KR102098332B1 - Analytical reagent composition for measuring total organic carbon in water and measuring method using the same - Google Patents

Analytical reagent composition for measuring total organic carbon in water and measuring method using the same Download PDF

Info

Publication number
KR102098332B1
KR102098332B1 KR1020190123206A KR20190123206A KR102098332B1 KR 102098332 B1 KR102098332 B1 KR 102098332B1 KR 1020190123206 A KR1020190123206 A KR 1020190123206A KR 20190123206 A KR20190123206 A KR 20190123206A KR 102098332 B1 KR102098332 B1 KR 102098332B1
Authority
KR
South Korea
Prior art keywords
organic carbon
weight
total organic
oxidizing
test cell
Prior art date
Application number
KR1020190123206A
Other languages
Korean (ko)
Inventor
이근헌
이동형
Original Assignee
(주)휴마스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)휴마스 filed Critical (주)휴마스
Priority to KR1020190123206A priority Critical patent/KR102098332B1/en
Application granted granted Critical
Publication of KR102098332B1 publication Critical patent/KR102098332B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • G01N33/1846Total carbon analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/223Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The present invention relates to an analytical reagent composition for measuring total organic carbon and a measuring method using the same. More specifically, the present invention relates to: a method for measuring the concentration of total organic carbon which puts organic carbon contained in a sample from which inorganic carbon is removed is oxidized by introducing an oxidizing liquid composition and an oxidation accelerator to generate carbon dioxide when measuring the concentration of organic carbon in water, and collects generated carbon dioxide by an absorption solution composition, and the amount of collected carbon dioxide is color changed due to an indicator added in advance, and the concentration of total organic carbon is measured by analyzing the color change through a spectrophotometer; and a reagent composition for increasing an absorption rate of carbon dioxide in the measuring process.

Description

수중 총유기탄소 측정을 위한 분석 시약 조성물 및 이를 이용한 측정 방법 {Analytical reagent composition for measuring total organic carbon in water and measuring method using the same} Analytical reagent composition for measuring total organic carbon in water and measuring method using the same}

본 발명은 수중의 총유기탄소(TOC, total organic carbon)를 측정하기 위하여, 유기탄소를 산화시켜 이산화탄소를 발생시키고, 발생된 이산화탄소를 알칼리 용액으로 포집하며, 포집된 이산화탄소의 양을 수소이온농도(pH) 변화에 의한 흡광도 변화로 정량화하여 측정하는 방법 및 이 측정 과정에서 이산화탄소의 흡수율을 높이기 위한 분석 시약 조성물에 관한 것이다.In order to measure total organic carbon (TOC) in water, the present invention oxidizes organic carbon to generate carbon dioxide, captures the generated carbon dioxide with an alkaline solution, and the amount of carbon dioxide collected is the hydrogen ion concentration ( pH) relates to a method for quantifying and measuring the change in absorbance due to a change, and an analytical reagent composition for increasing the absorption rate of carbon dioxide in the measurement process.

미국 수도협회의 표준방법(AWWA Standard method)에서 제시하는 일반적인 총유기탄소(TOC, total organic carbon) 측정 방법은 연소-적외선법(combustion-infrared method), 퍼설페이트-자외선산화법(sulfate-ultraviolet oxidation method), 습식산화법(wet-oxidation method)으로서 모두 기기분석에 관한 것이다.The general method for measuring total organic carbon (TOC) proposed by the American Water Association's AWWA Standard method is the combustion-infrared method, the persulfate-ultraviolet oxidation method. ), Wet-oxidation method, both of which are related to device analysis.

연소-적외선법은 측정하고자 하는 시료를 산화코발트와 같은 산화촉매를 이용하여 900℃ 정도의 고온으로 산화시켜 유기탄소를 이산화탄소와 물로 산화시키는 방법이다. 발생하는 이산화탄소는 적외선분석기를 이용하여 정량한다. 이 방법은 고온으로 가열하는 장치와 적외선분석기를 이용하여야 하므로 장치가 고가인 단점이 있다.The combustion-infrared method is a method of oxidizing organic carbon with carbon dioxide and water by oxidizing a sample to be measured at a high temperature of about 900 ° C using an oxidation catalyst such as cobalt oxide. The generated carbon dioxide is quantified using an infrared analyzer. This method has the disadvantage that the device is expensive because it requires the use of an infrared analyzer and a device that heats to a high temperature.

퍼설페이트-자외선법은 측정시료에 퍼설페이트를 첨가한 후 자외선을 조사시켜 유기탄소를 산화시키는 방법이다. 연소-적외선법과 마찬가지로 적외선분석기로 정량화한다.The persulfate-ultraviolet method is a method of oxidizing organic carbon by irradiating ultraviolet rays after adding persulfate to a measurement sample. It is quantified with an infrared analyzer, similar to the combustion-infrared method.

습식산화법은 먼저 시료를 산화시켜 무기탄소를 대기 중으로 방출시킨 후 퍼설페이트를 촉매로 하여 116~130℃로 가열하여 발생하는 이산화탄소를 적외선분석기로 정량화하는 방법이다.The wet oxidation method is a method of quantifying carbon dioxide generated by oxidizing a sample first, releasing inorganic carbon into the atmosphere, and heating it to 116 to 130 ° C using persulfate as a catalyst.

상기 3가지 방법은 분석기의 가격이 매우 높은 단점이 있다. (US Patent 5,413,763, US Patent 5,567,388, US Patent 5,820,823). 또한 이러한 분석기기는 구조 및 사용법이 복잡하여 비전문가가 사용하기 까다롭다.The above three methods have the disadvantage that the price of the analyzer is very high. (US Patent 5,413,763, US Patent 5,567,388, US Patent 5,820,823). In addition, the structure and usage of these analyzers are complicated and difficult for non-experts to use.

이러한 문제를 해결하기 위한 방법으로 US Patent No. 6,368,870에서는 시료를 산성 조건에서 가열하여 유기물을 이산화탄소로 전환시킨 후에 이산화탄소를 흡수액에 흡수시킨다. 흡수액에는 pH변화에 따라 색이 변화되는 지시약이 함유되어 있어 색 변화를 측정하여 총유기탄소의 농도를 정량하는 방법이다. 색 변화는 분광광도계를 이용하여 측정한다.As a method for solving this problem, US Patent No. At 6,368,870, the sample is heated under acidic conditions to convert the organic material to carbon dioxide, and then the carbon dioxide is absorbed into the absorbent liquid. The absorbent solution contains an indicator that changes color according to the change in pH, so it is a method to quantify the concentration of total organic carbon by measuring color change. Color change is measured using a spectrophotometer.

상기 측정방법을 좀더 구체적으로 설명하면 먼저 측정하고자 하는 시료에 산을 첨가하여 수소이온농도를 pH 2로 조정한 후 교반하거나 질소가스나 이산화탄소가 제거된 공기를 주입하여 무기탄소를 제거한다. 그 후 시료를 채취하여 산성용액에 넣고 산화촉진제로 과황산칼륨을 소량 첨가하여 100℃ 이상의 온도에서 열반응시킨다. 이러한 과정을 거치면서 유기물은 이산화탄소로 산화된다. 산화된 이산화탄소는 흡수액에 흡수시킨다. 흡수액은 pH를 10으로 조정하며 pH가 10에서 8.5로 변화할 때 색이 변하는 thymol blue 지시약을 사용하는 것이 일반적이다.When the measurement method is described in more detail, first, an acid is added to a sample to be measured, the hydrogen ion concentration is adjusted to pH 2, and then stirred or nitrogen gas or carbon dioxide-removed air is injected to remove inorganic carbon. Thereafter, a sample is collected, placed in an acidic solution, and a small amount of potassium persulfate is added as an oxidation accelerator to heat-react at a temperature of 100 ° C or higher. Through this process, the organic material is oxidized to carbon dioxide. The oxidized carbon dioxide is absorbed in the absorbent liquid. It is common to use a thymol blue indicator that adjusts the pH to 10 and changes color when the pH changes from 10 to 8.5.

그러나 실제 상기 방법은 널리 이용되지 못하였다. 본 발명자들은 상기 방법이 널리 이용되지 못한 원인으로 산화된 이산화탄소가 흡수액에 충분히 흡수되지 못하여 기기분석한 결과 값과 비교할 때 상당히 낮게 측정되기 때문이라는 점을 확인할 수 있었다.However, the above method has not been widely used. The present inventors were able to confirm that oxidized carbon dioxide was not sufficiently absorbed in the absorbent solution due to the reason why the method was not widely used, and thus it was measured to be significantly lower compared to the value of the device analysis.

