JP2006090732A - Method and instrument for measuring total organic carbon content - Google Patents

Method and instrument for measuring total organic carbon content Download PDF

Info

Publication number
JP2006090732A
JP2006090732A JP2004273344A JP2004273344A JP2006090732A JP 2006090732 A JP2006090732 A JP 2006090732A JP 2004273344 A JP2004273344 A JP 2004273344A JP 2004273344 A JP2004273344 A JP 2004273344A JP 2006090732 A JP2006090732 A JP 2006090732A
Authority
JP
Japan
Prior art keywords
conductivity
liquid
measuring
measurement step
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004273344A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2004273344A priority Critical patent/JP2006090732A/en
Publication of JP2006090732A publication Critical patent/JP2006090732A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an instrument for measuring a total organic carbon content capable of measuring precisely and easily a TOC value, even in a sample liquid containing a high content of electrolyte component and inorganic carbon other than an organic compound, and capable of reducing a size of the instrument. <P>SOLUTION: Gas in the sample liquid in a sample liquid flow passage LS inside a reactor 1 is absorbed into an absorbent liquid in an absorbent liquid flow passage LA via a gas permeable tube provided inside the reactor 1 to measure the first conductivity x<SB>1</SB>when the conductivity of the absorbent liquid reaches an equilibrium condition. Then, an ultraviolet light source 2 lights on to oxidize the organic compound in the sample liquid, and generated carbon dioxide is absorbed into the absorbent liquid via the gas permeable tube 3 to measure the second conductivity x<SB>2</SB>when the conductivity of the absorbent liquid reaches an equilibrium condition. The total organic carbon content in the sample liquid is found based on a difference between the second conductivity x<SB>2</SB>and the first conductivity x<SB>1</SB>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、試料液中の全有機炭素含量を測定する方法および装置に関し、特に、高導電率の試料液の全有機炭素含量を測定するのに好適な、湿式酸化導電率式の全有機炭素含量測定方法および装置に関する。   The present invention relates to a method and apparatus for measuring the total organic carbon content in a sample liquid, and more particularly to a wet oxidation conductivity type total organic carbon suitable for measuring the total organic carbon content of a high conductivity sample liquid. The present invention relates to a content measuring method and apparatus.

水の清浄度を表す方式の一つとして、水中の有機物に含まれている炭素量で汚染度を表す全有機炭素含量(以下、TOC値ということもある。)がある。
かかるTOC値を測定する方法として、紫外線(UV)酸化を用いる方法が広く利用されている。具体的には、試料液に紫外線を照射することによって試料液中の有機化合物を酸化して二酸化炭素を発生させ、二酸化炭素の濃度変化に応じて生じる導電率変化を測定し、これに基づいて試料液のTOC値を求めている。
One method of expressing the cleanliness of water is the total organic carbon content (hereinafter sometimes referred to as the TOC value) representing the degree of contamination by the amount of carbon contained in organic matter in water.
As a method for measuring such a TOC value, a method using ultraviolet (UV) oxidation is widely used. Specifically, by irradiating the sample liquid with ultraviolet rays, the organic compound in the sample liquid is oxidized to generate carbon dioxide, and the change in conductivity that occurs according to the change in the concentration of carbon dioxide is measured. The TOC value of the sample solution is obtained.

この方法は、導電率の変化に基づいて有機化合物の含量を測定する方法であるので、試料液中に、導電率に影響を及ぼす電解質等の成分が多量に存在すると誤差を生じてしまう。したがって、高度に精製された超純水を測定対象とする場合には好適であるが、例えば上水など、有機化合物以外に、電解質成分を多く含有する試料を測定対象とする場合には、充分な精度が得られないという問題があった。   Since this method is a method for measuring the content of the organic compound based on the change in conductivity, an error occurs if a large amount of components such as an electrolyte affecting the conductivity exists in the sample solution. Therefore, it is suitable when highly purified ultrapure water is used as a measurement target, but is sufficient when a sample containing a large amount of electrolyte components in addition to organic compounds such as clean water is used as a measurement target. There was a problem that a high accuracy could not be obtained.

そこで、反応容器中で紫外線酸化をして二酸化炭素を発生させた後に、発生した二酸化炭素を、反応容器の下流側でガス透過性膜を介して脱イオン水に吸収させ、その後この脱イオン水の導電率を測定して全有機炭素含量を求めることが提案されている。この場合、試料液中に共存する電解質等はガス透過性膜を透過せず試料液中に留まるため、試料液中の電解質濃度にかかわらず、導電率から対応する二酸化炭素の濃度を正確に求めることができる(特許文献1参照)。
ただし、反応容器の下流側においてガス透過性膜を使用するだけでは、紫外線酸化前から元々存在していた無機炭素(二酸化炭素)や、試料液中に存在するアンモニア等ガス化が可能な電解質の影響を排除することはできない。そのため、特許文献1の装置では、試料液中に存在する無機炭素含量を別途測定したり、予め無機炭素等を除去する前処理を施したりすることによって、共存する無機炭素等の影響を排除している。
特表平4−507141号公報
Therefore, after oxidizing the ultraviolet rays in the reaction vessel to generate carbon dioxide, the generated carbon dioxide is absorbed into the deionized water through the gas permeable membrane on the downstream side of the reaction vessel, and then this deionized water It has been proposed to determine the total organic carbon content by measuring the electrical conductivity. In this case, the electrolyte coexisting in the sample solution does not permeate the gas permeable membrane and remains in the sample solution. Therefore, regardless of the electrolyte concentration in the sample solution, the corresponding carbon dioxide concentration is accurately obtained from the conductivity. (See Patent Document 1).
However, just using a gas permeable membrane on the downstream side of the reaction vessel, the inorganic carbon (carbon dioxide) that originally existed before UV oxidation and the electrolyte that can be gasified such as ammonia present in the sample solution. The effect cannot be excluded. For this reason, the apparatus of Patent Document 1 eliminates the influence of coexisting inorganic carbon, etc. by separately measuring the inorganic carbon content present in the sample solution or by performing pretreatment to remove inorganic carbon etc. in advance. ing.
Japanese National Publication No. 4-507141

しかし、特許文献1の装置では、反応容器の下流側に、ガス透過性膜を介して二酸化炭素を脱イオン水に移行させるためのモジュールを別途設けることが必要であり、装置全体の大型化、複雑化を招いていた。
さらに、特許文献1の装置では、試料液中に存在する無機炭素含量を別途測定するためのシステムや、無機炭素等を予め除去する前処理用のモジュールも必要であり、この点からも装置全体の大型化、複雑化を招いていた。
However, in the apparatus of Patent Document 1, it is necessary to separately provide a module for transferring carbon dioxide to deionized water via a gas permeable membrane on the downstream side of the reaction vessel. It has become complicated.
Furthermore, in the apparatus of Patent Document 1, a system for separately measuring the content of inorganic carbon present in the sample solution and a pretreatment module for removing inorganic carbon and the like in advance are also necessary. Has been increasing in size and complexity.

本発明は前記事情に鑑みてなされたもので、有機化合物以外に、電解質成分や無機炭素を多く含有する試料液であっても、そのTOC値を精度良く簡便に測定でき、しかも装置を小型化できる全有機炭素含量測定方法および装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and it is possible to accurately and easily measure the TOC value of a sample solution containing a large amount of an electrolyte component and inorganic carbon in addition to an organic compound, and downsizing the apparatus. It is an object of the present invention to provide a method and apparatus for measuring the total organic carbon content.

上記課題を解決するため、本件発明は、以下の態様を含む。
[1]試料液中の全有機炭素含量を測定する方法であって、反応器内の試料液中のガスを、反応器内に配置したガス透過性膜を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率である第1導電率を測定する第1測定工程と、第1測定工程後、前記反応器内の試料液中の有機化合物を酸化しつつ、発生した二酸化炭素を、前記ガス透過性膜を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率である第2導電率を測定する第2測定工程とを有し、第2測定工程で得られた第2導電率と、第1測定工程で得られた第1導電率との差から試料液中の全有機炭素含量を求めることを特徴とする全有機炭素含量の測定方法。
In order to solve the above problems, the present invention includes the following aspects.
[1] A method for measuring the total organic carbon content in a sample solution, in which the gas in the sample solution in the reactor is absorbed by the absorbing solution through a gas permeable membrane disposed in the reactor. A first measurement step for measuring the first conductivity, which is the conductivity of the absorbing solution after a sufficient time has elapsed for the conductivity of the solution to reach an equilibrium state, and after the first measurement step, After oxidizing the organic compound in the sample liquid, the generated carbon dioxide is absorbed into the absorption liquid through the gas permeable membrane, and after a sufficient time has elapsed for the conductivity of the absorption liquid to reach an equilibrium state. A second measurement step of measuring a second conductivity, which is the conductivity of the absorbent, and the second conductivity obtained in the second measurement step and the first conductivity obtained in the first measurement step A method for measuring the total organic carbon content, wherein the total organic carbon content in the sample solution is determined from the difference between the total organic carbon content and the sample liquid.

[2]試料液中の全有機炭素含量を測定する方法であって、反応器内の試料液中のガスを、反応器内に配置したガス透過性膜を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率である第1導電率を測定する第1測定工程と、第1測定工程後、前記反応器内の試料液中の有機化合物を酸化しつつ、発生した二酸化炭素を、前記ガス透過性膜を介して吸収液に吸収させ、所定時間を経過した後の吸収液の導電率である第2導電率を測定する第2測定工程とを有し、第2測定工程で得られた第2導電率と、第1測定工程で得られた第1導電率との差から試料液中の全有機炭素含量を求めることを特徴とする全有機炭素含量の測定方法。
[3]吸収液が脱イオン水である[1]又は[2]に記載の全有機炭素含量の測定方法。
[2] A method for measuring the total organic carbon content in a sample solution, in which the gas in the sample solution in the reactor is absorbed by the absorbing solution through a gas permeable membrane disposed in the reactor. A first measurement step for measuring the first conductivity, which is the conductivity of the absorbing solution after a sufficient time has elapsed for the conductivity of the solution to reach an equilibrium state, and after the first measurement step, While oxidizing the organic compound in the sample liquid, the generated carbon dioxide is absorbed into the absorption liquid through the gas permeable membrane, and the second conductivity which is the conductivity of the absorption liquid after a predetermined time has elapsed. And measuring the total organic carbon content in the sample liquid from the difference between the second conductivity obtained in the second measurement step and the first conductivity obtained in the first measurement step. A method for measuring the total organic carbon content characterized in that it is obtained.
[3] The method for measuring the total organic carbon content according to [1] or [2], wherein the absorbing solution is deionized water.

