computing device 40 computing organic carbon contents in the sample solution from a difference between the base conductivity before turning on the ultraviolet light and the maximum conductivity after turning off the light. When a flow rate of the sample liquid passing through the oxidation container 10 is represented by F and an internal volume within an ultraviolet radiation range of the oxidation container 1 on the upstream side beyond the conductivity detecting electrode 30 is represented by V, the flow rate F is controlled so that a relationship F<=V/T is established between the flow rate F, the internal volume V, and a ultraviolet radiation time T.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として超純水等
の全有機炭素含量(TOC)を測定するための有機炭素
含量測定方法及び測定装置に関し、さらに詳しくは、超
純水等の試料液に紫外線を照射し、生成する有機酸や二
酸化炭素により変化する試料液の導電率を測定すること
によって、試料液中の有機炭素含量を測定する装置及び
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic carbon content measuring method and apparatus for measuring the total organic carbon content (TOC) of ultrapure water and the like, and more particularly, to a sample liquid such as ultrapure water. The present invention relates to an apparatus and method for measuring the content of organic carbon in a sample solution by irradiating the sample solution with ultraviolet rays and measuring the conductivity of the sample solution which is changed by an organic acid or carbon dioxide generated.

【0002】[0002]

【従来の技術】現代の高度な工業的製造プロセス等にお
いては、高度に精製された「超純水」がしばしば大量に
用いられている。例えば半導体の洗浄、医療用薬品や注
射液などの製造、化学分析等においては、不純物、例え
ば微粒子、各種イオン、細菌等の微生物、有機化合物等
の溶解物質を実質的に含んでいない純水が必要不可欠で
ある。かかる純水を製造するシステムは通常、逆浸透
法、蒸留法、イオン交換法、吸着法、真空脱気法、紫外
線酸化法、限外濾過法を含む種々の濾過手段を組み合わ
せて用いている。特に、例えば半導体製造分野では、L
SIの集積度の増大につれ回路の間隔が狭くなっている
ので、回路短絡を防止するために半導体洗浄水を一層高
純度にする必要があり、イオンのみならず、微粒子、細
菌や有機物質も可能な限り除去しなければならない。
2. Description of the Related Art In modern advanced industrial manufacturing processes and the like, highly purified "ultrapure water" is often used in large quantities. For example, in the cleaning of semiconductors, the production of medical chemicals and injections, the chemical analysis, and the like, pure water substantially free of impurities such as fine particles, various ions, microorganisms such as bacteria, and dissolved substances such as organic compounds and the like is used. Indispensable. A system for producing such pure water generally uses a combination of various filtration means including a reverse osmosis method, a distillation method, an ion exchange method, an adsorption method, a vacuum degassing method, an ultraviolet oxidation method, and an ultrafiltration method. In particular, for example, in the semiconductor manufacturing field, L
As the degree of integration of SI increases, the spacing between circuits becomes narrower, so it is necessary to further purify semiconductor cleaning water to prevent short circuits. Not only ions but also fine particles, bacteria, and organic substances are possible. It must be removed as much as possible.

【0003】純水の清浄度を表す方式の一つとして、水
中の有機物中の炭素量で汚染度を表す全有機炭素(TO
C)値がある。純水のTOC値を測定する手段として、
紫外線(UV)酸化方式のTOC計が広く利用されてい
る。かかるTOC計では、試料液を紫外線照射部へ導入
し、ここで試料液に紫外線を照射して試料液中の有機炭
素を有機酸や二酸化炭素に変化させる。そして、これに
より得られる試料液の導電率変化に基づいて試料液のT
OC値を求めている。
[0003] As one of methods for expressing the cleanliness of pure water, total organic carbon (TO), which indicates the degree of pollution by the amount of carbon in organic matter in water,
C) There is a value. As a means of measuring the TOC value of pure water,
Ultraviolet (UV) oxidation TOC meters are widely used. In such a TOC meter, a sample liquid is introduced into an ultraviolet irradiation unit, where the sample liquid is irradiated with ultraviolet light to convert organic carbon in the sample liquid into organic acids and carbon dioxide. Then, based on the change in conductivity of the sample liquid obtained thereby, the T
The OC value is determined.

【0004】かかる紫外線酸化方式のTOC計として
は、種々のものが利用されているが、例えば、特公昭6
3−46375号公報で開示されている装置が知られて
いる。これは、試料セル内で静止させた超純水試料に紫
外線を照射すると共に、この間の導電率変化を試料セル
内に配置した導電率検知電極で計測する。そして、紫外
線による酸化反応が実質的に完了したことを導電率の変
化率によって確認した上で、それまでの導電率の変化量
から有機炭素含量を求めるものである。
[0004] As the TOC meter of the ultraviolet oxidation system, various types are used.
An apparatus disclosed in Japanese Patent Publication No. 3-46375 is known. In this method, an ultrapure water sample stopped in a sample cell is irradiated with ultraviolet rays, and a change in conductivity during this time is measured by a conductivity detection electrode arranged in the sample cell. Then, after confirming that the oxidation reaction by the ultraviolet ray is substantially completed by the rate of change in conductivity, the organic carbon content is determined from the change in conductivity up to that time.

【0005】また、紫外線照射部の前後に第1及び第2
の導電率センサを配置した測定ラインを設け、これに超
純水を一定流量で連続して流し、第1及び第2の導電率
センサで得た導電率の差に基づいて有機炭素含量を測定
する装置も知られている。この装置は、紫外線照射部を
超純水が流れる流量が一定であれば、単位体積あたりの
超純水が受ける紫外線量が一定、すなわち、酸化反応の
進行度合いが一定であることを前提としている。この場
合、紫外線による酸化反応を完了させることなく、連続
して流したまま測定を行えるので、有機炭素含量を連続
測定することができる。
[0005] Also, before and after the ultraviolet irradiation section, the first and second ultraviolet rays are irradiated.
A measurement line having a conductivity sensor is provided, and ultrapure water is continuously flowed through the measurement line at a constant flow rate, and the organic carbon content is measured based on the difference between the conductivity obtained by the first and second conductivity sensors. Devices are also known. This apparatus is based on the premise that if the flow rate of ultrapure water flowing through the ultraviolet irradiation unit is constant, the amount of ultraviolet light received by the ultrapure water per unit volume is constant, that is, the degree of progress of the oxidation reaction is constant. . In this case, since the measurement can be performed while the oxidation reaction by the ultraviolet ray is not completed, the organic carbon content can be continuously measured.

【0006】[0006]

【発明が解決しようとする課題】上記従来の装置の内、
前者の紫外線による酸化反応が実質的に完了するまでの
導電率の変化量から有機炭素含量を求める方式の装置で
は、次のような問題点があった。まず、酸化反応が完了
するまでの時間は、試料液の成分や紫外線強度にもよる
が、10分から20分程度にもなる。そのため、試料液
の監視をリアルタイムで行うことが困難である。
SUMMARY OF THE INVENTION Among the above conventional devices,
The former type of apparatus that determines the organic carbon content from the change in conductivity until the oxidation reaction by ultraviolet light is substantially completed has the following problems. First, the time required for completing the oxidation reaction is about 10 to 20 minutes, depending on the components of the sample solution and the intensity of ultraviolet light. Therefore, it is difficult to monitor the sample liquid in real time.

【0007】また、酸化反応が完了するまで試料液を試
料セル内で静止させておくため、試料セルや導電率検知
電極を構成する材質等からの溶出物が試料液に混入し導
電率を上昇させる。一方、発生した二酸化炭素が漏洩し
て導電率が低下することもある。従って、これらの有機
炭素含量に依存しない導電率変化を考慮して測定値を補
正しなければならない。
Further, since the sample liquid is kept stationary in the sample cell until the oxidation reaction is completed, the elution from the material constituting the sample cell and the conductivity detecting electrode mixes with the sample liquid to increase the conductivity. Let it. On the other hand, the generated carbon dioxide may leak to lower the conductivity. Therefore, the measured values must be corrected in consideration of these changes in conductivity that do not depend on the organic carbon content.

【0008】さらに、酸化反応の進行状態を導電率の変
化で判断するため、導電率検知電極は必ず試料セル内に
配置しなければならない。そのため、試料セルの構造が
複雑となり、製作が難しくなり勝ちである。
Further, in order to determine the progress of the oxidation reaction based on the change in conductivity, the conductivity detecting electrode must be disposed in the sample cell. As a result, the structure of the sample cell becomes complicated, making it difficult to produce the sample cell.

【0009】一方、上記従来の装置の内、後者の超純水
を一定流量で連続して流し、紫外線照射前後の導電率の
差から有機炭素含量を連続測定する装置では、次のよう
な問題点があった。まず、前述したように、酸化反応を
完了させることなく測定できるのは、紫外線照射部を超
純水が流れる流量が一定であれば、単位体積あたりの超
純水が受ける紫外線量が一定であることを前提としたも
のである。もしも、超純水が紫外線照射部を通過する流
量が増加すれば超純水の単位体積当たりの紫外線照射量
は減少するので、導電率の差は小さくなる。また、流量
が減少すれば超純水の単位体積当たりの紫外線照射量は
増加するので、導電率の差は大きくなる。すなわち、超
純水が紫外線照射部を通過する流量が変化した場合に
は、直ちに測定誤差を生じるものである。このような誤
差を回避しようとすれば、超純水の流量制御を非常に厳
密に行わなければならない。そのため、送液システムが
複雑化し、装置全体のコスト高を招きやすい。さらに、
紫外線照射前後の導電率の差を見るため、第1及び第2
の2つの導電率センサ、及びこれらのセンサからの信号
の処理回路等が必要である。従って、この面からも装置
の複雑化やコスト高を招きやすい。
On the other hand, among the above-mentioned conventional apparatuses, the latter apparatus which continuously flows ultrapure water at a constant flow rate and continuously measures the organic carbon content from the difference in conductivity before and after irradiation with ultraviolet light has the following problems. There was a point. First, as described above, what can be measured without completing the oxidation reaction is that if the flow rate of ultrapure water flowing through the ultraviolet irradiation unit is constant, the amount of ultraviolet light received by the ultrapure water per unit volume is constant. It is premised on that. If the flow rate of the ultrapure water passing through the ultraviolet irradiation unit increases, the amount of ultraviolet irradiation per unit volume of the ultrapure water decreases, so that the difference in conductivity decreases. In addition, if the flow rate decreases, the amount of ultraviolet irradiation per unit volume of ultrapure water increases, so that the difference in conductivity increases. That is, when the flow rate of the ultrapure water passing through the ultraviolet irradiation unit changes, a measurement error occurs immediately. In order to avoid such errors, it is necessary to control the flow rate of ultrapure water very strictly. Therefore, the liquid feeding system is complicated, and the cost of the entire apparatus is easily increased. further,
To see the difference in conductivity before and after UV irradiation, the first and second
Are required, and a circuit for processing signals from these sensors is required. Therefore, from this aspect as well, the apparatus is likely to be complicated and costly.

