JP2007319784A - 淡水化装置及び淡水化方法 - Google Patents

淡水化装置及び淡水化方法 Download PDF

Info

Publication number
JP2007319784A
JP2007319784A JP2006153093A JP2006153093A JP2007319784A JP 2007319784 A JP2007319784 A JP 2007319784A JP 2006153093 A JP2006153093 A JP 2006153093A JP 2006153093 A JP2006153093 A JP 2006153093A JP 2007319784 A JP2007319784 A JP 2007319784A
Authority
JP
Japan
Prior art keywords
seawater
water vapor
chamber
desalination
evaporation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006153093A
Other languages
English (en)
Inventor
Masaru Takahashi
橋 賢 高
Koji Takahashi
橋 浩 司 高
Fujiko Takahashi
橋 フジ子 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO BUBBLE KK
Original Assignee
NANO BUBBLE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO BUBBLE KK filed Critical NANO BUBBLE KK
Priority to JP2006153093A priority Critical patent/JP2007319784A/ja
Publication of JP2007319784A publication Critical patent/JP2007319784A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/141Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Wind Motors (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

【課題】海水から安価で、且つ安全な淡水を得ることの出来る淡水化装置及び淡水化方法の提供。
【解決手段】海水を貯留する海水受水槽(1)と、貯留した海水中にマイクロバルブを発生させる超微細気泡生成手段(2)と、マイクロバブルを含んだ海水を落下させる落下装置(4)と、落下する超微細気泡を含んだ海水が衝突する複数の衝突部材(51、52)を設けた蒸発室(5)と、蒸気室(5)で発生した水蒸気が流過する水蒸気流路(6)と、水蒸気流路(6)を通過した水蒸気を凝縮させる凝縮室(7)と、凝縮室(7)で生じた淡水(純水)を回収する淡水回収槽(3)、とを備える。
【選択図】図1