본 발명에서 해결하고자 하는 과제는, 액상시료에 함유되어 있는 총유기탄소의 농도를 측정하고자, 유기탄소를 이산화탄소로 산화시켜 알칼리용액에 흡수시키고 흡수된 이산화탄소의 양을 수소이온농도(pH) 변화에 의한 흡광도 변화로 정량화하여 측정하는데 있어서, 흡수액의 이산화탄소 흡수율을 높임으로써 기기분석 결과와의 상관성을 크게 높일 수 있는 총유기탄소 분석 시약 조성물을 제공하는 것이며, 그 분석 시약 조성물을 이용한 측정방법을 제공하는 것이다.The problem to be solved in the present invention is to measure the concentration of total organic carbon contained in the liquid sample, by oxidizing organic carbon with carbon dioxide, absorbing it in an alkaline solution, and absorbing the amount of carbon dioxide absorbed by changing the hydrogen ion concentration (pH). In order to quantify the change in absorbance by the measurement, by providing a carbon dioxide absorption rate of the absorbent solution to provide a total organic carbon analysis reagent composition that can significantly increase the correlation with the instrument analysis results, to provide a measurement method using the analysis reagent composition will be.

본 발명의 총유기탄소 분석 조성물은 산화액, 산화촉진제, 및 흡수액으로 구별된다. 산화액은 유기탄소를 이산화탄소로 산화시키는 시약조성물이며 흡수액은 이산화탄소를 흡수하여 pH 변동에 따라 색이 변하는 시약조성물이다.The total organic carbon analysis composition of the present invention is divided into an oxidizing liquid, an oxidizing accelerator, and an absorbing liquid. The oxidizing solution is a reagent composition that oxidizes organic carbon to carbon dioxide, and the absorbing solution is a reagent composition that absorbs carbon dioxide and changes color according to pH fluctuation.

본 발명은 특히 흡수액 조성물의 이산화탄소 흡수율을 향상시키고자 하는데 초점이 맞춰져 있으며 흡수액에 특정 화학물질을 첨가하여 이산화탄소의 흡수율을 높이고자 하였다. 이를 위해 기본적인 산화액 조성물 및 흡수액의 조성물을 개발하였다.In particular, the present invention is focused on improving the absorption rate of the carbon dioxide in the absorbent liquid composition, and it is intended to increase the absorption rate of carbon dioxide by adding a specific chemical to the absorption liquid. To this end, a basic oxidizing liquid composition and an absorbing liquid composition were developed.

산화율 시험 및 흡수율 시험을 위해 산화가 잘되는 편이며 수질오염공정시험법상 표준용액인 프탈산수소포타슘(KHP, Potassium hydrogen phthalate)용액을 분석표준용액으로 이용하였다. KHP표준용액은 프탈산수소포타슘을 초순수에 용해시켜 제조한다.Potassium hydrogen phthalate (KHP) solution, which is oxidized well for the oxidation rate test and absorption rate test, and is a standard solution according to the water pollution process test method, was used as an analysis standard solution. KHP standard solution is prepared by dissolving potassium phthalate in ultrapure water.

산화액은 황산을 희석하여 제조하였는바, 산화액은 황산으로서 농도가 0.5 내지 10.0중량%의 범위에서는 산화율의 차이가 없었다.The oxidizing solution was prepared by diluting sulfuric acid, and the oxidizing solution was sulfuric acid, and there was no difference in oxidation rate in the concentration range of 0.5 to 10.0% by weight.

황산 농도가 0.5중량% 보다 낮으면 산화율이 낮았으며, 10.0중량%까지는 산화율에 차이가 없었으나 취급상의 위험성이 높아져서 유해화학물질로 분류되므로 더 이상 황산의 농도를 높이지 않았다. 산화액 조성물은 무기탄소가 제거된 시료 및 농도가 0.5 내지 10.0 중량%인 황산으로 이루어진 것으로서, 산화액 조성물을 바이알에 주입하여 무기탄소가 제거된 시료 및 산화액 전체 용액대비 황산이 0.5 내지 10.0 중량%가 되도록 산화액 테스트셀을 마련하는데 이용된다.When the concentration of sulfuric acid was lower than 0.5% by weight, the oxidation rate was low. Up to 10.0% by weight, there was no difference in the oxidation rate, but the risk of handling was increased, so it was classified as a hazardous chemical, so the concentration of sulfuric acid was no longer increased. The oxidizing liquid composition consists of a sample from which the inorganic carbon is removed and sulfuric acid having a concentration of 0.5 to 10.0% by weight, and the sulfuric acid is 0.5 to 10.0 weight compared to the sample from which the inorganic carbon is removed and the total solution of the oxidizing liquid by injecting the oxidizing liquid composition into a vial. It is used to prepare an oxidizing liquid test cell to be%.

산화촉진제로서 과황산칼륨(K2S2O8)을 사용하는바, 무기탄소가 제거된 시료 및 산화액 전체 용액대비 4 내지 35중량%가 되도록 첨가하는 것이 적정하였다. 4중량% 미만에서는 산화율이 낮은 단점이 있고, 35중량%가 초과되는 경우에는 잔류되는 과황산칼륨에 의하여 발색에 영향을 주는 단점이 있다. 산화액 테스트셀에 과황산칼륨으로 이루어진 산화촉진제를 투입하여 무기탄소가 제거된 시료 및 산화액 전체 용액대비 4 내지 35 중량%가 되도록 구성한다.Since potassium persulfate (K2S2O8) was used as the oxidation accelerator, it was appropriate to add it so that the inorganic carbon was removed so that it was 4 to 35% by weight compared to the total solution of the sample and the oxidizing solution. If it is less than 4% by weight, there is a disadvantage that the oxidation rate is low, and when it exceeds 35% by weight, there is a disadvantage that affects color development by the residual potassium persulfate. The oxidation accelerator consisting of potassium persulfate is added to the oxidizing liquid test cell to be 4 to 35% by weight compared to the sample in which the inorganic carbon is removed and the total solution of the oxidizing liquid.

산화시키는 가열온도는 100 내지 125℃가 적정하였으며 가열시간은 120분이상이 적정하였다. 가열온도가 100℃ 미만에서는 산화율이 낮은 단점이 있고, 125℃가 초과되는 경우에는 유리재질의 바이알 등이 깨지는 등의 단점이 있다.The heating temperature to oxidize was appropriate to 100 to 125 ℃, and the heating time was appropriate to 120 minutes or more. When the heating temperature is less than 100 ° C, the oxidation rate is low, and when it exceeds 125 ° C, the glass material vial or the like is broken.

산화율 시험방법에 대해 자세히 설명하면 다음과 같다. KHP를 초순수에 녹여 총유기탄소 KHP표준용액을 제조하였다. KHP표준용액에 인산 또는 염산을 주입하여 pH를 2로 조정한 후 최소 10분 이상 교반하여 무기탄소를 제거하였다. 직경이 16밀리미터인 유리 바이알에 산화액 3밀리리터를 넣고 무기탄소가 제거된 시료를 1밀리리터 주입한 후 과황산칼륨 분말 0.3g을 첨가하였다. 바이알의 뚜껑을 닫고 가열기에 바이알을 넣고 가열하여 유기탄소를 산화시켰다. 이후 냉각시키고 다시 최소 10분 이상 교반하여 이산화탄소를 제거하였다. 남은 용액을 취하여 연소산화방식의 TOC측정기(Shimadzu TOC-L)를 이용하여 총유기탄소를 측정하였다. (총유기탄소 농도 / KHP표준용액 농도) X 100으로 산화율을 계산하였다.The oxidation rate test method will be described in detail as follows. KHP was dissolved in ultrapure water to prepare a total organic carbon KHP standard solution. Phosphoric acid or hydrochloric acid was added to the KHP standard solution to adjust the pH to 2, followed by stirring for at least 10 minutes to remove inorganic carbon. Into a glass vial having a diameter of 16 millimeters, 3 milliliters of an oxidizing solution was added, and 1 milliliter of a sample in which the inorganic carbon was removed was injected, and then 0.3 g of potassium persulfate powder was added. The vial was closed and the vial was placed in a heater and heated to oxidize the organic carbon. Thereafter, the mixture was cooled and stirred for at least 10 minutes to remove carbon dioxide. The remaining solution was taken and total organic carbon was measured using a combustion oxidation TOC meter (Shimadzu TOC-L). (Total organic carbon concentration / KHP standard solution concentration) The oxidation rate was calculated by X 100.

산화온도는 100 내지 125℃에서 가열하는 것이 산화시키는데 가장 적합하였다. 100℃이하에서 반응할 경우 산화율이 낮았다. 또한 125℃ 이상에서 열반응시키더라도 산화율에 큰 차이가 보이지 않았다.The oxidation temperature was most suitable for oxidation by heating at 100 to 125 ° C. The oxidation rate was low when reacted below 100 ℃. Also, no significant difference was observed in the oxidation rate even when subjected to thermal reaction at 125 ° C or higher.

pH 10의 흡수액을 제조하기 위하여 pH 10인 버퍼용액의 조성물을 조사한 결과 일반적으로 Sodium tetraborate-sodium hydroxide 조성물, ethylenediaminetetraacetic acid disodium salt-potassium carbonate-potatassium hydroxide-potassium borate 조성물, potassium chloride-boric acid-sodium hydroxide 조성물, boric acid-potassium chloride 조성물, boric acid-potassium chloride-sodium hydroxide 조성물 등이 이용되고 있다.As a result of investigating the composition of a buffer solution having a pH of 10 to prepare an absorbent solution having a pH of 10, generally, sodium tetraborate-sodium hydroxide composition, ethylenediaminetetraacetic acid disodium salt-potassium carbonate-potatassium hydroxide-potassium borate composition, potassium chloride-boric acid-sodium hydroxide Composition, boric acid-potassium chloride composition, boric acid-potassium chloride-sodium hydroxide composition, and the like are used.

