JP3405707B2 - Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus - Google Patents

Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus

Info

Publication number
JP3405707B2
JP3405707B2 JP2000067197A JP2000067197A JP3405707B2 JP 3405707 B2 JP3405707 B2 JP 3405707B2 JP 2000067197 A JP2000067197 A JP 2000067197A JP 2000067197 A JP2000067197 A JP 2000067197A JP 3405707 B2 JP3405707 B2 JP 3405707B2
Authority
JP
Japan
Prior art keywords
ozone water
concentration
ozone
electrolytic
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000067197A
Other languages
Japanese (ja)
Other versions
JP2001255271A (en
Inventor
典昭 大久保
Original Assignee
神鋼プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼プラント建設株式会社 filed Critical 神鋼プラント建設株式会社
Priority to JP2000067197A priority Critical patent/JP3405707B2/en
Publication of JP2001255271A publication Critical patent/JP2001255271A/en
Application granted granted Critical
Publication of JP3405707B2 publication Critical patent/JP3405707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水の電気分解によ
陽極側にオゾン水を製造する電解式オゾン水製造装置
におけるオゾン水濃度の連続測定方法とその装置並びに
該オゾン水測定方法を用いた電解式オゾン水製造装置の
運転制御方法とその装置に関するもので、具体的には、
簡便なオゾン水濃度測定システムに関するものである。
The present invention relates to a continuous method for measuring the concentration of ozone water in the electrolytic ozone water production equipment for producing ozone water by <br/> Ri anode side to electrolysis of water and its apparatus and the The present invention relates to an operation control method and an apparatus for an electrolytic ozone water producing apparatus using an ozone water measuring method, and specifically,
The present invention relates to a simple ozone water concentration measuring system.

【0002】[0002]

【従来の技術】オゾンの測定方法としては幾つかの方法
が存在するが、オゾン水製造装置に使用するオンライン
測定方法としては、紫外線吸収法が一般的である。この
紫外線吸収方法は、254ナノメートル(nm)の波長
の紫外線がオゾン分子のみに吸収され、他の分子には吸
収されないという特性を利用するものである。この紫外
線吸収量とオゾンの濃度とは、ランバート・ベールの法
則によって次の(1)式で表される。
2. Description of the Related Art Although there are several methods for measuring ozone, an ultraviolet absorption method is generally used as an on-line measuring method used in an ozone water producing apparatus. This ultraviolet ray absorption method utilizes the characteristic that ultraviolet rays having a wavelength of 254 nanometers (nm) are absorbed only by ozone molecules and not by other molecules. The ultraviolet absorption amount and the ozone concentration are represented by the following equation (1) according to Lambert-Beer's law.

【0003】[0003]

【数1】 Io =Ii × exp(-kcd) ------------------------------------ (1)式 ここで、I0 :紫外線の透過強度 Ii :紫外線の入射強度 k:吸収度係数(測定波長と測定対象物により異なる) c:オゾン濃度 d:測定オゾン層の厚さ## EQU1 ## I o = I i × exp (-kcd) ----------------------------------- -Equation (1) where I 0 : UV transmission intensity I i : UV incident intensity k: Absorption coefficient (depending on measurement wavelength and measurement object) c: Ozone concentration d: Measurement ozone layer thickness

【0004】上記(1)式において、測定対象物をオゾ
ン水とし、254nmの紫外線を測定波長とすれば吸収
度係数(k)は定数となり、オゾン水の層厚さ(d)は
測定装置により定まる定数であり、又、紫外線の入射強
度(Ii )も紫外線発生装置によって定まる値であるか
ら、紫外線の透過強度(Io )を測定すれば、オゾン水
中のオゾン濃度(c)が計算により求められる事が分か
る。
In the above equation (1), if ozone water is used as the object to be measured, and ultraviolet ray of 254 nm is used as the measurement wavelength, the absorption coefficient (k) becomes a constant, and the layer thickness (d) of ozone water is measured by a measuring device. Since it is a constant that is determined, and the incident intensity of ultraviolet light (I i ) is also determined by the ultraviolet ray generator, if the transmitted intensity of ultraviolet light (I o ) is measured, the ozone concentration (c) in ozone water is calculated. I understand what is required.

【0005】しかしながら、オゾン水製造装置に付設し
てオゾン水を測定する連続式オゾン水濃度測定装置の場
合には、連続測定中における光源(紫外線発生装置)や
紫外線検出器の劣化等により、紫外線の入射強度(I
i )や透過強度(Io )に経時変化が生じるため、その
補正が必要となる。
However, in the case of a continuous ozone water concentration measuring device attached to an ozone water producing device to measure ozone water, ultraviolet rays may be generated due to deterioration of a light source (ultraviolet ray generator) or an ultraviolet ray detector during continuous measurement. Incident intensity (I
Since i ) and the transmission intensity (I o ) change with time, it is necessary to correct them.

【0006】そこで、この補正の方式としては、オゾン
水濃度の判明している比較試料を用いてこの透過紫外線
強度を計測し、これと測定用試料の透過紫外線強度とを
比較する事により、オゾン水濃度を安定して測定する方
式が提案されている。即ち、測定セルに測定オゾン水を
通水したときの透過紫外線強度をIs 、測定セルにオゾ
ン水を含有しない無オゾン水を通水したときの透過紫外
線強度をIn とし、その比の対数をEとすると、上記
(1)式より、
Therefore, as a method of this correction, the intensity of transmitted ultraviolet light is measured using a comparative sample of which the concentration of ozone water is known, and the intensity of transmitted ultraviolet light of the sample for measurement is compared to obtain the ozone. A method of stably measuring the water concentration has been proposed. That is, the transmission ultraviolet intensity I s of when passed through the measurement ozone water in the measurement cell, the transmission intensity of ultraviolet light when passed through a non-ozone water containing no ozone water in the measurement cell and I n, the logarithm of the ratio Let E be E, from the above equation (1),

【0007】[0007]

【数2】 E= log(Is /In )= logIs − logIn = log((Ii × exp(-kcd))/ logI ) = logIi−kcd− logIi =kcd ------------------ (2)式[Number 2] E = log (I s / I n) = logI s - logI n = log ((I i × exp (-kcd)) / logI i) = logI i -kcd- logI i = kcd --- --------------- Equation (2)

【0008】この(2)式から明らかな様に、この方式
によれば、紫外線発生装置や紫外線検出器の劣化による
入射紫外線強度(Ii )がキャンセルされて、その経時
変化の影響をなくする様になっている。従って、上記測
定されたIs とIn の対数値を求め、これをk×dで除
算すれば、オゾン水濃度cが安定して求められる事にな
る。
As is apparent from the equation (2), according to this method, the incident ultraviolet ray intensity (I i ) due to the deterioration of the ultraviolet ray generator and the ultraviolet ray detector is canceled and the influence of the change with time is eliminated. It has become like. Therefore, by obtaining the logarithmic value of the measured I s and I n and dividing this by k × d, the ozone water concentration c can be stably obtained.

【0009】図7は、この方式を示す概念図であり、所
定の254nmの紫外線(以下単に紫外線という)を安
定して発生させるための安定化電源2に接続されたUV
ランプ1で発生した紫外線は、測定用オゾン水が通水さ
れている測定セル3と無オゾン水が通水されている比較
セル3’の両方に照射され、測定用オゾン水が通水され
ている前記測定セル3を透過した紫外線は、紫外線セン
サ4で検出されて透過紫外線強度Is として電気信号と
なってプリアンプ5,対数増幅器6を経てコンピュータ
ユニット(CPU)7に送信され、一方、無オゾン水が
通水されている前記比較セル3’を透過した紫外線は、
紫外線センサ4’で検出されて透過紫外線強度In とし
て、同様に電気信号となってプリアンプ5’,対数増幅
器6’を経て前記CPU7に送信され、上記Is とIn
の比の演算及びk×dによる除算を行ってオゾン水濃度
cを演算し、表示器8にオゾン水のオゾン濃度がデジタ
ル或いはアナログで表示される様になっている。
FIG. 7 is a conceptual diagram showing this system, in which a UV connected to a stabilizing power source 2 for stably generating a predetermined 254 nm ultraviolet ray (hereinafter simply referred to as ultraviolet ray).
The ultraviolet light emitted from the lamp 1 is applied to both the measurement cell 3 through which the ozone water for measurement is passed and the comparison cell 3 ′ through which ozone-free water is passed, and the ozone water for measurement is passed through. The ultraviolet ray transmitted through the measuring cell 3 is detected by the ultraviolet ray sensor 4 and becomes an electric signal as a transmitted ultraviolet ray intensity I s , which is transmitted to the computer unit (CPU) 7 through the preamplifier 5 and the logarithmic amplifier 6, while The ultraviolet rays transmitted through the comparison cell 3 ′ through which ozone water is passed are
The transmitted ultraviolet ray intensity I n detected by the ultraviolet ray sensor 4 ′ is similarly converted into an electric signal and transmitted to the CPU 7 through the preamplifier 5 ′ and the logarithmic amplifier 6 ′, and the above I s and I n are transmitted.
Is calculated and the ozone water concentration c is calculated by division by k × d, and the ozone concentration of the ozone water is digitally or analogically displayed on the display 8.

【0010】他の方式は、UVランプ1から照射される
紫外線強度が常に一定となる様に制御するものであり、
この例を図8に示している。同図において、UVランプ
1から照射される紫外線をハーフミラー20によって、
測定セル3に向かう紫外線と比較センサ21に向かう紫
外線とに等分し、比較センサ21によって入射紫外線の
強度を検出し、これを電気信号に変えてプリアンプ22
を経て比較回路23に入力する。該比較回路では、初期
の入射紫外線強度と比較され、該入射紫外線強度が一定
となる様に電源2’が制御される様になっている。この
結果、測定セル3に入射される紫外線の入射強度はUV
ランプ1の経時変化に拘らず常に一定となし、オゾン水
濃度を安定して測定できる様にしたものである。
Another method is to control so that the intensity of ultraviolet rays emitted from the UV lamp 1 is always constant.
This example is shown in FIG. In the figure, the ultraviolet rays emitted from the UV lamp 1 are reflected by the half mirror 20.
The pre-amplifier 22 divides the ultraviolet rays toward the measuring cell 3 and the ultraviolet rays toward the comparison sensor 21 into equal parts, detects the intensity of the incident ultraviolet rays by the comparison sensor 21, and converts the intensity into an electric signal.
To the comparison circuit 23. In the comparison circuit, the power of the power source 2'is controlled so that the intensity of the incident ultraviolet ray is compared with the initial intensity of the incident ultraviolet ray. As a result, the incident intensity of the ultraviolet rays incident on the measuring cell 3 is UV.
The concentration of ozone water is kept constant regardless of the change with time of the lamp 1, and the ozone water concentration can be stably measured.