Description

本発明は、海水を淡水化する淡水化技術に関する。
近年、地球温暖化によって陸地の砂漠化が急速に進み、地球規模の水環境は危機的状態に陥りつつある。
海洋に面した地域において、海水から安価で、且つ安全な淡水を得る技術の向上は、そのような陸地の砂漠化に歯止めをする意味でも重要である。
動植物を問わず生命体の維持のため、あるいは工業や農業の用途のために、「水」を確保することは、21世紀における最大の課題の一つと言える。
これに対して、現状における海水を淡水化する技術の多くにおいては、高価な機器を必要とし、維持管理費も高く、運転時の消費エネルギーが大きくて、二酸化炭素排出量が多い。
そのため、経済的に余裕のある国はともかく、現時点で砂漠化の危機に晒されている様な発展途上国においては、実施が極めて困難な場合が多い。
海水の淡水化に関するその他の従来技術として、例えば温度の低い海水温熱水を利用して効率良く海水を蒸発し、海水から淡水を得る技術が提案されている(特許文献1参照)。
しかし、係る技術では、蒸発器における蒸発効率が低く、装置を大規模化しなければ十分な量の淡水が得られない、という問題点が存在する。
また、逆浸透膜を複数段設けて、海水を淡水化する技術も知られている(特許文献2参照)。
しかし、上述した技術は第2段目の逆浸透膜の劣化防止が主たる目的であって、上述したような問題点を解決するものではない。また、逆浸透膜はメンテナンスに多大な労力を必要とするという問題点を有している。
特開平9−108653号公報 特開2006−122787号公報
本発明は上述した従来技術の問題点に鑑みて提案されたものであり、安価で且つ安全に、海水から淡水を得ることが出来る淡水化装置及び淡水化方法を提供することを目的としている。
発明者は、いわゆる「マイクロバルブ」及び「ナノバブル」と呼ばれる超微細気泡を研究している。そして、マイクロバルブ及びナノバブルには、以下の特徴があることを見出した。
(1) マイクロバルブ及び/又はナノバブルは、体積当たりの表面積が大きい。
(2) マイクロバブルは、障害物等に衝突して圧壊を起こす際に、約5500℃の高温を発生してナノバブルとなり、圧壊によって周囲にその熱を放出する。
(3) マイクロバルブ及び/又はナノバブルは、水中に長時間留まることができる。
(4) マイクロバルブ及び/又はナノバブルを含む水は蒸発面積が大きく、通常水に比べて約10倍の蒸発性を有している。
(5) 海水にマイクロバルブ及び/又はナノバブルを混入すると、海水の水素分子結合が分断され、通常より少ない熱量(通常水は1gが蒸発するのに539Calを必要とする)で蒸発させることができる。
(6) 海水は含有物質が多いため、通常水に比べてマイクロバルブ及び/又はナノバブルを発生させ易く、且つ、気泡密度が高くなる。
本発明は、上述したマイクロバルブ及び/又はナノバブルの特徴に着目して創作されたものである。
本発明の淡水化装置は、海水を貯留する海水受水槽(1)と、貯留した海水中に超微細気泡(マイクロバルブ)を発生させる超微細気泡生成手段(2)と、超微細気泡(マイクロバブル)を含んだ海水を落下させる落下装置(散布装置4)と、落下する超微細気泡を含んだ海水が衝突する複数の衝突部材(51、52)を設けた蒸発室(5)と、蒸気室(5)で発生した水蒸気が流過する水蒸気流路(6)と、水蒸気流路(6)を通過した水蒸気を凝縮させる凝縮室(7)と、凝縮室(7)で(水蒸気が凝縮することにより)生じた淡水(純水)を回収する淡水回収槽(3)、とを備えることを特徴としている(請求項1)。
ここで、前記衝突部材は、じゃま板(51)と樋(52)が対となったユニットが、蒸発室(5)に沿って複数設けられているのが好ましい。
本発明において、水蒸気流路(6)と凝縮室(7)とを仕切る隔壁(第2の隔壁8)が設けられており、該隔壁(8)は(複数の貫通孔83が平行に形成されており、水蒸気流路6を上昇する水蒸気が、貫通孔83を流れることにより)水蒸気が通過可能に構成されて(おり、水蒸気流路6を流れる水蒸気が最寄りの貫通孔83を通過して、凝縮室7へ流入可能に構成されて)いるのが好ましい(請求項2)。
本発明において、前記水蒸気流路(6)の流路面積は上方に向けて漸減するように形成されているのが好ましい(請求項3)。
本発明において、前記蒸発室(5)と前記水蒸気流路(6)とは隣接しており、蒸発室(5)と水蒸気流路(6)とは蒸気の透過を許容する隔壁(例えば、パンチングメタルの隔壁56)で仕切られているのが好ましい(請求項4)。
本発明において、前記凝縮室(7)には、海水を海水受水槽(1)に供給する海水供給ライン(L1)が通過しているのが好ましい(請求項5)。
ここで、前記海水供給ライン(L1)は外気によって冷却されるように構成されていることが好ましい。
前記蒸発室(5)は、装置全体における太陽光を受光できる外壁(10A)に面しており、その外壁(10A)面には集熱板が張り巡らされているのが好ましい。
本発明において、自然のエネルギーを用いて発電を行う発電装置(例えば、風力発電装置62、太陽光発電装置64)を有しているのが好ましい(請求項6)。
この場合、蓄電装置を備え、自然のエネルギーを用いて発電を行う発電装置(62、64)からの発電出力を蓄電可能に構成するのが好ましい。
本発明において、自然のエネルギーを用いて発電を行う前記発電装置(62、64)の発電出力が、運転に必要な電力需要以上に構成されているのが好ましい(請求項7)。
本発明の淡水化方法は、上述した淡水化装置(請求項1〜7の何れか1項の淡水化装置)を用いて海水の淡水化を行う淡水化方法において、海水を取水して海水受水槽(1)に貯留する工程(S1、S2)と、超微細気泡生成手段(2)によって貯留した海水中に超微細気泡(マイクロバブル)を生成する工程(S3)と、微細気泡を含んだ海水を蒸発室(5)に落下させる工程(S4)と、蒸発室(5)で海水を蒸発させる工程(S5、S6)と、蒸発した海水を凝縮室(7)において凝縮させる工程、とを有することを特徴としている(請求項8)。