본 발명에서는 다년간의 연구를 통하여 potassium chloride, boric acid, sodium hydroxide, sodium thiosulfate, thymol blue salt로 구성되는 흡수액 조성물의 조성성분 및 조성비율을 밝혀냈다. 연구결과 총유기탄소 분석용 흡수액의 기본조성에서 중요한 것은 thymol blue salt의 농도이다. Thymol blue를 제외한 물질은 혼합하여 pH 10을 정확히 조정하면 분석에 크게 영향을 미치지 않는다. 흡수액 조성물은 potassium chloride은 0.1 내지 1중량%, boric acid는 0.2 내지 0.7중량%, sodium hydroxide는 0.05 내지 0.3중량%, sodium thiosulfate는 0.01 내지 0.1중량% 포함되고, thymol blue salt 0.001 내지 0.02중량% 포함되며, 잔량의 초순수로 구성되는 것으로서 pH 10이 되도록 조정되는 것이다. Thymol blue salt는 0.001 내지 0.02중량% 첨가하는 것이 총유기탄소 측정에 적합하였다. Thymol blue salt를 0.001중량%보다 적게 첨가하면 색변화를 감지하기 어려우며 0.02중량% 이상 첨가하면 색이 너무 진해서 색변화를 측정하기 어려웠다.In the present invention, the composition component and composition ratio of the absorbent liquid composition composed of potassium chloride, boric acid, sodium hydroxide, sodium thiosulfate, and thymol blue salt were found through many years of research. As a result of the study, it is the concentration of thymol blue salt that is important in the basic composition of the absorbent for total organic carbon analysis. Except for Thymol blue, mixing and adjusting pH 10 accurately does not significantly affect the analysis. The absorption liquid composition contains 0.1 to 1% by weight of potassium chloride, 0.2 to 0.7% by weight of boric acid, 0.05 to 0.3% by weight of sodium hydroxide, 0.01 to 0.1% by weight of sodium thiosulfate, and 0.001 to 0.02% by weight of thymol blue salt. It is composed of ultrapure water of the remaining amount, and is adjusted to pH 10. The addition of 0.001 to 0.02% by weight of thymol blue salt was suitable for the measurement of total organic carbon. When adding less than 0.001% by weight of thymol blue salt, it is difficult to detect color change. When adding more than 0.02% by weight, the color is too dark to measure color change.

상기 흡수액 기본조성의 조성물을 흡수액으로 이용하여 흡수율을 시험하였다. 흡수율 시험을 하는 과정을 자세히 설명하면 다음과 같다. 상기 설명한 산화액을 바이알에 주입한 산화액 테스트셀에 시료를 주입하고 산화촉진제로 과황산칼륨을 첨가한후 멤브레인 모듈로 막는다. 흡수액을 주입한 흡수액 테스트셀을 산화액 테스트셀이 부착되어 있는 멤브레인 모듈로 다시 막는다. 산화액 테스트셀 부분이 가열되도록 가열기에 삽입한 후 가열한다. 가열이 끝나면 실온까지 충분히 방냉시킨다. 흡수액 테스트셀을 분광광도계를 이용하여 흡광도를 측정한다. 흡광도를 총유기탄소 농도로 환산한다.The absorption rate was tested using the composition of the basic composition of the absorbent liquid as an absorbent liquid. The process of performing the absorption rate test will be described in detail as follows. A sample is injected into an oxidizing liquid test cell in which the above-described oxidizing liquid is injected into a vial, potassium persulfate is added as an oxidizing accelerator, and then a membrane module is used. The absorbent liquid test cell in which the absorbent liquid is injected is again blocked with a membrane module to which an oxidant liquid test cell is attached. The part of the oxidizing liquid test cell is inserted into a heater to be heated, and then heated. After heating, allow to cool to room temperature sufficiently. The absorbance test cell is measured for absorbance using a spectrophotometer. Absorbance is converted to total organic carbon concentration.

멤브레인 모듈은 양쪽 내부에 스크류 가공이 되어 있어서 바이알 뚜껑으로 사용할 수 있으며 중간에 이산화탄소를 투과시킬 수 있는 투과 멤브레인이 장착되어 있다.Membrane modules are screwed on both sides, so they can be used as a vial lid, and a permeable membrane that can permeate carbon dioxide is installed in the middle.

상기와 같은 분석을 하기 위해서는 흡광도와 총유기탄소와의 상관성을 나타내는 검량선이 미리 확보되어 있어야 한다. 검량선을 작성하는 방법을 자세히 설명하면 다음과 같다. 브랭크용액으로 무기탄소가 제거된 초순수를 준비한다. KHP를 초순수에 용해시켜 총유기탄소 표준용액을 제조한다. 브랭크 용액과 총유기탄소 표준용액을 이용하여 상기와 같이 흡광도를 측정한다. 흡광도에 대한 총유기탄소 표준용액 농도의 상관관계를 이용하여 검량선을 작성한다. 이 검량선을 이용하여 총유기탄소의 농도를 계산할 수 있다.In order to perform the above analysis, a calibration curve indicating a correlation between absorbance and total organic carbon must be secured in advance. A detailed description of how to prepare a calibration curve is as follows. Prepare ultrapure water from which inorganic carbon has been removed with a blank solution. Dissolve KHP in ultrapure water to prepare a total organic carbon standard solution. Absorbance is measured as described above using a blank solution and a total organic carbon standard solution. A calibration curve is prepared using the correlation of the total organic carbon standard solution concentration with respect to absorbance. Using this calibration curve, the concentration of total organic carbon can be calculated.

흡수율의 계산은 (측정 총유기탄소 농도 / 총유기탄소 표준농도 ) X 100의 식으로 계산한다. 먼저 기본 조성 흡수액의 흡수율을 조사하였다. KHP를 이용하여 총유기탄소 표준용액을 제조한 후 이 표준용액의 흡수율을 계산한 결과 95중량%이상의 흡수율을 얻을 수 있었다. KHP의 경우 분자구조가 간단한 편이므로 좀더 복잡한 구조의 1,10-phenanthroline과 L- glutamine 원료로 총유기탄소 표준용액을 제조하여 총유기탄소를 측정한 후 흡수율을 계산하였다. 하였다. 그 결과 산화율이 80중량%이하로 낮아졌다.The absorption rate is calculated using the formula (Measured total organic carbon concentration / total organic carbon standard concentration) X 100. First, the absorption rate of the basic composition absorbent liquid was investigated. After preparing the total organic carbon standard solution using KHP, the absorption rate of this standard solution was calculated, and an absorption rate of 95% by weight or more could be obtained. In the case of KHP, since the molecular structure is simple, a total organic carbon standard solution was prepared from 1,10-phenanthroline and L-glutamine raw materials with more complex structures, and the absorption rate was calculated after measuring the total organic carbon. Did. As a result, the oxidation rate was lowered to 80% by weight or less.

본 발명자들은 흡수액의 이산화탄소 흡수율을 향상시키기 위하여 여러 가지 물질에 대해 실험하였다. 이산화탄소 흡수율을 향상시키기 위해 첨가되는 물질은 경시안정성이 있어야 하며 다른 물질과 반응하지 않아야 하고 Thymol blue salt의 색변화에 영향을 미치지 않아야 한다. 본 발명자들은 여러 가지 첨가 물질에 대해 연구한 결과 하이드라진 모노하이드레이트(Hydrazine monohydrate)와 하이드라진 황산염(Hydrazine sulfate)이 상기 조건을 만족하면서 이산화탄소 흡수율을 높이는 데 도움이 되는 것을 확인할 수 있었다. 상기 2가지 물질을 흡수액에 첨가할 경우 1,10-phenanthroline과 L- glutamine을 원료로 제조한 총유기탄소 표준용액에 대해서도 흡수액의 이산화탄소 흡수율은 95중량% 이상인 것을 확인할 수 있었다.The present inventors have experimented with various materials to improve the absorption rate of carbon dioxide in the absorbent liquid. The material added to improve the carbon dioxide absorption rate must be light-cyanable, should not react with other materials, and should not affect the color change of Thymol blue salt. As a result of studying various additives, the present inventors have confirmed that hydrazine monohydrate and hydrazine sulfate help to increase carbon dioxide absorption while satisfying the above conditions. When the above two substances were added to the absorbent liquid, it was confirmed that the carbon dioxide absorption rate of the absorbent liquid was 95% by weight or more even for the total organic carbon standard solution prepared from 1,10-phenanthroline and L-glutamine as raw materials.

흡수액의 흡수율을 높이기 위해서는 흡수액에 대하여 하이드라진 하이드레이트는 0.05 내지 5중량%, 하이드라진 황산염은 0.1 내지 15중량% 첨가하는 것이 적정하였다.To increase the absorption rate of the absorbent liquid, it was appropriate to add 0.05 to 5% by weight of hydrazine hydrate and 0.1 to 15% by weight of hydrazine sulfate to the absorbent liquid.