【0010】本発明は、上記事情に鑑みてなされたもの
で、実質的にリアルタイムでの有機炭素含量の監視を可
能とすると共に、厳密な流量制御を必要としない有機炭
素含量の測定方法及び測定装置を提供することを課題と
する。
The present invention has been made in view of the above circumstances, and enables a method of measuring an organic carbon content that does not require strict flow control, while enabling monitoring of the organic carbon content substantially in real time. It is an object to provide a device.

【0011】[0011]

【課題を解決するための手段】本発明者は上記課題を解
決するため、流動する試料液への紫外線照射量を紫外光
源の点灯時間で制御することを検討した。その結果、試
料液を一定の流量以下にして酸化容器内を通過させれ
ば、紫外光源の点灯開始から消灯までの紫外線が総て照
射される試料液部分を存在させることができ、その場合
の当該試料液部分の紫外線照射量は、紫外光源の点灯時
間に依存することに想到した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventor studied to control the irradiation amount of ultraviolet light to the flowing sample liquid by the lighting time of the ultraviolet light source. As a result, if the sample liquid is allowed to pass through the oxidation vessel at a certain flow rate or less, the sample liquid portion where all the ultraviolet rays from the start of turning on the ultraviolet light source to the turning off can be present. The inventor has conceived that the amount of ultraviolet irradiation of the sample liquid portion depends on the lighting time of the ultraviolet light source.

【0012】すなわち、本発明は上記課題を解決するた
めに、酸化容器に試料液を通過させると共に、この試料
液に紫外線を一定時間照射してから照射を中止し、前記
紫外線の点灯開始前のベース導電率と照射中止以後の最
大導電率とを前記酸化容器の出口近傍に設けた導電率検
知電極において計測し、このベース導電率と最大導電率
との差からこの試料液中の有機炭素含量を求める有機炭
素含量の測定方法であって、前記酸化容器内を試料液が
通過する流量Fと、前記導電率検知電極より上流側にお
ける前記酸化容器の紫外線が照射される範囲の内容積V
と、紫外線の照射時間TとがF≦V/Tの関係にあるこ
とを特徴とする有機炭素含量の測定方法を提供する。
That is, in order to solve the above-mentioned problems, the present invention allows a sample solution to pass through an oxidation container, irradiates the sample solution with ultraviolet rays for a certain period of time, and stops the irradiation. The base conductivity and the maximum conductivity after the irradiation were stopped were measured at a conductivity detection electrode provided near the outlet of the oxidation vessel, and the difference between the base conductivity and the maximum conductivity was used to determine the content of organic carbon in the sample solution. The flow rate of the sample solution passing through the inside of the oxidation vessel, and the internal volume V of the oxidation vessel on the upstream side of the conductivity detection electrode where the ultraviolet ray is irradiated.
And an irradiation time T of ultraviolet rays has a relation of F ≦ V / T.

【0013】なお、本明細書において、導電率検知電極
の配置場所である「酸化容器の出口近傍」とは、酸化容
器の出口より上流側である酸化容器内部と、下流側であ
る酸化容器外部の双方を含む概念である。そして、酸化
容器内部の場合には、紫外線が照射される範囲内と照射
される範囲外の双方の可能性が含まれる。
[0013] In this specification, "the vicinity of the outlet of the oxidation vessel" where the conductivity detecting electrode is disposed is defined as the inside of the oxidation vessel upstream of the outlet of the oxidation vessel and the outside of the oxidation vessel downstream of the oxidation vessel. It is a concept that includes both. In addition, in the case of the inside of the oxidation container, there are possibilities both within the range irradiated with ultraviolet rays and outside the range irradiated with ultraviolet rays.

【0014】また、本明細書において、「紫外光の照射
時間T」は、完全な連続照射が継続している時間だけで
なく、一定の周波数で点滅する光源(例えば、キセノン
フラッシュランプ等)からの照射が継続している時間も
含む概念である。すなわち、照射時間T内における個別
の点滅は、照射と照射の中止、又は点灯と消灯にはあた
らない。
In this specification, the term “ultraviolet light irradiation time T” refers to not only the time during which complete continuous irradiation is continued, but also a light source (for example, a xenon flash lamp) that blinks at a constant frequency. This is a concept that includes the time during which the irradiation is continued. That is, individual blinking within the irradiation time T does not correspond to irradiation and stop of irradiation or lighting and extinguishing.

【0015】本発明によれば、紫外光源の点灯開始から
消灯までの紫外線が総て照射される試料液部分が存在
し、これが、紫外線照射時間に応じた酸化反応に基づく
最大導電率を示すので、流量変動に依存せずに有機炭素
含量を求めることができる。
According to the present invention, there is a sample liquid portion to which all the ultraviolet rays from the start of turning on the ultraviolet light source to the extinguishing of the ultraviolet light source are present, and this shows the maximum conductivity based on the oxidation reaction according to the ultraviolet irradiation time. The organic carbon content can be determined without depending on the flow rate fluctuation.

【0016】前記最大導電率が計測された後には、前記
酸化容器内を試料液が通過する流量を増大させて前記酸
化容器内の試料液を置換することが望ましい。これによ
り、酸化容器等に残留している酸化生成物を含む試料液
を短時間で排出することができるので、次の測定までの
時間を短縮することができる。また、酸化容器内や導電
率検知電極等において気泡が発生しても、流量を増加さ
せたときに、これを流しだして除去することができる。
[0016] After the maximum conductivity is measured, it is preferable that the flow rate of the sample solution passing through the oxidation vessel is increased to replace the sample solution in the oxidation vessel. Thus, the sample solution containing the oxidation product remaining in the oxidation container or the like can be discharged in a short time, so that the time until the next measurement can be shortened. Further, even if air bubbles are generated in the oxidation container, the conductivity detection electrode, or the like, when the flow rate is increased, the air bubbles can be poured out and removed.

【0017】また、試料液中の有機炭素の紫外線酸化を
促進するために、光触媒を用いることが望ましい。これ
により、同一の紫外線照射時間でも、より大きい導電率
変化が得られるので、検出感度を改善することができ
る。
It is desirable to use a photocatalyst in order to promote ultraviolet oxidation of organic carbon in the sample solution. As a result, even with the same ultraviolet irradiation time, a larger change in conductivity can be obtained, so that the detection sensitivity can be improved.

【0018】また、紫外線の光量を計測し、計測した光
量が所定の値より小さくなった場合に、警報を出力する
ようにしてもよい。これにより、光源の劣化等を使用者
に知らせることができる。
Further, the amount of ultraviolet light may be measured, and an alarm may be output when the measured amount of light becomes smaller than a predetermined value. Thereby, the user can be notified of the deterioration of the light source and the like.

【0019】本発明はまた、試料液が通過する酸化容器
と、酸化容器内の試料液に紫外線を照射する紫外光源
と、この紫外光源を一定時間点灯させた後に消灯する点
灯制御手段と、前記酸化容器の出口近傍に設けられた導
電率検知電極と、この導電率検知電極によって計測され
る前記紫外線の点灯開始前のベース導電率と消灯以後の
最大導電率との差からこの試料液中の有機炭素含量を演
算する演算装置とを備えると共に、前記酸化容器内を試
料液が通過する流量Fと、前記導電率検知電極より上流
側における前記酸化容器の紫外線が照射される範囲の内
容積Vと、紫外線の照射時間TとがF≦V/Tの関係に
なるように、前記流量Fを制御する流量制御手段を備え
ることを特徴とする有機炭素含量の測定装置を提供す
る。
The present invention also provides an oxidizing container through which a sample solution passes, an ultraviolet light source for irradiating the sample solution in the oxidizing container with ultraviolet light, lighting control means for turning on the ultraviolet light source for a predetermined time, and then turning off the light. The conductivity detection electrode provided in the vicinity of the outlet of the oxidation container, and the difference between the base conductivity before the start of lighting of the ultraviolet light measured by the conductivity detection electrode and the maximum conductivity after the light is turned off in the sample solution. A calculation device for calculating the organic carbon content, the flow rate F of the sample solution passing through the inside of the oxidation vessel, and the internal volume V of the oxidation vessel on the upstream side of the conductivity detection electrode where the ultraviolet rays of the oxidation vessel are irradiated. And a flow rate control means for controlling the flow rate F such that the irradiation time T of the ultraviolet ray satisfies the relation of F ≦ V / T.

【0020】本発明によれば、紫外光源の点灯開始から
消灯までの紫外線が総て照射される試料液部分を存在さ
せることができ、導電率検知電極において、紫外線照射
時間に応じた酸化反応に基づく最大導電率を得られるの
で、流量変動に依存せずに有機炭素含量を求めることが
できる。
According to the present invention, it is possible to allow the sample liquid portion to be entirely irradiated with the ultraviolet rays from the start of turning on the ultraviolet light source to the turning off of the ultraviolet light source. Since the maximum electric conductivity based on the flow rate can be obtained, the organic carbon content can be obtained without depending on the flow rate fluctuation.

【0021】上述のとおり、前記最大導電率が計測され
た後には、前記酸化容器内を試料液が通過する流量を増
大させて前記酸化容器内の試料液を置換することが望ま
しい。また、試料液中の有機炭素の紫外線酸化を促進す
るために、酸化容器内に光触媒を備えることが望まし
い。
As described above, after the maximum conductivity is measured, it is desirable to increase the flow rate of the sample solution passing through the oxidation container to replace the sample solution in the oxidation container. Further, in order to promote ultraviolet oxidation of organic carbon in the sample solution, it is desirable to provide a photocatalyst in the oxidation container.