【0011】[0011]

【発明が解決しようとする課題】ところで、前記図7に
示した方式においては、2つの計測システム、即ち、2
つのセル3,3’と、2つのプリアンプ5,5’と、2
つの対数増幅器6,6’とが必要となり、オゾン水濃度
測定システムが高価なものとなる。その結果、オゾン水
濃度測定装置を付設したオゾン水生成装置においては、
その価格中のオゾン水濃度測定装置の占める割合が相当
部分を占める事になり、オゾン水生成装置としては不合
理なものとなっていた。又、比較セル3’にも常時無オ
ゾン水を通水し続けなければならず、オゾン水製造用に
軟水化処理した原料水の無駄使いにもなっていた。更
に、オゾン水を通水する測定セル3と無オゾン水を通水
する比較セル3’の汚れが均等に進行する事が前提とな
っているが、両セルの汚れ度合いが異なる場合には、原
理的に誤差を生じる事は止むを得なかった。紫外線セン
サ4,4’の劣化の度合いに差が生じた場合も、同様に
測定値に誤差が生じる事になる。
By the way, in the method shown in FIG. 7, there are two measurement systems, that is, two measurement systems.
One cell 3, 3 ', two preamplifiers 5, 5', 2
Since two logarithmic amplifiers 6 and 6'are required, the ozone water concentration measuring system becomes expensive. As a result, in the ozone water generator equipped with the ozone water concentration measuring device,
The ratio of the ozone water concentration measuring device in the price occupies a considerable portion, which is unreasonable as an ozone water generating device. In addition, the ozone-free water must be constantly passed through the comparison cell 3 ', which results in waste of raw water softened for the production of ozone water. Further, it is premised that the measurement cell 3 that passes ozone water and the comparison cell 3 ′ that passes non-ozone water progress evenly, but if the degree of contamination of both cells is different, In principle, it was inevitable that an error would occur. Even if there is a difference in the degree of deterioration of the ultraviolet sensors 4 and 4 ', an error will similarly occur in the measured value.

【0012】一方、図8に示した方式では、透過紫外線
強度測定系統は1系統のみに簡素化されているので、そ
の分コスト低減に寄与しているが、これに代わって、ハ
ーフミラー20,比較センサ21,プリアンプ22及び
比較回路23が必要となり、コスト低減には限界があっ
た。
On the other hand, in the method shown in FIG. 8, the transmission ultraviolet intensity measuring system is simplified to only one system, which contributes to the cost reduction, but instead of this, the half mirror 20, Since the comparison sensor 21, the preamplifier 22, and the comparison circuit 23 are required, there is a limit to cost reduction.

【0013】これらの結果、オゾン水濃度測定装置の高
価格がオゾン水製造装置の普及を妨げていたと言っても
過言ではない状態にあり、オゾン水製造装置に組み込め
る簡易型の安価なオゾン水濃度測定システムが希求され
ているのが現状である。そこで、本発明は、係る現状に
鑑み、簡素な構成で安価なオゾン水濃度の連続測定可能
な方式を提供する事を目的とし、更に、同オゾン水濃度
測定装置からの信号により、オゾン水生成装置の制御も
行える様にする事を目的としたものである。
As a result, it is no exaggeration to say that the high price of the ozone water concentration measuring device has hindered the spread of the ozone water producing device, and it is a simple and inexpensive ozone water concentration that can be incorporated into the ozone water producing device. At present, there is a strong demand for measurement systems. Therefore, in view of the present situation, an object of the present invention is to provide a method capable of continuously measuring the ozone water concentration at a low cost with a simple configuration, and further, by the signal from the ozone water concentration measuring device, generate ozone water. The purpose is to enable control of the device.

【0014】[0014]

【課題を解決するための手段】本発明は、係る観点の元
になされたものであって、その特徴とするところは、測
定セル中にオゾン水を連続的に通水しつつ紫外線を透過
させて、オゾンによる紫外線吸収量に基づいてオゾン水
濃度を測定するオゾン水濃度連続測定方法において、
を電気分解して陽極側にオゾン水を生成する電解式オゾ
ン水製造装置によるオゾン水の製造運転直前に、該装置
に原水の通水のみを行う事により、該装置から前記測定
セルに供給される実質的にオゾンを含有していない前記
原水の紫外線吸収量を測定し、得られたオゾン水濃度を
ゼロ点として記憶させ、前記電解式オゾン水製造装置の
オゾン水製造運転開始後に該装置から前記測定セルに供
給されるオゾン水の濃度を、前記ゼロ点を基準にして計
測する様にしてなる点にある。即ち、電解式オゾン水製
造装置の稼働直前に、原水の通水のみを行って該装置の
オゾン水排出口からオゾンを実質的に含有しない無オゾ
ン水を排出させ、この無オゾン水を用いてオゾン水濃度
を測定し、この無オゾン水の測定濃度をゼロ点となし、
オゾン水製造運転開始後は、このゼロ点を基準にして生
成オゾン水の濃度を連続的に測定する様にしているの
で、1つの紫外線強度検出系統のみによって連続的にオ
ゾン水の測定を可能となしたものである。
The present invention has been made on the basis of such a viewpoint, and is characterized in that ozone water is continuously passed through a measuring cell while ultraviolet rays are transmitted. Te, in concentration of ozone water continuous measurement method for measuring the concentration of ozone water based UV absorption by ozone, water
Immediately before the production operation of the ozone water by the electrolytic type ozone water production apparatus that electrolyzes water to generate ozone water on the anode side, only the raw water is passed through the apparatus, thereby The ultraviolet absorption amount of the raw water that does not substantially contain ozone supplied to the measurement cell is measured, and the obtained ozone water concentration is stored as a zero point, and the ozone water manufacturing operation of the electrolytic ozone water manufacturing apparatus is performed. The point is that the concentration of ozone water supplied from the apparatus to the measuring cell after the start is measured with reference to the zero point. That is, just before the operation of the electrolytic ozone water production apparatus, only raw water is passed to discharge ozone-free water that does not substantially contain ozone from the ozone water discharge port of the apparatus. Measure the concentration of ozone water, and set the measured concentration of ozone-free water as the zero point,
After the start of the ozone water production operation, the concentration of the generated ozone water is continuously measured based on this zero point, so it is possible to continuously measure the ozone water using only one ultraviolet intensity detection system. It is what you have done.

【0015】尚、前記電解式オゾン水製造装置の運転開
始後のオゾン水濃度測定は、オゾン水製造開始後一定時
間を経過してから開始するのが好ましく、これにより
解式オゾン水製造装置運転開始直後のオゾン水濃度の不
安定な状況下でのオゾン水濃度測定とこれによる装置制
御システムの不安定な作動を防止する事が可能となる。
[0015] Incidentally, the ozone water concentration measurement after the start of operation of the electrolytic ozone water production apparatus, is preferably started after the lapse of a predetermined time after the ozone water production start, thereby collecting
It is possible to prevent the unstable operation of the device control system due to the measurement of ozone water concentration under the condition where the ozone water concentration is unstable immediately after the operation of the solution type ozone water production device.

【0016】更に、前記紫外線発生装置で生成される紫
外線の強度は、紫外線発生装置の環境温度によっても多
少変化するので、この環境温度を測定して前記ゼロ点の
補正を行うのも好ましい方法である。
Further, since the intensity of the ultraviolet rays generated by the ultraviolet ray generator slightly changes depending on the environmental temperature of the ultraviolet ray generator, it is also preferable to measure the environmental temperature and correct the zero point. is there.

【0017】次に、本発明に係るオゾン水濃度連続測定
装置としては、紫外線を発生するUVランプと、該UV
ランプから所定の紫外線を発生させるための安定化電源
と、前記UVランプからの紫外線を透過させ且つ、水を
電気分解して陽極側にオゾン水を生成する電解式オゾン
水製造装置から供給されるオゾン水を連続的に通水させ
る測定セルと、該測定セルを透過した透過紫外線強度を
測定する紫外線センサと、該透過紫外線強度に基づいて
オゾン水濃度を演算するコンピュータとを有し、該コン
ピュータには、前記電解式オゾン水製造装置によるオゾ
ン水の製造運転直前に原水の通水のみを行い、前記紫外
線センサで測定された透過紫外線強度に基づいて演算さ
れたオゾン水濃度をゼロ点として記憶するゼロ点記憶手
段と、該ゼロ点を基準にして、前記電解式オゾン水製造
装置のオゾン水製造運転開始後のオゾン水濃度を演算す
るオゾン水濃度演算手段とを有してなるものである。係
る構成により、1系統の透過紫外線強度測定システムに
より、オゾン水濃度を連続的に測定できる様になってい
る。
Next, as an ozone water concentration continuous measuring apparatus according to the present invention, a UV lamp which emits ultraviolet rays and the UV lamp
A stabilized power source for generating a predetermined ultraviolet ray from the lamp, and an ultraviolet ray from the UV lamp are transmitted and water is absorbed .
A measuring cell for continuously passing ozone water supplied from an electrolysis type ozone water producing device that electrolyzes to generate ozone water on the anode side , and an ultraviolet sensor for measuring the intensity of transmitted ultraviolet light transmitted through the measuring cell. A computer for calculating the concentration of ozone water based on the intensity of the transmitted ultraviolet light, wherein the computer only passes the raw water immediately before the production operation of the ozone water by the electrolytic ozone water producing apparatus, Zero point storage means for storing the ozone water concentration calculated based on the transmitted ultraviolet intensity measured by the sensor as a zero point, and the ozone water manufacturing operation of the electrolytic ozone water manufacturing apparatus is started with reference to the zero point. It further comprises ozone water concentration calculating means for calculating the concentration of ozone water afterward. With such a configuration, the concentration of ozone water can be continuously measured by one system of transmitted ultraviolet intensity measurement system.

【0018】尚、前記紫外線センサから前記コンピュー
タに送信される前記透過紫外線強度に比例して設定され
た電圧信号を、プリアンプで増幅した後、対数増幅器を
経て前記コンピュータに送信する方式と、プリアンプで
増幅したまま対数増幅器を経る事なくコンピュータに送
信する方式とがあり、後者の場合は、コンピュータ内で
は指数関数を直線近似して近似値を演算させる簡便な方
式を採用する事によって対数増幅器を省略できる利点が
ある。
The voltage signal set in proportion to the transmitted UV intensity transmitted from the UV sensor to the computer is amplified by a preamplifier and then transmitted to the computer via a logarithmic amplifier. There is a method of transmitting to a computer without passing through a logarithmic amplifier as it is amplified.In the latter case, the logarithmic amplifier is omitted by adopting a simple method in which the exponential function is linearly approximated to calculate an approximate value. There are advantages.

【0019】又、前記UVランプの近傍の温度を計測す
る温度測定手段を設け、前記コンピュータには、該温度
測定手段で測定された環境温度に基づいて前記ゼロ点を
補正するゼロ点補正手段を設けるのも好ましい態様であ
る。
Further, temperature measuring means for measuring the temperature in the vicinity of the UV lamp is provided, and the computer is provided with a zero point correcting means for correcting the zero point on the basis of the environmental temperature measured by the temperature measuring means. It is also a preferable aspect to provide.

【0020】更に、前記電解式オゾン水製造装置から供
給されるオゾン水を、先ず、気液分離器に供給して気相
分を分離し、液相分のみを前記測定セルに供給する様に
なすのが、オゾン水中のオゾン濃度が正確に測定される
ので好ましい方式である。
Further, the ozone water supplied from the electrolysis type ozone water producing apparatus is first supplied to a gas-liquid separator to separate the gas phase component, and only the liquid phase component is supplied to the measuring cell. The preferred method is to accurately measure the ozone concentration in ozone water.

【0021】又、前記コンピュータにおける演算結果に
基づいて、生成オゾン水濃度が所定範囲となる様に、該
コンピュータから前記電解式オゾン水製造装置の運転制
御指令を行う様になす方式もある。この場合の制御要素
としては、電解式オゾン水製造装置における供給電流
値,電圧値,原水供給量,固体高分子電解質膜に対する
電極の押圧力がある。
There is also a system in which an operation control command for the electrolytic ozone water producing apparatus is issued from the computer so that the concentration of generated ozone water falls within a predetermined range based on the calculation result in the computer. The control elements in this case include the supply current value, voltage value, raw water supply amount, and pressing force of the electrode against the solid polymer electrolyte membrane in the electrolytic ozone water producing apparatus.