上述する構成を具備する本発明によれば、超微細気泡生成手段(2)によって海水受水槽(1)に貯留した海水中に超微細気泡(マイクロバブル)を発生させることが出来る。そして、落下手段(4)によって、超微細気泡(マイクロバブル)を含んだ海水を衝突部材(じゃま板51、樋52)に衝突させれば、海水に含まれる超微細気泡(マイクロバブル)が圧壊して、さらに微小径のナノバブルに変化する。
上述したマイクロバルブ及びナノバブルの特徴(2)で述べたように、マイクロバブルは、障害物等に衝突して圧壊を起こす際に、約5500℃の高温を発生してナノバブルとなり、圧壊によって周囲にその熱を放出する。係る熱量により、海水が気化(蒸発)して、蒸気室(5)において水蒸気を発生する。
上述した様に、マイクロバブル及び/又はナノバブルを含む海水は、含まない海水に比較して、蒸発し易いこととも相俟って、本発明によれば、従来技術に比較して、高速で海水を蒸発することが出来ると共に、蒸発に要する消費エネルギーを大幅に削減できる。
ここで、超微細気泡(マイクロバブル及び/又はナノバブル)は水中に長時間そのままの姿で留まることができるという性質を有している。従って、超微細気泡(マイクロバブル)を含む海水が超微細気泡生成手段(2)から落下手段(4)から落下するまでの間、海水中の超微細気泡(マイクロバブル)は殆ど減少しない。
本発明の実施に際して、衝突部材として、じゃま板(51)と樋(52)とを対にして、蒸発室(5)に沿って複数段設ければ、超微細気泡(マイクロバブル)の衝突率を向上させ、高温エネルギーの獲得と、より蒸発能力の高い極微細気泡(ナノバブル)への変換率を高めることが出来る。
本発明において、水蒸気流路(6)は、前記海水受水槽(1)の上方に配置され、流路面積が上方に向かって漸減するように形成すれば、上方に向かうにしたがって、蒸気の流速を高めることが出来る。したがって、水蒸気流路(6)の途中での水蒸気が滞留し(流路抵抗等による蒸気の失速)、滞留した水蒸気が凝縮して、凝縮水が海水受水槽(1)に落下して、水蒸気を発生させたことが無意味になってしまう様な事態を防止することが出来る。
本発明で、蒸発室(5)と水蒸気流路(6)とは隣接しており、蒸発室(5)と水蒸気流路(6)とは蒸気の透過を許容する部材(例えば、パンチングメタル56)で仕切られる様に構成した場合には、蒸発室(5)で発生した水蒸気は直ちに水蒸気流路(6)側に抜け出すので、発生した水蒸気が蒸発室(5)内で凝縮してしまい、凝縮した純水が海水受水槽(1)に戻ってしまう事態を防止出来る。
本発明において、凝縮室(7)には海水を海水受水槽(1)に採取する際の海水ライン(L1)が通過する様に配置すれば、海水の有する冷熱を凝縮室(7)内の水蒸気に投与して、凝縮室(7)の水蒸気の凝縮を促進する事が出来る。
この場合、海水供給ライン(L1)を外気によって冷却されるように構成すれば、海水ラインを流れる海水から凝縮室(7)の水蒸気に対して、より多くの冷熱が投入されて、蒸気の凝縮能力をさらに向上させることが出来る。
本発明において、蒸発室(5)を装置全体における太陽光を受光できる外壁(10A)に面する様に設け、その外壁面(10A)には集熱板(10D)が張り巡らせれば、蒸発室(5)内の温度を高め、蒸発室(5)における海水の蒸発を促進させることが出来る。
そして本発明において、自然のエネルギーを用いて発電を行う発電装置(例えば、風力発電装置62、太陽光発電装置64)を有する様に構成すれば、淡水化装置(101)に使用する電力が、太陽光発電や風力発電の様な自然のエネルギーで賄うことが出来るので、ランニングコストを大幅に削減することができると共に、環境に優しい淡水化装置を提供することが出来る。
ここで、蓄電装置(60)を備え、該蓄電装置(60)には太陽光発電や風力発電で発生した電気を蓄電可能に構成すれば、ランニングコストを削減することに加えて、太陽光発電が出来ない夜間においても、淡水化装置の操業が可能となる。
本発明において、自然のエネルギーを用いて発電を行う前記発電装置(62、64)の発電出力が、運転に必要な電力需要以上に構成すれば、ランニングコストを限界まで削減することが可能になり、且つ、環境に対する悪影響を最低限まで少なくすることが出来る。
以下、添付図面を参照して、本発明の実施形態について説明する。
先ず、図1〜図6を参照して、第1実施形態に係る淡水化装置の概要について説明する。
図1は第1実施形態の概要を示している。
図1において、第1実施形態に係る淡水化装置は、海水受水槽1と超微細気泡生成器2と、淡水回収槽3と、蒸発室5と、凝縮室7とを有している。
海洋から取水した海水は、符号F1で示す経路により海水受水槽1に貯留される。海水が経路F1を流過する際に、凝縮室7において、海水の保有する冷熱が凝縮室7内の水蒸気に投与されて、その水蒸気を凝縮する。
海水受水槽1に貯留された海水は、経路F2を介して、超微細気泡(マイクロバブル)生成器2に送られる。
超微細気泡生成器2では、経路F2を介して流入する海水中に、超微細気泡(マイクロバブル)を発生させる様に構成されている。
超微細気泡生成器2内で超微細気泡(マイクロバブル)を含んだ海水は、経路F3により、蒸発室5に散布される。蒸発室5内へ海水を散布する詳細については、後述する。
蒸発室5内に散布された超微細気泡(マイクロバブル)を含んだ海水は、障害物(じゃま板、樋)に衝突し、衝突の際における圧壊(圧力破壊)によって超微細気泡(マイクロバブル)のナノ化現象が起こる。
超微細気泡(マイクロバブル)は圧壊の際に凡そ5500℃の高温となり、周囲にその熱を放出する。この熱エネルギーによって、超微細気泡(マイクロバブル)のナノ化現象が生じている海水は、急速に蒸発する。
海水の蒸発により発生した水蒸気は凝縮室7に送られ、凝縮室7内で、経路F1を流れる海水から投入される冷熱によって凝縮し、淡水(純水)となる。そして経路F4で示す様に、淡水回収槽3に回収される。
蒸発室5で蒸発しなかった海水は、経路F5で示す様に、再び海水受水槽1に回収される。