【0022】酸化容器内に光触媒を備える場合に望まし
い構成としては、酸化容器を外筒と紫外線を実質的に透
過する材質からなる内筒との間を試料液が通過する二重
管構造とし、外筒の内側に光触媒を被覆し、内筒側に紫
外光源を配置する構成を提供する。この場合、紫外光源
は内筒の内側に収容してもよいし、紫外光源の外管が酸
化容器の内筒を兼ねるようにしてもよい。
In a case where a photocatalyst is provided in the oxidation container, a desirable configuration is such that the oxidation container has a double tube structure in which a sample liquid passes between an outer cylinder and an inner cylinder made of a material substantially transmitting ultraviolet rays. Provided is a configuration in which a photocatalyst is coated on an inner side of an outer cylinder and an ultraviolet light source is disposed on an inner cylinder side. In this case, the ultraviolet light source may be housed inside the inner tube, or the outer tube of the ultraviolet light source may also serve as the inner tube of the oxidation container.

【0023】また、本発明の装置は紫外光源からの紫外
線の光量を計測する光量計を備えることが望ましい。こ
れにより、光量計が計測した光量が一定の値以下になっ
た場合に警報を出力する等して、使用者に紫外光源の交
換時期を知らせることができる。また、紫外線の光量の
変動や減少を考慮して、有機炭素含量を補正することも
考えられる。
It is desirable that the apparatus of the present invention includes a light meter for measuring the amount of ultraviolet light from the ultraviolet light source. Thus, when the light amount measured by the light meter becomes equal to or less than a certain value, an alarm is output or the like, so that the user can be notified of the time to replace the ultraviolet light source. It is also conceivable to correct the organic carbon content in consideration of the fluctuation or decrease in the amount of ultraviolet light.

【0024】さらに、本発明の装置は、酸化容器内を試
料液が通過する流量Fを確認する手段を有することが望
ましい。これにより、流量Fと、前記導電率検知電極よ
り上流側における前記酸化容器の紫外線が照射される範
囲の内容積Vと、紫外線の照射時間Tとが、何らかの理
由によりF≦V/Tの関係を保てなくなった場合に、警
報の出力等を行うことが可能となる。
Further, it is desirable that the apparatus of the present invention has a means for confirming the flow rate F at which the sample solution passes through the inside of the oxidation vessel. Thus, the flow rate F, the inner volume V of the oxidation container in the range upstream of the conductivity detection electrode where the ultraviolet rays are irradiated, and the irradiation time T of the ultraviolet rays may be in a relationship of F ≦ V / T for some reason. When it becomes impossible to keep the alarm, it is possible to output an alarm or the like.

【0025】[0025]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。図1は本発明に係る有機炭素含量測定装
置の1実施形態である。試料液が通過する酸化容器1内
には、紫外光源(図示せず)の紫外線が所定の時間T照
射される紫外線照射領域2(斜線部)が存在している。
また、酸化容器1の出口1aよりやや上流側の紫外線照
射領域2内に導電率検知電極3が配置されている。入口
管4から酸化容器1を経て出口管5へと流れる試料液の
流量Fは、導電率検知電極3より上流側における紫外線
照射領域2の内容積V、及び紫外線の照射時間Tと、F
≦V/Tの関係になるように、流量制御手段(図示せ
ず)により制御可能となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an embodiment of the organic carbon content measuring device according to the present invention. In the oxidation container 1 through which the sample solution passes, there is an ultraviolet irradiation area 2 (shaded area) where ultraviolet light from an ultraviolet light source (not shown) is irradiated for a predetermined time T.
Further, a conductivity detection electrode 3 is disposed in the ultraviolet irradiation region 2 slightly upstream of the outlet 1 a of the oxidation container 1. The flow rate F of the sample solution flowing from the inlet pipe 4 to the outlet pipe 5 via the oxidation vessel 1 is determined by the internal volume V of the ultraviolet irradiation area 2 on the upstream side of the conductivity detection electrode 3 and the irradiation time T of the ultraviolet light.
The flow rate can be controlled by flow rate control means (not shown) so as to satisfy the relationship of ≤V / T.

【0026】酸化容器1と紫外光源の形態に特に限定は
ないが、後述の実施例で詳述するような、二重管からな
る酸化容器の内管側から照射する形態が好適に使用でき
る。その他、管状の酸化容器の側面外側に紫外光源を配
置する形態や、筒状紫外光源の外側にスパイラル状に巻
き付けた管を酸化容器とする形態等、種々の形態を適宜
採用できる。なお、紫外光源としては水銀ランプが好適
に使用できるが、これに特に限定はされず、キセノンフ
ラッシュランプや、無声放電による紫外線ランプ等も使
用可能である。
The form of the oxidation vessel 1 and the ultraviolet light source is not particularly limited, but a form in which irradiation is performed from the inner tube side of a double-pipe oxidation vessel, as will be described in detail in Examples described later, can be suitably used. In addition, various modes such as a mode in which an ultraviolet light source is arranged outside the side surface of a tubular oxidation container and a mode in which a tube wound in a spiral shape around the outside of a cylindrical ultraviolet light source is used as an oxidation container can be appropriately adopted. In addition, a mercury lamp can be suitably used as the ultraviolet light source, but is not particularly limited thereto, and a xenon flash lamp, an ultraviolet lamp using silent discharge, or the like can be used.

【0027】酸化容器内には、有機炭素の紫外線酸化を
促進するための光触媒が備えられている。光触媒として
は、酸化チタン(TiO)が最も好適に使用できる
が、その他としては、SrTiO、CDS、WO
Fe、MO等を挙げることができる。光触媒を
酸化容器内に備えるには、触媒をそのまま容器内に充填
してもよいし、酸化容器内壁や、酸化容器内に充填した
ビーズ等にコーティングしてもよい。
A photocatalyst for promoting ultraviolet oxidation of organic carbon is provided in the oxidation container. As the photocatalyst, titanium oxide (TiO 2 ) can be most preferably used, but other than that, SrTiO 3 , CDS, WO 3 ,
Fe 2 O 3 , MO 3 and the like can be given. In order to provide the photocatalyst in the oxidation container, the catalyst may be filled in the container as it is, or the inner wall of the oxidation container, beads or the like filled in the oxidation container may be coated.

【0028】また、流量制御手段としては、流量を一定
にできるポンプが採用できるのは勿論であるが、試料液
の供給圧調整や出口5側への背圧付加等の圧力調整を行
うための調圧弁やオリフィス等を流量制御手段として採
用してもよい。また、流量制御手段は、上記F≦V/T
の関係を保つように働くほか、これよりも大きな流量に
切り替えられるようになっている。具体的には、大流量
とするときに開く弁、流量の違うポンプを介装した2流
路への切替弁、流量が可変であるポンプ等によってかか
る機能が達成できる。
As the flow control means, it is needless to say that a pump capable of maintaining a constant flow rate can be employed, but it is also necessary to control the supply pressure of the sample liquid or to apply a back pressure to the outlet 5 side. A pressure regulating valve, an orifice, or the like may be employed as the flow control means. In addition, the flow rate control means may be configured such that F ≦ V / T
In addition to maintaining the relationship, the flow rate can be switched to a larger value. Specifically, such a function can be achieved by a valve that opens when a large flow rate is set, a switching valve that switches between two flow paths with pumps having different flow rates, a pump that changes the flow rate, and the like.

【0029】図2は本発明に係る有機炭素含量測定装置
の他の実施形態である。図2において、図1と同一の構
成要素には同一の符号を付してその説明を省略する。本
実施形態においては、酸化容器1の出口1aよりやや上
流側かつ紫外線照射領域2の下流側に導電率検知電極3
が配置されている。流量Fは、紫外線照射領域2の内容
積V、及び紫外線の照射時間Tと、F≦V/Tの関係に
なるように、流量制御手段(図示せず)により制御可能
となっている。なお、紫外線照射領域2を通過した試料
液が導電率検知電極3に達するまでの間の内容積はVa
である。
FIG. 2 shows another embodiment of the organic carbon content measuring apparatus according to the present invention. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. In the present embodiment, the conductivity detection electrode 3 is located slightly upstream of the outlet 1 a of the oxidation container 1 and downstream of the ultraviolet irradiation region 2.
Is arranged. The flow rate F can be controlled by a flow rate control means (not shown) so that the relation of F ≦ V / T with the inner volume V of the ultraviolet irradiation region 2 and the irradiation time T of the ultraviolet light is satisfied. Note that the internal volume of the sample solution that has passed through the ultraviolet irradiation region 2 until it reaches the conductivity detection electrode 3 is Va.
It is.

【0030】図3は本発明に係る有機炭素含量測定装置
のさらに別の実施形態である。図3においても、図1と
同一の構成要素には同一の符号を付してその説明を省略
する。本実施形態においては、酸化容器1の出口1aよ
りやや下流側に導電率検知電極3が配置されている。流
量Fは、紫外線照射領域2の内容積V、及び紫外線の照
射時間Tと、F≦V/Tの関係になるように、流量制御
手段(図示せず)により制御可能となっている。なお、
紫外線照射領域2を通過した試料液が導電率検知電極3
に達するまでの間の内容積はVbである。
FIG. 3 shows still another embodiment of the organic carbon content measuring device according to the present invention. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. In the present embodiment, the conductivity detection electrode 3 is disposed slightly downstream of the outlet 1a of the oxidation container 1. The flow rate F can be controlled by a flow rate control means (not shown) so that the relation of F ≦ V / T with the inner volume V of the ultraviolet irradiation region 2 and the irradiation time T of the ultraviolet light is satisfied. In addition,
The sample liquid that has passed through the ultraviolet irradiation area 2 is used as the conductivity detection electrode 3
Is Vb.

【0031】図1に示した装置を一定流量Fで動作させ
た場合、導電率検知電極3で検知される導電率Cと点灯
開始後の時間tとの関係は、流量Fに応じて図4(a)
〜(c)に示す関係となる。
When the apparatus shown in FIG. 1 is operated at a constant flow rate F, the relationship between the conductivity C detected by the conductivity detection electrode 3 and the time t after the start of lighting is determined by the flow rate F shown in FIG. (A)
To (c).