【0022】又、本発明に係る電解式オゾン水製造装置
の運転制御装置としては、オゾン水を連続的に通水しつ
つ紫外線を透過させてオゾンによる紫外線吸収量に基づ
いてオゾン濃度を演算するオゾン水濃度測定手段と、
電解式オゾン水製造装置によるオゾン水の製造運転直
前の該装置に通水された実質的にオゾンを含有していな
い原水のオゾン水濃度を、前記オゾン濃度測定手段によ
って測定し、該測定値をオゾン濃度のゼロ点として設定
すると共にこれを記憶するゼロ点記憶手段と、該ゼロ点
設定の有無を確認するゼロ設定確認手段と、該ゼロ点設
定を確認すると前記電解式オゾン水製造装置の電解装置
に通電を開始する通電開始手段と、前記電解式オゾン水
製造装置により生成したオゾン水濃度を前記オゾン濃度
測定手段によって連続的に測定すると共に、測定された
オゾン水濃度が所定の範囲内にあるか否かを判断する濃
度判定手段と、該濃度判定手段によって所定の範囲外と
判断された場合には、制御すべき制御要素が制御限界内
にあるか否かを判断する限界判定手段と、該限界判定手
段によって制御要素が制御限界内にあると判断された場
合には、所定の制御信号を出力する制御信号出力手段
と、前記限界判定手段によって制御要素が制御限界に達
していると判断された場合には、前記電解式オゾン水製
造装置の固体高分子電解質膜に再生処理等の予め設定さ
れた工程に移行する様にしてなるものである。前記制御
要素としては、電流値,電圧値,原水供給量,固体高分
子電解質膜に対する電極の押圧力があり、これらの1以
上を所定の範囲内で制御する様にしている。
Further, as the operation control device of the electrolytic ozone water producing apparatus according to the present invention, the ozone concentration is calculated based on the ultraviolet absorption amount of ozone by continuously transmitting the ozone water and transmitting the ultraviolet rays. and ozone water concentration measurement means, before
The concentration of ozone water whose serial does not contain substantial ozone was passed through to the device production runs immediately before the ozone water by electrolysis ozone water production apparatus raw water is measured by the ozone concentration measuring means, the measured value Is set as the zero point of the ozone concentration and zero point storing means for storing this, zero setting confirming means for confirming the presence or absence of the zero point setting, and confirming the zero point setting, the electrolytic ozone water producing apparatus An energization starting means for starting energization of the electrolyzer and the ozone water concentration produced by the electrolytic ozone water producing apparatus are continuously measured by the ozone concentration measuring means, and the measured ozone water concentration is within a predetermined range. If the density determination means determines that the control element to be controlled is within the control limit, the density determination means determines whether the control element to be controlled is within the control limit. Limit determining means, a control signal output means for outputting a predetermined control signal when the control element is determined to be within the control limit by the limit determining means, and the control element is controlled by the limit determining means. If it is determined to have reached the is made in the manner moves to a preset process of the reproduction processing or the like to the solid polymer electrolyte membrane of the electrolytic ozone water production apparatus. The control element includes a current value, a voltage value, a raw water supply amount, and a pressing force of the electrode against the solid polymer electrolyte membrane, and one or more of these are controlled within a predetermined range.

【0023】尚、前記通電開始手段によって前記電解式
オゾン水製造装置によるオゾン水の製造が開始された
後、所定時間が経過するまで前記オゾン濃度測定手段に
よるオゾン水濃度の測定を禁止する測定禁止手段を設け
る事により、オゾン水製造開始初期における不安定な状
況下での制御を禁止する様になすのも好ましい態様であ
る。
The ozone water concentration is measured by the ozone concentration measuring means until a predetermined time elapses after the production of ozone water by the electrolysis type ozone water producing apparatus is started by the energization starting means. It is also a preferable embodiment that the measurement prohibiting means is provided to prohibit the control under unstable conditions at the beginning of the ozone water production.

【0024】[0024]

【発明の実施の形態】以下、本発明について図面を用い
て詳細に説明する。図1は本発明に係るオゾン水濃度連
続測定方法の実施例を示す系統図である。同図におい
て、電解式オゾン水製造装置10の運転に先立ち、オゾ
ン水濃度測定装置Mの全ての計測機器を立ち上げて計測
可能状態となし、電解式オゾン水製造装置10に原水ラ
イン15から軟水化処理された原水の供給を開始する。
この時点では、電解式オゾン水製造装置10は通水ライ
ンのみが作動しており、電解のための通電はなされてい
ないので、オゾン水排出ライン16から排出される水中
には未だオゾンは含有されておらず、原水の状態で排出
される。この原水(無オゾン水)の一部を計測ライン1
1に分岐して気液分離器9に供給する。この段階でライ
ン11から供給される水中にはガスは含まれていないの
で、原水は該気液分離器9の下側室9bに入り、ライン
12を経て測定セル3内に供給され、ライン13を経て
前記気液分離器9の上側室9aを経て排出ライン14よ
り装置外に排出される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of a continuous ozone water concentration measuring method according to the present invention. In the figure, prior to the operation of the electrolytic ozone water producing apparatus 10, all the measuring devices of the ozone water concentration measuring apparatus M are started up to be in a measurable state, and the electrolytic ozone water producing apparatus 10 is supplied with the soft water from the raw water line 15. The supply of raw water that has been subjected to chemical treatment is started.
At this point in time, only the water passage line of the electrolysis-type ozone water producing device 10 is operating, and electricity is not supplied for electrolysis. Therefore, the water discharged from the ozone water discharge line 16 still contains ozone. Not, it is discharged in the state of raw water. A part of this raw water (no ozone water) is measured line 1
It is branched to 1 and supplied to the gas-liquid separator 9. At this stage, since the water supplied from the line 11 does not contain gas, the raw water enters the lower chamber 9b of the gas-liquid separator 9 and is supplied into the measurement cell 3 via the line 12 and the line 13 Then, it is discharged to the outside of the apparatus through the discharge line 14 through the upper chamber 9a of the gas-liquid separator 9.

【0025】前記測定セル3では、UVランプ1から入
射されている紫外線が該セル3内を流通する原水中を透
過するが、オゾンが含有されていないので、入射紫外線
は吸収される事なくそのまま透過し、紫外線センサ4で
は、入射紫外線強度と同レベルの透過紫外線強度が検出
され、これを電気信号に変えてプリアンプ5,対数増幅
器6を経て、コンピュータユニット(CPU)7に伝達
され、前記式(1)に基づいてオゾン水濃度(c)=0
として演算される。この演算結果から透過紫外線強度
(Io )=入射紫外線強度(Ii )として入射紫外線強
度(Ii )が求められる。即ち、この入射紫外線強度
(Ii )に相当する透過紫外線強度(Io )を、オゾン
水濃度のゼロ点としての基準となす。
In the measuring cell 3, the ultraviolet rays incident from the UV lamp 1 are transmitted through the raw water flowing through the cell 3, but since they do not contain ozone, the incident ultraviolet rays are not absorbed and remain as they are. The transmitted ultraviolet ray intensity of the incident ultraviolet ray is detected by the ultraviolet ray sensor 4 and converted into an electric signal, which is transmitted to the computer unit (CPU) 7 via the preamplifier 5 and the logarithmic amplifier 6, Ozone water concentration (c) = 0 based on (1)
Is calculated as From this calculation result, the incident ultraviolet ray intensity (I i ) can be obtained as the transmitted ultraviolet ray intensity (I o ) = incident ultraviolet ray intensity (I i ). That is, the transmitted ultraviolet ray intensity (I o ) corresponding to the incident ultraviolet ray intensity (I i ) is used as a reference as the zero point of the ozone water concentration.

【0026】この基準設定(ゼロ点設定)は、電解式
ゾン水製造装置10のオゾン水製造運転の開始直前に、
即ち、通電運転する前に、オゾンを実質的に含有しない
原水のみを通水して行うものであり、1秒間に100回
程度の濃度測定を行い、この平均値をとる事によりノイ
ズの平滑化を行うと共に、この平均値演算を複数回繰り
返して更にその平均値を演算する事によってゼロ点設定
精度の向上を図っている。従って、このゼロ点設定時間
としては数十秒で充分である。この意味から、装置の電
源をオンにすると、先ずオゾン水濃度測定装置Mのみが
立ち上がり、測定可能な状態になると、通水のみが開始
されて上述のゼロ点設定が行われ、このゼロ設定が終了
すると電解装置に通電を開始してオゾン水の製造を開始
する様に一連の工程を前記CPU7によって自動制御さ
れる様になす事も可能である。
This standard setting (zero point setting) is performed immediately before the start of the ozone water producing operation of the electrolytic type ozone water producing apparatus 10.
That is, before the energization operation, only the raw water that does not substantially contain ozone is passed, and the concentration is measured about 100 times per second, and the average value is taken to smooth the noise. And the average value is further calculated by repeating this average value calculation a plurality of times to improve the zero point setting accuracy. Therefore, several tens of seconds is sufficient as the zero point setting time. From this meaning, when the power of the device is turned on, first, only the ozone water concentration measuring device M starts up, and when it becomes a measurable state, only water flow is started and the above-mentioned zero point setting is performed. It is also possible to automatically control a series of steps by the CPU 7 so that the electrolysis device is energized to start the production of ozone water upon completion.

【0027】次に、上記基準設定が完了すると、電解式
オゾン水製造装置10の通電が開始されて電気分解によ
るオゾン水の製造が開始され、ライン16からは生成オ
ゾン水が排出される。このオゾン水の殆どは供給ライン
17から需要先に送給されるが、一部は前述のライン1
1を経て上側室9aと下側室9bに区画された気液分離
器9の下側室9bに送給される。電解式オゾン水製造装
置のライン11から送給されるオゾン水中には、水の電
解によって生じた酸素や未溶解のオゾンガスも僅かなが
ら含まれている気液混相流であるので、このまま測定セ
ル3に供給されると、気相中のオゾンも紫外線を吸収す
ると共に、気泡による紫外線の乱反射によって正確なオ
ゾン水中のオゾンによる紫外線吸収量が測定できなくな
る。そこで本発明では、気液分離器9内にフラッシュさ
せる事により、気相分は上側室9aと下側室9bとを画
成する隔壁9cに形成されているガス穴9dから、後述
するエジェクタ作用によって上側室9aに吸入され、液
相分のみがライン12を経て前記測定セル3に流入する
様になっている。
Next, when the standard setting is completed, the electrolysis type ozone water producing apparatus 10 is turned on to start the production of ozone water by electrolysis, and the generated ozone water is discharged from the line 16. To be done. Most of this ozone water is sent to the demand destination from the supply line 17, but part of it is on the line 1 described above.
1 is fed to the lower chamber 9b of the gas-liquid separator 9 which is divided into the upper chamber 9a and the lower chamber 9b. Electrolytic ozone water production equipment
The ozone water is fed from the location of the line 11, the ozone gas of the oxygen and undissolved caused by electrolysis of water is also a gas-liquid mixed phase stream which contains slightly, is supplied to the left measurement cell 3 As a result, ozone in the gas phase also absorbs ultraviolet rays, and the diffused reflection of ultraviolet rays by the bubbles makes it impossible to accurately measure the amount of ultraviolet rays absorbed by ozone in ozone water. Therefore, in the present invention, by flushing into the gas-liquid separator 9, the gas phase component is discharged from a gas hole 9d formed in the partition wall 9c that defines the upper chamber 9a and the lower chamber 9b by an ejector action described later. The liquid is sucked into the upper chamber 9a and only the liquid phase component flows into the measuring cell 3 through the line 12.