하이드라진 하이드레이트가 0.05중량%보다 적거나 하이드라진 황산염이 0.1중량%보다 적게 첨가된 경우 흡수율 증가효과가 적었으며, 하이드라진 하이드레이트가 5.2중량% 보다 많거나 하이드라진 황산염이 15.5중량% 이상 첨가되면 총유기탄소 측정값의 재현성이 낮아졌다.When hydrazine hydrate was less than 0.05% by weight or hydrazine sulfate was added less than 0.1% by weight, the effect of increasing the absorption rate was small. The reproducibility of it was lowered.

상술한 내용과 같이 본 발명은 특별한 고가의 장비 없이 총유기탄소를 측정할 수 있는 측정방법으로서, 기기분석에 비하여 신속하고 간편하게 총유기탄소를 측정할 수 있으며 복잡한 구조식을 가지는 물질에 대해서도 정확성이 높게 분석이 가능하다.As described above, the present invention is a measuring method capable of measuring total organic carbon without special expensive equipment, and it is possible to measure total organic carbon quickly and easily compared to device analysis, and has high accuracy even for substances having a complex structural formula. Analysis is possible.

도 1은 본 발명에 따른 총유기탄소의 측정 과정을 나타난 개략도이다.
도 2는 본 발명의 멤브레인 모듈의 모식도이다.
1 is a schematic view showing a process of measuring total organic carbon according to the present invention.
2 is a schematic view of the membrane module of the present invention.

산화액은 황산을 희석하여 제조하였으며 황산 농도가 0.5 내지 10.0중량%의 범위에서는 산화율의 차이가 없었다.The oxidizing solution was prepared by diluting sulfuric acid, and there was no difference in oxidation rate in the concentration of sulfuric acid in the range of 0.5 to 10.0% by weight.

황산 농도가 0.5중량% 보다 낮으면 산화율이 낮았으며, 10.0중량%까지는 산화율에 차이가 없었으나 취급상의 위험성이 높아지므로 더 이상 황산의 농도를 높이지 않았다. 황산은 무기탄소가 제거된 시료 및 산화액 전체 용액대비 0.5 내지 10.0 중량%가 되도록 바이알에 주입하여 산화액 테스트셀을 마련한다.When the concentration of sulfuric acid was lower than 0.5% by weight, the oxidation rate was low. Up to 10.0% by weight, there was no difference in the oxidation rate, but the risk of handling increased, so the concentration of sulfuric acid was not increased any more. Sulfuric acid is injected into the vial so that the inorganic carbon is removed from the sample and the total solution of the oxidizing solution is 0.5 to 10.0% by weight to prepare an oxidizing solution test cell.

산화촉진제는 과황산칼륨(K2S2O8)을 사용한다. 과황산칼륨 무기탄소가 제거된 시료 및 산화액 전체 용액대비 4 내지 35중량%가 되도록 첨가하는 것이 적정하였다.The oxidation accelerator is potassium persulfate (K2S2O8). It was appropriate to add potassium persulfate inorganic carbon so that it was 4 to 35% by weight compared to the sample and the total solution of the oxidizing solution.

과황산칼륨이 4중량% 미만에서는 산화율이 낮은 단점이 있고, 35중량%가 초과되는 경우에는 잔류되는 과황산칼륨에 의하여 발색에 영향을 주는 단점이 있다.If the potassium persulfate is less than 4% by weight, there is a disadvantage that the oxidation rate is low, and if it exceeds 35% by weight, there is a disadvantage that affects the color development by the residual potassium persulfate.

산화시키는 가열온도는 100 내지 125℃가 적정하였으며 가열시간은 120분이상이 적정하였다. 가열온도가 100℃ 미만에서는 산화율이 낮은 단점이 있고, 125℃가 초과되는 경우에는 유리재질의 바이알 등이 깨지는 등의 단점이 있다.The heating temperature to oxidize was appropriate to 100 to 125 ℃, and the heating time was appropriate to 120 minutes or more. When the heating temperature is less than 100 ° C, the oxidation rate is low, and when it exceeds 125 ° C, the glass material vial or the like is broken.

산화율 시험방법에 대해 자세히 설명하면 다음과 같다. KHP를 초순수에 녹여 총유기탄소 KHP표준용액을 제조하였다. KHP표준용액에 인산 또는 염산을 주입하여 pH를 2로 조정한 후 최소 10분 이상 교반하여 무기탄소를 제거하였다. 직경이 16밀리미터인 유리 바이알에 산화액 3밀리리터를 넣고 무기탄소가 제거된 시료를 1밀리리터 주입한 후 과황산칼륨 분말 0.3g을 첨가하였다. 바이알의 뚜껑을 닫고 가열기에 바이알을 넣고 가열하여 유기탄소를 산화시켰다. 이후 냉각시키고 다시 최소 10분 이상 교반하여 이산화탄소를 제거하였다. 남은 용액을 취하여 연소산화방식의 TOC측정기(Shimadzu TOC-L)를 이용하여 총유기탄소를 측정하였다. (총유기탄소 농도 / KHP표준용액 농도) X 100으로 산화율을 계산하였다.)The oxidation rate test method will be described in detail as follows. KHP was dissolved in ultrapure water to prepare a total organic carbon KHP standard solution. Phosphoric acid or hydrochloric acid was added to the KHP standard solution to adjust the pH to 2, followed by stirring for at least 10 minutes to remove inorganic carbon. Into a glass vial with a diameter of 16 millimeters, 3 milliliters of the oxidizing solution was added, and 1 milliliter of the sample from which the inorganic carbon had been removed was injected and 0.3 g of potassium persulfate powder was added. The vial was closed and the vial was placed in a heater and heated to oxidize the organic carbon. Thereafter, the mixture was cooled and stirred for at least 10 minutes to remove carbon dioxide. The remaining solution was taken and total organic carbon was measured using a combustion oxidation TOC meter (Shimadzu TOC-L). (Total organic carbon concentration / KHP standard solution concentration) The oxidation rate was calculated as X 100.)

산화온도는 100 내지 125℃에서 가열하는 것이 산화시키는데 가장 적합하였다. 100℃이하에서 반응할 경우 산화율이 낮았다. 또한 125℃ 이상에서 열반응시키면 산화율에 큰 차이가 보이지 않았다.The oxidation temperature was most suitable for oxidation by heating at 100 to 125 ° C. The oxidation rate was low when reacted below 100 ℃. In addition, when the thermal reaction was performed at 125 ° C or higher, no significant difference was observed in the oxidation rate.

pH 10의 흡수액 조성물은 pH 10인 버퍼용액 조성물로서 potassium chloride, boric acid, sodium hydroxide, sodium thiosulfate, thymol blue salt로 구성된다.The absorbent liquid composition at pH 10 is a buffer solution composition having a pH of 10 and is composed of potassium chloride, boric acid, sodium hydroxide, sodium thiosulfate, and thymol blue salt.

흡수액 조성물에서 가장 중요한 것은 thymol blue salt의 농도이며, thymol blue salt를 제외한 물질은 혼합하여 pH 10을 정확히 조정하면 분석에 크게 영향을 미치지 않는다.The most important thing in the absorbent composition is the concentration of thymol blue salt, and substances other than thymol blue salt are mixed to accurately adjust the pH 10, and thus do not significantly affect the analysis.

흡수액 조성물은 potassium chloride은 0.1 내지 1중량%, boric acid는 0.2 내지 0.7중량%, sodium hydroxide는 0.05 내지 0.3중량%, sodium thiosulfate는 0.01 내지 0.1중량% 포함되고, thymol blue salt 0.001 내지 0.02중량% 포함되며, 잔량의 초순수로 구성되는 것으로서 pH 10이 되도록 조정된다.The absorption liquid composition contains 0.1 to 1% by weight of potassium chloride, 0.2 to 0.7% by weight of boric acid, 0.05 to 0.3% by weight of sodium hydroxide, 0.01 to 0.1% by weight of sodium thiosulfate, and 0.001 to 0.02% by weight of thymol blue salt. It is composed of ultrapure water of the remaining amount and is adjusted to pH 10.

Thymol blue salt를 0.001중량%보다 적게 첨가하면 색변화를 감지하기 어려우며 0.02중량% 이상 첨가하면 색이 너무 진해서 색변화를 측정하기 어려웠다.When adding less than 0.001% by weight of thymol blue salt, it is difficult to detect color change. When adding more than 0.02% by weight, the color is too dark to measure color change.