[4]試料液中の全有機炭素含量を測定する方法であって、反応器内の試料液中のガスを、反応器内に配置したガス透過性膜を介して吸収液に吸収させつつ、この吸収液を脱イオン化し、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率であるベース導電率を測定する第1測定工程と、第1測定工程後、前記反応器内の試料液中の有機化合物を酸化しつつ、発生した二酸化炭素を、前記ガス透過性膜を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率である第2導電率を測定する第2測定工程とを有し、第2測定工程で得られた第2導電率と、第1測定工程で得られたベース導電率との差から試料液中の全有機炭素含量を求めることを特徴とする全有機炭素含量の測定方法。 [4] A method for measuring the total organic carbon content in a sample solution, wherein the absorbing solution absorbs the gas in the sample solution in the reactor through a gas permeable membrane disposed in the reactor, A first measurement step of measuring the base conductivity, which is the conductivity of the absorbing solution after sufficient time has passed for the absorbing solution to deionize and to reach the equilibrium state of the absorbing solution; After the process, while oxidizing the organic compound in the sample liquid in the reactor, the generated carbon dioxide is absorbed into the absorption liquid through the gas permeable membrane, and the conductivity of the absorption liquid reaches an equilibrium state. A second measurement step of measuring a second conductivity, which is the conductivity of the absorbing liquid after a sufficient time has elapsed, and a second conductivity obtained in the second measurement step, and a first measurement step The total organic carbon content in the sample solution is obtained from the difference from the base conductivity obtained in step 1. The measurement method of the machine carbon content.

[5]試料液中の全有機炭素含量を測定する方法であって、反応器内の試料液中のガスを、反応器内に配置したガス透過性膜を介して吸収液に吸収させつつ、この吸収液を脱イオン化し、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率であるベース導電率を測定する第1測定工程と、第1測定工程後、前記反応器内の試料液中の有機化合物を酸化しつつ、発生した二酸化炭素を、前記ガス透過性膜を介して吸収液に吸収させ、所定時間を経過した後の吸収液の導電率である第2導電率を測定する第2測定工程とを有し、第2測定工程で得られた第2導電率と、第1測定工程で得られたベース導電率との差から試料液中の全有機炭素含量を求めることを特徴とする全有機炭素含量の測定方法。
[6]第2測定工程において、紫外線照射により、試料液中の有機化合物を酸化する[1]から[5]の何れかに記載の全有機炭素含量の測定方法。
[5] A method for measuring the total organic carbon content in a sample liquid, the gas in the sample liquid in the reactor being absorbed into the absorbing liquid through the gas permeable membrane disposed in the reactor, A first measurement step of measuring the base conductivity, which is the conductivity of the absorbing solution after sufficient time has passed for the absorbing solution to deionize and for the conductivity of the absorbing solution to reach an equilibrium state; After the process, while oxidizing the organic compound in the sample liquid in the reactor, the generated carbon dioxide is absorbed into the absorbing liquid through the gas permeable membrane, and the conductive property of the absorbing liquid after a predetermined time has passed. A second measurement step for measuring the second conductivity, which is a ratio, and a sample liquid from a difference between the second conductivity obtained in the second measurement step and the base conductivity obtained in the first measurement step A method for measuring the total organic carbon content, wherein the total organic carbon content is determined.
[6] The method for measuring the total organic carbon content according to any one of [1] to [5], wherein the organic compound in the sample solution is oxidized by ultraviolet irradiation in the second measurement step.

[7]反応器と、反応器内に配置されたガス透過性膜と、光源と、導電率センサとを備え、前記反応器内には、前記ガス透過性膜により互いに分離された試料液流路と吸収液流路とが形成され、前記試料液流路には、試料液が流入、流出するようになっており、内部に光触媒が配置され、前記光源は、前記試料液流路に光を照射するように配置され、前記吸収液流路には、吸収液が流入、流出するようになっており、前記導電率センサは、前記吸収液の導電率を測定するように前記吸収液流路内又は前記吸収液流路の下流側に設けられていることを特徴とする全有機炭素含量測定装置。 [7] A sample liquid flow separated from each other by the gas permeable membrane is provided with a reactor, a gas permeable membrane disposed in the reactor, a light source, and a conductivity sensor. A channel and an absorption liquid channel are formed, the sample solution flows into and out of the sample solution channel, a photocatalyst is disposed therein, and the light source emits light into the sample solution channel. The absorption liquid flows into and out of the absorption liquid flow path, and the conductivity sensor measures the absorption liquid flow so as to measure the conductivity of the absorption liquid. A total organic carbon content measuring device provided in the channel or downstream of the absorption liquid channel.

[8]光源が、紫外線を照射する紫外光源である[7]に記載の全有機炭素含量測定装置。
[9]さらに、吸収液流路の出口と入口とをつなぐ帰還流路を備える[7]又は[8]に記載の全有機炭素含量測定装置。
[10]帰還流路に脱イオン水を供給する脱イオンモジュールを備える[9]に記載の全有機炭素含量測定装置。
[8] The total organic carbon content measuring apparatus according to [7], wherein the light source is an ultraviolet light source that irradiates ultraviolet rays.
[9] The total organic carbon content measuring apparatus according to [7] or [8], further including a return flow path connecting the outlet and the inlet of the absorption liquid flow path.
[10] The total organic carbon content measuring apparatus according to [9], further including a deionization module that supplies deionized water to the return channel.

本発明によれば、反応器内にガス透過性膜を配置したので、反応器内で有機化合物の酸化とこれにより発生した二酸化炭素ガスの吸収液の移行ができる。また、反応器内で電解質成分や無機炭素等、無機成分の吸収液への移行もできる。そのため、試料液中に存在する無機成分を測定するためのシステムや、無機成分を予め除去する前処理用のモジュールを別途用意する必要もない。
したがって、本発明によれば、有機化合物以外に、電解質成分や無機炭素等を多く含有する試料液であっても、そのTOC値を精度良く簡便に測定でき、しかも、装置を小型化できる全有機炭素含量測定方法および装置を提供することができる。
According to the present invention, since the gas permeable membrane is disposed in the reactor, it is possible to oxidize the organic compound in the reactor and transfer the carbon dioxide gas absorbing solution generated thereby. Moreover, transfer to the absorption liquid of inorganic components, such as an electrolyte component and inorganic carbon, can also be performed in a reactor. Therefore, it is not necessary to separately prepare a system for measuring the inorganic component present in the sample solution and a pretreatment module for removing the inorganic component in advance.
Therefore, according to the present invention, even a sample solution containing a large amount of an electrolyte component, inorganic carbon, etc. in addition to an organic compound, the TOC value can be measured accurately and easily, and the total organic size can be reduced. A carbon content measuring method and apparatus can be provided.

[測定装置A]
図1は本発明に係る全有機炭素含量測定装置の1実施形態である。本実施形態の測定装置は、反応器1と反応器1内に挿通された紫外光源2と、反応器1内において紫外光源2の周囲を螺旋状に周回するガス透過性チューブ3と、ガス透過性チューブ3の入口3aと出口3bとの間をつなぐ帰還流路LBと、帰還流路LBに介装された導電率センサEL及びポンプP1と、帰還流路LBに連絡する脱イオンモジュール10とから概略構成されている。
[Measurement device A]
FIG. 1 shows an embodiment of the total organic carbon content measuring apparatus according to the present invention. The measuring apparatus of the present embodiment includes a reactor 1, an ultraviolet light source 2 inserted into the reactor 1, a gas permeable tube 3 that spirals around the ultraviolet light source 2 in the reactor 1, and a gas permeable tube. A return flow path LB that connects between the inlet 3a and the outlet 3b of the conductive tube 3, a conductivity sensor EL and a pump P1 interposed in the return flow path LB, and a deionization module 10 that communicates with the return flow path LB. It is roughly composed.

反応器1内部のガス透過性チューブ3の外側は、試料液流路LSとなっている。ガス透過性チューブ3の内部は、吸収液流路LAとなっている。
試料入口と反応器1の入口1aとをつなぐ流路L1には、ポンプP2と開閉バルブSV1が介装されている。反応器1の出口1bと試料出口とをつなぐ流路L2には、逆止弁5が介装されている。導電率センサELには、変換器4が接続されている。
The outside of the gas permeable tube 3 inside the reactor 1 is a sample liquid flow path LS. The inside of the gas permeable tube 3 is an absorption liquid flow path LA.
A pump P2 and an opening / closing valve SV1 are interposed in the flow path L1 connecting the sample inlet and the inlet 1a of the reactor 1. A check valve 5 is interposed in the flow path L2 connecting the outlet 1b of the reactor 1 and the sample outlet. A converter 4 is connected to the conductivity sensor EL.

ガス透過性チューブ3は、気体を透過させ液体を透過させないガス透過性膜で形成されている。このガス透過性膜としては紫外線透過性のものが好ましい。紫外線透過性とすることにより、ガス透過性チューブ3よりも外側に存在する試料液にも、紫外光源2からの紫外線を到達させることができるので、酸化効率が向上する。また、紫外線により劣化しないように、紫外線耐性に優れる材質であることが好ましい。このような材質としては、例えば、光学用フッ素系樹脂が挙げられる。
なお、ガス透過性チューブ3に対する紫外線の到達を防げば、紫外線耐性が充分でない材質の使用も可能である。例えば、ガス透過性チューブ3を、光触媒や、スポンジ等の空孔を有する構造体やガラス等のビーズに光触媒をコーティングしたもので覆うことにより紫外線を遮れば、紫外線耐性が充分でない材質を、ガス透過性チューブ3に使用することが可能である。
The gas permeable tube 3 is formed of a gas permeable membrane that allows gas to pass but does not allow liquid to pass. The gas permeable film is preferably an ultraviolet permeable film. By making it ultraviolet permeable, since the ultraviolet rays from the ultraviolet light source 2 can reach the sample liquid existing outside the gas permeable tube 3, the oxidation efficiency is improved. Moreover, it is preferable that it is a material excellent in ultraviolet-ray resistance so that it may not deteriorate with an ultraviolet-ray. An example of such a material is an optical fluororesin.
In addition, if the ultraviolet rays do not reach the gas permeable tube 3, it is possible to use a material having insufficient ultraviolet resistance. For example, if the gas permeable tube 3 is covered with a photocatalyst, a structure having pores such as a sponge, or a bead of glass or the like with a photocatalyst coated, a material having insufficient UV resistance is obtained. The gas permeable tube 3 can be used.