また、蒸発室5の障害物に溜まった含有物質(例えば、塩)Sは、経路F6で示す様に除去され(例えば、定期的に除去)、そして、例えば食塩や工業用・農業用材料として利用される。
蒸発室5は太陽光線の当たる壁面(斜面)が設けられており、当該壁面には、後述する集熱板が張り巡らされており、蒸発室5内を昇温するように構成されている。
次に、図2〜図4を参照して、第1実施形態を更に詳細に説明する。
図2において、全体を符号100で示す淡水化装置は、ケーシング10を備えている。ケーシング10は、その底部に、海水受水槽1と、超微細気泡生成器2と、淡水回収槽3とを有している。
図2の例では、ケーシング10の左側の外壁部10Aが傾斜しており、太陽光線を受光し易いように形成されている。その傾斜した外壁部10Aの下方には、海水入水槽1が設置されている。そして、傾斜した外壁部10Aとは反対側(図2では右側)は、垂直な外壁部10Bとなっている。
淡水海水槽3は垂直な外壁部10B側に設置されており、海水入水槽1と淡水回収槽3との間の領域には超微細気泡生成器2が配置されている。
傾斜した外壁部10Aは、硝子板やアクリル樹脂等の透明な板材で構成され、その外気側(図2では左側)には集熱板10Dが張り巡らされている。
明確には図示されていないが、集熱板10Dは散水装置等(図示せず)を有しており、定期的に水を流して自動で洗浄できるように構成されている。
そして、明確には図示されてはいないが、傾斜した外壁部10Aの室内側(図2では右側)には、光触媒が塗布されており、外壁部10Aの室内側に汚れが付着するのを抑制するように構成されている。
図2において、ケーシング10の天蓋部10Cと、傾斜した外壁部10Aとの接合部或いはコーナー部(符号Aで示す領域)には、超微細気泡を含んだ海水を落下させる(散布する)散布装置4が設置されている。
搬送(圧送)ポンプP2を介装したラインL2(図1における経路F3に相当)によって、散布装置4は超微細気泡生成器2と連通している。
図2において、散布装置4の右端から、下方に向って、第1の隔壁56が延在している。第1の隔壁56は、ケーシング10の傾斜した外壁部10Aに沿う様に、斜め方向(図2の左下方向)下方に延在しており、海水受水槽1の上方に到達している。そして、第1の隔壁56の下端部は、海水受水層1を図2の左右方向について、概略二分する位置となっている。
傾斜した外壁部10Aと第1の隔壁56とで挟まれた領域は、マイクロバブル及びナノバブルを含む海水を蒸発させるための蒸発室5となっている。
図3は、図2における領域10の詳細を示している。
図3において、散布装置4の下面には複数の小孔41が穿孔されており、小孔41から超微細気泡(マイクロバブル)を含んだ海水が勢いよく散布されるように構成されている。
蒸発室5内において、傾斜した外壁部10Aの内側(内壁:図3の左側)には、じゃま板51が取り付けられている。じゃま板51は水平方向へ延在する様に取り付けられており、散布された超微細気泡を含む海水が衝突する様に配置されている。
また、外壁部10Aと対向する第1の隔壁56には、樋52が取り付けられている。樋52は、じゃま板51の斜め上方に取り付けられており、隔壁56に取り付けてある部分が水平で、且つ、先端が斜め上方に反り上がる様に取り付けられている。そして、じゃま板51と樋52とで構成される対が、蒸発室5の上部から下部に向かって、図2の例では6対設けられている。
蒸発室5では、散布装置4の小孔41から勢いよく散布された超微細気泡(マイクロバブル)を含んだ海水が、じゃま板51及び/又は樋52に衝突する。
上述した様に、海水中に含まれるマイクロバブルは、衝突によって圧壊してナノバブルとなり、圧壊の際に発生する高温と集熱板で集められた太陽熱によって、海水が蒸発する。
極微細気泡(ナノバブル)を含む海水の一部は樋52に残溜し、太陽熱によって時間をかけて蒸発する。
蒸発しなかった海水は、落下して受水槽1に戻る。
図2において、超微細気泡生成器2の上方には第2の隔壁8が形成されており、第2の隔壁8は、その左側が傾斜しており、右側が垂直であり、図2において全体が楔形をしている。
第2の隔壁8の上端位置(図2における上下方向における上端位置)は、散布装置4の下端と概略等しい。
第1の隔壁56と第2の隔壁8とに挟まれた領域により、水蒸気流路6が形成されており、蒸発室5で発生した水蒸気が水蒸気流路6を流れる。
水蒸気流路6は、上方に向かうに従って流路面積が漸減するように形成されている。そのように構成することによって、水蒸気流路6の上方ほど水蒸気の流速が増加し、水蒸気が滞留して水蒸気流路6内で凝縮し、凝縮水が受水槽1へ落下してしまうことを防止している。
第2の隔壁8の上端とケーシング10の天蓋10Cとの間には折り返し点9が形成されており、折り返し点9において、水蒸気流路6から凝縮室7に向かって水蒸気が流れる方向が変換される。
第2の隔壁8の傾斜した面81から垂直な面82に向かって、複数の貫通孔83が平行に形成されている。水蒸気流路6を上昇する水蒸気が、隔壁8の厚みの部分を斜め方向上方へ通過し、以って、水蒸気流路6の各レベル(高さ)を流れている水蒸気が、折り返し点9を経由しないでも、最寄りの貫通孔83から凝縮室7へ流入(短絡)出来る様にするためである。
海水を蒸発させることによって発生した水蒸気を凝縮する凝縮室7は、ケーシング10の垂直壁10Bと、第2の隔壁8の垂直面82とに挟まれた領域に形成されている。
凝縮室7の下方には、淡水回収槽3が配置されている。
図2においては、第1の隔壁56は、無数の小孔が穿孔されたパンチングメタルを使用している。隔壁56をパンチングメタルで構成することによって、蒸発室5で発生した蒸気が速やかに水蒸気流路6側に透過できる。
ここで、蒸発室5では海水が常時蒸発しており、そのため、圧力が上昇するので、蒸発室5で発生した水蒸気は圧力の低い水蒸気流路6側に流入する。そして、水蒸気流路6内を上昇する水蒸気が、圧力の高い蒸発室5内へ流入してしまうことはない。
蒸発室5内の樋52には含有物質である塩が堆積するので、樋52に塩が一定量溜まった時点で、或いは定期的に、樋52に溜まった塩を除去(採取)する。