총유기탄소의 측정 방법의 각 단계는 도 1에 도시되어 있는 바와 같이, 첫째, 무기탄소가 제거된 시료 및 농도가 0.5 내지 10.0 중량%인 황산으로 이루어진 산화액을 바이알에 주입하여 시료 및 산화액 전체 용액대비 황산이 0.5 내지 10.0 중량%가 되도록 산화액 테스트셀을 마련하고, 산화액 테스트셀에 과황산칼륨으로 이루어진 산화촉진제를 투입하여 시료 및 산화액 전체 용액대비 4 내지 35 중량%가 되도록 하며, 둘째, 멤브레인 모듈을 장착한 후, 셋째, 산화액 테스트셀이 부착되어 있는 멤브레인 모듈의 반대편을 흡수액 테스트셀로 막는데, 흡수액 테스트셀은 potassium chloride 0.1 내지 1중량%, boric acid 0.2 내지 0.7중량%, sodium hydroxide 0.05 내지 0.3중량%, sodium thiosulfate 0.01 내지 0.1중량% 포함되고, thymol blue salt 0.001 내지 0.02중량% 포함되며, 잔량의 초순수로 구성되는 것으로서 pH 10이 되도록 조정되는 흡수액 조성물이 바이알에 주입되어 마련된 것이다. 그리고 넷째, 산화액 테스트셀 부분이 하부에 위치하도록 가열기에 삽입하고 100℃ 내지 125℃의 온도에서 가열하면서 상부에 위치한 흡수액 테스트셀에서 유기탄소가 산화되어 발생한 이산화탄소를 포집하도록 한 후, 다섯째, 반응이 끝나면 대기 중에서 실온까지 충분히 방냉한다. 마지막으로 여섯째, 흡수액 조성물에 의하여 상기 유기탄소가 산화되어 발생된 이산화탄소가 흡수된 상태인 흡수액 테스트셀을 분광광도계를 이용하여 흡광도를 측정하여 총유기탄소로 환산한다.Each step of the method for measuring total organic carbon is as shown in FIG. 1, first, the sample and the oxidizing solution are injected into a vial with a sample in which inorganic carbon is removed and a sulfuric acid concentration of 0.5 to 10.0% by weight is injected into a vial. Prepare an oxidizing liquid test cell so that sulfuric acid is 0.5 to 10.0% by weight relative to the total solution, and add an oxidizing accelerator composed of potassium persulfate to the oxidizing liquid test cell to be 4 to 35% by weight compared to the total solution of the sample and oxidizing solution. , Second, after mounting the membrane module, third, the opposite side of the membrane module to which the oxidizing liquid test cell is attached is blocked with an absorbent liquid test cell, wherein the absorbent liquid test cell is potassium chloride 0.1 to 1% by weight, boric acid 0.2 to 0.7% by weight %, sodium hydroxide 0.05 to 0.3% by weight, sodium thiosulfate 0.01 to 0.1% by weight, thymol blue salt 0.001 to 0.02% by weight, remaining amount of ultrapure water The absorbent composition is adjusted to pH 10 is provided is injected into the vial as is. And fourth, after inserting the heater so that the part of the oxidizing liquid test cell is located at the bottom and heating at a temperature of 100 ° C to 125 ° C to collect carbon dioxide generated by oxidation of organic carbon in the absorbent liquid test cell located at the top, fifth, the reaction When this is over, it is allowed to cool to room temperature in the air. Finally, sixth, the absorbent liquid test cell in which the carbon dioxide generated by oxidation of the organic carbon by the absorbent liquid composition is absorbed is measured using a spectrophotometer and converted into total organic carbon.

한편, 총유기탄소의 측정 방법의 상기 둘째 단계에 사용되는 멤브레인 모듈은 도 2에 도시되어 있는 바와 같이, 양쪽 내부에 스크류 가공이 되어 있어서 바이알 뚜껑으로 사용할 수 있고, 이산화탄소 투과 멤브레인(11)을 구비하며, 이산화탄소 투과 멤브레인의 상부 및 하부에서 실리콘 가스캣(10)이 각각 누르고 있는 형태로 구성되며, 상부 및 하부의 실리콘 가스캣(10)을 멤브레인 모듈 하부 뚜껑(12)과 멤브레인 모듈 상부 뚜껑(13)이 각각 압착하게 함으로써 가스나 증기의 누출을 방지할 수 있는 형태로 구성되는 것이다.On the other hand, the membrane module used in the second step of the total organic carbon measurement method, as shown in Figure 2, both of which are screwed inside can be used as a vial lid, and equipped with a carbon dioxide permeable membrane 11 And, the upper and lower parts of the carbon dioxide permeable membrane is configured in such a way that the silicon gasket 10 is pressed, and the upper and lower silicon gaskets 10 are provided with a membrane module lower lid 12 and a membrane module upper lid 13 ) Is configured to prevent gas or steam from leaking by making each press.

흡광도와 총유기탄소와의 상관성을 나타내는 검량선을 작성하는 방법은, 블랭크용액으로 무기탄소를 포함하지 아니하는 초순수를 준비하고, KHP를 초순수에 용해시켜 총유기탄소 표준용액을 제조하며, 블랭크 용액과 총유기탄소 표준용액을 이용하여 상기와 같이 흡광도를 측정한다. 그리고 흡광도에 대한 총유기탄소 표준용액 농도의 상관관계를 이용하여 검량선을 작성한다. 이 검량선을 이용하여 총유기탄소의 농도를 계산할 수 있다.To prepare a calibration curve showing the correlation between absorbance and total organic carbon, prepare ultrapure water that does not contain inorganic carbon as a blank solution, and dissolve KHP in ultrapure water to prepare a total organic carbon standard solution. Absorbance is measured as described above using a total organic carbon standard solution. Then, a calibration curve is prepared using the correlation of the total organic carbon standard solution concentration with respect to absorbance. Using this calibration curve, the concentration of total organic carbon can be calculated.

흡수율의 계산은 “(측정 총유기탄소 농도 / 총유기탄소 표준농도 ) X 100”의 식으로 계산한다. 먼저 기본 조성 흡수액의 흡수율을 조사하였다. KHP를 이용하여 총유기탄소 표준용액을 제조한 후 이 표준용액의 흡수율을 계산한 결과 95중량%이상의 흡수율을 얻을 수 있었다. KHP의 경우 분자구조가 간단한 편이므로 좀 더 복잡한 구조의 1,10-phenanthroline과 L-glutamine 원료로 총유기탄소 표준용액을 제조하여 총유기탄소를 측정한 후 흡수율을 계산하였다. 하였다. 그 결과 산화율이 80중량%이하로 낮아졌다.The absorption rate is calculated using the formula “(measured total organic carbon concentration / total organic carbon standard concentration) X 100”. First, the absorption rate of the basic composition absorbent liquid was investigated. After preparing the total organic carbon standard solution using KHP, the absorption rate of this standard solution was calculated, and an absorption rate of 95% by weight or more could be obtained. In the case of KHP, since the molecular structure is simple, a total organic carbon standard solution was prepared from 1,10-phenanthroline and L-glutamine raw materials with more complex structures, and then the absorption rate was calculated after measuring the total organic carbon. Did. As a result, the oxidation rate was lowered to 80% by weight or less.

이산화탄소 흡수율을 향상시키기 위해 첨가되는 물질은 경시안정성이 있어야 하며 다른 물질과 반응하지 않아야 하고 Thymol blue salt의 색변화에 영향을 미치지 않아야 하는 것으로서, 하이드라진 모노하이드레이트(Hydrazine monohydrate)와 하이드라진 황산염(Hydrazine sulfate)이 상기 조건을 만족하면서 이산화탄소 흡수율을 높이는 물질인 것을 확인할 수 있었다. 상기 2가지 물질을 흡수액에 첨가할 경우 1,10-phenanthroline과 L- glutamine을 원료로 제조한 총유기탄소 표준용액에 대해서도 흡수액의 이산화탄소 흡수율은 95중량% 이상인 것을 확인할 수 있었다.The substances added to improve the absorption rate of carbon dioxide should be light-cylinder, should not react with other substances, and should not affect the color change of Thymol blue salt. Hydrazine monohydrate and Hydrazine sulfate It was confirmed that it is a substance that increases the carbon dioxide absorption rate while satisfying the above conditions. When the above two substances were added to the absorbent liquid, it was confirmed that the carbon dioxide absorption rate of the absorbent liquid was 95% by weight or more even for the total organic carbon standard solution prepared from 1,10-phenanthroline and L-glutamine as raw materials.

흡수액의 흡수율을 높이기 위해서는 흡수액에 대하여 하이드라진 하이드레이트는 0.05 내지 5중량%, 하이드라진 황산염은 0.1 내지 15중량% 첨가하는 것이 적정하였다.To increase the absorption rate of the absorbent liquid, it was appropriate to add 0.05 to 5% by weight of hydrazine hydrate and 0.1 to 15% by weight of hydrazine sulfate to the absorbent liquid.

하이드라진 하이드레이트가 0.05중량%보다 적거나 하이드라진 황산염이 0.1중량%보다 적게 첨가된 경우 흡수율 증가효과가 적었으며, 하이드라진 하이드레이트가 5.2중량% 보다 많거나 하이드라진 황산염이 15.5중량% 이상 첨가되면 총유기탄소 측정값의 재현성이 낮아졌다.When hydrazine hydrate was less than 0.05% by weight or hydrazine sulfate was added less than 0.1% by weight, the effect of increasing the absorption rate was small. The reproducibility of it was lowered.