紫外光源2としては水銀ランプが好適に使用できるが、これに特に限定はされず、キセノンフラッシュランプや、無声放電による紫外線ランプ等も使用可能である。
また、反応器1内の試料液流路LSには、紫外線酸化を促進するための光触媒が配置されている。光触媒としては、酸化チタン(TiO)が最も好適に使用できるが、その他としては、SrTiO、CDS、WO、Fe、MO等を挙げることができる。
光触媒を試料液流路LSに配置するには、光触媒をその試料液流路LS内に充填してもよいし、反応器1の内壁や、試料液流路LS内に充填したガラス、プラスチック、セラミックス等のビーズ、小片、若しくはボール、又はスポンジ等の空孔を有する構造体、又は可撓性のある金属製の網、メッシュ等にコーティングしてもよい。
光触媒をコーティングする手段としては、機械的手法によるものでもよいし、化学的手法によるものでもよい。
A mercury lamp is preferably used as the ultraviolet light source 2, but is not particularly limited to this, and a xenon flash lamp, an ultraviolet lamp using silent discharge, or the like can also be used.
In addition, a photocatalyst for promoting ultraviolet oxidation is disposed in the sample solution flow path LS in the reactor 1. As the photocatalyst, titanium oxide (TiO 2 ) can be most preferably used, but as others, SrTiO 3 , CDS, WO 3 , Fe 2 O 3 , MO 3 and the like can be mentioned.
In order to arrange the photocatalyst in the sample liquid flow path LS, the photocatalyst may be filled in the sample liquid flow path LS, or the inner wall of the reactor 1 or glass, plastic filled in the sample liquid flow path LS, You may coat on the structure which has holes, such as beads, small pieces, or balls, or sponges, such as ceramics, or a flexible metal net, mesh, etc.
As a means for coating the photocatalyst, a mechanical method or a chemical method may be used.

脱イオンモジュール10は、タンク11と、限外濾過器12と、イオン交換器13と三方バルブSV2とを備えている。脱イオンモジュール10は、限外濾過器12にイオン交換器13を組み合わせることにより、二酸化炭素が溶解して生成する炭酸イオンも含めて種々の成分を除去することができる。そのため、導電率がTOC値に換算して1ppb以下である良好なゼロ水を供給することができるようになっている。
帰還流路LBの上流側とタンク11との間をつなぐ流路L3には、逆止弁14が介装されている。タンク11と限外濾過器12との間をつなぐ流路L4には、ポンプP3が介装されている。限外濾過器12と三方バルブSV2との間をつなぐ流路L5には、先のイオン交換器13が介装されている。三方バルブSV2と帰還流路LBの下流側との間をつなぐ流路L6には、逆止弁15が介装されている。
また、限外濾過器12とタンク11との間には、限外濾過器12を通過しきれない吸収液をタンク11に戻すための流路L7が、三方バルブSV2と流路L7との間には、脱イオンモジュール10と帰還流路LBとの連絡を遮断した際に吸収液をタンク11に戻すための流路L8が、各々設けられている。
The deionization module 10 includes a tank 11, an ultrafilter 12, an ion exchanger 13, and a three-way valve SV2. The deionization module 10 can remove various components including carbonate ions generated by dissolving carbon dioxide by combining the ion filter 13 with the ultrafilter 12. Therefore, it is possible to supply good zero water whose conductivity is converted to a TOC value and is 1 ppb or less.
A check valve 14 is interposed in the flow path L3 that connects the upstream side of the return flow path LB and the tank 11. A pump P3 is interposed in the flow path L4 that connects between the tank 11 and the ultrafilter 12. The previous ion exchanger 13 is interposed in the flow path L5 connecting between the ultrafilter 12 and the three-way valve SV2. A check valve 15 is interposed in the flow path L6 that connects the three-way valve SV2 and the downstream side of the return flow path LB.
Further, between the ultrafilter 12 and the tank 11, a flow path L7 for returning the absorbing liquid that cannot pass through the ultrafilter 12 to the tank 11 is between the three-way valve SV2 and the flow path L7. Are each provided with a flow path L8 for returning the absorbing liquid to the tank 11 when communication between the deionization module 10 and the return flow path LB is cut off.

本実施形態の測定装置による全有機炭素含量の測定は、以下の測定方法A〜Cの何れかの方法により行うことができる。   The measurement of the total organic carbon content by the measuring apparatus of this embodiment can be performed by any one of the following measuring methods A to C.

[測定方法A]
測定方法Aとしては、まず、試料液流路LS内の古い試料液を新しい試料液に置換すると共に、吸収液流路LA内の吸収液を充分に浄化された吸収液(脱イオン水)に置換する(準備工程)。
次に、紫外光源2からの紫外線を照射しない状態で、試料液中のガスを、ガス透過性チューブ3を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率(第1導電率)を測定する(第1測定工程)。
次いで、紫外光源2からの紫外線を試料液に照射しつつ、これにより試料液内で発生した二酸化炭素を、ガス透過性チューブ3を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率(第2導電率)を測定する(第2測定工程)。
そして、第2測定工程で得られた第2導電率と、第1測定工程で得られた第1導電率との差から試料液中の全有機炭素含量を求める(演算)。
以下、各工程について詳述する。
[Measurement method A]
As the measurement method A, first, the old sample solution in the sample solution channel LS is replaced with a new sample solution, and the absorption solution in the absorption solution channel LA is changed to a sufficiently purified absorption solution (deionized water). Replace (preparation step).
Next, the gas in the sample liquid is absorbed by the absorption liquid through the gas permeable tube 3 without irradiating the ultraviolet light from the ultraviolet light source 2, and the conductivity of the absorption liquid is sufficient to reach an equilibrium state. The electrical conductivity (first electrical conductivity) of the absorbent after the elapse of time is measured (first measurement step).
Next, while irradiating the sample liquid with ultraviolet light from the ultraviolet light source 2, carbon dioxide generated in the sample liquid is absorbed into the absorption liquid through the gas permeable tube 3, and the conductivity of the absorption liquid is in an equilibrium state. The electrical conductivity (second electrical conductivity) of the absorbing solution after a sufficient time has passed to reach the value (second measurement step).
Then, the total organic carbon content in the sample solution is obtained from the difference between the second conductivity obtained in the second measurement step and the first conductivity obtained in the first measurement step (calculation).
Hereinafter, each process is explained in full detail.

(準備工程)
開閉バルブSV1を開としてポンプP2を作動し、試料液を試料液流路LS内に流通させる。また、ポンプP1を作動し、吸収液を吸収液流路LAと帰還流路LBとからなる循環流路内で循環させる。
一方、三方バルブSV2のNOポート側を開としてポンプP3を作動させる。これにより、タンク11から供給され、限外濾過器12とイオン交換器13とを通過して浄化された吸収液が、流路L6を介して帰還流路LBに供給される。そして、上記吸収液流路LAと帰還流路LBとからなる循環流路内の吸収液と合流した後、流路L3を経由してタンク11に戻される。
その結果、吸収液流路LAと帰還流路LBとからなる循環流路内の吸収液は徐々に限外濾過器12およびイオン交換器13によって浄化された吸収液に置換される。循環流路内の吸収液が浄化された吸収液に充分に置換された時の導電率センサELの出力値をx(ベース導電率)とする。
(Preparation process)
The opening / closing valve SV1 is opened and the pump P2 is operated to cause the sample liquid to flow through the sample liquid flow path LS. Further, the pump P1 is operated to circulate the absorption liquid in the circulation flow path composed of the absorption liquid flow path LA and the return flow path LB.
On the other hand, the NO port side of the three-way valve SV2 is opened to operate the pump P3. Thereby, the absorption liquid supplied from the tank 11 and purified by passing through the ultrafilter 12 and the ion exchanger 13 is supplied to the return flow path LB via the flow path L6. And after joining with the absorption liquid in the circulation flow path which consists of the said absorption liquid flow path LA and the return flow path LB, it returns to the tank 11 via the flow path L3.
As a result, the absorption liquid in the circulation flow path composed of the absorption liquid flow path LA and the return flow path LB is gradually replaced with the absorption liquid purified by the ultrafilter 12 and the ion exchanger 13. Let x 0 (base conductivity) be the output value of the conductivity sensor EL when the absorbing solution in the circulation channel is sufficiently replaced with the purified absorbing solution.

準備工程を行うことにより、ベース導電率xが下がり測定精度が向上する。ただし、準備工程は必須ではない。準備工程を行わない場合、後述の第1測定工程で得られる出力値x(第1導電率)と第2測定工程で得られる出力値x(第2導電率)とが、各々上昇し得るが、理論上、両者の差Δx(x−x)には影響がないからである。 By performing the preparatory step, the base conductivity x 0 is improved decreases measurement accuracy. However, the preparation process is not essential. When the preparation step is not performed, an output value x 1 (first conductivity) obtained in the first measurement step described later and an output value x 2 (second conductivity) obtained in the second measurement step are increased. This is because the difference Δx 2 (x 2 −x 1 ) between the two is theoretically not affected.

(第1測定工程)
次に、開閉バルブSV1を閉としてポンプP2を停止する。同時に、三方バルブSV2のNOポート側を閉、NCポート側を開として脱イオンモジュール10と帰還流路LBとの連絡を遮断する。なお、ポンプP1の作動は止めず吸収液流路LAと帰還流路LBとからなる循環流路内の循環を継続する。また、ポンプP3の作動も止めず吸収液の浄化を継続する。
この間、試料液流路LS内に元々存在していたガスが、ガス透過性チューブ3を通過して吸収液流路LAに移行する。ガスの移行は、吸収液流路LAと帰還流路LBとからなる循環流路内の吸収液のガス濃度が、試料液流路LS内の試料液のガス濃度と同等になるまで継続する。
循環流路内の吸収液のガス濃度が、試料液流路LS内のガス濃度と同等になると、導電率センサELの出力値も平衡に達する。このときの出力値をx(第1導電率)とする。
(First measurement process)
Next, the opening / closing valve SV1 is closed and the pump P2 is stopped. At the same time, the NO port side of the three-way valve SV2 is closed and the NC port side is opened, thereby disconnecting the deionization module 10 from the return flow path LB. Note that the operation of the pump P1 is not stopped and the circulation in the circulation flow path composed of the absorption liquid flow path LA and the return flow path LB is continued. Further, the operation of the pump P3 is not stopped and the purification of the absorbent is continued.
During this time, the gas originally present in the sample liquid flow path LS passes through the gas permeable tube 3 and moves to the absorption liquid flow path LA. The gas transition is continued until the gas concentration of the absorption liquid in the circulation flow path composed of the absorption liquid flow path LA and the return flow path LB becomes equal to the gas concentration of the sample liquid in the sample liquid flow path LS.
When the gas concentration of the absorption liquid in the circulation flow path becomes equal to the gas concentration in the sample liquid flow path LS, the output value of the conductivity sensor EL reaches equilibrium. The output value at this time is defined as x 1 (first conductivity).