【0032】まず、(a)は、F=V/Tの場合の導電
率変化を示す。この場合、点灯開始時に紫外線照射領域
の入口にあった試料液部分は、消灯時(t=T)におい
てちょうど導電率検知電極3の位置に到達する。また、
消灯時において紫外線照射領域の入口にあった試料液部
分は、t=2Tにおいてちょうど導電率検知電極3の位
置に到達する。つまり、導電率検知電極3の位置には、
t=Tにおいて最も長い時間(T)の間紫外線照射され
た試料液部分が到達し、t=2Tにおいてt=0におけ
ると同様の紫外線照射をされていない試料液部分が到達
する。なお、tが0〜Tの間、導電率検知電極3の位置
には、時間tの間紫外線酸化された試料液部分が到達
し、tがT〜2Tの間、導電率検知電極3の位置には、
時間(2T−t)の間紫外線酸化された試料液部分が到
達する。そして、導電率Cは紫外線酸化が進行するに連
れて上昇するので、図に示すようにt=Tにおいて有機
炭素含量に応じた最大値Cをとる変化を示ようにな
る。
First, (a) shows a change in conductivity when F = V / T. In this case, the sample liquid portion at the entrance of the ultraviolet irradiation area at the start of lighting reaches the position of the conductivity detecting electrode 3 just at the time of turning off (t = T). Also,
The sample liquid portion located at the entrance of the ultraviolet irradiation area when the light is turned off reaches the position of the conductivity detection electrode 3 at t = 2T. That is, at the position of the conductivity detection electrode 3,
At t = T, the sample liquid portion irradiated with ultraviolet light for the longest time (T) arrives, and at t = 2T, the same sample liquid portion not irradiated with ultraviolet light as at t = 0 arrives. When t is 0 to T, the portion of the sample liquid which has been oxidized by ultraviolet light during the time t arrives at the position of the conductivity detection electrode 3, and when t is T to 2T, the position of the conductivity detection electrode 3 is changed. In
During the time (2T-t), the sample liquid portion oxidized by the ultraviolet ray arrives. The conductivity C is so increased As the progresses ultraviolet oxidation, comprising a change that takes the maximum value C 1 corresponding to the organic carbon content in t = T, as shown in figure shown so.

【0033】次に、(b)は、F<V/Tの場合の導電
率変化を示す。この場合、消灯時(t=T)において導
電率検知電極3の位置に到達するのは、点灯開始時に既
に紫外線照射領域2内に流入していた試料液部分であ
る。そして、点灯開始時に紫外線照射領域の入口にあっ
た試料液部分は、消灯時(t=T)を経過したt=t
において導電率検知電極3の位置に到達する。また、消
灯時において紫外線照射領域の入口にあった試料液部分
は、t=t(=t+T)においてちょうど導電率検
知電極3の位置に到達する。つまり、tがT〜tの間
導電率検知電極3の位置には、最も長い時間(T)の間
紫外線酸化された試料液部分が連続して到達し、t=t
においてt=0におけると同様の紫外線照射をされて
いない試料液部分が到達する。なお、tが0〜Tの間、
導電率検知電極3の位置には、時間tの間紫外線酸化さ
れた試料液部分が到達し、tがt〜tの間、導電率
検知電極3の位置には、時間(t−t)の間紫外線酸
化された試料液部分が到達する。そのため、導電率C
は、図に示すように、tがT〜tの間最大値Cを継
続する変化を示ようになる。
Next, (b) shows the change in conductivity when F <V / T. In this case, when the light is turned off (t = T), the portion of the sample liquid that has already flowed into the ultraviolet irradiation area 2 at the start of lighting reaches the position of the conductivity detection electrode 3. Then, the sample liquid portion at the entrance of the ultraviolet irradiation area at the start of lighting is t = t 1 after the turning off (t = T).
At the position of the conductivity detection electrode 3. In addition, the sample liquid portion at the entrance of the ultraviolet irradiation area at the time of turning off just reaches the position of the conductivity detection electrode 3 at t = t 2 (= t 1 + T). That, t is the position of Mashirube conductivity sensing electrode 3 of T~t 1, and the longest time arrive continuously during UV oxidized sample liquid portion (T), t = t
At 2 , the sample liquid portion that has not been irradiated with the same ultraviolet rays as at t = 0 arrives. In addition, while t is 0 to T,
The position conductivity detecting electrode 3 reaches the ultraviolet oxidized sample liquid portion during the time t, while t is t 1 ~t 2, the position of the conductivity sensing electrode 3, the time (t 2 - During the period t), the sample liquid portion which has been oxidized by ultraviolet rays reaches. Therefore, the conductivity C
As shown in the figure, consisting of variations t continues the maximum value C 1 between T~t 1 to indicate so.

【0034】一方、(c)には、比較のためにF>V/
Tの場合の導電率変化を示す。この場合、点灯開始時に
紫外線照射領域の入口にあった試料液部分は、消灯時
(t=T)以前のt=tにおいて導電率検知電極3の
位置に到達する。消灯時(t=T)において導電率検知
電極3の位置に到達するのは、点灯開始時には未だ紫外
線照射領域2よりも上流側に存在していた試料液部分で
ある。また、消灯時において紫外線照射領域の入口にあ
った試料液部分は、t=t(=t+T)においてち
ょうど導電率検知電極3の位置に到達する。つまり、t
がt〜Tの間導電率検知電極3の位置には、Tよりも
短い時間だけ紫外線酸化された試料液部分が連続して到
達する。なお、tが0〜tの間、導電率検知電極3の
位置には、時間tの間紫外線酸化された試料液部分が到
達し、tがT〜tの間、導電率検知電極3の位置に
は、時間(t−t)の間紫外線酸化された試料液部分
が到達する。そのため、導電率Cは、図に示すように、
tがt〜Tの間最大値Cを継続する変化を示すが、
はCよりも小さい値となる。なお、CはFがよ
り大きくなるほど小さい値となる。
On the other hand, (c) shows that F> V /
The change in conductivity in the case of T is shown. In this case, the sample liquid portion was at the entrance of the ultraviolet irradiation area at the lighting start, reaches the position of the light-off (t = T) Conductivity sensing electrode 3 in the previous t = t 3. At the time of turning off the light (t = T), the portion of the sample liquid that has reached the position of the conductivity detection electrode 3 at the start of the lighting is still the sample liquid portion that is still upstream of the ultraviolet irradiation region 2. Further, the sample liquid portion at the entrance of the ultraviolet irradiation area at the time of turning off reaches the position of the conductivity detection electrode 3 at t = t 4 (= t 3 + T). That is, t
There the location of Mashirube conductivity sensing electrode 3 t 3 through T, a short time only ultraviolet oxidized sample liquid portion than T arrives continuously. Incidentally, while t is 0 to t 3, the position of the conductivity sensing electrode 3 reaches the ultraviolet oxidized sample liquid portion during the time t, while t is T~t 4, the conductivity sensing electrode 3 The sample liquid portion oxidized by ultraviolet rays during the time (t 4 -t) arrives at the position of ( 4 ). Therefore, as shown in FIG.
t is show change to continue the maximum value C 2 between t 3 through T,
C 2 is smaller than the C 1. Incidentally, C 2 becomes smaller as increases F Gayori.

【0035】すなわち、(a)又は(b)に示す流量F
の条件(F≦V/T)では、導電率の最大値Cが得ら
れ、流量Fが変動しても、Cの値をとる継続時間が変
動するのみである。そのため、流量変動があっても、同
一の酸化条件に基いて最大導電率Cとベース導電率C
との差が得られ、この値から試料液中の有機炭素含量
を求めることができる。
That is, the flow rate F shown in (a) or (b)
Under the condition (F ≦ V / T), the maximum value C 1 of the conductivity is obtained, and even if the flow rate F changes, only the duration of taking the value of C 1 changes. Therefore, even when the flow rate varies, the maximum conductivity C 1 based on the same oxidation conditions and the base conductivity C
A difference from 0 is obtained, and from this value, the content of organic carbon in the sample liquid can be determined.

【0036】次に、図2及び図3に示した装置を一定流
量Fで動作させた場合に、導電率検知電極3で検知され
る導電率Cと点灯開始後の時間tとの関係を図5に示
す。図4と同様に図5においても、(a)は、F=V/
Tの場合の導電率変化を、(b)には、F<V/Tの場
合の導電率変化を、(c)には、F<V/Tの場合の導
電率変化を示す。
Next, when the apparatus shown in FIGS. 2 and 3 is operated at a constant flow rate F, the relationship between the conductivity C detected by the conductivity detection electrode 3 and the time t after the start of lighting is shown. It is shown in FIG. In FIG. 5, as in FIG. 4, (a) shows that F = V /
(B) shows the conductivity change when F <V / T, and (c) shows the conductivity change when F <V / T.

【0037】図5に示すように(a)〜(c)いずれの
条件においても、紫外線照射領域2の出口から導電率検
知電極まで試料液が移動する時間であるtの時間分、
対応する図4の(a)〜(c)よりも遅れた応答が得ら
れる。なお、図2の装置の場合、t=Va/Fであ
り、図3の装置の場合には、t=Vb/Fである。つ
まり、tを小さくしてより早く最大導電率Cのデー
タを得るためには、Va、Vbをできるだけ小さくして
装置を製作することが望ましい。
[0037] In (a) ~ (c) any of the conditions as shown in FIG. 5, time duration t 5 is the time the sample liquid is moved from the exit of the UV irradiation region 2 until the conductivity sensing electrode,
A response delayed from the corresponding (a) to (c) of FIG. 4 is obtained. In the case of the device of FIG. 2, t 5 = Va / F, and in the case of the device of FIG. 3, t 5 = Vb / F. That is, in order to obtain the data of the maximum conductivity C 1 earlier to reduce the t 5 is, Va, it is desirable to fabricate the device as small as possible to Vb.