[실시예 및 비교예][Examples and Comparative Examples]

실시예 1Example 1

농도 0.5중량%의 황산 용액으로 산화액 조성물을 제조하고, potassium chloride는 0.55중량%, boric acid는 0.45중량%, sodium hydroxide는 0.175 중량%, sodium thiosulfate는 0.055중량%, 하이드라진 모노하이드레이트를 0.05중량%, thymol blue salt의 양은 0.001중량% 첨가하여 흡수액을 제조하였으며, pH 10이 되도록 하였다. 산화액을 직경 16밀리미터의 유리바이알에 1밀리리터 주입하여 산화액 테스트셀을 준비한다. 또한 흡수액 4밀리리터를 유리바이알에 주입하여 흡수액 테스트셀을 준비한다. KHP, 1,10-phenanthroline 및 L-glutamine을 이용하여 총유기탄소의 농도가 30mg/L가 되도록 표준용액을 제조하였다. 산화액 테스트셀에 3종의 표준용액을 각각 주입하고 과황산칼륨 분말 0.3g을 첨가하였다. 멤브레인 모듈로 산화액 테스트셀을 막고 이 산화액 테스트셀에 부착된 멤브레인 모듈을 뒤집어 흡수액 테스트셀을 막는다. 산화액 테스트셀이 가열되도록 열반응기에 넣는다. 열반응이 끝나면 실온으로 방냉시킨 후, 흡수액 테스트셀 부분의 흡광도를 측정하여 산화율을 계산한다. 그 결과를 표 1에 나타내었다.Prepare an oxidizing liquid composition with a sulfuric acid solution having a concentration of 0.5% by weight, 0.55% by weight of potassium chloride, 0.45% by weight of boric acid, 0.175% by weight of sodium hydroxide, 0.055% by weight of sodium thiosulfate, 0.05% by weight of hydrazine monohydrate , The amount of thymol blue salt was added 0.001% by weight to prepare an absorbent solution, and the pH was adjusted to 10. An oxidizing liquid test cell is prepared by injecting 1 liter of an oxidizing liquid into a glass vial having a diameter of 16 mm. In addition, an absorbent liquid test cell is prepared by pouring 4 milliliters of the absorbent liquid into a glass vial. A standard solution was prepared so that the concentration of total organic carbon was 30 mg / L using KHP, 1,10-phenanthroline and L-glutamine. Three standard solutions were respectively injected into the oxidizing solution test cell, and 0.3 g of potassium persulfate powder was added. The membrane module is used to block the oxidant test cell and the membrane module attached to the oxidant test cell is turned over to block the absorbent liquid test cell. The oxidant test cell is placed in a heat reactor to heat it. After the thermal reaction is finished, after cooling to room temperature, the absorbance of the absorbent liquid test cell is measured to calculate the oxidation rate. Table 1 shows the results.

실시예 2Example 2

하이드라진 모노하이드레이트를 5중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 1에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorption liquid was prepared by adding 5% by weight of hydrazine monohydrate. Table 1 shows the results.

실시예 3Example 3

하이드라진 황산염을 0.1중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 2에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorbent liquid was prepared by adding 0.1% by weight of hydrazine sulfate. Table 2 shows the results.

실시예 4Example 4

하이드라진 황산염을 15중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 2에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorption liquid was prepared by adding 15% by weight of hydrazine sulfate. Table 2 shows the results.

실시예 5Example 5

하이드라진 모노하이드레이트를 0.05중량% 첨가하고 thymol blue를 0.02중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 3에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorbent liquid was prepared by adding 0.05% by weight of hydrazine monohydrate and 0.02% by weight of thymol blue. Table 3 shows the results.

실시예 6Example 6

하이드라진 모노하이드레이트를 5중량% 첨가하고 thymol blue를 0.02중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 3에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorption liquid was prepared by adding hydrazine monohydrate to 5% by weight and adding thymol blue to 0.02% by weight. Table 3 shows the results.

실시예 7Example 7

하이드라진 황산염을 0.1중량% 첨가하고 Thymol blue를 0.02중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 4에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that 0.1% by weight of hydrazine sulfate and 0.02% by weight of Thymol blue were added to prepare an absorbent liquid. Table 4 shows the results.

실시예 8Example 8

하이드라진 황산염을 15중량% 첨가하고 Thymol blue를 0.02중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 4에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorption liquid was prepared by adding 15% by weight of hydrazine sulfate and adding 0.02% by weight of Thymol blue. Table 4 shows the results.

비교예 1Comparative Example 1

하이드라진 모노하이드레이트를 0.04중량% 첨가하고 Thymol blue를 0.02중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 5에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorbent liquid was prepared by adding 0.04% by weight of hydrazine monohydrate and 0.02% by weight of Thymol blue. Table 5 shows the results.

비교예 2Comparative Example 2

하이드라진 모노하이드레이트를 6중량% 첨가하고 Thymol blue를 0.02중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 5에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorption liquid was prepared by adding hydrazine monohydrate to 6% by weight and adding Thymol blue to 0.02% by weight. Table 5 shows the results.

비교예 3Comparative Example 3

하이드라진 황산염를 0.05중량% 첨가하고 Thymol blue를 0.02중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 6에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorbent liquid was prepared by adding 0.05% by weight of hydrazine sulfate and adding 0.02% by weight of Thymol blue. Table 6 shows the results.

비교예 4Comparative Example 4

하이드라진 황산염을 15.5중량% 첨가하고 Thymol blue를 0.02중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 6에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorption liquid was prepared by adding 15.5% by weight of hydrazine sulfate and adding 0.02% by weight of Thymol blue. Table 6 shows the results.

비교예 5Comparative Example 5

하이드라진 모노하이드레이트를 0.05중량% 첨가하고 Thymol blue를 0.0005중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 7에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorbent liquid was prepared by adding 0.05% by weight of hydrazine monohydrate and 0.0005% by weight of Thymol blue. Table 7 shows the results.

비교예 6Comparative Example 6

하이드라진 모노하이드레이트를 0.05중량% 첨가하고 Thymol blue를 0.025중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 7에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that an absorption liquid was prepared by adding 0.05% by weight of hydrazine monohydrate and 0.025% by weight of Thymol blue. Table 7 shows the results.

비교예 7Comparative Example 7

하이드라진 황산염을 0.1중량% 첨가하고 Thymol blue를 0.0005중량%와 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 8에 나타내었다.The absorption rate was calculated in the same manner as in Example 1, except that 0.1 wt% of hydrazine sulfate was added and 0.0005 wt% of Thymol blue was added to prepare an absorbent liquid. Table 8 shows the results.

비교예 8Comparative Example 8

하이드라진 황산염을 0.1중량% 첨가하고 Thymol blue를 0.025중량% 첨가하여 흡수액을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 흡수율을 계산하였다. 그 결과를 표 8에 나타내었다.The absorption rate was calculated in the same manner as in Example 1 except that 0.1 wt% of hydrazine sulfate was added and 0.025 wt% of Thymol blue was added to prepare an absorbent liquid. Table 8 shows the results.

하이드라진
모노하이드레이트
첨가량
(중량%)
Hydrazine
Monohydrate
Amount added
(weight%)
표준용액 종류Standard solution type 측정농도Measurement concentration 산화율
(%)
Oxidation rate
(%)
CV
(변동계수)
CV
(Coefficient of variation)
1One 22 33 평균Average 0.050.05 KHP표준용액KHP standard solution 29.529.5 29.529.5 29.429.4 29.529.5 98.298.2 0.20.2 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 28.528.5 29.129.1 29.229.2 28.928.9 96.496.4 1.31.3 L-glutamine표준용액L-glutamine standard solution 29.429.4 29.329.3 29.229.2 29.329.3 97.797.7 0.30.3 55 KHP표준용액KHP standard solution 29.229.2 29.129.1 29.229.2 29.229.2 97.297.2 0.20.2 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 29.729.7 29.429.4 29.629.6 29.629.6 98.698.6 0.50.5 L-glutamine표준용액L-glutamine standard solution 29.629.6 29.529.5 29.729.7 29.629.6 98.798.7 0.30.3

하이드라진
황산염
첨가량
(중량%)
Hydrazine
sulfate
Amount added
(weight%)
표준용액 종류Standard solution type 측정농도Measurement concentration 산화율
(%)
Oxidation rate
(%)
CV
(변동계수)
CV
(Coefficient of variation)
1One 22 33 평균Average 0.60.6 KHP표준용액KHP standard solution 29.429.4 29.329.3 29.329.3 29.329.3 97.897.8 0.20.2 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 29.129.1 29.329.3 29.129.1 29.229.2 97.297.2 0.40.4 L-glutamine표준용액L-glutamine standard solution 29.129.1 28.728.7 28.928.9 28.928.9 96.396.3 0.70.7 1515 KHP표준용액KHP standard solution 29.129.1 29.329.3 29.429.4 29.329.3 97.697.6 0.50.5 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 29.629.6 29.529.5 29.529.5 29.529.5 98.498.4 0.20.2 L-glutamine표준용액L-glutamine standard solution 29.729.7 29.629.6 29.429.4 29.629.6 98.698.6 0.50.5