(第2測定工程)
次に、バルブの開閉状態やポンプの動作状態は第1測定工程と同じままで、紫外光源2を点灯する。これにより、試料液流路LS内の有機化合物が酸化されて二酸化炭素ガスが発生する。
発生した二酸化炭素ガスは、ガス透過性チューブ3を通過して吸収液流路LAに移行する。二酸化炭素ガスの移行は、吸収液流路LAと帰還流路LBとからなる循環流路内の吸収液の二酸化炭素ガス濃度が、試料液流路LS内の試料液の二酸化炭素ガス濃度と同等になるまで継続する。
循環流路内の吸収液の二酸化炭素ガス濃度が、試料液流路LS内の二酸化炭素ガス濃度と同等になると、導電率センサELの出力値も平衡に達する。このときの出力値をx(第2導電率)とする。
(Second measurement process)
Next, the ultraviolet light source 2 is turned on with the valve open / closed state and pump operating state being the same as in the first measurement step. Thereby, the organic compound in the sample liquid flow path LS is oxidized and carbon dioxide gas is generated.
The generated carbon dioxide gas passes through the gas permeable tube 3 and moves to the absorption liquid channel LA. In the transfer of carbon dioxide gas, the carbon dioxide gas concentration of the absorption liquid in the circulation flow path composed of the absorption liquid flow path LA and the return flow path LB is equal to the carbon dioxide gas concentration of the sample liquid in the sample liquid flow path LS. Continue until
When the carbon dioxide gas concentration of the absorbing liquid in the circulation channel becomes equal to the carbon dioxide gas concentration in the sample solution channel LS, the output value of the conductivity sensor EL reaches equilibrium. The output value at this time is assumed to be x 2 (second conductivity).

(演算)
第1測定工程の第1導電率xと第2測定工程の第2導電率xとを各々変換器4を介して図示しない演算装置に出力する。演算装置では、この第2導電率xと第1導電率xとの差Δxから全有機炭素含量を演算する。
なお、第1導電率xと第2導電率xのデータを演算装置に取り込むタイミングは、導電率センサELの出力値から導電率が平衡に達したことを確認できたときとしてもよいし、充分に平衡に達しうる一定の時間を決め、その時間が経過したときとしてもよい。
このようにして求めた全有機炭素含量が、無機成分の影響を受けないものであることを、図2を用いて説明する。
(Calculation)
The first conductivity x 1 in the first measurement step and the second conductivity x 2 in the second measurement step are each output to the arithmetic device (not shown) via the converter 4. In the arithmetic unit, the total organic carbon content is calculated from the difference Δx 2 between the second conductivity x 2 and the first conductivity x 1 .
The timing of capturing the first conductivity x 1 and the data of the second conductivity x 2 to the arithmetic unit may be a case where the conductivity from the output value of the conductivity sensor EL was confirmed that equilibrium was reached It is also possible to determine a certain time during which sufficient equilibrium can be reached and when that time has elapsed.
It will be described with reference to FIG. 2 that the total organic carbon content thus determined is not affected by the inorganic component.

第1測定工程及び第2測定工程における導電率の出力値変化は図2に示すとおりである。第1測定工程で得られた第1導電率xと準備工程で得られたベース導電率xとの差Δxは、試料液中に元々存在していた二酸化炭素ガスやアンモニアガス等、無機成分の濃度に比例する。また、第2測定工程で得られた第2導電率xと第1測定工程で得られた第1導電率xとの差Δxは、紫外線酸化により試料液内で発生した二酸化炭素ガス濃度に比例する。すなわち、試料液の全有機炭素含量に比例する。つまり、Δxから、無機成分の影響を受けることなく全有機炭素含量を求めることができるのである。
以上により全有機炭素含量を求めた後、再び準備工程からの工程を繰り返すことにより、試料液の全有機炭素含量を間欠的に測定することができる。
The change in the output value of conductivity in the first measurement process and the second measurement process is as shown in FIG. The difference Δx 1 between the first conductivity x 1 obtained in the first measurement step and the base conductivity x 0 obtained in the preparation step is such as carbon dioxide gas or ammonia gas originally present in the sample liquid, Proportional to the concentration of inorganic components. Further, the difference Δx 2 between the second conductivity x 2 obtained in the second measurement step and the first conductivity x 1 obtained in the first measurement step is a carbon dioxide gas generated in the sample liquid by ultraviolet oxidation. Proportional to concentration. That is, it is proportional to the total organic carbon content of the sample solution. That is, the total organic carbon content can be obtained from Δx 2 without being affected by the inorganic component.
After calculating | requiring the total organic carbon content by the above, the total organic carbon content of a sample liquid can be measured intermittently by repeating the process from a preparation process again.

なお、図3は、試料液中に元々存在していた二酸化炭素ガスやアンモニアガス等、無機成分の濃度が高く、これに比較して試料液の全有機炭素含量が低い場合に、測定方法Aによって得られる導電率の出力値変化である。
この場合、図3に示すように、第1測定工程で得られた第1導電率xと準備工程で得られたベース導電率xとの差Δxが大きくなる。一方、第2測定工程で得られた第2導電率xと第1測定工程で得られた第1導電率xとの差Δxは、相対的に小さい値となる。
そのため、Δxの値を正確に求めることが難しくなり、ひいては、無機成分の影響を受けることなく全有機炭素含量の値を正確に求めることか難しくなる。
このような場合、以下に説明する測定方法Bにより測定することが好ましい。
FIG. 3 shows the measurement method A when the concentration of inorganic components such as carbon dioxide gas and ammonia gas originally present in the sample solution is high and the total organic carbon content of the sample solution is low. Is a change in the output value of conductivity obtained by
In this case, as shown in FIG. 3, the difference Δx 1 between the first conductivity x 1 obtained in the first measurement process and the base conductivity x 0 obtained in the preparation process becomes large. On the other hand, the difference Δx 2 between the second conductivity x 2 obtained in the second measurement step and the first conductivity x 1 obtained in the first measurement step is a relatively small value.
Therefore, it becomes difficult to obtain the value of [Delta] x 2 exactly, hence, it becomes difficult or accurately determine that the value of total organic carbon content without being affected by the inorganic component.
In such a case, it is preferable to measure by the measuring method B described below.

[測定方法B]
測定方法Bとしては、まず、試料液流路LS内の古い試料液を新しい試料液に置換すると共に、吸収液流路LA内の吸収液を充分に浄化された吸収液(脱イオン水)に置換する(準備工程)。
次に、紫外光源2からの紫外線を照射しない状態で、試料液中のガスを、ガス透過性チューブ3を介して吸収液に吸収させつつ、この吸収液を脱イオン化し、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率(ベース導電率)を測定する(第1測定工程)。
次いで、紫外光源2からの紫外線を試料液に照射しつつ、これにより試料液内で発生した二酸化炭素を、ガス透過性チューブ3を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率(第2導電率)を測定する(第2測定工程)。
そして、第2測定工程で得られた第2導電率と、第1測定工程で得られたベース導電率との差から試料液中の全有機炭素含量を求める(演算)。
以下、各工程について詳述する。
[Measurement method B]
As the measurement method B, first, the old sample solution in the sample solution channel LS is replaced with a new sample solution, and the absorption solution in the absorption solution channel LA is changed to a sufficiently purified absorption solution (deionized water). Replace (preparation step).
Next, in a state where the ultraviolet light from the ultraviolet light source 2 is not irradiated, the absorption liquid is deionized while absorbing the gas in the sample liquid into the absorption liquid through the gas permeable tube 3, and the conductivity of the absorption liquid is determined. Measure the conductivity (base conductivity) of the absorbing solution after a sufficient time has passed to reach an equilibrium state (first measurement step).
Next, while irradiating the sample liquid with ultraviolet light from the ultraviolet light source 2, carbon dioxide generated in the sample liquid is absorbed into the absorption liquid through the gas permeable tube 3, and the conductivity of the absorption liquid is in an equilibrium state. The electrical conductivity (second electrical conductivity) of the absorbing solution after a sufficient time has passed to reach the value (second measurement step).
Then, the total organic carbon content in the sample solution is obtained from the difference between the second conductivity obtained in the second measurement step and the base conductivity obtained in the first measurement step (calculation).
Hereinafter, each process is explained in full detail.

(準備工程)
開閉バルブSV1を開としてポンプP2を作動し、試料液を試料液流路LS内に流通させる。また、ポンプP1を作動し、吸収液を吸収液流路LAと帰還流路LBとからなる循環流路内で循環させる。
一方、三方バルブSV2のNOポート側を開としてポンプP3を作動させる。これにより、タンク11から供給され、限外濾過器12とイオン交換器13とを通過して浄化された吸収液が、流路L6を介して帰還流路LBに供給される。そして、上記吸収液流路LAと帰還流路LBとからなる循環流路内の吸収液と合流した後、流路L3を経由してタンク11に戻される。
その結果、吸収液流路LAと帰還流路LBとからなる循環流路内の吸収液は徐々に限外濾過器12およびイオン交換器13によって浄化された吸収液に置換される。循環流路内の吸収液が浄化された吸収液に充分に置換された時の導電率センサELの出力値をx(ベース導電率)とする。
(Preparation process)
The opening / closing valve SV1 is opened and the pump P2 is operated to cause the sample liquid to flow through the sample liquid flow path LS. Further, the pump P1 is operated to circulate the absorption liquid in the circulation flow path composed of the absorption liquid flow path LA and the return flow path LB.
On the other hand, the NO port side of the three-way valve SV2 is opened to operate the pump P3. Thereby, the absorption liquid supplied from the tank 11 and purified by passing through the ultrafilter 12 and the ion exchanger 13 is supplied to the return flow path LB via the flow path L6. And after joining with the absorption liquid in the circulation flow path which consists of the said absorption liquid flow path LA and the return flow path LB, it returns to the tank 11 via the flow path L3.
As a result, the absorption liquid in the circulation flow path composed of the absorption liquid flow path LA and the return flow path LB is gradually replaced with the absorption liquid purified by the ultrafilter 12 and the ion exchanger 13. Let x 0 (base conductivity) be the output value of the conductivity sensor EL when the absorbing solution in the circulation channel is sufficiently replaced with the purified absorbing solution.