【0038】図4及び図5は、説明のため流量Fを一定
として記載したが、望ましくは、最大導電率Cを得た
後には、Fを大流量にして、試料液の置換や気泡の排出
を行う。これにより、導電率Cは、速やかにベース導電
率Cに復帰するので、次の測定を早く開始できる。
[0038] Figures 4 and 5 has been described the flow rate F for explaining a constant, preferably, after obtaining the maximum conductivity C 1 is the F to the large flow rate, the sample liquid replacement and bubbles Discharge. Thus, conductivity C is quickly and then returned to the base conductivity C 0, it can be started early next measurement.

【0039】大流量への切替は、点灯開始後、最大導電
率Cが確実に得られると判断できるまでの時間を予測
して、一律に時間で切り替えてもよい。また、ベース導
電率Cへの復帰をより早く行うには、最大導電率C
を得られたことを検知し、その時に直ちに切り替えを行
うとよい。導電率が最大となったことを検知するには、
通常行われているように、導電率Cの変化量(微分値)
が所定の値以下となったことを確認する方法等が考えら
れる。また、試料液の温度が紫外光源の発熱によって若
干変動することを利用して、温度が最大値となったとき
をもって、最大導電率Cを得られたときと判断しても
よい。
The switching to the large flow rate, after lighting start, to predict the time until it can be determined that the maximum conductivity C 1 can be surely obtained, may be switched in time uniformly. In order to return to the base conductivity C 0 earlier, the maximum conductivity C 1
It is good to detect that it was obtained, and to switch immediately at that time. To detect that the conductivity has reached a maximum,
Change in conductivity C (differential value) as usual
Can be considered to confirm that the value has become equal to or less than a predetermined value. Moreover, by utilizing the fact that the temperature of the sample solution fluctuates slightly due to heat generation of the ultraviolet light source, with the temperature becomes the maximum value, it may be determined that when the resulting maximum conductivity C 1.

【0040】上記のように、導電率が最大となったこと
を導電率や温度で検知する場合には、それが検知される
までの時間から流量Fの概略値を知り、もしも、F≦V
/Tとなっていない場合(図1の実施形態の場合、図4
(c)に示す如くTよりも短時間で導電率が最大となっ
た場合)には警報出力等の対応をとることができる。な
お、流量Fを確認する手段として、流量計を別途用意し
てもよいことはもちろんである。
As described above, when the maximum conductivity is detected by the conductivity or the temperature, the approximate value of the flow rate F is known from the time until it is detected.
/ T (in the case of the embodiment of FIG. 1, FIG.
In the case where the conductivity becomes maximum in a shorter time than T as shown in (c)), a response such as an alarm output can be taken. In addition, it is a matter of course that a flow meter may be separately prepared as a means for checking the flow rate F.

【0041】なお、図1から図3の実施形態を比較した
場合、図3のように、酸化容器1外に導電率検知電極3
を配置する形態が、導電率検知電極3の具体的構造が酸
化容器1の具体的構造に制約されないので、一般的には
製作が容易である。但し、図3よりも図2、図2よりも
図1の形態を採用した方が最大導電率を得るまでの時間
を短縮しやすい。また、図1の形態を採用した場合に
は、導電率検知電極3にも紫外線が照射されるので、導
電率検知に支障をきたす汚れが付着しにくいという利点
も有する。
When comparing the embodiment of FIGS. 1 to 3, as shown in FIG.
Since the specific structure of the conductivity detection electrode 3 is not limited by the specific structure of the oxidation container 1, the manufacturing method is generally easy. However, it is easier to shorten the time until the maximum conductivity is obtained by adopting the embodiment of FIG. 2 than FIG. 3 and FIG. 2 than FIG. In addition, in the case of adopting the embodiment shown in FIG. 1, since the conductivity detection electrode 3 is also irradiated with ultraviolet rays, there is an advantage that dirt which hinders the conductivity detection is hardly attached.

【0042】[0042]

【実施例】図6に本発明の一実施例を示す。図6に示す
有機炭素含量測定装置は、酸化容器10と、酸化容器1
0内の試料液に内側から紫外線を照射する紫外光源20
と、この紫外光源20を一定時間点灯させた後に消灯す
る点灯制御手段21と、紫外光源20の光量を測定する
光量計としてのフォトダイオード22と、酸化容器10
の出口下流側に設けられた温度センサ内蔵の導電率検知
電極30と、この導電率検知電極30からのデータとフ
ォトダイオード22のデータが入力される演算装置40
とを備えている。
FIG. 6 shows an embodiment of the present invention. The organic carbon content measuring device shown in FIG.
UV light source 20 for irradiating the sample liquid in 0 with ultraviolet light from inside
Lighting control means 21 for turning on and off the ultraviolet light source 20 for a certain period of time; a photodiode 22 as a light meter for measuring the light amount of the ultraviolet light source 20;
And an arithmetic unit 40 to which data from the conductivity detection electrode 30 and data of the photodiode 22 are input.
And

【0043】また、本装置は、圧力調整弁51、オリフ
ィス52、常閉弁53からなる流量制御手段を備えてい
る。圧力調整弁51は、一定の圧力以上の試料液を排水
側に逃し、その上流側で分岐する酸化容器10の入口配
管には一定範囲の圧力で試料液が供給されるように調整
するものである。オリフィス52は、導電率検知電極3
0の下流の排水側流路に設けられており、これによる背
圧と、圧力調整弁51による供給圧調整とにより、試料
液の流量Fと、酸化容器10内の紫外線照射領域の内容
積Vと、紫外線の照射時間Tとを、F≦V/Tの関係に
調整するようになっている。また、常閉弁53は、オリ
フィス51が介装された流路と平行して、導電率検知電
極30からの試料液を排水可能な流路に介装されてお
り、演算装置40からの指示で開閉するようになってい
る。そして、常閉弁53が開かれた場合には、V/Tよ
りも相当程度大きい流量Fが得られるようになってい
る。
Further, the present apparatus is provided with a flow control means comprising a pressure regulating valve 51, an orifice 52, and a normally closed valve 53. The pressure adjusting valve 51 adjusts so that the sample solution having a certain pressure or more is released to the drainage side, and the sample solution is supplied at a certain range of pressure to the inlet pipe of the oxidation vessel 10 branched at the upstream side. is there. The orifice 52 is provided with the conductivity detecting electrode 3.
The flow rate F of the sample liquid and the inner volume V of the ultraviolet irradiation area in the oxidation vessel 10 are provided by the back pressure and the supply pressure adjustment by the pressure adjustment valve 51 provided at the drain side flow path downstream of the O. And the irradiation time T of the ultraviolet light are adjusted to satisfy the relationship of F ≦ V / T. The normally closed valve 53 is provided in a flow path through which the sample liquid from the conductivity detection electrode 30 can be drained in parallel with the flow path in which the orifice 51 is provided. To open and close. When the normally closed valve 53 is opened, a flow rate F considerably larger than V / T is obtained.

【0044】酸化容器10の構造の具体例を図7に基づ
いて説明する。図7の酸化容器10は、外筒11及び内
筒12とを有し、それぞれの両端部を連結するリング状
の下底13及び上底14と共に二重管構造の空間を形成
している。そして、この空間に試料液を流入流出させる
ための入口管15及び出口管16とを備えている。この
外筒11の内側壁面には酸化チタンがコーティングされ
ている。また、内筒12は、石英硝子等の紫外線を通過
させる材質で形成されており、酸化チタン等のコーティ
ングはなされていない。図7において、紫外光源20は
酸化容器10の内筒12の内側に挿通されており、この
紫外光源20からの紫外線が及ぶ照射領域23を通過す
る試料液が紫外線で酸化されるようになっている。
A specific example of the structure of the oxidation container 10 will be described with reference to FIG. The oxidation container 10 of FIG. 7 has an outer cylinder 11 and an inner cylinder 12, and forms a double-pipe structure with a ring-shaped lower bottom 13 and an upper bottom 14 connecting both ends thereof. Further, an inlet pipe 15 and an outlet pipe 16 for flowing the sample liquid into and out of the space are provided. The inner wall surface of the outer cylinder 11 is coated with titanium oxide. The inner tube 12 is formed of a material that allows ultraviolet rays to pass, such as quartz glass, and is not coated with titanium oxide or the like. In FIG. 7, the ultraviolet light source 20 is inserted inside the inner cylinder 12 of the oxidation container 10, and the sample liquid passing through the irradiation region 23 to which the ultraviolet light from the ultraviolet light source 20 reaches is oxidized by the ultraviolet light. I have.

【0045】酸化容器10の他の具体例を図8に基づい
て説明する。図8の酸化容器10は、外筒11及び両端
部のリング状下底13及び上底14を有している。ま
た、紫外光源20は酸化容器10の下底13及び上底1
4との間にパッキン17を用いて水密に外筒11の内側
に挿通されており、この紫外光源20の外管が酸化容器
10の内筒を兼ねるようになっている。そして、外筒1
1、下底13及び上底14と共に二重管構造の空間を形
成しており、この空間に試料液が入口管15から流入し
出口管16から流出するようになっている。外筒11の
内側壁面には酸化チタンがコーティングされている。こ
の場合も、紫外光源20からの紫外線が及ぶ照射領域2
3を通過する試料液が紫外線で酸化されるようになって
いる。
Another specific example of the oxidation container 10 will be described with reference to FIG. The oxidation container 10 of FIG. 8 has an outer cylinder 11 and a ring-shaped lower bottom 13 and an upper bottom 14 at both ends. Further, the ultraviolet light source 20 includes the lower bottom 13 and the upper bottom 1 of the oxidation container 10.
The outer tube of the ultraviolet light source 20 doubles as the inner tube of the oxidation container 10 by being inserted through the inside of the outer tube 11 in a water-tight manner using a packing 17 between the outer tube 4 and the outer tube 4. And outer cylinder 1
1, the lower bottom 13 and the upper bottom 14 together form a space of a double tube structure, into which the sample liquid flows in from the inlet tube 15 and flows out from the outlet tube 16. The inner wall surface of the outer cylinder 11 is coated with titanium oxide. Also in this case, the irradiation area 2 to which the ultraviolet light from the ultraviolet
The sample liquid passing through 3 is oxidized by ultraviolet rays.