하이드라진
모노하이드레이트
첨가량
(중량%)
Hydrazine
Monohydrate
Amount added
(weight%)
표준용액 종류Standard solution type 측정농도Measurement concentration 산화율
(%)
Oxidation rate
(%)
CV
(변동계수)
CV
(Coefficient of variation)
1One 22 33 평균Average 0.050.05 KHP표준용액KHP standard solution 29.429.4 29.429.4 29.529.5 29.429.4 98.198.1 0.20.2 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 29.129.1 29.129.1 29.329.3 29.229.2 97.297.2 0.40.4 L-glutamine표준용액L-glutamine standard solution 29.329.3 29.429.4 29.429.4 29.429.4 97.997.9 0.20.2 55 KHP표준용액KHP standard solution 29.329.3 29.329.3 29.329.3 29.329.3 97.797.7 0.00.0 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 29.529.5 29.229.2 29.529.5 29.429.4 98.098.0 0.60.6 L-glutamine표준용액L-glutamine standard solution 29.729.7 29.729.7 29.529.5 29.629.6 98.898.8 0.40.4

하이드라진
황산염
첨가량
(중량%)
Hydrazine
sulfate
Amount added
(weight%)
표준용액 종류Standard solution type 측정농도Measurement concentration 산화율
(%)
Oxidation rate
(%)
CV
(변동계수)
CV
(Coefficient of variation)
1One 22 33 평균Average 0.10.1 KHP표준용액KHP standard solution 29.329.3 29.429.4 29.529.5 29.429.4 98.098.0 0.30.3 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 29.429.4 29.629.6 29.329.3 29.429.4 98.198.1 0.50.5 L-glutamine표준용액L-glutamine standard solution 29.329.3 29.529.5 29.329.3 29.429.4 97.997.9 0.40.4 1515 KHP표준용액KHP standard solution 29.529.5 29.329.3 29.529.5 29.429.4 98.198.1 0.40.4 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 29.629.6 29.329.3 29.729.7 29.529.5 98.498.4 0.70.7 L-glutamine표준용액L-glutamine standard solution 29.729.7 29.429.4 29.629.6 29.629.6 98.698.6 0.50.5

하이드라진
모노하이드레이트
첨가량
(중량%)
Hydrazine
Monohydrate
Amount added
(weight%)
표준용액 종류Standard solution type 측정농도Measurement concentration 산화율
(%)
Oxidation rate
(%)
CV
(변동계수)
CV
(Coefficient of variation)
1One 22 33 평균Average 0.040.04 KHP표준용액KHP standard solution 29.129.1 29.329.3 29.229.2 29.229.2 97.397.3 0.30.3 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 27.527.5 27.827.8 27.627.6 27.627.6 92.192.1 0.60.6 L-glutamine표준용액L-glutamine standard solution 26.426.4 26.726.7 26.626.6 26.626.6 88.688.6 0.60.6 66 KHP표준용액KHP standard solution 29.429.4 29.229.2 29.229.2 29.329.3 97.697.6 0.40.4 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 29.129.1 24.624.6 25.725.7 26.526.5 88.288.2 8.98.9 L-glutamine표준용액L-glutamine standard solution 27.227.2 26.126.1 23.723.7 25.725.7 85.685.6 7.07.0

하이드라진
황산염
첨가량
(중량%)
Hydrazine
sulfate
Amount added
(weight%)
표준용액 종류Standard solution type 측정농도Measurement concentration 산화율
(%)
Oxidation rate
(%)
CV
(변동계수)
CV
(Coefficient of variation)
1One 22 33 평균Average 0.050.05 KHP표준용액KHP standard solution 29.229.2 29.529.5 29.429.4 29.429.4 97.997.9 0.50.5 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 28.128.1 27.527.5 27.627.6 27.727.7 92.492.4 1.21.2 L-glutamine표준용액L-glutamine standard solution 26.426.4 25.725.7 26.126.1 26.126.1 86.986.9 1.31.3 15.515.5 KHP표준용액KHP standard solution 29.629.6 29.429.4 29.429.4 29.529.5 98.298.2 0.40.4 1,10-phenanthroline표준용액1,10-phenanthroline standard solution 26.426.4 28.928.9 29.229.2 28.228.2 93.993.9 5.55.5 L-glutamine표준용액L-glutamine standard solution 28.228.2 29.729.7 26.426.4 28.128.1 93.793.7 5.95.9

Thymol blue salt
첨가량(중량%)
Thymol blue salt
Addition amount (% by weight)
표준 종류Standard type 측정농도
(표준용액 1.5mg/L)
Measurement concentration
(Standard solution 1.5mg / L)
CV
(변동계수)
CV
(Coefficient of variation)
측정농도
(표준용액 30mg/L)
Measurement concentration
(Standard solution 30mg / L)

CV
(변동계수)

CV
(Coefficient of variation)
1One 22 33 평균Average 1One 22 33 평균Average 0.00050.0005 KHP표준용액KHP standard solution 0.70.7 0.60.6 0.20.2 0.50.5 52.952.9 22.122.1 21.721.7 25.125.1 23.023.0 8.18.1 1,10 phenan-
throline표준용액
1,10 phenan-
throline standard solution
0.50.5 0.40.4 0.20.2 0.40.4 41.741.7 23.523.5 21.121.1 24.224.2 22.922.9 7.17.1
L-glutamine표준용액L-glutamine standard solution 0.50.5 0.40.4 1.21.2 0.70.7 62.362.3 23.423.4 22.422.4 23.723.7 23.223.2 2.92.9 0.0250.025 KHP표준용액KHP standard solution 1.41.4 1.21.2 1.71.7 1.41.4 17.617.6 28.428.4 23.123.1 24.624.6 25.425.4 10.810.8 1,10 phenan-
throline표준용액
1,10 phenan-
throline standard solution
1.51.5 1.11.1 1.71.7 1.41.4 21.321.3 24.824.8 28.628.6 29.329.3 27.627.6 8.88.8
L-glutamine표준용액L-glutamine standard solution 1.81.8 1.41.4 1.11.1 1.41.4 24.524.5 25.725.7 29.229.2 28.528.5 27.827.8 6.76.7

Thymol blue salt
첨가량
(중량%)
Thymol blue salt
Amount added
(weight%)
표준 종류Standard type 측정농도
(표준용액 1.5mg/L)
Measurement concentration
(Standard solution 1.5mg / L)
CV
(변동계수)
CV
(Coefficient of variation)
측정농도
(표준용액 30mg/L)
Measurement concentration
(Standard solution 30mg / L)
CV
(변동계수)
CV
(Coefficient of variation)
1One 22 33 평균Average 1One 22 33 평균Average 0.00050.0005 KHP표준용액KHP standard solution 0.60.6 0.40.4 0.90.9 0.60.6 39.739.7 24.324.3 25.625.6 21.121.1 23.723.7 9.89.8 1,10 phenan-
throline표준용액
1,10 phenan-
throline standard solution
0.70.7 0.80.8 1.11.1 0.90.9 24.024.0 25.725.7 25.925.9 28.928.9 26.826.8 6.76.7
L-glutamine표준용액L-glutamine standard solution 0.70.7 0.60.6 0.90.9 0.70.7 22.822.8 23.423.4 26.526.5 26.126.1 25.325.3 6.76.7 0.0250.025 KHP표준용액KHP standard solution 1.41.4 1.91.9 1.21.2 1.51.5 28.228.2 22.922.9 28.428.4 29.429.4 26.926.9 13.013.0 1,10 phenan-
throline표준용액
1,10 phenan-
throline standard solution
1.31.3 1.71.7 1.81.8 1.61.6 16.516.5 29.329.3 27.527.5 26.426.4 27.727.7 5.35.3
L-glutamine표준용액L-glutamine standard solution 1.61.6 1.81.8 1.11.1 1.51.5 24.024.0 28.128.1 26.626.6 29.729.7 28.128.1 5.55.5

1 : 피펫
2 : 산화액 테스트 셀
3 : 산화액
4 : 산화촉진제
5 : 멤브레인 모듈
6 : 흡수액 테스트 셀
7 : 흡수액
8 : 가열기
9 : 분광광도계
10 : 실리콘 가스캣
11 : 이산화탄소 투과 멤브레인
12 : 멤브레인 모듈 하부 뚜껑
13 : 멤브레인 모듈 상부 뚜껑
1: pipette
2: oxidizing liquid test cell
3: oxidizing solution
4: Oxidation accelerator
5: Membrane module
6: absorbent liquid test cell
7: absorption liquid
8: heater
9: Spectrophotometer
10: silicon gas cat
11: carbon dioxide permeable membrane
12: Membrane module lower lid
13: Membrane module upper lid

Claims (8)

산화액, 산화촉진제 및 흡수액으로 이루어지는 수중 총유기탄소 측정을 위한 분석 시약 조성물에 있어서,
상기 흡수액은, potassium chloride 0.1 내지 1중량%; boric acid 0.2 내지 0.7중량%; sodium hydroxide 0.05 내지 0.3중량%; sodium thiosulfate 0.01 내지 0.1중량%; 하이드라진 하이드레이트 0.05 내지 5중량% 또는 하이드라진 황산염 0.1 내지 15중량%; thymol blue salt 0.001 내지 0.02중량%; 및 잔량의 초순수;로 구성되는 것으로서, pH 10이 되도록 조정되는 것을 특징으로 하는 수중 총유기탄소 측정을 위한 분석 시약 조성물.
In the analytical reagent composition for the measurement of total organic carbon in water consisting of an oxidizing liquid, an oxidizing accelerator and an absorbing liquid,
The absorption liquid, potassium chloride 0.1 to 1% by weight; boric acid 0.2-0.7 wt%; sodium hydroxide 0.05 to 0.3% by weight; sodium thiosulfate 0.01 to 0.1% by weight; 0.05 to 5% by weight of hydrazine hydrate or 0.1 to 15% by weight of hydrazine sulfate; thymol blue salt 0.001 to 0.02% by weight; And the remaining amount of ultrapure water; consisting of, analytical reagent composition for the measurement of total organic carbon in water, characterized in that adjusted to pH 10.
제1항에 있어서, 상기 산화액은, 농도가 0.5 내지 10.0중량%인 황산인 것을 특징으로 하는 수중 총유기탄소 측정을 위한 분석 시약 조성물.