準備工程を行うことにより、後述の第1測定工程を短時間で終了させることができる。ただし、準備工程は必須ではない。準備工程を行わなくても、後述の第1測定工程の時間を充分にとれば、ベース導電率xが得られるからである。 By performing a preparatory process, the below-mentioned 1st measurement process can be completed in a short time. However, the preparation process is not essential. Even without preparation step, taking sufficient time in the first measuring step described below, because the base conductivity x 0 is obtained.

(第1測定工程)
次に、開閉バルブSV1を閉としてポンプP2を停止する。なお、三方バルブSV2はNOポート側を開のままとし、ポンプP1、ポンプP3の作動も継続する。
この間、試料液流路LS内に元々存在していたガスが、ガス透過性チューブ3を通過して吸収液流路LAに移行するので、導電率センサELの出力値は一旦上昇する。
移行したガスは限外濾過器12およびイオン交換器13によって除かれるので、ガスの移行は、試料液流路LS内のガスのほぼ全量が、吸収液流路LAに移行するまで継続する。ガスの移行が終了し、循環流路内の吸収液が浄化された吸収液に充分に置換されると、導電率センサELの出力値は、再びベース導電率xに戻る。
(First measurement process)
Next, the opening / closing valve SV1 is closed and the pump P2 is stopped. The three-way valve SV2 keeps the NO port side open, and the pumps P1 and P3 continue to operate.
During this time, the gas originally present in the sample liquid flow path LS passes through the gas permeable tube 3 and moves to the absorption liquid flow path LA, so that the output value of the conductivity sensor EL temporarily rises.
Since the transferred gas is removed by the ultrafilter 12 and the ion exchanger 13, the gas transfer is continued until almost the entire amount of the gas in the sample liquid flow path LS is transferred to the absorption liquid flow path LA. Migration of the gas is finished, the absorbing liquid in the circulation flow path is sufficiently replaced with the absorption liquid that has been purified, the output value of the conductivity sensor EL is returned to the base conductivity x 0 again.

(第2測定工程)
次に、三方バルブSV2のNOポート側を閉、NCポート側を開として脱イオンモジュール10と帰還流路LBとの連絡を遮断する。なお、ポンプP1の作動は止めず吸収液流路LAと帰還流路LBとからなる循環流路内の循環を継続する。また、ポンプP3の作動も止めず吸収液の浄化を継続する。
そして、紫外光源2を点灯する。これにより、試料液流路LS内の有機化合物が酸化されて二酸化炭素ガスが発生する。
発生した二酸化炭素ガスは、ガス透過性チューブ3を通過して吸収液流路LAに移行する。二酸化炭素ガスの移行は、吸収液流路LAと帰還流路LBとからなる循環流路内の吸収液の二酸化炭素ガス濃度が、試料液流路LS内の試料液の二酸化炭素ガス濃度と同等になるまで継続する。
循環流路内の吸収液の二酸化炭素ガス濃度が、試料液流路LS内の二酸化炭素ガス濃度と同等になると、導電率センサELの出力値も平衡に達する。このときの出力値をx(第2導電率)とする。
(Second measurement process)
Next, the NO port side of the three-way valve SV2 is closed and the NC port side is opened, and the communication between the deionization module 10 and the return flow path LB is shut off. Note that the operation of the pump P1 is not stopped and the circulation in the circulation flow path composed of the absorption liquid flow path LA and the return flow path LB is continued. Further, the operation of the pump P3 is not stopped and the purification of the absorbent is continued.
Then, the ultraviolet light source 2 is turned on. Thereby, the organic compound in the sample liquid flow path LS is oxidized and carbon dioxide gas is generated.
The generated carbon dioxide gas passes through the gas permeable tube 3 and moves to the absorption liquid channel LA. In the transfer of carbon dioxide gas, the carbon dioxide gas concentration of the absorption liquid in the circulation flow path composed of the absorption liquid flow path LA and the return flow path LB is equal to the carbon dioxide gas concentration of the sample liquid in the sample liquid flow path LS. Continue until
When the carbon dioxide gas concentration of the absorbing liquid in the circulation channel becomes equal to the carbon dioxide gas concentration in the sample solution channel LS, the output value of the conductivity sensor EL reaches equilibrium. The output value at this time is assumed to be x 2 (second conductivity).

(演算)
第1測定工程のベース導電率xと第2測定工程の第2導電率xとを各々変換器4を介して図示しない演算装置に出力する。演算装置では、この第2導電率xとベース導電率xとの差Δxから全有機炭素含量を演算する。
なお、ベース導電率xと第2導電率xのデータを演算装置に取り込むタイミングは、導電率センサELの出力値から導電率が平衡に達したことを確認できたときとしてもよいし、充分に平衡に達しうる一定の時間を決め、その時間が経過したときとしてもよい。
このようにして求めた全有機炭素含量が、無機成分の影響を受けないものであることを、図4を用いて説明する。
(Calculation)
And outputs to each (not shown) through the transducer 4 computing device based conductivity x 0 and a second conductivity x 2 in the second step of measuring the first measurement step. In the arithmetic unit, the total organic carbon content is calculated from the difference Δx 2 between the second conductivity x 2 and the base conductivity x 0 .
Note that the timing at which the data of the base conductivity x 0 and the second conductivity x 2 is taken into the arithmetic unit may be when the conductivity has reached equilibrium from the output value of the conductivity sensor EL, It is also possible to determine a certain time during which the equilibrium is sufficiently reached and when that time has elapsed.
It will be described with reference to FIG. 4 that the total organic carbon content thus obtained is not affected by the inorganic component.

第1測定工程及び第2測定工程における導電率の出力値変化は図4に示すとおりである。第1測定工程において、脱イオンモジュール10と帰還流路LBとの連絡が遮断されていれば、得られていたであろう第1導電率xと第1測定工程で得られたベース導電率xとの差Δxは、試料液中に元々存在していた二酸化炭素ガスやアンモニアガス等、無機成分の濃度に比例する。この無機成分は、第1工程終了時点で試料液からも吸収液からも除かれている。
そのため、第2測定工程で得られた第2導電率xと第1測定工程で得られたベース導電率xとの差Δxは、紫外線酸化により試料液内で発生した二酸化炭素ガス濃度に比例する。すなわち、試料液の全有機炭素含量に比例する。つまり、Δxから、無機成分の影響を受けることなく全有機炭素含量を求めることができるのである。
以上により全有機炭素含量を求めた後、再び準備工程からの工程を繰り返すことにより、試料液の全有機炭素含量を間欠的に測定することができる。
The change in the output value of conductivity in the first measurement process and the second measurement process is as shown in FIG. In the first measurement step, if the connection between the deionization module 10 and the return flow path LB is interrupted, the first conductivity x 1 that would have been obtained and the base conductivity obtained in the first measurement step. The difference Δx 1 from x 0 is proportional to the concentration of inorganic components such as carbon dioxide gas and ammonia gas originally present in the sample liquid. This inorganic component is removed from the sample solution and the absorbing solution at the end of the first step.
Therefore, the difference Δx 2 between the second conductivity x 2 obtained in the second measurement step and the base conductivity x 0 obtained in the first measurement step is the concentration of carbon dioxide gas generated in the sample liquid by ultraviolet oxidation. Is proportional to That is, it is proportional to the total organic carbon content of the sample solution. That is, the total organic carbon content can be obtained from Δx 2 without being affected by the inorganic component.
After calculating | requiring the total organic carbon content by the above, the total organic carbon content of a sample liquid can be measured intermittently by repeating the process from a preparation process again.

[測定方法C]
測定方法Cは、第2導電率xのデータを演算装置に取り込むタイミングが異なる他は測定方法Aと同じである。測定方法Cでは、吸収液の導電率が充分に平衡に達しうる時間よりも短い所定の時間を決め、その所定時間が経過したときに、第2導電率xのデータを演算装置に取り込む。
この場合、第2測定工程で得られた第2導電率xと第1測定工程で得られた第1導電率xとの差Δxは、測定方法Aの場合と比較して同等以下となるものの、所定時間(一定時間)でデータを取り込むことにより、全有機炭素含量に比例した値となる。
そのため、測定方法Aよりも、精度は多少落ちるものの、迅速な全有機炭素含量の測定が可能である。
[Measurement method C]
Measurement Method C, except that the timing to capture data of the second conductivity x 2 in the operation unit is different is the same as the measuring method A. In the measurement method C, determine the short predetermined time than the conductivity of the absorption liquid may reach a sufficiently balanced, when the predetermined time has elapsed, take in the data of the second conductivity x 2 in the arithmetic unit.
In this case, the difference Δx 2 between the second conductivity x 2 obtained in the second measurement step and the first conductivity x 1 obtained in the first measurement step is equal to or less than that in the measurement method A. However, by taking in the data for a predetermined time (fixed time), it becomes a value proportional to the total organic carbon content.
Therefore, although the accuracy is somewhat lower than that of the measuring method A, it is possible to quickly measure the total organic carbon content.

[測定装置B]
図5は本発明に係る全有機炭素含量測定装置の他の実施形態である。なお、図5において、図1の測定装置Aと同等の構成部材には図1と同一の符号を付し、その詳細な説明を省略する。
本実施形態の測定装置は、反応器1と反応器1の外側に配置された紫外光源2と、反応器1内において直線状に複数配置されたガス透過性チューブ3と、複数のガス透過性チューブ3を合わせた入口3aと出口3bとの間をつなぐ帰還流路LBと、帰還流路LBに介装された導電率センサEL及びポンプP1と、帰還流路LBに連絡する脱イオンモジュール10とから概略構成されている。
[Measurement device B]
FIG. 5 shows another embodiment of the total organic carbon content measuring apparatus according to the present invention. In FIG. 5, the same reference numerals as those in FIG. 1 are assigned to the same components as those of the measuring apparatus A in FIG. 1, and the detailed description thereof is omitted.
The measuring apparatus of this embodiment includes a reactor 1, an ultraviolet light source 2 disposed outside the reactor 1, a plurality of gas permeable tubes 3 disposed linearly in the reactor 1, and a plurality of gas permeable properties. A return flow path LB that connects between the inlet 3a and the outlet 3b in which the tubes 3 are combined, a conductivity sensor EL and a pump P1 interposed in the return flow path LB, and a deionization module 10 that communicates with the return flow path LB. It is roughly composed of

図6に示すように、反応器1内部の多数のガス透過性チューブ3の外側は、試料液流路LSとなっている。各ガス透過性チューブ3の内部は、吸収液流路LAとなっている。
反応器1内の試料液流路LSには、紫外線酸化を促進するための光触媒がコーティングされたビーズ20が充填されている。
As shown in FIG. 6, the outside of the gas permeable tubes 3 inside the reactor 1 is a sample solution flow path LS. The inside of each gas permeable tube 3 is an absorption liquid flow path LA.
The sample solution flow path LS in the reactor 1 is filled with beads 20 coated with a photocatalyst for promoting ultraviolet oxidation.