【0028】該測定セル3では、前述の如くUVランプ
1から入射される紫外線をオゾン水中のオゾン分子が吸
収する結果、紫外線センサ4で検出される透過紫外線強
度はオゾン水濃度に比例して低下した強度が測定される
事になる。この透過紫外線強度(Io )は、公知の手法
によって電気信号(電圧信号)に変えられ、プリアンプ
5,対数増幅器6を経て前記CPU7に送信され、前述
の通り前記(1)式と前述の設定されたゼロ点の基準値
(Ii )に基づいて、オゾン水濃度(c)が演算され、
その結果は、必要に応じて表示器8にアナログ又はデジ
タルで表示される。このオゾン水濃度の測定において
も、一定期間内に微小時間間隔で多数の濃度測定を行
い、その一定期間内における多数の濃度測定値の平均値
を演算し、この平均値をその期間のオゾン水濃度となす
様にしており、これによって、ノイズの影響を平滑化し
ている。
In the measuring cell 3, as described above, the ultraviolet rays incident from the UV lamp 1 are absorbed by the ozone molecules in the ozone water, and as a result, the transmitted ultraviolet intensity detected by the ultraviolet sensor 4 decreases in proportion to the ozone water concentration. The strength is measured. The transmitted ultraviolet intensity (I o ) is converted into an electric signal (voltage signal) by a known method, transmitted to the CPU 7 through the preamplifier 5 and the logarithmic amplifier 6, and as described above, the equation (1) and the setting described above are performed. The ozone water concentration (c) is calculated based on the reference value (I i ) of the zero point,
The result is displayed on the display unit 8 as analog or digital as required. Also in this ozone water concentration measurement, a large number of concentration measurements are made at a minute time interval within a certain period, the average value of many concentration measurement values within the certain period is calculated, and this average value is used as the ozone water for that period. The density is set so that the influence of noise is smoothed.

【0029】オゾン測定に使用されたオゾン水は、ライ
ン13から前記気液分離器9の上側室9aに供給され、
ライン14から系外に排出される。このとき、気液分離
器9の上側室9aは下側室9bよりも小さな流路面積に
設定され、ライン14から気液分離器9の前記上側室9
aに流入した測定済オゾン水は、高速で該上側室9a内
を通過してライン14に至る様に設計されている。この
結果、上側室9aの圧力は下側室9bの圧力よりも低下
する事になり、ライン11から下側室9bに供給された
前記気相分を含むオゾン水中の気相分は、隔壁9cに形
成されているガス穴9dから上側室9aにエジェクタ作
用によって吸引され、測定済オゾン水と共にライン14
から系外に排出される様になっている。
The ozone water used for ozone measurement is supplied to the upper chamber 9a of the gas-liquid separator 9 through the line 13.
It is discharged from the line 14 to the outside of the system. At this time, the upper chamber 9a of the gas-liquid separator 9 is set to have a smaller flow passage area than the lower chamber 9b, and the upper chamber 9a of the gas-liquid separator 9 is connected from the line 14.
The measured ozone water flowing into a is designed to pass through the upper chamber 9a and reach the line 14 at high speed. As a result, the pressure in the upper chamber 9a becomes lower than the pressure in the lower chamber 9b, and the gas phase component in the ozone water including the gas phase component supplied from the line 11 to the lower chamber 9b is formed in the partition wall 9c. The gas is discharged from the gas hole 9d into the upper chamber 9a by the ejector action, and the measured ozone water and the line 14
Is discharged from the system.

【0030】尚、UVランプ1で発生する紫外線の強度
は、該UVランプ1の近傍の環境温度Tにより多少の変
化が認められる。即ち、入射紫外線強度Ii は、環境温
度Tの関数「Ii =f(T)」として表される。従っ
て、該環境温度Tを温度測定装置18で測定し、これを
電気信号として前記CPU7に送信し、該CPU7内で
i =f(T)の関数演算を行う事により、前記ゼロ点
設定したときの温度との変化によって、設定したゼロ点
の温度補正を行う事も可能であるが、前記ゼロ点設定を
UVランプが安定化した時点で行っておき、且つ、オゾ
ン水製造装置の休止中もUVランプ1の環境温度が変化
しない様なシステムを採用している場合には、必ずしも
必要ではない。
The intensity of the ultraviolet rays generated by the UV lamp 1 is slightly changed depending on the environmental temperature T near the UV lamp 1. That is, the incident ultraviolet ray intensity I i is expressed as a function “I i = f (T)” of the environmental temperature T. Therefore, the environmental temperature T is measured by the temperature measuring device 18, this is transmitted as an electric signal to the CPU 7, and the zero point is set by performing a function operation of I i = f (T) in the CPU 7. It is possible to correct the temperature of the set zero point according to the change with the temperature at that time, but the zero point setting is performed at the time when the UV lamp is stabilized, and the ozone water manufacturing apparatus is not operating. However, it is not always necessary when a system that does not change the ambient temperature of the UV lamp 1 is adopted.

【0031】次に、図2は、本発明に係る電解式オゾン
水濃度測定方法の他の実施形態を示すフロー図であり、
前記図1との相違点は、CPU7に入力される電気信号
が、図1では対数増幅器6で対数変換されて入力されて
いるのに対し、図2の方式では、プリアンプ5で増幅さ
れたままの状態で入力されている点のみが相違し、他の
構成は同一であるので、以下に係る相違点のみについて
説明し、同一構成は同一符号を付して詳細説明は省略す
る。
FIG. 2 is a flow chart showing another embodiment of the electrolytic ozone water concentration measuring method according to the present invention.
1 is different from that in FIG. 1 in that the electric signal inputted to the CPU 7 is logarithmically converted by the logarithmic amplifier 6 and inputted in FIG. 1, whereas it is still amplified by the preamplifier 5 in the system of FIG. Since the only difference is that it is input in this state, and the other configurations are the same, only the differences relating to the following will be described, the same configurations will be assigned the same reference numerals, and detailed description will be omitted.

【0032】前記(1)式から明らかな通り、オゾン濃
度と透過紫外線強度との関係は指数関係にある。従っ
て、透過紫外線強度を、これに比例する電気信号として
の電圧信号に変換しても、電圧(V)とオゾン濃度
(x)との関係は指数関係にあるので、図1の例では、
この指数関係を対数増幅器6によって直線関係(一次式
の関係)に変換してCPU7に入力し、該CPU7では
予めプログラムされている一次式に基づいて入力された
電圧値に対応するオゾン濃度を演算する様になってい
る。一方、図2の方式では、係る対数増幅器6を省略し
ているので、入力される電圧(V)とオゾン濃度(X)
との関係は、図3に示す様な指数関数の関係にある。そ
こで、この指数関数を、〜の直線(一次式)で近似
させ、この〜の近似式を前記CPU7に記憶させて
おき、入力された電圧値がV1以上の場合(V≧V1)
には式(V=aX+b)によってオゾン濃度の演算を
行い、入力された電圧値がV2以上V1未満の場合(V
2≦V<V1)には式(V=a’X+b’)によって
オゾン濃度の演算を行い、入力された電圧値がV2未満
の場合(V<V2)には式(V=a”X+b”)によ
ってオゾン濃度の演算を行う事により、簡便な方法でオ
ゾン水濃度を求める事ができると共に、対数増幅器7を
省略する事ができるので、コスト低減に寄与する事にな
る。尚、この程度の近似値演算であれば、厳密なオゾン
水濃度が要求される試験用等の特殊な場合を除き、通常
の殺菌や洗浄に使用する範囲では、実用上は全く問題は
ない。
As is clear from the equation (1), the relationship between the ozone concentration and the intensity of transmitted ultraviolet rays is an exponential relationship. Therefore, even if the transmitted ultraviolet intensity is converted into a voltage signal as an electric signal proportional to this, the relationship between the voltage (V) and the ozone concentration (x) is an exponential relationship, so in the example of FIG.
This exponential relationship is converted into a linear relationship (linear relationship) by the logarithmic amplifier 6 and input to the CPU 7. The CPU 7 calculates the ozone concentration corresponding to the input voltage value based on the programmed primary expression. It is supposed to do. On the other hand, in the method of FIG. 2, since the logarithmic amplifier 6 is omitted, the input voltage (V) and ozone concentration (X) are input.
The relationship with and is an exponential function relationship as shown in FIG. Therefore, this exponential function is approximated by a straight line (linear expression) of ~, and the approximate expression of ~ is stored in the CPU 7, and when the input voltage value is V1 or more (V≥V1).
When the input voltage value is V2 or more and less than V1 (V = aX + b)
When 2 ≦ V <V1), the ozone concentration is calculated by the formula (V = a′X + b ′), and when the input voltage value is less than V2 (V <V2), the formula (V = a ″ X + b ”is calculated. By calculating the ozone concentration by (1), the ozone water concentration can be obtained by a simple method and the logarithmic amplifier 7 can be omitted, which contributes to cost reduction. It should be noted that, if an approximate value calculation of this degree is performed, there will be no practical problem at all in the range used for normal sterilization or cleaning, except for special cases such as tests for which a strict ozone water concentration is required.

【0033】又、本発明においては、上記CPU7にお
ける前記オゾン濃度の演算の結果に基づいて、電解式
ゾン水製造装置の運転制御を行う事も可能である。そこ
で、先ず本発明で使用する電解式オゾン水製造装置の概
要について説明する。本発明で使用する電解式オゾン水
製造装置は、特開平8−134677号や特開平11−
1724832号等に示されている電解式オゾン水製造
装置であり、その構造は特に限定されないが、以下に、
一例を示す。
Further, in the present invention, it is also possible to control the operation of the electrolytic ozone water producing apparatus based on the result of the calculation of the ozone concentration in the CPU 7. Therefore, first, an outline of the electrolytic ozone water producing apparatus used in the present invention will be described. The electrolytic ozone water producing apparatus used in the present invention is disclosed in JP-A-8-134677 and JP-A-11-
It is an electrolytic ozone water producing apparatus shown in No. 1724832 and the like, and the structure thereof is not particularly limited, but
An example is shown.