【0046】図7又は図8に示す酸化容器10では、酸
化チタンがコーティングされている外筒まで、紫外線が
実質的に遮られることなく到達して、そこに接触してい
る試料液の酸化反応を効率よく進行させることができ
る。また、外筒に酸化チタンがコーティングされている
と、紫外線は外筒から外部に漏洩しにくいことが確認さ
れた。すなわち、紫外線のエネルギーは、外部に漏れる
ことなくほぼ全量酸化反応のために消費される。また、
外部に紫外線が漏れて、周辺の機器を損傷したり、作業
者に悪影響を与えることもない。さらに、紫外光源20
を酸化容器10の内側に挿通しており、その外側を試料
液からなる液体の層が取り囲むことになるので、紫外光
源の温度変化を小さく抑えて、紫外光源の安定性を高め
ることができる。
In the oxidation container 10 shown in FIG. 7 or FIG. 8, the ultraviolet rays reach the outer cylinder coated with titanium oxide without being substantially blocked, and the oxidation reaction of the sample liquid in contact therewith. Can proceed efficiently. In addition, it was confirmed that when the outer cylinder was coated with titanium oxide, ultraviolet rays hardly leaked from the outer cylinder to the outside. That is, almost all the energy of the ultraviolet rays is consumed for the oxidation reaction without leaking to the outside. Also,
Ultraviolet rays do not leak to the outside and do not damage peripheral devices or adversely affect workers. Further, the ultraviolet light source 20
Is inserted into the inside of the oxidation container 10, and the outside of the container is surrounded by a liquid layer composed of the sample liquid. Therefore, the temperature change of the ultraviolet light source can be suppressed small, and the stability of the ultraviolet light source can be improved.

【0047】図6に示す有機炭素含量測定装置の動作に
ついて図9を用いて説明する。まず、常閉弁53をオフ
にして閉じ、酸化容器10にF≦V/Tである流量で試
料液を流す。紫外光源20は常閉弁53のオフと同時に
点灯を開始し、時間T経過後に消灯する。この間、導電
率検知電極30で検知される導電率は、通過する試料液
部分の酸化状態に応じて次第に上昇し、やがて紫外光源
20の点灯時間と有機炭素含量に応じた最大導電率で一
定となる。この間、紫外光源の発熱の影響により、試料
液の温度が点灯中に上昇し消灯と共に下降する。導電率
検知電極30の温度センサによって検知される温度は、
紫外線照射領域を出た試料液部分がそこに到達するまで
の時間と若干の応答時間のため、紫外光源の点灯消灯に
遅れて、図に示すような上昇下降が観察される。
The operation of the organic carbon content measuring device shown in FIG. 6 will be described with reference to FIG. First, the normally closed valve 53 is turned off and closed, and the sample solution is flown into the oxidation container 10 at a flow rate of F ≦ V / T. The ultraviolet light source 20 starts to be turned on at the same time when the normally closed valve 53 is turned off, and is turned off after a lapse of time T. During this time, the conductivity detected by the conductivity detection electrode 30 gradually increases according to the oxidation state of the passing sample liquid portion, and eventually becomes constant at the maximum conductivity according to the lighting time of the ultraviolet light source 20 and the organic carbon content. Become. During this time, the temperature of the sample liquid rises during lighting, and falls when light is turned off due to the heat generated by the ultraviolet light source. The temperature detected by the temperature sensor of the conductivity detection electrode 30 is:
Due to the time required for the sample liquid portion that has exited the ultraviolet irradiation region to reach there and a slight response time, the rise and fall as shown in the figure is observed after the turning on and off of the ultraviolet light source.

【0048】次に、常閉弁53をオンにして開くと、酸
化容器10から流出した試料液の大部分は常閉弁53を
通過するので、酸化容器10に流れる試料液の流量が急
増すこの常閉弁をオンにするタイミングは、時間で余裕
を見て一律に管理してもよいし、導電率の上昇が一定値
以下になったことを確認した時点としてもよい。また、
温度の最大値は、導電率の最大値が得られた後に得られ
るので、温度が最大になった時点でオンとしてもよい。
図に示すように、常閉弁53をオンとすると、導電率は
速やかに下降してベースの導電率に復帰する。
Next, when the normally closed valve 53 is turned on and opened, most of the sample liquid flowing out of the oxidation container 10 passes through the normally closed valve 53, so that the flow rate of the sample liquid flowing into the oxidation container 10 increases rapidly. The timing at which the normally closed valve is turned on may be uniformly managed with a margin in time, or may be the time when it is confirmed that the increase in conductivity has become equal to or less than a certain value. Also,
Since the maximum value of the temperature is obtained after the maximum value of the conductivity is obtained, the temperature may be turned on when the temperature becomes the maximum.
As shown in the figure, when the normally-closed valve 53 is turned on, the conductivity rapidly decreases and returns to the base conductivity.

【0049】そして、導電率がベース導電率に復帰して
から再度常閉弁をオフにして上記動作を繰り返す。再度
常閉弁をオフにするタイミングも、時間で余裕を見て一
律に管理してもよいし、導電率の下降が一定値以下にな
ったことを確認した時点としてもよい
After the conductivity returns to the base conductivity, the normally closed valve is turned off again and the above operation is repeated. The timing of turning off the normally closed valve again may be uniformly managed by looking at a margin in time, or may be the time when it is confirmed that the decrease in the conductivity has become equal to or less than a certain value.

【0050】このようにして得られるベース導電率と最
大導電率のデータは、演算装置40に入力される。そし
て、温度センサのデータに基づき温度補償された上で、
有機炭素含量が演算される。また、光量計22の値が所
定値より小さくなった場合には、紫外光源20が劣化し
たものと判断して演算装置40から警報が出力される。
The data of the base conductivity and the maximum conductivity thus obtained are input to the arithmetic unit 40. Then, after temperature compensation based on the temperature sensor data,
The organic carbon content is calculated. Further, when the value of the light meter 22 becomes smaller than the predetermined value, it is determined that the ultraviolet light source 20 has deteriorated, and the arithmetic unit 40 outputs an alarm.

【0051】図10に、図6と同等の装置を用いて得た
実験値を示す。なお、試料液として用いた標準液の供給
圧が不足していたため、オリフィス52に代えて低流量
ポンプを用いた。また、常閉弁53に代えて、大流量ポ
ンプを用い、このポンプをオンとしたときに、酸化装置
10内の試料液流量を増加させて、試料液の置き換えが
できるようにした。
FIG. 10 shows experimental values obtained using an apparatus equivalent to that of FIG. Since the supply pressure of the standard liquid used as the sample liquid was insufficient, a low flow rate pump was used instead of the orifice 52. Further, a large flow rate pump was used instead of the normally closed valve 53, and when the pump was turned on, the flow rate of the sample liquid in the oxidizing apparatus 10 was increased so that the sample liquid could be replaced.

【0052】この実験値を得た具体的な条件は以下のと
おりである。まず、酸化容器10としては、図7に示す
構造であって、外筒の内径18mm、内筒の外径16m
m、全長225mm、全内容積12mLのものを用い
た。この内、照射領域23は長さ方向のほぼ中間位置に
あり、その長さは160mm、容積Vは8.5mLであ
る。導電率検知電極30は、内容積約1mL、セル定数
約0.1のフローセル型のものを使用した。酸化容器1
0と、導電率検知電極30との間は、内径4mmのテフ
ロンチューブ約25mmで連絡した。紫外光源20とし
ては、定格5Wの低圧水銀ランプを用い、これを90秒
間(T=1.5min)点灯し、次いで115秒間消灯
することを繰り返した。
The specific conditions under which the experimental values were obtained are as follows. First, the oxidation container 10 has the structure shown in FIG. 7, in which the inner diameter of the outer cylinder is 18 mm and the outer diameter of the inner cylinder is 16 m.
m, a total length of 225 mm, and a total internal volume of 12 mL were used. Among them, the irradiation area 23 is located at a substantially middle position in the length direction, the length is 160 mm, and the volume V is 8.5 mL. The conductivity detection electrode 30 used was a flow cell type having an internal volume of about 1 mL and a cell constant of about 0.1. Oxidation container 1
0 and the conductivity detection electrode 30 were connected by a Teflon tube of about 25 mm having an inner diameter of 4 mm. As the ultraviolet light source 20, a low-pressure mercury lamp having a rating of 5 W was used, and was repeatedly turned on for 90 seconds (T = 1.5 min) and then turned off for 115 seconds.

【0053】試料液は、F≦V/T=8.5mL/1.
5min=5.7mL/minを満たすように、大流量
ポンプをオフとしているとき、約4〜5mL/min前
後の流量Fで酸化容器10を通過するように調整した。
また、大流量ポンプをオンにしたときには、約70mL
/minの流量で試料液が酸化容器10を通過するよう
に調整した。大流量ポンプは、紫外光源20の点灯開始
と共にオフにし、その150秒後に55秒間オンとする
動作を繰り返した。
The sample solution was F ≦ V / T = 8.5 mL / 1.
In order to satisfy 5 min = 5.7 mL / min, when the large flow rate pump was turned off, it was adjusted to pass through the oxidation vessel 10 at a flow rate F of about 4 to 5 mL / min.
When the large flow pump is turned on, about 70 mL
The sample liquid was adjusted to pass through the oxidation container 10 at a flow rate of / min. The large flow pump was turned off when the ultraviolet light source 20 was started to be turned on, and after 150 seconds, the operation was turned on for 55 seconds.

【0054】試料液としては、1000ppm(炭素量
換算以下同じ)のメタノール標準液の流れと、有機炭素
を4ppb含むゼロ水の流れとを、流量比を調整しつつ
合流させる方法で、4〜1004ppbの標準液を調製
し供給した。図10の図中に示す数字が各ピークデータ
を得たときの試料液濃度(単位ppb)である。
As a sample solution, a flow of a standard methanol solution of 1000 ppm (the same hereinafter in terms of carbon content) and a flow of zero water containing 4 ppb of organic carbon are combined by adjusting the flow rate ratio to obtain a solution of 4 to 1004 ppb. Was prepared and supplied. The numbers shown in FIG. 10 are the sample solution concentrations (unit: ppb) when each peak data was obtained.