測定装置Aと同様に、試料入口と反応器1の入口1aとをつなぐ流路L1には、ポンプP2と開閉バルブSV1が介装されている。反応器1の出口1bと試料出口とをつなぐ流路L2には、逆止弁5が介装されている。導電率センサELには、変換器4が接続されている。脱イオンモジュール10の構成も、測定装置Aと同じである。
本実施形態の測定装置は、反応器1の外側に紫外光源2が配置されているので、反応器1は、紫外線透過性の材質、例えば石英ガラスで構成されていることが好ましい。また、本実施形態の測定装置では、ガス透過性チューブ3の周囲に光触媒がコーティングされたビーズ20が充填されているので、ガス透過性チューブ3に紫外線がほとんど到達しない。そのため、ガス透過性チューブ3の材質として、紫外線耐性が充分でない材質の使用が可能である。
本実施形態の測定装置による全有機炭素含量の測定も、上記測定方法A〜Cの何れかの方法により行うことができる。
Similarly to the measuring apparatus A, a pump P2 and an open / close valve SV1 are interposed in the flow path L1 that connects the sample inlet and the inlet 1a of the reactor 1. A check valve 5 is interposed in the flow path L2 connecting the outlet 1b of the reactor 1 and the sample outlet. A converter 4 is connected to the conductivity sensor EL. The configuration of the deionization module 10 is the same as that of the measuring apparatus A.
In the measurement apparatus of this embodiment, since the ultraviolet light source 2 is disposed outside the reactor 1, the reactor 1 is preferably made of an ultraviolet light transmissive material, for example, quartz glass. Further, in the measuring apparatus of the present embodiment, the gas permeable tube 3 is filled with the beads 20 coated with the photocatalyst, so that the ultraviolet rays hardly reach the gas permeable tube 3. Therefore, as the material of the gas permeable tube 3, a material having insufficient UV resistance can be used.
The measurement of the total organic carbon content by the measuring apparatus of this embodiment can also be performed by any one of the above measuring methods A to C.

[測定装置C]
図7は本発明に係る全有機炭素含量測定装置の他の実施形態である。なお、図7において、図1の測定装置Aと同等の構成部材には図1と同一の符号を付し、その詳細な説明を省略する。
本実施形態の測定装置は、帰還流路LBと脱イオンモジュール10とがなく、導電率センサELがガス透過性チューブ3の出口3bの下流側に、ポンプP1がガス透過性チューブ3の入口3aの上流側に配置されている他は、測定装置Aと同じである。
[Measurement device C]
FIG. 7 shows another embodiment of the total organic carbon content measuring apparatus according to the present invention. In FIG. 7, the same reference numerals as those in FIG. 1 are assigned to the same components as those of the measuring apparatus A in FIG. 1, and detailed descriptions thereof are omitted.
The measurement apparatus of this embodiment does not have the return flow path LB and the deionization module 10, the conductivity sensor EL is downstream of the outlet 3 b of the gas permeable tube 3, and the pump P 1 is the inlet 3 a of the gas permeable tube 3. The measuring apparatus A is the same as the measuring apparatus A except that it is arranged on the upstream side.

本実施形態の測定装置による全有機炭素含量の測定は、以下の測定方法Dにより行うことができる。   The measurement of the total organic carbon content by the measuring apparatus of this embodiment can be performed by the following measuring method D.

[測定方法D]
測定方法Dとしては、まず、試料液流路LS内の古い試料液を新しい試料液に置換すると共に、吸収液流路LA内の吸収液を充分に浄化された吸収液(脱イオン水)に置換する(準備工程)。
次に、紫外光源2からの紫外線を照射しない状態で、試料液中のガスを、ガス透過性チューブ3を介して吸収液に吸収させつつ、この吸収液を脱イオン水と置換し、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率(ベース導電率)を測定する(第1測定工程)。
次いで、紫外光源2からの紫外線を試料液に照射しつつ、これにより試料液内で発生した二酸化炭素を、ガス透過性チューブ3を介して吸収液に吸収させ、所定時間を経過した後の吸収液の導電率(第2導電率)を測定する(第2測定工程)。
そして、第2測定工程で得られた第2導電率と、第1測定工程で得られたベース導電率との差から試料液中の全有機炭素含量を求める(演算)。
以下、各工程について詳述する。
[Measurement method D]
As the measurement method D, first, the old sample solution in the sample solution channel LS is replaced with a new sample solution, and the absorption solution in the absorption solution channel LA is changed to a sufficiently purified absorption solution (deionized water). Replace (preparation step).
Next, the absorption liquid is replaced with deionized water while absorbing the gas in the sample liquid into the absorption liquid through the gas permeable tube 3 without irradiating the ultraviolet light from the ultraviolet light source 2. The conductivity (base conductivity) of the absorbing solution after a sufficient time has elapsed for the conductivity to reach an equilibrium state (first measurement step).
Next, while irradiating the sample liquid with ultraviolet rays from the ultraviolet light source 2, carbon dioxide generated in the sample liquid is absorbed by the absorption liquid through the gas permeable tube 3, and absorption after a predetermined time has elapsed. The conductivity (second conductivity) of the liquid is measured (second measurement step).
Then, the total organic carbon content in the sample solution is obtained from the difference between the second conductivity obtained in the second measurement step and the base conductivity obtained in the first measurement step (calculation).
Hereinafter, each process is explained in full detail.

(準備工程)
開閉バルブSV1を開としてポンプP2を作動し、試料液を試料液流路LS内に流通させる。
(Preparation process)
The opening / closing valve SV1 is opened and the pump P2 is operated to cause the sample liquid to flow through the sample liquid flow path LS.

(第1測定工程)
次に、開閉バルブSV1を閉としてポンプP2を停止する。一方、ポンプP1を作動し、脱イオン水を吸収液入口から供給し、吸収液流路LA内に流通させる。
この間、試料液流路LS内に元々存在していたガスが、ガス透過性チューブ3を通過して吸収液流路LAに移行するので、導電率センサELの出力値は一旦上昇する。
吸収液流路LAには脱イオン水が供給され続けるので、ガスの移行は、試料液流路LS内のガスのほぼ全量が、吸収液流路LAに移行するまで継続する。ガスの移行が終了し、吸収液流路LA内の吸収液が脱イオン水に充分に置換されると、導電率センサELの出力値は、脱イオン水の導電率であるベース導電率xとなる。
(First measurement process)
Next, the opening / closing valve SV1 is closed and the pump P2 is stopped. On the other hand, the pump P1 is operated, deionized water is supplied from the absorption liquid inlet, and is circulated in the absorption liquid flow path LA.
During this time, the gas originally present in the sample liquid flow path LS passes through the gas permeable tube 3 and moves to the absorption liquid flow path LA, so that the output value of the conductivity sensor EL temporarily rises.
Since deionized water continues to be supplied to the absorption liquid channel LA, the gas transfer continues until almost the entire amount of the gas in the sample liquid channel LS moves to the absorption liquid channel LA. When the gas transfer is completed and the absorption liquid in the absorption liquid flow path LA is sufficiently replaced with deionized water, the output value of the conductivity sensor EL is the base conductivity x 0 which is the conductivity of the deionized water. It becomes.

(第2測定工程)
次に、ポンプP1を停止し、紫外光源2を点灯する。なお、開閉バルブSV1は閉のまま、ポンプP2は停止したままとする。
これにより、試料液流路LS内の有機化合物が酸化されて二酸化炭素ガスが発生する。発生した二酸化炭素ガスは、ガス透過性チューブ3を通過して吸収液流路LAに移行する。
そして、紫外光源2の点灯後所定時間経過後に、ポンプP2を作動し、吸収液流路LA内の吸収液を導電率センサELに送る。このときの出力値をx(第2導電率)とする。
(Second measurement process)
Next, the pump P1 is stopped and the ultraviolet light source 2 is turned on. Note that the on-off valve SV1 remains closed and the pump P2 remains stopped.
Thereby, the organic compound in the sample liquid flow path LS is oxidized and carbon dioxide gas is generated. The generated carbon dioxide gas passes through the gas permeable tube 3 and moves to the absorption liquid channel LA.
Then, after a predetermined time has elapsed after the ultraviolet light source 2 is turned on, the pump P2 is operated to send the absorption liquid in the absorption liquid flow path LA to the conductivity sensor EL. The output value at this time is assumed to be x 2 (second conductivity).

(演算)
第1測定工程のベース導電率xと第2測定工程の第2導電率xとを各々変換器4を介して図示しない演算装置に出力する。演算装置では、この第2導電率xとベース導電率xとの差Δxから全有機炭素含量を演算する。
なお、ベース導電率xのデータを演算装置に取り込むタイミングは、導電率センサELの出力値から導電率が平衡に達したことを確認できたときとしてもよいし、充分に平衡に達しうる一定の時間を決め、その時間が経過したときとしてもよい。
測定方法Dでは、紫外光源2の点灯後ポンプP1の作動を再開して吸収液流路LA内の吸収液を導電率センサELに送るまでの時間(所定時間)の長短により、第2導電率xの値が異なるものとなる。しかし、所定時間(一定時間)紫外光源2による酸化とこれにより発生した二酸化炭素ガスの吸収液流路LAへの移行を行うことにより、第2導電率xとベース導電率xとの差Δxは全有機炭素含量に比例した値となる。
(Calculation)
And outputs to each (not shown) via a converter 4 operation unit based conductivity x 0 and a second conductivity x 2 in the second step of measuring the first measurement step. In the arithmetic unit, the total organic carbon content is calculated from the difference Δx 2 between the second conductivity x 2 and the base conductivity x 0 .
The timing for taking the data of the base conductivity x 0 to the processing unit may be a case where the conductivity from the output value of the conductivity sensor EL was confirmed that equilibrium was reached, it can reach a sufficiently balanced constant It is also possible to decide when the time has elapsed and when that time has passed.
In the measuring method D, the second conductivity is determined by the length of time (predetermined time) from when the operation of the pump P1 is resumed after the ultraviolet light source 2 is turned on to when the absorption liquid in the absorption liquid flow path LA is sent to the conductivity sensor EL. the value of x 2 is different. However, the difference between the predetermined time (predetermined time) by carrying out the transition to the absorption liquid flow path LA of carbon dioxide gas generated by this and oxidation by ultraviolet light source 2, a second conductivity x 2 and the base conductivity x 0 Δx 2 is a value proportional to the total organic carbon content.