【0034】図4は本発明で使用する電解式オゾン水製
造装置の一例を示す要部断面図であって、同図におい
て、電解式オゾン水製造装置は、オゾンに対して耐蝕性
を有するフッ素樹脂又はガラス等を内面にコーティング
された陽極側ケーシング31と陰極側ケーシング32と
の間に、固体高分子電解膜(以下単に「膜」又は「電解
質膜」と記載する)35が配置され、陽極側ケーシング
31と陰極側ケーシング32内を陽極室36と陰極室3
7とに画成している。電解質膜35の陽極室36側の面
には、オゾンを生成触媒機能を有する白金等の貴金属触
媒46を備えた陽極電極33が該電解質膜を押圧する様
にして配置されている。一方、前記電解質膜35の陰極
室37側の面には、白金,銀等の貴金属の接触面50を
有する陰極電極34が該電解質膜35を押圧する様にし
て配置されている。又、陽極室36と陰極37には、夫
々原水の流入口38,39と流出口40,41が形成さ
れており、前記両電極33,34間には、直流電源54
によって電極棒49,53を介して直流電圧が印加され
る様になっている。各電極棒49,53は、陽極側ケー
シング31の貫通孔42及び陰極側ケーシング32の貫
通孔43を貫通して配置されており、その端部は、流体
圧シリンダ装置44,45に接続されて、夫々電解質膜
35に対して進退自在に、換言すると、電解質膜35に
対する電極面の押圧力を調整自在に形成されている。
FIG. 4 is a cross-sectional view of an essential part showing an example of the electrolytic ozone water producing apparatus used in the present invention. In FIG. 4, the electrolytic ozone water producing apparatus is a fluorine having corrosion resistance to ozone. A solid polymer electrolyte membrane (hereinafter simply referred to as “membrane” or “electrolyte membrane”) 35 is disposed between the anode side casing 31 and the cathode side casing 32, which are coated with resin or glass on the inner surface thereof, Inside the side casing 31 and the cathode side casing 32, the anode chamber 36 and the cathode chamber 3
It is divided into seven. On the surface of the electrolyte membrane 35 on the side of the anode chamber 36, an anode electrode 33 provided with a noble metal catalyst 46 such as platinum having a function of generating ozone is arranged so as to press the electrolyte membrane. On the other hand, on the surface of the electrolyte membrane 35 on the cathode chamber 37 side, a cathode electrode 34 having a contact surface 50 of a noble metal such as platinum or silver is arranged so as to press the electrolyte membrane 35. Further, raw water inlets 38 and 39 and outlets 40 and 41 are formed in the anode chamber 36 and the cathode 37, respectively, and a DC power source 54 is provided between the electrodes 33 and 34.
A DC voltage is applied via the electrode rods 49 and 53. Each of the electrode rods 49 and 53 is arranged so as to penetrate through the through hole 42 of the anode side casing 31 and the through hole 43 of the cathode side casing 32, and the ends thereof are connected to the fluid pressure cylinder devices 44 and 45. .., respectively. In other words, the pressing force of the electrode surface against the electrolyte membrane 35 is adjustable.

【0035】係る構成の装置において、陽極室36と陰
極室37に通水を行うと共に両電極間に直流電流を通電
すると、電解質膜35を挟んで水の電気分解が生じ、陽
極電極33側にはオゾンが生成し、陰極電極34側には
水素が発生する。この陽極電極33側に発生したオゾン
は、水中に溶解してオゾン水となり、流出口40からオ
ゾン水として排出される。
In the apparatus having such a structure, when water is passed through the anode chamber 36 and the cathode chamber 37 and a direct current is passed between both electrodes, water is electrolyzed with the electrolyte membrane 35 sandwiched between the electrodes and the anode electrode 33 side. Generates ozone, and hydrogen is generated on the cathode electrode 34 side. The ozone generated on the side of the anode 33 is dissolved in water to become ozone water, and is discharged from the outlet 40 as ozone water.

【0036】ここで効率的にオゾン水を生成するため
に、特開平8−134677号公報に開示されている様
に、両電極33,34の電解質膜35に接する部分を、
夫々貴金属で形成した金網46,50となし、該金網の
背面にオゾンに対して耐蝕性を有するチタン等で形成し
たラス網47,51と電極板48,52とを順に積層し
て、ろう付け一体化した構造の電極構造となす。これに
より、原水は金網とラス網とからなる流路を流通間に激
しい乱流と渦流とを生じ、陽極電極側で生成したオゾン
は、発生直後に瞬時にして水中に溶解され、高濃度のオ
ゾン水が得られる構成となっている。
Here, in order to efficiently generate ozone water, as disclosed in Japanese Patent Laid-Open No. 8-134677, the portions of both electrodes 33, 34 which are in contact with the electrolyte membrane 35 are
The wire nets 46 and 50 are made of noble metal, and lath nets 47 and 51 made of titanium or the like having corrosion resistance to ozone and electrode plates 48 and 52 are sequentially laminated on the back surface of the wire nets and brazed. The electrode structure has an integrated structure. As a result, the raw water causes a violent turbulent flow and a vortex during the flow through the flow path composed of the wire net and the lath net, and the ozone generated on the anode electrode side is instantly dissolved in the water immediately after the generation, resulting in a high concentration. It is configured to obtain ozone water.

【0037】係る装置を用いてオゾン水の製造を行う場
合、製品としてのオゾン水の濃度が所定範囲となる様に
運転制御されるのが一般的である。この場合には、運転
の継続と共に、電解質膜の性能が低下してくるので、こ
れを補ってオゾン水濃度が所定の範囲内となる様に制御
する方式としては、次の方式がある。 (1)電流値制御方式はオゾン水濃度を連続的に測定
し、所定濃度範囲の下限値に達すると、電流値を所定の
上限値に達するまで次第に上昇させてオゾン生成を促進
する方式である。 (2)押圧力変化方式はオゾン水濃度を連続的に測定
し、所定濃度範囲の下限値に達すると、電解質膜に対す
る電極の押圧力を、所定の上限値に達するまで次第に上
昇させる事により、電極と電解質膜との接触面を更新し
てオゾン生成を促進する方式である。この場合には、上
記電流値制御方式と併用する方式もある。
When ozone water is produced using such an apparatus, it is general that the operation is controlled so that the concentration of ozone water as a product falls within a predetermined range. In this case, the performance of the electrolyte membrane deteriorates as the operation continues, and as a method of compensating for this and controlling the ozone water concentration to fall within a predetermined range, there is the following method. (1) The current value control method is a method in which the ozone water concentration is continuously measured, and when the lower limit value of a predetermined concentration range is reached, the current value is gradually increased until it reaches a predetermined upper limit value to promote ozone generation. . (2) The pressing force change method continuously measures the ozone water concentration, and when the lower limit value of the predetermined concentration range is reached, the pressing force of the electrode against the electrolyte membrane is gradually increased until it reaches a predetermined upper limit value. In this method, the contact surface between the electrode and the electrolyte membrane is renewed to promote ozone generation. In this case, there is also a method that is used in combination with the above current value control method.

【0038】又、電解質膜自体は使用中に次第に劣化す
るので、定期的に再生処理する必要がある。この再生処
理方式としては、次の方式がある。 (イ)電解質膜再生方式は上記(1)又は(2)の方式
で連続運転した結果、その制御方式が限界に達すると、
電解質膜に対する電極の押圧力を所定時間開放する事に
より、電解質膜のストレスを開放して再生を図る方式で
ある。 (ロ)押圧力変化方式は10〜20分の運転時間経過の
度に、或いは、オゾン水濃度が所定の下限値に達する
と、排出オゾン水濃度に影響がでない程度の短時間(数
秒程度)、電解質膜に対する電極の押圧力を開放/加圧
する押圧力変化を電解質膜に与え、電解質膜の劣化が進
行しない内に再生処理を行う方式である。この方式を上
記(1),(2)と併用して連続運転時間を飛躍的に延
ばす方式もある。
Further, since the electrolyte membrane itself gradually deteriorates during use, it is necessary to regenerate it periodically. The following methods are available as this reproduction processing method. (B) As a result of continuous operation of the electrolyte membrane regeneration system by the system of (1) or (2) above, when the control system reaches its limit,
In this method, the pressing force of the electrode against the electrolyte membrane is released for a predetermined time to release the stress of the electrolyte membrane for regeneration. (B) The pressing force change method is a short time (about several seconds) so that the discharged ozone water concentration is not affected after each operating time of 10 to 20 minutes or when the ozone water concentration reaches a predetermined lower limit value. In this method, a pressing force change for releasing / pressurizing the electrode pressing force against the electrolyte membrane is applied to the electrolyte membrane, and the regeneration treatment is performed before the deterioration of the electrolyte membrane progresses. There is also a method in which this method is used in combination with the above (1) and (2) to dramatically extend the continuous operation time.

【0039】本発明においては、これらの制御操作の
内、オゾン水濃度に基づいて行う制御操作は、前記CP
U7で行うオゾン水濃度の演算結果に基づいて、該CP
U7から電解式オゾン水製造装置に制御信号を出力する
事が可能であり、その制御要素としては、電流値(電流
密度),電圧値(電圧を上げれば電流も上がるので、電
流値制御と同意義),電極の電解質膜に対する押圧力が
ある。
In the present invention, among these control operations, the control operation based on the ozone water concentration is the CP
Based on the calculation result of ozone water concentration performed in U7, the CP
It is possible to output a control signal from U7 to the electrolysis-type ozone water producing device. The control elements are the current value (current density) and the voltage value (the higher the voltage, the higher the current. Significance), there is a pressing force on the electrolyte membrane of the electrode.

【0040】次に、本発明による電解式オゾン水製造装
置の制御例について、図5によって説明する。図5は、
本発明による電解式オゾン水製造装置の制御フローの一
例を示すもので、先ず、装置の電源をONにしてスター
トさせると、ブロック61に示した様に、オゾン水濃度
測定系の通電が開始され、同時にオゾン水製造装置に
は、原水の供給が開始されるが(S1)、この時点で
は、電解装置の通電は行われていない。次に、ゼロ設定
確認手段62で、計測系の前記オゾン水のゼロ点設定
(基準設定)が行われているか否かを判定する(S
2)。通常の運転開始時点では、前述の通りゼロ点設定
はなされていないから(S2、NO)、無オゾン水であ
る原水でのオゾン濃度測定を行い(S3)、この無オゾ
ン水の測定濃度をゼロ点に設定するゼロ点設定を行い
(S4)、これでオゾン水濃度測定準備を完了する。こ
のオゾン水濃度測定準備が完了すると、電解装置への通
電を開始してオゾン水の製造を開始する(S5)。
Next, an example of control of the electrolytic ozone water producing apparatus according to the present invention will be described with reference to FIG. Figure 5
An example of a control flow of the electrolytic ozone water producing apparatus according to the present invention is shown. First, when the apparatus is turned on and started, as shown in block 61, energization of the ozone water concentration measuring system is started. At the same time, the supply of raw water to the ozone water producing apparatus is started (S1), but the electrolysis apparatus is not energized at this point. Next, the zero setting confirmation means 62 determines whether or not the zero point setting (reference setting) of the ozone water of the measurement system is performed (S).
2). At the start of normal operation, the zero point has not been set as described above (S2, NO), so ozone concentration in raw water that is ozone-free water is measured (S3), and the measured concentration of this ozone-free water is set to zero. The zero point setting to set the point is performed (S4), and the ozone water concentration measurement preparation is completed. When the preparation for measuring the concentration of ozone water is completed, electricity is supplied to the electrolyzer to start the production of ozone water (S5).

【0041】尚、S2において、ゼロ点設定が完了して
いる場合(S2、YES)、即ち、前述した電解質膜再
生のための一時的通電停止による装置の停止期間終了後
の如く、装置の制御過程における装置の運転停止後の再
起動時には、制御系自体は継続して作動しているので、
改めてゼロ点設定を行う必要がないので、直ちに電解装
置への通電が開始される事になる(S5)。
Incidentally, in S2, when the zero point setting is completed (S2, YES), that is, after the end of the device suspension period due to the temporary suspension of energization for electrolyte membrane regeneration, the device control is performed. At the time of restarting after the device is stopped in the process, the control system itself continues to operate,
Since it is not necessary to set the zero point again, the energization of the electrolysis device is immediately started (S5).