除去(採取)された塩は、食塩や工業材料として利用することが出来る。
なお、蒸発室5で発生した水蒸発に加えて、海水受水槽1で発生した水蒸気も、水蒸気流路6内を流れる。
凝縮室7内には、海水供給ラインL1(図1の経路F1に相当)が通過する様に配置されている。
海水供給ラインL1は、搬送ポンプP1を介装しており、海水受水槽1に海水を供給する。
図2では、凝縮室7内を通過する海水供給ラインL1は垂直の線で表現されているが、これは図示の簡略化のためであり、実機では、海水供給ラインL1は凝縮室7内を九十九折状に通過している。
海水供給ラインL1は、ケーシング10の外部においては、外気Wcが当たって冷却され易い位置に配置されている。或いは、海水供給ラインL1の外周部には、外気による風を積極的に利用できるような形状の風導板(図示せず)が設けられている。
係る構成により、海洋から取水した海水は、海水供給ラインL1のケーシング10外部の領域では、外気によって冷やされる。そして、冷やされた海水が凝縮室7を九十九折状に通過する際に、海水の保有する冷熱が凝縮室7内の水蒸気へ投入されて、凝縮室7内の水蒸気を速やかに凝縮する。
蒸発室5は、太陽光を受光し易い様に傾斜した外壁10Aに面しており、前述したように、その外壁10Aには集熱板10Dが張り巡らされている。
従って、集熱板10Dで集められた太陽熱によって蒸発室5内の温度が上昇し、蒸発室5における海水(マイクロバブル及び/又はナノバブルを含む海水)の蒸発を促進させる。
図4は、第1実施形態に係る淡水化装置100全体を、集熱と冷却に関して、イメージとして表現した図である。
ケーシング10の太陽光受光面(図2における傾斜した外壁部)10Aは、ケーシング10を上方から視た場合には湾曲して凹面に形成され、凹んだ部分に熱溜まり部を作っている。凹んだ部分に熱溜まり部を構成するのは、風によって太陽熱が奪われないようにするためである。そして、面10Aを凹んだ形状にすることにより、太陽光により加熱された空気(符号Wh)が熱溜まり部に集まり易くなる。
ケーシング10の反対面(図2における外壁部)10Bは、冷風を効率よく取り込むように凸形状となっている。明確には図示されていないが、垂直面10Bの表面にはフィンが形成されている。
なお、図4において、矢印Fwは風の流れの方向を示し、矢印Whは太陽光で加熱された空気の流れる向きを示し、矢印Wcは冷たい風の向きを示している。
図5は、傾斜した外壁部10A近傍の拡大図を示している。
図5において、集熱板(或いは集熱フィルム)10D及び外壁10Aの構成材料である硝子板(或いはアクリル板)は、取り付けボルトBによって着脱が自在に構成されている。
外壁10Aの一部を取り付けボルトBによって着脱自在に構成したので、定期的に硝子板を取り外して、樋52に溜まった含有物(主として塩)Sを回収することができる。
次に、図6のフローチャートをも参照して、第1実施形態に係る淡水化方法を説明する。
先ず、図示しない海水取水口から海水供給ラインL1を介して海水を取水し(ステップS1)、受水槽1に供給する(ステップS2)。貯留した海水は超微細気泡生成器2に送られ、超微細気泡生成器2によって海水中にマイクロバブルを生成する(ステップS3)。
マイクロバブルを含んだ海水は、圧送ポンプP2によりヘッドを与えられ、ラインL2を介して散布装置4に送られる。そして、散布装置4からその下方の蒸発室5へ、マイクロバブルを含んだ海水が散布(落下)される(ステップS4)。
蒸発室5内に散布されたマイクロバブルを含む海水は、じゃま板51及び樋52に衝突し、マイクロバブルの一部が圧壊によってナノバブルに変化する(ステップS5)。
マイクロバブルが圧壊する際には約5500℃の高温を発生するので、圧壊により周囲にその熱を放出する。この熱エネルギーによってマイクロバブル及び/又はナノバブルを含んだ海水は、速やかに蒸発する(ステップS6で「気化」)。
一方、蒸発しなかった海水は、受水槽1に落下して戻される(ステップS6で「未気化」)。
海水の蒸発により発生した水蒸気は、パンチングメタル製の第1の隔壁56の小孔から水蒸気流路6へ流入し、水蒸気流路6を上昇し、折り返し点9を経由して、凝縮室7に流入する。或いは、第2の隔壁8の貫通孔83から、短絡する様に、凝縮室7に送られる(ステップS7)。
なお図6においては、水蒸気が水蒸気流路6を上昇する旨を、「煙道上昇」と表現している。
凝縮室7内では、海水供給ラインL1によって海水の保有する冷熱が、水蒸気へ投入されて、水蒸気を凝縮する(ステップS8)。
水蒸気が凝縮して得られた淡水(純水)は、淡水回収槽3に落下して回収される(ステップS9)。
第1実施形態では、淡水化のために取水した海水中に、超微細気泡生成器2によりマイクロバブルを発生させ、散布装置4によって、マイクロバブルを含んだ海水をじゃま板51及び樋52に衝突させてマイクロバブルをナノバブルに変化させる。
ここで、マイクロバブルとナノバブルは、水中に長時間そのままの姿で留まることができる。従って、マイクロバブル(及び/又はナノバブル)を含む海水が超微細気泡生成器2から散布装置4で落下されるまで、マイクロバブル(及び/又はナノバブル)は殆ど減少しない。
マイクロバブルは、じゃま板51及び樋52に衝突して圧壊する際に、約5500℃の高温エネルギーを発生させる。係る高温エネルギーが海水の蒸発に寄与する。そのため、マイクロバブル及び/又はナノバブルを含む海水は、蒸発し易い。
発明者の実験によれば、マイクロバブル及び/又はナノバブルを含む海水は、含まない海水に比較して、蒸発量が10倍程度に促進されることが確認されている。そして、ナノバルブを含む海水は、マイクロバルブのみを含む海水に比較して、さらに蒸発量が増加することも確認されている。
第1実施形態では、じゃま板51と樋52の対が、蒸発室5に複数段に亘って設けられているので、マイクロバブルの衝突率を向上させ、高温エネルギーの獲得と、より蒸発能力の高いナノバブルへの変換率を高めることが出来る。