[測定装置の他の形態]
本発明において、ガス透過性膜の具体的形態に限定はない。測定装置Aの螺旋状チューブ、測定装置Bの複数の直線状チューブの他に、例えば、ガス透過効率は落ちるものの、平膜状のガス透過性膜とすることも可能である。
また、紫外光源2の数や形態にも限定はなく、例えば、測定装置Bにおいて、複数本の紫外光源2を反応器1の周囲に配置してもよい。
また、反応器の形状にも限定はなく、測定装置A〜Cのように円筒形とする他、例えば、螺旋状とすることもできる。反応器を螺旋状とした場合、紫外光源2を周回するように反応器を配置することが好ましい。また、この場合、ガス透過性膜としては、単数又は複数のチューブ状のものを挿入することが好ましい。
また、脱イオンモジュール10の具体的構成にも特に限定はなく、吸収液流路LAと帰還流路LBとからなる循環流路内の吸収液を脱イオン化できるものであればよい。
[Other forms of measuring device]
In the present invention, the specific form of the gas permeable membrane is not limited. In addition to the spiral tube of the measuring device A and the plurality of linear tubes of the measuring device B, for example, a flat membrane-like gas permeable membrane can be used although the gas permeation efficiency is lowered.
Further, the number and form of the ultraviolet light sources 2 are not limited. For example, in the measuring apparatus B, a plurality of ultraviolet light sources 2 may be arranged around the reactor 1.
Moreover, there is no limitation also in the shape of a reactor, and it can also be set as a spiral shape other than cylindrical shape like measuring apparatus AC. When the reactor is spiral, it is preferable to arrange the reactor so as to go around the ultraviolet light source 2. In this case, it is preferable to insert one or more tube-shaped membranes as the gas permeable membrane.
The specific configuration of the deionization module 10 is not particularly limited as long as it can deionize the absorption liquid in the circulation flow path including the absorption liquid flow path LA and the return flow path LB.

本発明の1実施形態に係る測定装置Aの概略構成図である。It is a schematic block diagram of the measuring apparatus A which concerns on one Embodiment of this invention. 測定方法Aの第1測定工程及び第2測定工程における導電率の出力値変化を示すグラフである。It is a graph which shows the output value change of the electrical conductivity in the 1st measurement process of the measuring method A, and a 2nd measurement process. 測定方法Aの第1測定工程及び第2測定工程における導電率の出力値変化を示すグラフである。It is a graph which shows the output value change of the electrical conductivity in the 1st measurement process of the measuring method A, and a 2nd measurement process. 測定方法Bの第1測定工程及び第2測定工程における導電率の出力値変化を示すグラフである。It is a graph which shows the output value change of the electrical conductivity in the 1st measurement process of measurement method B, and the 2nd measurement process. 本発明の他の実施形態に係る測定装置Bの概略構成図である。It is a schematic block diagram of the measuring apparatus B which concerns on other embodiment of this invention. 測定装置Bの反応器及びその内部の構成図である。It is a reactor of the measuring apparatus B, and its internal block diagram. 本発明の他の実施形態に係る測定装置Cの概略構成図である。It is a schematic block diagram of the measuring apparatus C which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1・・・反応器、2・・・紫外光源、3・・・ガス透過性チューブ、4・・・変換器、
5、14、15・・・逆止弁、10・・・脱イオンモジュール、
11・・・タンク、12・・・限外濾過器、13・・・イオン交換器、
20・・・ビーズ
LS・・・試料液流路、LA・・・吸収液流路、LB・・・帰還流路、
L1〜L8・・・流路、EL・・・導電率センサ、
P1〜P3・・・ポンプ、SV1・・・開閉弁、SV2・・・三方弁、

DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Ultraviolet light source, 3 ... Gas-permeable tube, 4 ... Converter,
5, 14, 15 ... check valve, 10 ... deionization module,
11 ... Tank, 12 ... Ultrafilter, 13 ... Ion exchanger,
20 ... Beads LS ... Sample liquid flow path, LA ... Absorption liquid flow path, LB ... Return flow path,
L1-L8 ... flow path, EL ... conductivity sensor,
P1 to P3 ... pump, SV1 ... on-off valve, SV2 ... three-way valve,

Claims (10)

試料液中の全有機炭素含量を測定する方法であって、
反応器内の試料液中のガスを、反応器内に配置したガス透過性膜を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率である第1導電率を測定する第1測定工程と、
第1測定工程後、前記反応器内の試料液中の有機化合物を酸化しつつ、発生した二酸化炭素を、前記ガス透過性膜を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率である第2導電率を測定する第2測定工程とを有し、
第2測定工程で得られた第2導電率と、第1測定工程で得られた第1導電率との差から試料液中の全有機炭素含量を求めることを特徴とする全有機炭素含量の測定方法。
A method for measuring the total organic carbon content in a sample solution,
After the gas in the sample liquid in the reactor is absorbed by the absorption liquid through the gas permeable membrane disposed in the reactor, after a sufficient time has elapsed for the conductivity of the absorption liquid to reach an equilibrium state A first measurement step of measuring a first conductivity which is the conductivity of the absorbing liquid;
After the first measurement step, the generated carbon dioxide is absorbed into the absorbing solution through the gas permeable membrane while oxidizing the organic compound in the sample solution in the reactor, and the conductivity of the absorbing solution is in an equilibrium state. A second measurement step of measuring a second conductivity which is the conductivity of the absorbing liquid after a sufficient time has elapsed to reach
The total organic carbon content in the sample liquid is obtained from the difference between the second conductivity obtained in the second measurement step and the first conductivity obtained in the first measurement step. Measuring method.
試料液中の全有機炭素含量を測定する方法であって、
反応器内の試料液中のガスを、反応器内に配置したガス透過性膜を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率である第1導電率を測定する第1測定工程と、
第1測定工程後、前記反応器内の試料液中の有機化合物を酸化しつつ、発生した二酸化炭素を、前記ガス透過性膜を介して吸収液に吸収させ、所定時間を経過した後の吸収液の導電率である第2導電率を測定する第2測定工程とを有し、
第2測定工程で得られた第2導電率と、第1測定工程で得られた第1導電率との差から試料液中の全有機炭素含量を求めることを特徴とする全有機炭素含量の測定方法。
A method for measuring the total organic carbon content in a sample solution,
After the gas in the sample liquid in the reactor is absorbed by the absorption liquid through the gas permeable membrane disposed in the reactor, after a sufficient time has elapsed for the conductivity of the absorption liquid to reach an equilibrium state A first measurement step of measuring a first conductivity which is the conductivity of the absorbing liquid;
After the first measurement step, the generated carbon dioxide is absorbed into the absorption liquid through the gas permeable membrane while oxidizing the organic compound in the sample liquid in the reactor, and absorption after a predetermined time has elapsed. A second measurement step of measuring a second conductivity which is the conductivity of the liquid,
The total organic carbon content in the sample liquid is obtained from the difference between the second conductivity obtained in the second measurement step and the first conductivity obtained in the first measurement step. Measuring method.
吸収液が脱イオン水である請求項1又は請求項2に記載の全有機炭素含量の測定方法。   The method for measuring the total organic carbon content according to claim 1 or 2, wherein the absorbing liquid is deionized water. 試料液中の全有機炭素含量を測定する方法であって、
反応器内の試料液中のガスを、反応器内に配置したガス透過性膜を介して吸収液に吸収させつつ、この吸収液を脱イオン化し、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率であるベース導電率を測定する第1測定工程と、
第1測定工程後、前記反応器内の試料液中の有機化合物を酸化しつつ、発生した二酸化炭素を、前記ガス透過性膜を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率である第2導電率を測定する第2測定工程とを有し、
第2測定工程で得られた第2導電率と、第1測定工程で得られたベース導電率との差から試料液中の全有機炭素含量を求めることを特徴とする全有機炭素含量の測定方法。
A method for measuring the total organic carbon content in a sample solution,
While absorbing the gas in the sample liquid in the reactor into the absorbing liquid through the gas permeable membrane placed in the reactor, the absorbing liquid is deionized and the conductivity of the absorbing liquid reaches an equilibrium state. A first measurement step of measuring a base conductivity which is the conductivity of the absorbing liquid after a sufficient time has passed,
After the first measurement step, the generated carbon dioxide is absorbed into the absorbing solution through the gas permeable membrane while oxidizing the organic compound in the sample solution in the reactor, and the conductivity of the absorbing solution is in an equilibrium state. A second measurement step of measuring a second conductivity which is the conductivity of the absorbing liquid after a sufficient time has elapsed to reach
Measuring the total organic carbon content in the sample liquid from the difference between the second conductivity obtained in the second measurement step and the base conductivity obtained in the first measurement step Method.
試料液中の全有機炭素含量を測定する方法であって、
反応器内の試料液中のガスを、反応器内に配置したガス透過性膜を介して吸収液に吸収させつつ、この吸収液を脱イオン化し、吸収液の導電率が平衡状態に達するのに充分な時間を経過した後の吸収液の導電率であるベース導電率を測定する第1測定工程と、
第1測定工程後、前記反応器内の試料液中の有機化合物を酸化しつつ、発生した二酸化炭素を、前記ガス透過性膜を介して吸収液に吸収させ、所定時間を経過した後の吸収液の導電率である第2導電率を測定する第2測定工程とを有し、
第2測定工程で得られた第2導電率と、第1測定工程で得られたベース導電率との差から試料液中の全有機炭素含量を求めることを特徴とする全有機炭素含量の測定方法。
A method for measuring the total organic carbon content in a sample solution,
While absorbing the gas in the sample liquid in the reactor into the absorption liquid through the gas permeable membrane placed in the reactor, this absorption liquid is deionized, and the conductivity of the absorption liquid reaches an equilibrium state. A first measurement step of measuring a base conductivity which is the conductivity of the absorbing liquid after a sufficient time has passed,
After the first measurement step, the generated carbon dioxide is absorbed into the absorption liquid through the gas permeable membrane while oxidizing the organic compound in the sample liquid in the reactor, and absorption after a predetermined time has elapsed. A second measuring step of measuring a second conductivity which is the conductivity of the liquid,
Measuring the total organic carbon content in the sample liquid from the difference between the second conductivity obtained in the second measurement step and the base conductivity obtained in the first measurement step Method.
第2測定工程において、紫外線照射により、試料液中の有機化合物を酸化する請求項1から請求項5の何れかに記載の全有機炭素含量の測定方法。   The method for measuring the total organic carbon content according to any one of claims 1 to 5, wherein in the second measurement step, the organic compound in the sample solution is oxidized by ultraviolet irradiation. 反応器と、反応器内に配置されたガス透過性膜と、光源と、導電率センサとを備え、
前記反応器内には、前記ガス透過性膜により互いに分離された試料液流路と吸収液流路とが形成され、
前記試料液流路には、試料液が流入、流出するようになっており、内部に光触媒が配置され、
前記光源は、前記試料液流路に光を照射するように配置され、
前記吸収液流路には、吸収液が流入、流出するようになっており、
前記導電率センサは、前記吸収液の導電率を測定するように前記吸収液流路内又は前記吸収液流路の下流側に設けられていることを特徴とする全有機炭素含量測定装置。
A reactor, a gas permeable membrane disposed in the reactor, a light source, and a conductivity sensor;
In the reactor, a sample liquid channel and an absorption liquid channel separated from each other by the gas permeable membrane are formed,
In the sample liquid channel, the sample liquid flows in and out, and a photocatalyst is arranged inside,
The light source is arranged to irradiate light to the sample liquid channel,
In the absorption liquid channel, the absorption liquid flows in and out,
The total organic carbon content measuring apparatus, wherein the conductivity sensor is provided in the absorption liquid channel or downstream of the absorption liquid channel so as to measure the conductivity of the absorption liquid.
光源が、紫外線を照射する紫外光源である請求項7に記載の全有機炭素含量測定装置。   The total organic carbon content measuring apparatus according to claim 7, wherein the light source is an ultraviolet light source that emits ultraviolet light. さらに、吸収液流路の出口と入口とをつなぐ帰還流路を備える請求項7又は請求項8に記載の全有機炭素含量測定装置。   Furthermore, the total organic carbon content measuring apparatus of Claim 7 or Claim 8 provided with the return flow path which connects the exit and inlet of an absorption liquid flow path. 帰還流路に脱イオン水を供給する脱イオンモジュールを備える請求項9に記載の全有機炭素含量測定装置。