【0042】次に、オゾン水の製造が開始されると、該
オゾン水製造開始からの経過時間tを計測し、経過時間
判定手段において、該経過時間が予め設定されている所
定の期間ts を経過しているか否かを判断し(S6)、
経過時間tが所定時間以上(t≧ts )に至った事を判
断すると(S6、YES)、前述の要領で連続的なオゾ
ン水濃度の測定が開始される(S7)。これは、オゾン
水製造装置の運転開始初期においては、オゾン水濃度は
上昇過程にあるが不安定な状態であるので、この状態を
測定して装置の制御を行うのは不適切である事による。
そこで、オゾン水濃度が安定化するまでの一定期間(例
えば10秒〜数分)程度は、オゾン水の測定を行わない
測定禁止期間を設けている。
Next, when the production of the ozone water is started, the elapsed time t from the start of the production of the ozone water is measured, and the elapsed time determining means determines the predetermined period ts in which the elapsed time is preset. It is judged whether or not it has passed (S6),
When it is determined that the elapsed time t has reached the predetermined time or longer (t ≧ ts) (S6, YES), continuous ozone water concentration measurement is started in the above-described manner (S7). This is because at the beginning of the operation of the ozone water production device, the ozone water concentration is in the process of rising, but is in an unstable state, so it is inappropriate to measure this state and control the device. .
Therefore, a measurement prohibition period during which ozone water is not measured is provided for a certain period (for example, 10 seconds to several minutes) until the concentration of ozone water is stabilized.

【0043】オゾン水濃度が連続的に測定されると、そ
の値は次の濃度判定手段68に送信され、ここでオゾン
水濃度(X)が所定の許容濃度範囲(Xmin ≦X≦Xma
x )に入っているか否かを判断し(S8)、許容範囲に
ある場合には(S8、YES)、オゾン水濃度測定に戻
る(S7)。オゾン水濃度が所定の許容範囲外と判断さ
れた場合には(S8、NO)、該濃度を所定範囲内に戻
すために運転条件を変化させる制御を行う事になるが、
その前に、制御しようとする制御要素(電流値増減,電
解質膜に対する押圧力増減等)が限界に達しているか否
かを限界判定手段で判定する(S9)。限界に達してい
ない場合には、ブロック69から所定の制御信号を出力
し(S10)、その信号に基づいて所定の制御を行った
後に(S11)、再び、オゾン水濃度の測定に移行する
(S7)。
When the ozone water concentration is continuously measured, the value is transmitted to the next concentration determination means 68, where the ozone water concentration (X) is within a predetermined allowable concentration range (Xmin≤X≤Xma).
(x8) is judged (S8), and if it is within the allowable range (S8, YES), the process returns to ozone water concentration measurement (S7). When it is determined that the ozone water concentration is outside the predetermined allowable range (S8, NO), control for changing the operating condition is performed in order to return the concentration to the predetermined range.
Before that, the limit determination means determines whether or not the control element to be controlled (increase / decrease in current value, increase / decrease in pressing force on the electrolyte membrane, etc.) has reached the limit (S9). If the limit has not been reached, a predetermined control signal is output from the block 69 (S10), predetermined control is performed based on the signal (S11), and then the ozone water concentration measurement is performed again ( S7).

【0044】尚、S9において、制御限界に達している
場合とは、電解質膜の性能低下に伴うオゾン水濃度の低
下に対応して電流値を増加させる制御を行うケースで
は、電流値が既に装置の上限値に達しており、これ以上
の電流値増加が出来ない場合であり、又、電解質膜の性
能低下に伴うオゾン水濃度の低下に対応して電解質膜に
対する電極の押圧力を増加させる制御を行うケースで
は、押圧力が既に装置の上限値に達しており、これ以上
の押圧力の増加が出来ない場合を意味している。この様
な場合には、限界判定手段で制御要素が制御限界に達し
ていると判断され(S9、YES)、予め設定されてい
る次の工程に移行する。この次工程とは、装置の運転を
停止して電解質膜の再生を行う場合や所定時間電解質膜
に対する電極の押圧力を解放して電解質膜の再生を行う
場合等があり、運転思想或いは設計思想に基づいた処理
がなされ、しかる後にS1に戻って再スタートさせる事
になる。
Incidentally, in S9, when the control limit is reached, and when the current value is controlled so as to increase in response to the decrease in the concentration of ozone water due to the decrease in the performance of the electrolyte membrane, the current value has already been increased. Is reached when the current value cannot be increased any further, and the control is performed to increase the pressing force of the electrode against the electrolyte membrane in response to the decrease in ozone water concentration due to the performance deterioration of the electrolyte membrane. In the case of performing, it means that the pressing force has already reached the upper limit value of the device and the pressing force cannot be increased any more. In such a case, the limit determination means determines that the control element has reached the control limit (S9, YES), and proceeds to the next preset step. The next step may be a case where the operation of the device is stopped to regenerate the electrolyte membrane or a case where the pressing force of the electrode against the electrolyte membrane is released for a predetermined time to regenerate the electrolyte membrane. Then, the process is returned to S1 and restarted.

【0045】[0045]

【実施例】次に、本発明の実施例について説明する。図
4に示した電解式オゾン水製造装置に図2に示したオゾ
ン水濃度測定装置を付設すると共に、比較のため、外付
けで図8に示した従来型のオゾン水濃度測定装置を付設
してオゾン水濃度測定試験を行った。先ず、本発明方式
では、オゾン水製造運転に先立ち、約2分間、電解式
ゾン水製造装置に通電する事なく(電解を行う事なく)
原水のみを通水し、無オゾン原水によるゼロ点設定を行
い、その後、オゾン水製造装置に通電を開始してオゾン
水の製造を行い、オゾン水製造運転開始後約3分間はオ
ゾン水濃度測定を行わず、約3分経過後にオゾン濃度測
定を開始した。尚、外付けの従来方式のオゾン水濃度測
定装置では、初めからオゾン水濃度測定を行った。両方
式による測定結果を図6に示す。
EXAMPLES Next, examples of the present invention will be described. The ozone water concentration measuring device shown in FIG. 2 is attached to the electrolytic ozone water producing device shown in FIG. 4, and the conventional ozone water concentration measuring device shown in FIG. 8 is additionally attached for comparison. The ozone water concentration measurement test was performed. First, according to the method of the present invention, prior to the ozone water production operation, the electrolysis-type ozone water production apparatus is not energized (without electrolysis) for about 2 minutes.
Only the raw water is allowed to flow, the zero point is set by ozone-free raw water, and then the ozone water production device is turned on to produce ozone water, and the ozone water concentration is measured for about 3 minutes after the start of the ozone water production operation. Without performing, the ozone concentration measurement was started after about 3 minutes had elapsed. In the conventional external ozone water concentration measuring device, the ozone water concentration was measured from the beginning. The measurement results by both methods are shown in FIG.

【0046】同図において透過紫外線強度は、その値に
比例した電圧に変換して表示されており、電圧値の高い
ほど紫外線吸収が少ない(含有オゾン量が少ない)事を
意味している。同図において、t1は、原水のみを通水
している期間(約2分間)であり、この間の透過紫外線
強度に対応する電圧出力は2.8〜3.0Vを示してお
り、この出力に基づいて本発明方式ではゼロ点設定がな
されている。t1経過後に電解装置への通電を開始する
と、この通電開始と共に、外付け測定装置(従来法)で
は、速やかにオゾン水濃度の上昇が認められ、同時に、
透過紫外線強度に対応する出力電圧は、0.2〜0.3
Vにまで急速に低下している。電解装置への通電開始後
の時間t2(約3分間)は、本発明方式によるオゾン水
濃度の測定を禁止している期間であり、t2経過後に濃
度測定が開始されると、速やかにオゾン水濃度は17p
pm程度のレベルの値を検出している事が分かる。同図
から明らかな様に、本発明方式で測定されたオゾン水濃
度と、従来法によって測定されたオゾン水濃度とは、極
めて良く近似している事が分かる。尚、本発明方法によ
る測定値は、従来法による測定値よりも1ppm程度の
バラツキが認められるが、通常の殺菌や洗浄等にオゾン
水を使用するレベルでは、全く問題のない程度である事
も確認された。又、この意味から、本発明のオゾン水濃
度測定方法によって計測されたオゾン水濃度に基づい
て、電解式オゾン水製造装置の運転制御を行う事も可能
である事も理解されよう。
In the figure, the intensity of transmitted ultraviolet rays is converted into a voltage proportional to the value and displayed, and the higher the voltage value, the smaller the ultraviolet absorption (the smaller the amount of ozone contained). In the figure, t1 is a period (about 2 minutes) during which only raw water is allowed to flow, and the voltage output corresponding to the intensity of transmitted ultraviolet light during this period is 2.8 to 3.0 V. Based on this, the zero point is set in the method of the present invention. When the energization of the electrolysis device is started after the lapse of t1, simultaneously with the start of the energization, the external measuring device (conventional method) promptly increases the ozone water concentration, and at the same time,
The output voltage corresponding to the transmitted ultraviolet intensity is 0.2 to 0.3.
It is rapidly decreasing to V. The time t2 (about 3 minutes) after the start of energization to the electrolyzer is a period during which the measurement of the concentration of ozone water according to the method of the present invention is prohibited. Concentration is 17p
It can be seen that the level value of about pm is detected. As is apparent from the figure, the ozone water concentration measured by the method of the present invention and the ozone water concentration measured by the conventional method are extremely close to each other. Incidentally, the measured value by the method of the present invention shows a variation of about 1 ppm as compared with the measured value by the conventional method, but at the level where ozone water is used for normal sterilization, cleaning, etc., it may be a level without any problem. confirmed. In this sense, it is also understood that it is possible to control the operation of the electrolytic ozone water producing apparatus based on the ozone water concentration measured by the ozone water concentration measuring method of the present invention.

【0047】[0047]

【発明の効果】以上の通り、本発明においては、電解式
オゾン水製造装置における1系列のオゾン水濃度測定系
統のみによってオゾン濃度の測定を行うものであるか
ら、測定セルは1つのみとなる。従って、図7に示した
2つのセルを使用する従来方式と比べると、単にコスト
低減に寄与するのみならず、従来方式では異なる性質の
水を夫々のセルに流通する関係上、使用するうちにセル
内面に次第に汚れが蓄積し、しかもその汚れの度合いが
異なるため、汚れによる紫外線吸収度合いも変化してく
るので、両セルの透過紫外線強度の比較に次第に誤差が
生じる事になるが、本発明では、1つの測定セルのみを
使用するので、セル内面に汚れが生じても、その汚れに
よる透過紫外線強度の影響は、基準値設定時もオゾン水
測定時も同一条件となるので、汚れによる測定誤差が生
じ難くなっている。この意味から、長期使用の過程にお
ける信頼性は向上する事になる。
As described above, according to the present invention, the electrolytic
Since the ozone concentration is measured by only one series of ozone water concentration measuring system in the ozone water producing apparatus , there is only one measuring cell. Therefore, as compared with the conventional method using two cells shown in FIG. 7, not only does it contribute to cost reduction, but the conventional method distributes water having different properties to each cell, so that it can be used during use. Contamination gradually accumulates on the inner surface of the cell, and since the degree of the contamination is different, the degree of ultraviolet absorption due to the contamination also changes, so that an error will gradually occur in the comparison of the transmitted ultraviolet intensities of both cells. However, since only one measurement cell is used, even if stains occur on the inner surface of the cell, the influence of the transmitted UV intensity due to the stains will be the same when setting the reference value and when measuring ozone water. Errors are less likely to occur. In this sense, the reliability in the process of long-term use will be improved.

【0048】又、図8に示した従来の方式と比べると、
1つのセルを使用する点では同一であるが、本発明方式
では高価なハーフミラーは必要ではなく、又、紫外線セ
ンサは1つのみでよく、更に比較回路も不要となるの
で、大幅なコスト低減が可能となる。
Further, as compared with the conventional method shown in FIG.
Although it is the same in that one cell is used, an expensive half mirror is not required in the method of the present invention, and only one ultraviolet sensor is required, and further, a comparison circuit is not required. Is possible.