水蒸気流路6は海水受水槽1の上方に配置され、水蒸気流路6の流路面積は上方に向かって漸減するように形成されているので、水蒸気流路6を上昇する水蒸気の流速は、水蒸気流路6を上昇するほど速くなる。そのため、水蒸気流路6を均一な面積とした場合よりも、流路6の途中で水蒸気が滞留して、凝縮してしまう事態が防止出来る。
蒸発室5と水蒸気流路6とは隣接しており、蒸発室5と水蒸気流路6とは蒸気の透過を許容する部材(例えば、パンチングメタル)56で仕切られているので、蒸発室5で発生した水蒸気は直ちに水蒸気流路6側へ流れ、蒸発室5内で凝縮して、海水受水槽1に落下してしまうことが無い。
凝縮室7には海水ラインL1が配置されているので、海水の有する冷熱を凝縮室7内の水蒸気に投与して、凝縮室7の水蒸気を凝縮のを促進する事が出来る。
ここで、海水供給ラインL1を外気によって冷却されるように構成することによって、更に蒸気の凝縮能力を向上させることが出来る。
蒸発室5は、太陽光を受光し易い様に傾斜した外壁10Aに面しており、その外壁10Aには集熱板10Dが張り巡らされているので、蒸発室5内の温度を高め、蒸発室5における海水(マイクロバブル及び/又はナノバブルを含む海水)の蒸発を促進させることができる。
次に、図7に基づいて第2実施形態について説明する。
図7において、全体を符号102で示す淡水化装置は、電動の装備(図2における海水供給ポンプP1及び圧送ポンプP2、その他の図示しない電動の装備)の電力を、風力発電装置及び/又は太陽光発電装置で発電して賄うように構成されている。
図7において、淡水化装置102は、風力発電装置62と、太陽光発電装置64と、発電した電力を一時蓄えておくコンデンサ66とを備えている。
風力発電装置62と太陽光発電装置64は、電力ラインLe1を介して、コンデンサ66と接続されている。コンデンサ66は、電力ラインLe2を介して、海水供給ポンプP1及び圧送ポンプP2と接続されている。
図7では、淡水化装置102は、風力発電装置62及び太陽光発電装置64の双方を備えているが、風力発電装置62と太陽光発電装置64の何れか一方のみを設けていても良い。
図7では、コンデンサ66を備えているが、風力発電装置62及び/又は太陽光発電装置64で発電した電力を、海水供給ポンプP1及び/又は圧送ポンプP2へ直接供給することも可能である。
その場合、淡水化を意図した時間帯においては、風力発電装置62、太陽光発電装置64の内、少なくとも何れか一方は発電していることが必要である。
図7の第2実施形態の淡水化装置102によれば、風力発電装置62、太陽光発電装置64等により、消費電力の全てを賄うことが可能であり、ランニングコストの大幅削減が果たせる。
図7の実施形態におけるその他の構成及び作用効果は、第1実施形態の淡水化装置100と同様である。
次に、図8に基づいて第3実施形態を説明する。
図8において、全体を符号103で示す淡水化装置は、夜間でも海水を淡水化することが可能に構成されており、24時間、淡水化運転が可能に構成されている。
図8において、淡水化装置103は、図7の第2実施形態に対して、コンデンサ66に隣接して、制御手段であるコントロールユニット70を設けている。そして、受水槽1の真上に第2の散布装置4Aを設け、第2の散布装置と受水槽1との間に第2のじゃま板55を設けている。
また、マイクロバブルを含む海水が流れるラインL2の途中には、3方弁Vを介装し、3方弁Vと第2の散布装置4AとをバイパスラインL3で接続している。
3方弁V、海水供給ポンプP1、圧送ポンプP2は、何れもコントロールユニット70を経由してコンデンサ66と接続されている。
コントロールユニット70は、例えば、予め設定された時間帯になると、3方弁Vを第2の散布装置4Aと連通する側に切り換え、散布装置4と連通する側を遮断する様に構成されている。
散布装置4から海水を散布(落下)させるのは、日中の太陽光が当たっている時間帯においては、蒸発室5に面している傾斜した外壁10Aから、太陽熱を取り込むためである。
しかし、日照の無い夜間は太陽熱を利用できないので、海水をわざわざ高い位置の散布装置4まで、電力を使って持ち上げる必要は無い。そのため、3方弁Vを切り換えて、第2の散布装置4Aを使用する。
図8の淡水化装置103によれば、日中に太陽光発電64及び/又は風力発電62によって発電された電力はコンデンサ66に蓄電されている。
従って、日照が無く、更には凪によって風力発電が行われない夜間においても、コンデンサ66に蓄えられた電力で淡水化装置103は無人(自動)で運転が可能となる。
すなわち、マイクロバルブを含む海水は、3方弁Vを介して第2の散布装置4Aから第2のじゃま板55に向けて散布される。散布されたマイクロバルブを含む海水が第2のじゃま板55に衝突すると、海水中のマイクロバルブが圧壊して、高熱を発生し、海水を蒸発させるのである。
上記以外の構成及び作用効果に関しては、図8の第3実施形態は図7の第2実施形態と同様である。
図7の第2実施形態及び図8の第3実施形態は、太陽光や風力の様な自然エネルギーを利用するため、化石燃料等を使用せずに、最小限のランニングコストで、環境に優しい淡水化システムを実現することが出来る。
図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない旨を付記する。
本発明の第1実施形態の概要を示すブロック図。 第1実施形態の全体構成を示す断面図。 図2のA部詳細図。 第1実施形態における集熱と冷熱のイメージを表現する模式図。 第1実施形態のメンテナンスを説明する部分断面図。 第1実施形態の淡水化の手順を説明するフローチャート。 本発明の第2実施形態の全体構成を示した断面図。 本発明の第3実施形態の全体構成を示した断面図。
符号の説明
1・・・海水受水槽
2・・・超微細気泡生成器
3・・・淡水回収槽
4・・・落下手段/散布装置
5・・・蒸発室
6・・・水蒸気流路
7・・・凝縮室
8・・・第2の隔壁
10・・・ケーシング
10A・・・傾斜した外壁
10D・・・集熱板
51・・・じゃま板
52・・・樋
56・・・第1の隔壁
100、102、103・・・淡水化装置