The total organic carbon content measuring apparatus of Claim 9 provided with the deionization module which supplies deionized water to a return flow path.


JP2004273344A 2004-09-21 2004-09-21 Method and instrument for measuring total organic carbon content Pending JP2006090732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004273344A JP2006090732A (en) 2004-09-21 2004-09-21 Method and instrument for measuring total organic carbon content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004273344A JP2006090732A (en) 2004-09-21 2004-09-21 Method and instrument for measuring total organic carbon content

Publications (1)

Publication Number Publication Date
JP2006090732A true JP2006090732A (en) 2006-04-06

Family

ID=36231880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004273344A Pending JP2006090732A (en) 2004-09-21 2004-09-21 Method and instrument for measuring total organic carbon content

Country Status (1)

Country Link
JP (1) JP2006090732A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047405A1 (en) 2006-10-17 2008-04-24 Shimadzu Corporation Apparatus for determining total organic carbon
JP2008139312A (en) * 2006-12-01 2008-06-19 Millipore Corp Conductivity measurement device, its manufacture and use
WO2008114410A1 (en) 2007-03-20 2008-09-25 Shimadzu Corporation Total organic carbon measuring instrument
JP2011053045A (en) * 2009-09-01 2011-03-17 Shimadzu Corp Liquid feed device and total organic carbon measuring devices using the same
CN102095745A (en) * 2010-11-19 2011-06-15 聚光科技(杭州)股份有限公司 Method and system for monitoring elements in gaseous fluid
JP2019150761A (en) * 2018-03-02 2019-09-12 株式会社コンタミネーション・コントロール・サービス Metal contaminant removing device
KR102098332B1 (en) * 2019-10-04 2020-04-07 (주)휴마스 Analytical reagent composition for measuring total organic carbon in water and measuring method using the same
CN111238884A (en) * 2020-01-21 2020-06-05 力合科技(湖南)股份有限公司 Filter membrane fixed knot constructs, sample stove and OCEC analysis appearance
KR20210102081A (en) 2020-02-10 2021-08-19 노무라마이크로사이엔스가부시키가이샤 Pretreatment method, pretreatment device, urea concentration measurement method, urea concentration measurement device, ultrapure water production method, and ultrapure water production system
KR20230012843A (en) * 2021-07-16 2023-01-26 한국세라믹기술원 Organic carbon dioxide detection apparatus in liquid using separate chamber structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159642A (en) * 1984-01-10 1985-08-21 アナテル・インスツルメント・コーポレーシヨン Device for measuring organic carbon content included in water and usage thereof
JPS63233370A (en) * 1987-03-20 1988-09-29 Horiba Ltd Measuring apparatus of whole organic carbon in water
JPS6463859A (en) * 1986-08-06 1989-03-09 Saabometsukusu Controls Ltd Method and apparatus for measuring organic carbon dissolved in water sample
JPH07260725A (en) * 1994-03-22 1995-10-13 Japan Organo Co Ltd Organic carbon measuring device, and ultrapure water producing device with the device built-in
JP2510368B2 (en) * 1990-03-02 1996-06-26 シーバーズ リサーチ,インコーポレイテッド Method and apparatus for determining carbon dissolved in water
JPH10307113A (en) * 1997-05-07 1998-11-17 Kurita Water Ind Ltd Underwater toc monitor
JP2001153828A (en) * 1999-11-26 2001-06-08 Dkk Toa Corp Method and device for measuring organic carbon content

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159642A (en) * 1984-01-10 1985-08-21 アナテル・インスツルメント・コーポレーシヨン Device for measuring organic carbon content included in water and usage thereof
JPS6463859A (en) * 1986-08-06 1989-03-09 Saabometsukusu Controls Ltd Method and apparatus for measuring organic carbon dissolved in water sample
JPS63233370A (en) * 1987-03-20 1988-09-29 Horiba Ltd Measuring apparatus of whole organic carbon in water
JP2510368B2 (en) * 1990-03-02 1996-06-26 シーバーズ リサーチ,インコーポレイテッド Method and apparatus for determining carbon dissolved in water
JPH07260725A (en) * 1994-03-22 1995-10-13 Japan Organo Co Ltd Organic carbon measuring device, and ultrapure water producing device with the device built-in
JPH10307113A (en) * 1997-05-07 1998-11-17 Kurita Water Ind Ltd Underwater toc monitor
JP2001153828A (en) * 1999-11-26 2001-06-08 Dkk Toa Corp Method and device for measuring organic carbon content

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047405A1 (en) 2006-10-17 2008-04-24 Shimadzu Corporation Apparatus for determining total organic carbon
US7931865B2 (en) 2006-10-17 2011-04-26 Shimadzu Corporation Apparatus for determining total organic carbon
JP2011227099A (en) * 2006-12-01 2011-11-10 Millipore Corp Conductivity measuring device and manufacture and use thereof
JP2008139312A (en) * 2006-12-01 2008-06-19 Millipore Corp Conductivity measurement device, its manufacture and use
WO2008114410A1 (en) 2007-03-20 2008-09-25 Shimadzu Corporation Total organic carbon measuring instrument
US8557597B2 (en) 2007-03-20 2013-10-15 Shimadzu Corporation Total organic carbon measuring instrument
JP2011053045A (en) * 2009-09-01 2011-03-17 Shimadzu Corp Liquid feed device and total organic carbon measuring devices using the same
CN102095745A (en) * 2010-11-19 2011-06-15 聚光科技(杭州)股份有限公司 Method and system for monitoring elements in gaseous fluid
JP2019150761A (en) * 2018-03-02 2019-09-12 株式会社コンタミネーション・コントロール・サービス Metal contaminant removing device
KR102098332B1 (en) * 2019-10-04 2020-04-07 (주)휴마스 Analytical reagent composition for measuring total organic carbon in water and measuring method using the same
CN111238884A (en) * 2020-01-21 2020-06-05 力合科技(湖南)股份有限公司 Filter membrane fixed knot constructs, sample stove and OCEC analysis appearance
KR20210102081A (en) 2020-02-10 2021-08-19 노무라마이크로사이엔스가부시키가이샤 Pretreatment method, pretreatment device, urea concentration measurement method, urea concentration measurement device, ultrapure water production method, and ultrapure water production system
KR20230012843A (en) * 2021-07-16 2023-01-26 한국세라믹기술원 Organic carbon dioxide detection apparatus in liquid using separate chamber structure
KR102580605B1 (en) * 2021-07-16 2023-09-20 한국세라믹기술원 Organic carbon dioxide detection apparatus in liquid using separate chamber structure

Similar Documents

Publication Publication Date Title
US5902751A (en) Method and apparatus for the measurement of dissolved carbon
JP2006090732A (en) Method and instrument for measuring total organic carbon content
US7931865B2 (en) Apparatus for determining total organic carbon
JPH04507141A (en) Method and apparatus for determining carbon dissolved in water
JP4983914B2 (en) Total organic carbon measuring device
JP6007959B2 (en) Mercury automatic measurement system and its pretreatment equipment
JP2002282850A (en) Ultrapure water producing equipment
CN1688879A (en) Inorganic carbon removal
JP5909360B2 (en) Method and apparatus for measuring purity of ultrapure water
WO1997021096A1 (en) Method and apparatus for the measurement of dissolved carbon
JP3320050B2 (en) Method and apparatus for measuring organic carbon content
JP2003211159A (en) Photooxidizer, water treatment apparatus and measuring apparatus
JP2001149930A (en) Ultraviolet oxidation device
JP6056824B2 (en) Mercury automatic measurement system and its pretreatment equipment
JP2005106698A (en) Method and instrument for measuring total organic carbon content
CN214570901U (en) Pure water TOC processing apparatus
JP2001041950A (en) Water analyzer
JP7441066B2 (en) Pretreatment method, pretreatment device, urea concentration measurement method, urea concentration measurement device, ultrapure water production method, and ultrapure water production system
JP5282703B2 (en) Liquid feeding device and total organic carbon measuring device using the same
GB2610555A (en) Method and apparatus for TOC monitoring of purified water
TWI258386B (en) A method for purifying gas and an apparatus for the same
JP2005106668A (en) Method and apparatus for measuring total organic carbon content
JP2005147901A (en) Organic substance decomposition device, and total organic carbon measuring instrument
CN109682860A (en) Organic carbon analysis device and working method thereof
CA3161658A1 (en) Carbon measurements in aqueous samples using oxidation at elevated temperatures and pressures created by resistive heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706