【0049】以上の通り、本発明方式では、一系列の測
定系統のみでオゾン濃度の測定が可能となるので、電解
オゾン水濃度測定装置を従来法に比して安価に供給す
る事が可能となる。この結果、電解式オゾン水製造装置
に付設するオンライン計測装置として極めて有効な測定
装置として使用可能であり、電解式オゾン水製造装置の
コスト低減に大きく寄与する事が期待される。
[0049] As described above, in the present invention method, since it is possible to measure the ozone concentration alone in the measurement system of the one line, electrolytic
It is possible to inexpensively provide relative formula ozone water concentration measuring apparatus with the conventional method. As a result, can be used as very effective measuring device as an online measuring device for attached to electrolytic ozone water production apparatus, it is expected to greatly contribute to cost reduction of the electrolytic ozone water production apparatus.

【0050】オゾン水製造装置のコスト低減が可能とな
る結果、安価に電解式オゾン水製造装置を市場に供給す
る事が可能となり、殺菌や洗浄等の分野に飛躍的にオゾ
ン水の使用が普及する事も期待され、この結果、食中毒
の発生や病原菌の拡散等が未然に防止され、国民の健
康,安全の管理に大きく寄与する事が期待される。
As a result of the cost reduction of the ozone water producing device, it is possible to inexpensively supply the electrolytic ozone water producing device to the market, and the use of ozone water is dramatically spread in the fields such as sterilization and cleaning. As a result, it is expected that the occurrence of food poisoning and the spread of pathogenic bacteria will be prevented, and that it will greatly contribute to the health and safety management of the people.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るオゾン水濃度測定方式の一例を示
す概念図である。
FIG. 1 is a conceptual diagram showing an example of an ozone water concentration measuring method according to the present invention.

【図2】本発明に係るオゾン水濃度測定方式の他の例を
示す概念図である。
FIG. 2 is a conceptual diagram showing another example of the ozone water concentration measuring method according to the present invention.

【図3】図2におけるオゾン濃度演算方法の一例を示す
出力−濃度グラフである。
FIG. 3 is an output-concentration graph showing an example of an ozone concentration calculation method in FIG.

【図4】本発明で使用する電解式オゾン水製造装置の要
部概念図である。
FIG. 4 is a conceptual diagram of a main part of an electrolytic ozone water producing apparatus used in the present invention.

【図5】本発明に係る電解式オゾン水製造装置の制御例
を示すフロー図である。
FIG. 5 is a flow chart showing a control example of the electrolytic ozone water producing apparatus according to the present invention.

【図6】本発明の実施例を示すタイムチャートである。FIG. 6 is a time chart showing an example of the present invention.

【図7】従来のオゾン水濃度測定方式の一例を示す概念
図である。
FIG. 7 is a conceptual diagram showing an example of a conventional ozone water concentration measuring method.

【図8】従来の他のオゾン水濃度測定方式を示す概念図
である。
FIG. 8 is a conceptual diagram showing another conventional ozone water concentration measuring method.

【図面の符号】[Drawing reference number]

1 UVランプ 2 UVランプ用電源 3,3’ 紫外線吸収測定用セル 4,4’ 紫外線センサ 5,5’ プリアンプ 6,6’ 対数増幅器 7 CPU 8 表示器 9 気液分離器 10 電解式オゾン水製造装置1 UV lamp 2 UV lamp power source 3, 3'UV absorption measuring cell 4, 4 'UV sensor 5, 5' Preamplifier 6, 6'Logarithmic amplifier 7 CPU 8 Display 9 Gas-liquid separator 10 Electrolytic ozone water production apparatus

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C25B 15/02 302 C25B 15/02 302 G01N 21/33 G01N 21/33 (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/61 C02F 1/46 G01N 1/10 G01N 35/08 C01B 13/10 C25B 15/02 302 実用ファイル(PATOLIS) 特許ファイル(PATOLIS)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI C25B 15/02 302 C25B 15/02 302 G01N 21/33 G01N 21/33 (58) Fields investigated (Int.Cl. 7 , DB Name) G01N 21/00-21/61 C02F 1/46 G01N 1/10 G01N 35/08 C01B 13/10 C25B 15/02 302 Practical file (PATOLIS) Patent file (PATOLIS)