Claims (8)

  1. 海水を貯留する海水受水槽と、貯留した海水中に超微細気泡を発生させる超微細気泡生成手段と、超微細気泡を含んだ海水を落下させる落下装置と、落下する超微細気泡を含んだ海水が衝突する複数の衝突部材を設けた蒸発室と、蒸気室で発生した水蒸気が流過する水蒸気流路と、水蒸気流路を通過した水蒸気を凝縮させる凝縮室と、凝縮室で生じた淡水を回収する淡水回収槽、とを備えることを特徴とする淡水化装置。
  2. 水蒸気流路と凝縮室とを仕切る隔壁が設けられており、該隔壁は水蒸気が通過可能に構成されている請求項1の淡水化装置。
  3. 前記水蒸気流路の流路面積は上方に向けて漸減するように形成されている請求項1、2の何れかの淡水化装置。
  4. 前記蒸発室と前記水蒸気流路とは隣接しており、蒸発室と水蒸気流路とは蒸気の透過を許容する隔壁で仕切られている請求項1〜3の何れか1項の淡水化装置。
  5. 前記凝縮室には、海水を海水受水槽に供給する海水供給ラインが通過している請求項1〜4の何れか1項の淡水化装置。
  6. 自然のエネルギーを用いて発電を行う発電装置を有している請求項1〜5の何れか1項の淡水化装置。
  7. 自然のエネルギーを用いて発電を行う前記発電装置の発電出力が、運転に必要な電力需要以上に構成されている請求項1〜6の何れか1項の淡水化装置。
  8. 請求項1〜7の何れか1項の淡水化装置を用いて海水の淡水化を行う淡水化方法において、海水を取水して海水受水槽に貯留する工程と、超微細気泡生成手段によって貯留した海水中に超微細気泡を生成する工程と、微細気泡を含んだ海水を蒸発室に落下させる工程と、蒸発室で海水を蒸発させる工程と、蒸発した海水を凝縮室において凝縮させる工程、とを有することを特徴とする淡水化方法。
JP2006153093A 2006-06-01 2006-06-01 淡水化装置及び淡水化方法 Pending JP2007319784A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153093A JP2007319784A (ja) 2006-06-01 2006-06-01 淡水化装置及び淡水化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153093A JP2007319784A (ja) 2006-06-01 2006-06-01 淡水化装置及び淡水化方法