According to claim 1, wherein the oxidizing solution, the concentration of 0.5 to 10.0% by weight of sulfuric acid, analytical reagent composition for the measurement of total organic carbon in water.

제1항에 있어서, 상기 산화촉진제는, 과황산칼륨인 것을 특징으로 하는 수중 총유기탄소 측정을 위한 분석 시약 조성물.

The method of claim 1, wherein the oxidation accelerator is analytical reagent composition for measuring total organic carbon in water, characterized in that potassium persulfate.

삭제delete 삭제delete 수중 총유기탄소의 측정 방법은, 제1항 내지 제3항 중 어느 한 항의 수중 총유기탄소 측정을 위한 분석 시약 조성물을 이용하여,
1) 무기탄소가 제거된 시료 및 산화액을 바이알에 주입하여 산화액 테스트셀을 마련하는 단계;
2) 산화액 테스트셀에 산화촉진제를 투입하는 단계;
3) 산화액 테스트셀에 멤브레인 모듈을 장착하는 단계;
4) 산화액 테스트셀이 장착되어 있는 멤브레인 모듈의 반대편에 흡수액 테스트셀을 장착하는 단계;
5) 산화액 테스트셀 부분이 하부에 위치하도록 가열기에 삽입하고 100℃ 내지 125℃의 온도에서 가열하면서 상부에 위치한 흡수액 테스트셀에서 유기탄소가 산화되어 발생한 이산화탄소를 포집하도록 하는 단계;
6) 반응이 끝나면 대기 중에서 실온까지 충분히 방냉하는 단계;
7) 흡수액 테스트셀을 분광광도계를 이용하여 흡광도를 측정하여 총유기탄소로 환산하는 단계;로 이루어지는 수중 총유기탄소 측정 방법.

The method for measuring total organic carbon in water, using an analytical reagent composition for measuring total organic carbon in water according to any one of claims 1 to 3,
1) preparing an oxidizing liquid test cell by injecting a sample and an oxidizing liquid from which inorganic carbon has been removed into a vial;
2) adding an oxidizing accelerator to the oxidizing liquid test cell;
3) mounting the membrane module to the oxidizing liquid test cell;
4) mounting the absorbent liquid test cell on the opposite side of the membrane module on which the oxidized liquid test cell is mounted;
5) inserting a heater so that the portion of the oxidizing liquid test cell is located at the bottom and heating at a temperature of 100 ° C to 125 ° C to capture carbon dioxide generated by oxidation of organic carbon in the absorbent liquid test cell located at the top;
6) when the reaction is over, sufficiently cooling to room temperature in the atmosphere;
7) measuring the absorbance of the absorbent liquid test cell using a spectrophotometer and converting it into total organic carbon; a method for measuring total organic carbon in water.

제6항에 있어서,
‘산화액 테스트셀에 산화촉진제를 투입하는 단계’는 ‘산화액 테스트셀에 과황산칼륨으로 이루어진 산화촉진제를 투입하여 과황산칼륨이 무기탄소가 제거된 시료 및 산화액 전체 용액대비 4 내지 35 중량%가 되도록 하는 단계’인 것을 특징으로 하는 수중 총유기탄소 측정 방법.

The method of claim 6,
The step of adding an oxidizing accelerator to the oxidizing solution test cell is 4 to 35 wt. Method to measure the total organic carbon in water, characterized in that the 'step to be a percentage.'

삭제delete
KR1020190123206A 2019-10-04 2019-10-04 Analytical reagent composition for measuring total organic carbon in water and measuring method using the same KR102098332B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190123206A KR102098332B1 (en) 2019-10-04 2019-10-04 Analytical reagent composition for measuring total organic carbon in water and measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190123206A KR102098332B1 (en) 2019-10-04 2019-10-04 Analytical reagent composition for measuring total organic carbon in water and measuring method using the same

Publications (1)

Publication Number Publication Date
KR102098332B1 true KR102098332B1 (en) 2020-04-07

Family

ID=70290710

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190123206A KR102098332B1 (en) 2019-10-04 2019-10-04 Analytical reagent composition for measuring total organic carbon in water and measuring method using the same

Country Status (1)

Country Link
KR (1) KR102098332B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102396696B1 (en) * 2022-03-10 2022-05-12 (주)아이티에이 Toc measuring apparatus and toc measuring method using ultrasonic vibration

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368870B1 (en) * 1999-06-04 2002-04-09 Hach Company Controlled diffusion analysis
KR20020047082A (en) * 2002-05-28 2002-06-21 전영관 The method for analysis of Total organic carbon
JP2006090732A (en) * 2004-09-21 2006-04-06 Dkk Toa Corp Method and instrument for measuring total organic carbon content
KR20110077599A (en) * 2009-12-30 2011-07-07 (주)벤처티엔아이 A total organic carbon analyzer and a method thereof
JP2013246053A (en) * 2012-05-25 2013-12-09 Kyoritsu Rikagaku Kenkyusho:Kk Measuring device and method for total organic carbon concentration
WO2015179871A1 (en) * 2014-05-23 2015-11-26 Hach Company Measurement of total organic carbon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368870B1 (en) * 1999-06-04 2002-04-09 Hach Company Controlled diffusion analysis
KR20020047082A (en) * 2002-05-28 2002-06-21 전영관 The method for analysis of Total organic carbon
JP2006090732A (en) * 2004-09-21 2006-04-06 Dkk Toa Corp Method and instrument for measuring total organic carbon content
KR20110077599A (en) * 2009-12-30 2011-07-07 (주)벤처티엔아이 A total organic carbon analyzer and a method thereof
JP2013246053A (en) * 2012-05-25 2013-12-09 Kyoritsu Rikagaku Kenkyusho:Kk Measuring device and method for total organic carbon concentration
WO2015179871A1 (en) * 2014-05-23 2015-11-26 Hach Company Measurement of total organic carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102396696B1 (en) * 2022-03-10 2022-05-12 (주)아이티에이 Toc measuring apparatus and toc measuring method using ultrasonic vibration

Similar Documents

Publication Publication Date Title
Shechter Spectrophotometric method for determination of ozone in aqueous solutions
CN110987918A (en) Detection reagent and rapid detection method for total nitrogen in water
CN108776134A (en) One kind being based on the iodide ion detection reagent and method of catalysis of iodine hydrazine-[oxidant-Ferroin reagents] system
CN102539426A (en) Method for determining phosphorus in silicon-manganese alloy
KR102098332B1 (en) Analytical reagent composition for measuring total organic carbon in water and measuring method using the same
CN112240872A (en) Integrated multi-index water quality on-line monitor and monitoring method thereof
CN106248609B (en) A kind of method that ultraviolet specrophotometer measures hexafluorophosphoric acid lithium content in lithium-ion battery electrolytes
CN116840219B (en) Method for detecting total nitrogen concentration of water quality
CN115586316B (en) Water quality analyzer inspection and calibration method
CN113916812A (en) Method for measuring total nitrogen concentration in fresh water
CN104048956A (en) Diffusive gradients in thin films (DGT) method for determination of phosphorus content on the basis of computer-imaging densitometry (CID) technology
CN111948202A (en) Method for determining protein in food by using flow injection method
CN113777254A (en) Method for measuring halogen in water
CN107764755A (en) A kind of method that permanganate indices in water is determined with ABTS
KR20020047082A (en) The method for analysis of Total organic carbon
Zeng et al. Comparison study on measuring ammonia and nitrogen in surface water by flow injection and Nessler's Reagent
KR20050111067A (en) The method of analysis reagent and analysing reagent for totall phosphate of sea water
KR101728321B1 (en) A process of analyzing the release of phosphoric acid from fuel cell
CN114371165B (en) Method for detecting silicon dioxide content in high-chroma and reductive wastewater
CN108956496B (en) Multi-wavelength detection method for rapidly digesting COD (chemical oxygen demand)
CN116413258A (en) Standard colorimetric card for soluble silicon rapid detection reagent and application
CN116067952A (en) Seawater COD detection method
Lin et al. A sensitive optic fiber sensor based on carbon dots fluorophore for ferric ion detection
CN113376144A (en) Analysis method for low bromine content in fluororubber
CN105548049A (en) Method for measuring content of chlorine in phenolic resin

Legal Events

Date Code Title Description
GRNT Written decision to grant