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定セル中(3)にオゾン水を連続的に
通水しつつ紫外線を透過させて、オゾンによる紫外線吸
収量に基づいてオゾン水濃度を測定するオゾン水濃度連
続測定方法において、水を電気分解して陽極側にオゾン水を生成する電解式
ゾン水製造装置(10)のオゾン水製造運転直前に、該
装置に原水の通水のみを行う事により該装置(10)か
ら前記測定セル(3)に供給される実質的にオゾンを含
有していない前記原水の紫外線吸収量を測定し、得られ
たオゾン水濃度をゼロ点として記憶させ、 前記電解式オゾン水製造装置(10)のオゾン水製造運
転開始後に該装置(10)から前記測定セル(3)に供
給されるオゾン水の濃度を、前記ゼロ点を基準にして計
測する様にしてなる事を特徴とするオゾン水濃度連続測
定方法。
1. A method for continuously measuring ozone water concentration, wherein ozone water is continuously passed through a measuring cell (3) while ultraviolet rays are transmitted, and the ozone water concentration is measured based on the amount of ultraviolet light absorbed by ozone. Immediately before the ozone water production operation of the electrolysis type ozone water production apparatus (10) that electrolyzes water to generate ozone water on the anode side, only the raw water is passed through the apparatus. The amount of ultraviolet absorption of the raw water containing substantially no ozone supplied from (10) to the measurement cell (3) is measured, and the obtained ozone water concentration is stored as a zero point, and the electrolytic ozone is used. After the ozone water producing operation of the water producing apparatus (10) is started, the concentration of ozone water supplied from the apparatus (10) to the measuring cell (3) is measured with reference to the zero point. Characteristic continuous measurement method of ozone water concentration .
【請求項2】 前記オゾン水製造運転開始後のオゾン水
の濃度測定は、該運転開始後、所定時間経過した後に開
始する様にしてなる請求項1に記載のオゾン水濃度連続
測定方法。
2. The continuous ozone water concentration measuring method according to claim 1, wherein the ozone water concentration measurement after the start of the ozone water production operation is started after a lapse of a predetermined time after the start of the operation.
【請求項3】 前記測定セル(3)に紫外線を入射する
紫外線発生装置近傍の環境温度を測定し、該環境温度の
変化によって前記ゼロ点を補正する様にしてなる請求項
1又は2に記載のオゾン水濃度連続測定方法。
3. The zero point is corrected by measuring an environmental temperature in the vicinity of an ultraviolet ray generator that makes an ultraviolet ray incident on the measuring cell (3) and corrects the zero point according to a change in the environmental temperature. Continuous measurement method of ozone water concentration.
【請求項4】 紫外線を発生するUVランプ(1)と、
該UVランプから所定の紫外線を発生させるための安定
化電源(2)と、前記UVランプ(1)からの紫外線を
透過させ且つ水を電気分解して陽極側にオゾン水を生成
する電解式オゾン水製造装置(10)から供給されるオ
ゾン水を連続的に通水させる測定セル(3)と、該測定
セル(3)を透過した透過紫外線強度を測定する紫外線
センサ(4)と、該透過紫外線強度に基づいてオゾン水
濃度を演算するコンピュータ(7)とを有し、 該コンピュータ(7)には、前記電解式オゾン水製造装
置(10)によるオゾン水の製造運転直前に該装置に原
水の通水のみを行い、前記紫外線センサ(4)で測定さ
れた透過紫外線強度に基づいて演算されたオゾン水濃度
をゼロ点として記憶するゼロ点記憶手段と、該ゼロ点を
基準にして前記電解式オゾン水製造装置(10)のオゾ
ン水製造運転開始後に該装置(10)から前記測定セル
(3)に供給されるオゾン水の濃度を演算するオゾン水
濃度演算手段とを設けてなる事を特徴とするオゾン水濃
度連続測定装置。
4. A UV lamp (1) for generating ultraviolet rays,
A stabilizing power source (2) for generating a predetermined ultraviolet ray from the UV lamp, and an ultraviolet ray from the UV lamp (1) that is transmitted and electrolyzes water to generate ozone water on the anode side.
Measuring cell (3) for continuously passing ozone water supplied from the electrolysis type ozone water producing apparatus (10), and an ultraviolet sensor (4) for measuring the intensity of transmitted ultraviolet light transmitted through the measuring cell (3) And a computer (7) that calculates the concentration of ozone water based on the intensity of the transmitted ultraviolet light. The computer (7) includes a computer (7) immediately before the ozone water production operation by the electrolytic ozone water production apparatus (10). Zero point storage means for storing only the raw water through the device and storing the ozone water concentration calculated based on the transmitted ultraviolet intensity measured by the ultraviolet sensor (4) as a zero point, and the zero point as a reference And an ozone water concentration calculating means for calculating the concentration of ozone water supplied from the device (10) to the measurement cell (3) after the ozone water producing operation of the electrolytic ozone water producing device (10) is started. Tena A continuous ozone water concentration measuring device characterized by
【請求項5】 前記紫外線センサ(4)から前記コンピ
ュータ(7)に送信される前記透過紫外線強度に比例し
て設定された電圧信号を、プリアンプ(5)で増幅した
後、対数増幅器(6)を経て前記コンピュータ(7)に
送信する様にしてなる請求項4に記載のオゾン水濃度連
続測定装置。
5. A logarithmic amplifier (6) after a voltage signal set in proportion to the transmitted ultraviolet intensity transmitted from the ultraviolet sensor (4) to the computer (7) is amplified by a preamplifier (5). The continuous ozone water concentration measuring device according to claim 4, wherein the ozone water concentration is continuously transmitted to the computer (7).
【請求項6】 前記紫外線センサ(4)から前記コンピ
ュータ(7)に送信される前記透過紫外線強度に比例し
て設定された電圧信号を、プリアンプ(5)で増幅して
送信する様にしてなる請求項4に記載のオゾン水濃度連
続測定装置。
6. A preamplifier (5) amplifies and transmits a voltage signal, which is set in proportion to the transmitted ultraviolet intensity and is transmitted from the ultraviolet sensor (4) to the computer (7). The ozone water concentration continuous measuring device according to claim 4.
【請求項7】 前記UVランプ(1)の近傍の温度を計
測する温度測定手段(18)を有し、前記コンピュータ
(7)には、該温度測定手段(18)で測定された温度
に基づいて前記ゼロ点を補正するゼロ点補正手段が設け
られている請求項4乃至6のいずれかに記載のオゾン水
濃度連続測定装置。
7. A temperature measuring means (18) for measuring a temperature in the vicinity of the UV lamp (1) is provided, and the computer (7) is based on the temperature measured by the temperature measuring means (18). 7. The ozone water concentration continuous measuring apparatus according to claim 4, further comprising a zero point correcting means for correcting the zero point.
【請求項8】 前記電解式オゾン水製造装置(10)か
ら供給されるオゾン水を、気液分離器(9)を通して気
相分を分離し、液相分のみを前記測定セル(3)に供給
する様にしてなる請求項4乃至7のいずれかに記載のオ
ゾン水濃度連続測定装置。
8. Ozone water supplied from the electrolytic ozone water producing apparatus (10) is separated into a gas phase component through a gas-liquid separator (9), and only the liquid phase component is stored in the measurement cell (3). The ozone water concentration continuous measuring device according to any one of claims 4 to 7, which is configured to supply the ozone water concentration.
【請求項9】 測定セル(3)中にオゾン水を連続的に
通水しつつ紫外線を透過させてオゾンによる紫外線吸収
量に基づいてオゾン水濃度を連続的に測定しつつ、水を
電気分解して陽極側にオゾン水を生成する電解式オゾン
水製造装置(10)の運転制御を行うオゾン水製造装置
の運転制御方法において、 該電解式オゾン水製造装置(10)によるオゾン水の製
造運転直前に、該装置に原水の通水のみを行う事により
該装置(10)から前記測定セル(3)に供給される実
質的にオゾンを含有していない前記原水の透過紫外線強
度を測定し、該透過紫外線強度に基づいてコンピュータ
(7)によって演算されたオゾン水濃度をゼロ点として
記憶させ、 前記電解式オゾン水製造装置(10)のオゾン水製造運
転開始後に該装置(10)から前記測定セル(3)に供
給されるオゾン水の濃度を、前記ゼロ点を基準にして前
記透過紫外線強度に基づいて前記コンピュータ(7)で
演算すると共に、 該オゾン水濃度の変化に基づいて前記電解式オゾン水製
造装置(10)の運転条件を変化させて生成オゾン水濃
度が所定範囲となる様に制御する事を特徴とする電解式
オゾン水製造装置の運転制御方法。
9. measuring cell (3) continuously while measuring the concentration of ozone water with an ozone water continuously by transmitting ultraviolet while passing water based UV absorption by ozone in the water
In electrolysis to operation control method of an ozone water production apparatus for performing operation control of the electrolytic ozone water production apparatus (10) for producing ozone water on the anode side, the ozone water by the electrolytic ozone water production apparatus (10) Immediately before the production operation, only the raw water is passed through the device to measure the transmitted UV intensity of the raw water that is supplied from the device (10) to the measurement cell (3) and contains substantially no ozone. Then, the ozone water concentration calculated by the computer (7) based on the transmitted ultraviolet intensity is stored as a zero point, and the ozone water production operation of the electrolytic ozone water production apparatus (10) is started from the apparatus (10). The concentration of ozone water supplied to the measuring cell (3) is calculated by the computer (7) based on the transmitted ultraviolet intensity with reference to the zero point, and the ozone water concentration is Based on the change in the electrolytic ozone water production apparatus (10) electrolytic <br/> ozone water production apparatus is generated ozone water concentration by changing the operating conditions and controls so as to be a predetermined range Operation control method.
【請求項10】 前記電解式オゾン水製造装置(10)
の制御される運転条件が、電流値,電圧値,原水供給
量,固体高分子電解質膜に対する電極の押圧力の1以上
である請求項9に記載の電解式オゾン水製造装置の運転
制御方法。
10. The electrolytic type ozone water producing apparatus (10)
10. The operation control method for an electrolytic ozone water producing apparatus according to claim 9, wherein the controlled operating condition is 1 or more of a current value, a voltage value, a raw water supply amount, and a pressing force of the electrode with respect to the solid polymer electrolyte membrane.
【請求項11】 前記電解式オゾン水製造装置(10)
によるオゾン水の製造運転前に、ゼロ点の設定がなされ
ているか否かを判断し、該ゼロ点設定がなされている場
合には、これを判断して該電解式オゾン水製造装置の電
解装置に通電を開始する様にしてなる請求項10に記載
電解式オゾン水製造装置の運転制御方法。
11. The electrolytic ozone water producing apparatus (10)
Before a production run of the ozone water by, and determines whether or not the setting of the zero point has been made, if the zero-setting has been made, the electrolytic apparatus of the electrolytic ozone water production apparatus to determine this The operation control method for an electrolytic ozone water production apparatus according to claim 10, wherein energization is started.
【請求項12】 紫外線吸収法により連続的にオゾン水
中のオゾン濃度を測定し、これによって電解式オゾン水
製造装置(10)の運転を制御する運転制御装置におい
て、 オゾン水を連続的に通水しつつ紫外線を透過させてオゾ
ンによる紫外線吸収量に基づいてオゾン濃度を演算する
オゾン水濃度測定手段(M)と、 前記電解式オゾン水製造装置(10)によるオゾン水の
製造運転直前の該装置に通水された実質的にオゾンを含
有していない原水のオゾン水濃度を、前記オゾン濃度測
定手段(M)によって測定し、該測定値をオゾン濃度の
ゼロ点として設定すると共にこれを記憶するゼロ点記憶
手段と、 該ゼロ点設定の有無を確認するゼロ設定確認手段(6
2)と、 該ゼロ点設定を確認すると前記電解式オゾン水製造装置
の電解装置に通電を開始する通電開始手段(65)と、 該電解式オゾン水製造装置(10)により生成したオゾ
ン水濃度を前記オゾン濃度測定手段(M)によって連続
的に測定すると共に、測定されたオゾン水濃度が所定の
範囲内にあるか否かを判断する濃度判定手段(68)
と、 該濃度判定手段(68)によって所定の範囲外と判断さ
れた場合には、制御すべき制御要素が制御限界内にある
か否かを判断する限界判定手段(69)と、 該限界判定手段(69)によって制御要素が制御限界内
にあると判断された場合には、所定の制御信号を出力す
る制御信号出力手段(70)と、 前記限界判定手段(69)によって制御要素が制御限界
に達していると判断された場合には、電解式オゾン水製
造装置の固体高分子電解質膜に再生処理等の予め設定さ
れた工程(72)に移行する様にしてなる事を特徴とす
る電解式オゾン水製造装置の運転制御装置。
12. An operation control device for continuously measuring the ozone concentration in ozone water by an ultraviolet absorption method, and controlling the operation of an electrolytic ozone water producing device (10) by the ozone absorption method. And an ozone water concentration measuring means (M) that transmits ultraviolet rays and calculates the ozone concentration based on the amount of ozone absorbed by the ozone, and the apparatus just before the ozone water production operation by the electrolytic ozone water production apparatus (10). The concentration of ozone water in the raw water that is substantially free of ozone that has been passed through is measured by the ozone concentration measuring means (M), and the measured value is set as a zero point of the ozone concentration and stored. Zero point storing means and zero setting confirming means (6
2), when the zero point setting is confirmed, energization starting means (65) for starting energization to the electrolyzer of the electrolytic ozone water producing apparatus, and the concentration of ozone water produced by the electrolytic ozone water producing apparatus (10) Is continuously measured by the ozone concentration measuring means (M), and a concentration determining means (68) for determining whether or not the measured ozone water concentration is within a predetermined range.
And a limit determination means (69) for determining whether or not the control element to be controlled is within the control limit when the concentration determination means (68) determines that the concentration is out of the predetermined range, and the limit determination When the control element determines that the control element is within the control limit, the control signal output means (70) that outputs a predetermined control signal, and the limit determination means (69) controls the control element to the control limit. When it is determined that the temperature has reached the limit, the electrolysis is characterized in that the solid polymer electrolyte membrane of the electrolytic ozone water producing apparatus is moved to a preset step (72) such as regeneration treatment. Operation control device for the ozone water production system.
【請求項13】 前記制御要素が、電流値,電圧値,原
水供給量,固体高分子電解質膜に対する電極の押圧力で
あり、これらの1以上を所定の範囲内で制御する様にし
てなる請求項12に記載の電解式オゾン水製造装置の運
転制御装置。
13. The control element is a current value, a voltage value, a raw water supply amount, a pressing force of an electrode against a solid polymer electrolyte membrane, and one or more of these is controlled within a predetermined range. Item 13. An operation control device for an electrolytic ozone water production device according to item 12.
【請求項14】 前記通電開始手段によって前記電解式
オゾン水製造装置によるオゾン水の製造が開始された
後、所定時間(ts )が経過するまで前記オゾン濃度測
定手段(M)によるオゾン水濃度の測定を禁止する測定
禁止手段(66)が設けられている請求項12又は13
に記載の電解式オゾン水製造装置の運転制御装置。
14. The ozone concentration measuring means (M) is used until a predetermined time (ts) elapses after the production of ozone water by the electrolytic ozone water producing apparatus is started by the energization starting means. The measurement prohibition means (66) for prohibiting measurement of ozone water concentration is provided.
The operation control device of the electrolytic ozone water production device according to item 1.
JP2000067197A 2000-03-07 2000-03-07 Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus Expired - Lifetime JP3405707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067197A JP3405707B2 (en) 2000-03-07 2000-03-07 Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000067197A JP3405707B2 (en) 2000-03-07 2000-03-07 Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus

Publications (2)

Publication Number Publication Date
JP2001255271A JP2001255271A (en) 2001-09-21
JP3405707B2 true JP3405707B2 (en) 2003-05-12

Family

ID=18586431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067197A Expired - Lifetime JP3405707B2 (en) 2000-03-07 2000-03-07 Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus

Country Status (1)

Country Link
JP (1) JP3405707B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762170B2 (en) * 2007-02-23 2011-08-31 株式会社タムラテコ Ozone water production equipment
JP4722868B2 (en) * 2007-02-23 2011-07-13 株式会社タムラテコ How to wash vegetables
JP5574877B2 (en) * 2010-08-13 2014-08-20 日科ミクロン株式会社 Ozone water generator
JP5650151B2 (en) * 2012-03-26 2015-01-07 株式会社Ihiシバウラ Method for measuring dissolved ozone concentration in ozone water
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JP2001255271A (en) 2001-09-21

Similar Documents

Publication Publication Date Title
US5644070A (en) Ozone concentration sensor
RU2529692C2 (en) Device for extracorporal blood purification
US6690173B2 (en) Circuit and method for measuring the conductivity of an aqueous sample
US20070034792A1 (en) Method and apparatus for detecting gas concentration with infrared absorption characteristics
US8852437B2 (en) Method and production plant for producing sterile water
JP3405707B2 (en) Method and apparatus for continuous measurement of ozone water concentration and operation control method and apparatus in electrolytic ozone water production apparatus
JP3201860B2 (en) Method and apparatus for producing electrolyzed water
JP4154274B2 (en) Gas concentration detection method and gas concentration detection device
WO1997021999A1 (en) A method and apparatus for measuring ethanol vapour concentration
US7400406B2 (en) Microchip measurement device
EP2853888A2 (en) Measuring method for chlorine and pH
US5122752A (en) Method of and apparatus for analyzing granular materials
US7949477B2 (en) Method for monitoring an arrangement for determining the concentration of an analyte in a body fluid
JP3934546B2 (en) Photometric device
JPS6131952A (en) Concentration meter with automatic calibrating function
US20040224417A1 (en) Ultraviolet lamp performance measurement
JP4409489B2 (en) Chemical concentration monitor
JP2008232664A (en) Measuring method of blood component
JP3209488B2 (en) End point detection method and apparatus for ion exchange type pure water production equipment
JP3995615B2 (en) Spectroscopic concentration measuring apparatus and light source stability determination method thereof
JP2945050B2 (en) Method for determining performance degradation of zero gas generator in ozone concentration measurement device
JP2011210976A (en) Substrate processing apparatus and method of detecting supply abnormality using the substrate processing apparatus
JP2010032453A (en) Concentration measuring device of electrolyte solution and water softening system
JPH08233769A (en) Liquid management system
JP5650151B2 (en) Method for measuring dissolved ozone concentration in ozone water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3405707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

EXPY Cancellation because of completion of term