Publications (1)

Publication Number Publication Date
JP2007319784A true JP2007319784A (ja) 2007-12-13

Family

ID=38853015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153093A Pending JP2007319784A (ja) 2006-06-01 2006-06-01 淡水化装置及び淡水化方法

Country Status (1)

Country Link
JP (1) JP2007319784A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101875516A (zh) * 2010-06-10 2010-11-03 吴志文 风、光及海潮流清洁能源海水淡化装置
JP2011025175A (ja) * 2009-07-27 2011-02-10 Nishiken Device:Kk 蒸留装置
WO2012070786A2 (ko) * 2010-11-25 2012-05-31 솔라시도 주식회사 태양열에너지를 이용한 해수담수화 및 오수정수화 장치
CN102976540A (zh) * 2012-09-24 2013-03-20 赵贵 塔式太阳能-风能海水汽化制水设备
CN104404930A (zh) * 2014-11-28 2015-03-11 张波 河流入海河口发电系统
CN105692746A (zh) * 2016-02-24 2016-06-22 广州大学 一种沙漠水淡化系统
CN106966453A (zh) * 2017-05-11 2017-07-21 武汉大学 风光互补耦合的海水淡化装置以及系统
PL423783A1 (pl) * 2017-12-08 2019-06-17 New Energy Transfer Spółka Z Ograniczoną Odpowiedzialnością Układ instalacji wyparnego odsalania wody, sposób zapobiegania osadzania kamienia w instalacjach wyparnego odsalania wody oraz zastosowanie wody nasyconej mikro-nano-pęcherzami
CN110436535A (zh) * 2019-03-26 2019-11-12 青岛海永顺新能源科技有限公司 一种新型一体化非并网风能海水淡化装备
CN111977734A (zh) * 2020-09-07 2020-11-24 浙江大学 一种光热蒸发和余热回收一体化装置及其应用
WO2021081775A1 (zh) * 2019-10-29 2021-05-06 中山大学 海上能源岛装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221121A (ja) * 2007-03-12 2008-09-25 National Institute Of Advanced Industrial & Technology キャビテーション反応の加速方法及びそれを用いた金属ナノ粒子の生成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221121A (ja) * 2007-03-12 2008-09-25 National Institute Of Advanced Industrial & Technology キャビテーション反応の加速方法及びそれを用いた金属ナノ粒子の生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010055652, "超の世界 ナノバブルの特徴と可能性", 自動車技術, 20040501, Vol.58,No.5, 112−113 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025175A (ja) * 2009-07-27 2011-02-10 Nishiken Device:Kk 蒸留装置
CN101875516A (zh) * 2010-06-10 2010-11-03 吴志文 风、光及海潮流清洁能源海水淡化装置
WO2012070786A2 (ko) * 2010-11-25 2012-05-31 솔라시도 주식회사 태양열에너지를 이용한 해수담수화 및 오수정수화 장치
WO2012070786A3 (ko) * 2010-11-25 2012-09-27 솔라시도 주식회사 태양열에너지를 이용한 해수담수화 및 오수정수화 장치
CN102976540A (zh) * 2012-09-24 2013-03-20 赵贵 塔式太阳能-风能海水汽化制水设备
CN104404930A (zh) * 2014-11-28 2015-03-11 张波 河流入海河口发电系统
CN105692746A (zh) * 2016-02-24 2016-06-22 广州大学 一种沙漠水淡化系统
CN106966453A (zh) * 2017-05-11 2017-07-21 武汉大学 风光互补耦合的海水淡化装置以及系统
CN106966453B (zh) * 2017-05-11 2019-04-26 武汉大学 风光互补耦合的海水淡化装置以及系统
PL423783A1 (pl) * 2017-12-08 2019-06-17 New Energy Transfer Spółka Z Ograniczoną Odpowiedzialnością Układ instalacji wyparnego odsalania wody, sposób zapobiegania osadzania kamienia w instalacjach wyparnego odsalania wody oraz zastosowanie wody nasyconej mikro-nano-pęcherzami
CN110436535A (zh) * 2019-03-26 2019-11-12 青岛海永顺新能源科技有限公司 一种新型一体化非并网风能海水淡化装备
WO2021081775A1 (zh) * 2019-10-29 2021-05-06 中山大学 海上能源岛装置
CN111977734A (zh) * 2020-09-07 2020-11-24 浙江大学 一种光热蒸发和余热回收一体化装置及其应用
CN111977734B (zh) * 2020-09-07 2024-05-28 浙江大学 一种光热蒸发和余热回收一体化装置及其应用

Similar Documents

Publication Publication Date Title
JP2007319784A (ja) 淡水化装置及び淡水化方法
CN103842044B (zh) 鼓泡塔式蒸汽混合物冷凝器
JP5369258B2 (ja) 省エネルギー型淡水製造装置
US6919000B2 (en) Diffusion driven desalination apparatus and process
US10071918B2 (en) Water harvester and purification system
US7225620B2 (en) Diffusion driven water purification apparatus and process
US20110266132A1 (en) Air flow-circulation seawater desalination apparatus
US10144655B2 (en) Systems and methods for distillation of water from seawater, brackish water, waste waters, and effluent waters
El-Ghonemy RETRACTED: Fresh water production from/by atmospheric air for arid regions, using solar energy
JP2005349299A (ja) 淡水製造装置
JP2014237118A (ja) 太陽エネルギ−を有効利用した海水の淡水化装置
US10029923B2 (en) Water treatment device
PH12014501583B1 (en) Methods and apparatuses for water purification
JP2012091108A (ja) 太陽熱を用いた減圧蒸留装置
KR101134421B1 (ko) 태양열 다중효용 담수화 장치
JP7115680B2 (ja) 淡水化及び温度差発電システム
US6962053B2 (en) Wind power plant comprising a seawater desalination system
JP4250775B1 (ja) 気流循環による海水の淡水化装置
WO2004074187A1 (en) A process, system and design for desalination of sea water
JP2013066881A (ja) 膜蒸留太陽光造水システム
CN202116341U (zh) 一种小型太阳能海水淡化装置
US10414670B2 (en) Systems and methods for distillation of water from seawater, brackish water, waste waters, and effluent waters
US20140034477A1 (en) Water Supply Systems
JP4913635B2 (ja) 淡水化装置
JP2001129538A (ja) ソーラーポンプ及びそれを備えたシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110725