【0055】図10に示すように、各濃度に応じた導電
率のピークが、205秒(約3.5分)に1回の間隔
で、再現性良く得られた。また、図10のデータから、
試料液の濃度に対する導電率変化(最大導電率とベース
導電率との差)の関係を求めたところ、図11に示すよ
うに良好な検量線が得られた。なお、図10において、
試料液濃度の切替時等に若干のピーク値の乱れが見られ
るが、これは、測定装置側の問題というよりも、試料液
調製側の置き換わり遅れの問題と考えられる。
As shown in FIG. 10, the conductivity peak corresponding to each concentration was obtained with good reproducibility at an interval of once every 205 seconds (about 3.5 minutes). Also, from the data of FIG.
When the relationship between the change in the conductivity (the difference between the maximum conductivity and the base conductivity) with respect to the concentration of the sample solution was determined, a good calibration curve was obtained as shown in FIG. In FIG. 10,
A slight disturbance of the peak value is observed when the concentration of the sample liquid is switched, but this is considered to be a problem of replacement delay of the sample liquid preparation side rather than a problem of the measurement device side.

【0056】次に試料液流量の影響を調べるために、低
流量ポンプの流量F(大流量ポンプをオフにしたときの
流量)を4.3mL/min〜5.5mL/minの間
で変化させ、上記と同様に調製した54ppbのメタノ
ール標準液を測定した。結果を図12に示す。図12中
の数字は、各ピークデータを得たときの流量Fの値であ
る。図に示すように、F≦V/T=8.5mL/1.5
min=5.7mL/minの条件を満たす範囲では、
流量変化にかかわらず、一定した導電率変化が得られる
ことが確認された。
Next, in order to examine the influence of the sample liquid flow rate, the flow rate F of the low flow rate pump (the flow rate when the large flow rate pump was turned off) was changed between 4.3 mL / min and 5.5 mL / min. A 54 ppb methanol standard solution prepared in the same manner as above was measured. The result is shown in FIG. The numbers in FIG. 12 are values of the flow rate F when each peak data is obtained. As shown in the figure, F ≦ V / T = 8.5 mL / 1.5
In a range satisfying the condition of min = 5.7 mL / min,
It was confirmed that a constant change in conductivity was obtained regardless of the flow rate change.

【0057】[0057]

【発明の効果】本発明によれば、数分に一回という非常
に短い間隔で有機炭素含量の測定ができる。そのため、
実質的にリアルタイムでの有機炭素含量の監視が可能と
なる。しかも、測定値を得るために精密な流量制御を必
要としないため、簡単な構成の装置とすることができ
る。したがって、低コストかつ取扱いの容易な有機炭素
含量の測定装置を供給することができる。
According to the present invention, the organic carbon content can be measured at a very short interval of once every few minutes. for that reason,
Monitoring of the organic carbon content in substantially real time is possible. Moreover, since precise flow rate control is not required to obtain a measured value, the apparatus can have a simple configuration. Therefore, a low-cost and easy-to-handle organic carbon content measuring device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る有機炭素測定装置であ
る。
FIG. 1 is an organic carbon measuring device according to an embodiment of the present invention.

【図2】本発明の他の実施形態に係る有機炭素測定装置
である。
FIG. 2 is an organic carbon measuring device according to another embodiment of the present invention.

【図3】本発明の他の実施形態に係る有機炭素測定装置
である。
FIG. 3 is an organic carbon measuring device according to another embodiment of the present invention.

【図4】図1に示す実施形態に係る有機炭素測定装置の
動作説明図である。
FIG. 4 is an operation explanatory view of the organic carbon measuring device according to the embodiment shown in FIG. 1;

【図5】図2又は図3に示す実施形態に係る有機炭素測
定装置の動作説明図である。
FIG. 5 is an operation explanatory view of the organic carbon measuring device according to the embodiment shown in FIG. 2 or FIG.

【図6】本発明の実施例に係る有機炭素測定装置であ
る。
FIG. 6 is an organic carbon measuring device according to an embodiment of the present invention.

【図7】本発明の実施例に係る有機炭素測定装置で使用
する酸化容器の具体例であり、(a)は縦断面図、
(b)は平面図である。
FIG. 7 is a specific example of an oxidation vessel used in the organic carbon measuring device according to the embodiment of the present invention, where (a) is a longitudinal sectional view,
(B) is a plan view.

【図8】本発明の実施例に係る有機炭素測定装置で使用
する酸化容器の他の具体例であり、(a)は縦断面図、
(b)は平面図である。
FIG. 8 is another specific example of the oxidation vessel used in the organic carbon measuring device according to the embodiment of the present invention, wherein (a) is a longitudinal sectional view,
(B) is a plan view.

【図9】本発明の実施例に係る有機炭素測定装置の動作
説明図である。
FIG. 9 is an operation explanatory diagram of the organic carbon measuring device according to the embodiment of the present invention.

【図10】本発明の実施例に係る有機炭素測定装置でメ
タノール標準液を測定したデータである。
FIG. 10 shows data obtained by measuring a methanol standard solution with the organic carbon measuring device according to the example of the present invention.

【図11】図10のデータから求めた検量線である。FIG. 11 is a calibration curve obtained from the data of FIG.

【図12】本発明の実施例に係る有機炭素測定装置にお
いて、流量変化の影響を調べたデータである。
FIG. 12 shows data obtained by examining the influence of a flow rate change in the organic carbon measuring device according to the example of the present invention.

【符号の説明】[Explanation of symbols]

1,10 酸化容器 2 紫外線照射領域 20 紫外光源 3,30 導電率検知電極 1,10 Oxidation container 2 UV irradiation area 20 UV light source 3,30 Conductivity detecting electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G060 AA06 AC10 AD03 AE17 AF08 AG11 FA15 FB02 HC01 HC08 HC10 HC11 HD02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G060 AA06 AC10 AD03 AE17 AF08 AG11 FA15 FB02 HC01 HC08 HC10 HC11 HD02

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 酸化容器に試料液を通過させると共に、
この試料液に紫外線を一定時間照射してから照射を中止
し、前記紫外線の点灯開始前のベース導電率と照射中止
以後の最大導電率とを前記酸化容器の出口近傍に設けた
導電率検知電極において計測し、このベース導電率と最
大導電率との差からこの試料液中の有機炭素含量を求め
る有機炭素含量の測定方法であって、前記酸化容器内を
試料液が通過する流量Fと、前記導電率検知電極より上
流側における前記酸化容器の紫外線が照射される範囲の
内容積Vと、紫外線の照射時間TとがF≦V/Tの関係
にあることを特徴とする有機炭素含量の測定方法。
1. A sample solution is passed through an oxidation container,
The sample solution is irradiated with ultraviolet light for a certain period of time, then the irradiation is stopped, and the base conductivity before starting the lighting of the ultraviolet light and the maximum conductivity after stopping irradiation are provided near the outlet of the oxidation container. In the method for measuring the organic carbon content in the sample solution from the difference between the base conductivity and the maximum conductivity, the flow rate F through which the sample solution passes through the oxidation vessel, The organic volume content of the organic carbon content, wherein the inner volume V of the oxidizing vessel on the upstream side of the conductivity detection electrode and the irradiation time T of the ultraviolet light is in a relationship of F ≦ V / T. Measuring method.
【請求項2】 前記導電率検知電極によって前記最大導
電率が計測された後に、前記酸化容器内を試料液が通過
する流量を増大させて前記酸化容器内の試料液を置換す
ることを特徴とする請求項1に記載の有機炭素含量の測
定方法。
2. After the maximum conductivity is measured by the conductivity detection electrode, a flow rate of the sample solution passing through the oxidation container is increased to replace the sample solution in the oxidation container. The method for measuring an organic carbon content according to claim 1.
【請求項3】 前記試料液中の有機炭素の紫外線酸化を
促進するために、光触媒を用いることを特徴とする請求
項1又は請求項2に記載の有機炭素含量の測定方法。
3. The method for measuring an organic carbon content according to claim 1, wherein a photocatalyst is used to promote ultraviolet oxidation of the organic carbon in the sample liquid.
【請求項4】 前記紫外線の光量を計測し、計測した光
量が所定の値より小さくなった場合に、警報を出力する
ことを特徴とする請求項1から請求項3の何れかに記載
の有機炭素含量の測定方法。
4. The organic light emitting device according to claim 1, wherein a light amount of the ultraviolet light is measured, and an alarm is output when the measured light amount becomes smaller than a predetermined value. Method for measuring carbon content.
【請求項5】 試料液が通過する酸化容器と、酸化容器
内の試料液に紫外線を照射する紫外光源と、この紫外光
源を一定時間点灯させた後に消灯する点灯制御手段と、
前記酸化容器の出口近傍に設けられた導電率検知電極
と、この導電率検知電極によって計測される前記紫外線
の点灯開始前のベース導電率と消灯以後の最大導電率と
の差からこの試料液中の有機炭素含量を演算する演算装
置とを備えると共に、 前記酸化容器内を試料液が通過する流量Fと、前記導電
率検知電極より上流側における前記酸化容器の紫外線が
照射される範囲の内容積Vと、紫外線の照射時間Tとが
F≦V/Tの関係になるように、前記流量Fを制御する
流量制御手段を備えることを特徴とする有機炭素含量の
測定装置。
5. An oxidation container through which a sample solution passes, an ultraviolet light source for irradiating the sample solution in the oxidation container with ultraviolet light, lighting control means for turning on the ultraviolet light source for a predetermined time and then turning off the light source;
The conductivity detection electrode provided in the vicinity of the outlet of the oxidation vessel, and the difference between the base conductivity before the start of lighting of the ultraviolet light measured by the conductivity detection electrode and the maximum conductivity after the light is turned off in this sample liquid. And a flow rate F through which the sample solution passes through the inside of the oxidation container, and an inner volume of the oxidation container on the upstream side of the conductivity detection electrode where the ultraviolet ray is irradiated. An apparatus for measuring an organic carbon content, comprising: a flow rate control means for controlling the flow rate F so that V and the irradiation time T of ultraviolet light have a relation of F ≦ V / T.
【請求項6】 前記導電率検知電極によって前記最大導
電率が計測された後に、前記流量制御手段により前記酸
化容器内を試料液が通過する流量を増大させて前記酸化
容器内の試料液を置換することを特徴とする請求項5に
記載の有機炭素含量の測定装置。
6. After the maximum conductivity is measured by the conductivity detection electrode, the flow rate control means increases the flow rate of the sample liquid passing through the oxidation vessel to replace the sample liquid in the oxidation vessel. The apparatus for measuring an organic carbon content according to claim 5, wherein:
【請求項7】 前記酸化容器内に、試料液中の有機炭素
の紫外線酸化を促進するための光触媒を備えたことを特
徴とする請求項5又は請求項6に記載の有機炭素含量の
測定装置。
7. The organic carbon content measuring device according to claim 5, wherein a photocatalyst for promoting ultraviolet oxidation of organic carbon in the sample liquid is provided in the oxidation container. .
【請求項8】 前記酸化容器が外筒と紫外線を実質的に
透過する材質からなる内筒とを有し、この外筒と内筒と
の間を試料液が通過する二重管構造であって、前記外筒
の内側に光触媒が被覆されていると共に、前記紫外光源
は前記内筒の内側に収容されていることを特徴とする請
求項7に記載の有機炭素含量の測定装置。
8. The oxidation vessel has an outer cylinder and an inner cylinder made of a material substantially transmitting ultraviolet light, and has a double tube structure in which a sample liquid passes between the outer cylinder and the inner cylinder. The apparatus for measuring an organic carbon content according to claim 7, wherein a photocatalyst is coated inside the outer cylinder, and the ultraviolet light source is accommodated inside the inner cylinder.
【請求項9】 前記酸化容器が外筒と紫外線を実質的に
透過する材質からなる内筒とを有し、この外筒と内筒と
の間を試料液が通過する二重管構造であって、前記外筒
の内側に光触媒が被覆されていると共に、前記内筒が前
記紫外光源の外管から形成されていることを特徴とする
請求項7に記載の有機炭素含量の測定装置。
9. The oxidation vessel has an outer cylinder and an inner cylinder made of a material substantially transmitting ultraviolet light, and has a double tube structure in which a sample liquid passes between the outer cylinder and the inner cylinder. 8. The organic carbon content measuring device according to claim 7, wherein a photocatalyst is coated inside the outer cylinder, and the inner cylinder is formed from an outer tube of the ultraviolet light source.
【請求項10】 前記紫外光源からの紫外線の光量を計
測する光量計を備えることを特徴とする請求項5から請
求項9の何れかに記載の有機炭素含量の測定装置。
10. The apparatus for measuring an organic carbon content according to claim 5, further comprising a light meter for measuring the amount of ultraviolet light from the ultraviolet light source.
【請求項11】 前記酸化容器内を試料液が通過する流
量Fを確認する手段を有することを特徴とする請求項5
から請求項10の何れかに記載の有機炭素含量の測定装
置。
11. The apparatus according to claim 5, further comprising means for confirming a flow rate F of the sample solution passing through the inside of the oxidation vessel.
The organic carbon content measuring device according to any one of claims 1 to 10.
JP37597899A 1999-11-26 1999-11-26 Method and apparatus for measuring organic carbon content Expired - Fee Related JP3320050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37597899A JP3320050B2 (en) 1999-11-26 1999-11-26 Method and apparatus for measuring organic carbon content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37597899A JP3320050B2 (en) 1999-11-26 1999-11-26 Method and apparatus for measuring organic carbon content

Publications (2)

Publication Number Publication Date
JP2001153828A true JP2001153828A (en) 2001-06-08
JP3320050B2 JP3320050B2 (en) 2002-09-03

Family

ID=18506376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37597899A Expired - Fee Related JP3320050B2 (en) 1999-11-26 1999-11-26 Method and apparatus for measuring organic carbon content

Country Status (1)

Country Link
JP (1) JP3320050B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177164A (en) * 2002-11-25 2004-06-24 Techno Morioka Kk Water quality analyzer, and analytical method for water quality
JP2006090732A (en) * 2004-09-21 2006-04-06 Dkk Toa Corp Method and instrument for measuring total organic carbon content
JP2006300633A (en) * 2005-04-19 2006-11-02 Shimadzu Corp Total organic carbon measuring instrument
JP2008111721A (en) * 2006-10-30 2008-05-15 Horiba Advanced Techno Co Ltd Method and instrument for continuously measuring concentration of total organic carbon
JP2008139312A (en) * 2006-12-01 2008-06-19 Millipore Corp Conductivity measurement device, its manufacture and use
JP2008180662A (en) * 2007-01-26 2008-08-07 Techno Morioka Kk Oxidation reaction device for measuring total organic carbon value, organic carbon value measurement unit, and ultraviolet oxidation method of organic compound
JP2012063302A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd System and method for measuring total organic carbon content in ultrapure water
WO2018151187A1 (en) * 2017-02-15 2018-08-23 ウシオ電機株式会社 Measuring device
JPWO2018235865A1 (en) * 2017-06-21 2020-04-09 株式会社島津製作所 Water quality measuring device and water quality measuring method
WO2023223649A1 (en) * 2022-05-20 2023-11-23 オルガノ株式会社 Calibration curve solution production system, measurement system, and calibration curve solution production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159642A (en) * 1984-01-10 1985-08-21 アナテル・インスツルメント・コーポレーシヨン Device for measuring organic carbon content included in water and usage thereof
JPS6434555U (en) * 1987-08-25 1989-03-02
JPS6463859A (en) * 1986-08-06 1989-03-09 Saabometsukusu Controls Ltd Method and apparatus for measuring organic carbon dissolved in water sample
JPH0994572A (en) * 1995-09-29 1997-04-08 Hitachi Ltd Method for treating organic matter-containing water and apparatus therefor
JP2001149930A (en) * 1999-11-26 2001-06-05 Dkk Toa Corp Ultraviolet oxidation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159642A (en) * 1984-01-10 1985-08-21 アナテル・インスツルメント・コーポレーシヨン Device for measuring organic carbon content included in water and usage thereof
JPS6463859A (en) * 1986-08-06 1989-03-09 Saabometsukusu Controls Ltd Method and apparatus for measuring organic carbon dissolved in water sample
JPS6434555U (en) * 1987-08-25 1989-03-02
JPH0994572A (en) * 1995-09-29 1997-04-08 Hitachi Ltd Method for treating organic matter-containing water and apparatus therefor
JP2001149930A (en) * 1999-11-26 2001-06-05 Dkk Toa Corp Ultraviolet oxidation device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177164A (en) * 2002-11-25 2004-06-24 Techno Morioka Kk Water quality analyzer, and analytical method for water quality
JP2006090732A (en) * 2004-09-21 2006-04-06 Dkk Toa Corp Method and instrument for measuring total organic carbon content
JP2006300633A (en) * 2005-04-19 2006-11-02 Shimadzu Corp Total organic carbon measuring instrument
JP2008111721A (en) * 2006-10-30 2008-05-15 Horiba Advanced Techno Co Ltd Method and instrument for continuously measuring concentration of total organic carbon
JP2011227099A (en) * 2006-12-01 2011-11-10 Millipore Corp Conductivity measuring device and manufacture and use thereof
JP2008139312A (en) * 2006-12-01 2008-06-19 Millipore Corp Conductivity measurement device, its manufacture and use
JP2008180662A (en) * 2007-01-26 2008-08-07 Techno Morioka Kk Oxidation reaction device for measuring total organic carbon value, organic carbon value measurement unit, and ultraviolet oxidation method of organic compound
JP2012063302A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd System and method for measuring total organic carbon content in ultrapure water
WO2018151187A1 (en) * 2017-02-15 2018-08-23 ウシオ電機株式会社 Measuring device
JP2018132401A (en) * 2017-02-15 2018-08-23 ウシオ電機株式会社 measuring device
KR20190105043A (en) * 2017-02-15 2019-09-11 우시오덴키 가부시키가이샤 Measuring device
KR102242895B1 (en) * 2017-02-15 2021-04-21 우시오덴키 가부시키가이샤 Measuring device
JPWO2018235865A1 (en) * 2017-06-21 2020-04-09 株式会社島津製作所 Water quality measuring device and water quality measuring method
WO2023223649A1 (en) * 2022-05-20 2023-11-23 オルガノ株式会社 Calibration curve solution production system, measurement system, and calibration curve solution production method

Also Published As

Publication number Publication date
JP3320050B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US8236567B2 (en) Method and apparatus for automated determining of chemical oxygen demand of a liquid sample
JP3320050B2 (en) Method and apparatus for measuring organic carbon content
US6791092B2 (en) Transmission meter, a method of measuring transmittance and a disinfection apparatus
US8650935B2 (en) Method of TOC monitoring
JP2004521318A (en) Pulse flow total organic carbon analyzer
WO1991006848A1 (en) Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water
US6734021B1 (en) Method and apparatus for measuring organic carbon content
JP4926650B2 (en) Continuous total organic carbon concentration measuring method and apparatus
JP3920504B2 (en) UV sterilizer
JP5239053B2 (en) Method and apparatus for measuring ozone concentration
JP2003211159A (en) Photooxidizer, water treatment apparatus and measuring apparatus
JP2006090732A (en) Method and instrument for measuring total organic carbon content
JP2001318057A (en) Residual chlorine measuring method and its device
JPH1054829A (en) Apparatus for measuring concentration of liquid phase ozone of ozone-process water and detecting apparatus for permanganate ion
US6652721B2 (en) Sensor for determination of O2 concentration in liquids
CN112305036A (en) Method and measuring point in a measuring point for determining the chemical intake capacity of a process medium
JP2000046795A (en) Residual chlorine concentration measuring apparatus
JP4486742B2 (en) Liquid concentration meter
KR19980082125A (en) Method and apparatus for measuring organic pollutants in effluents
JP2002296171A (en) Ozone water densitometer
JPH07209180A (en) Water quality monitor apparatus
JP2533460Y2 (en) Substrate cleaning device
JPH10314742A (en) Electrolyzed water producing apparatus
US20230012945A1 (en) Carbon measurements in aqueous samples using oxidation at elevated temperatures and pressures created by resistive heating
JP2000131308A (en) Apparatus and method for measurement of concentration of dissolved nitrogen in ultrapure water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees