JP2007318029A - 炭化珪素単結晶ウェハの結晶欠陥検査方法および結晶欠陥検査装置 - Google Patents

炭化珪素単結晶ウェハの結晶欠陥検査方法および結晶欠陥検査装置 Download PDF

Info

Publication number
JP2007318029A
JP2007318029A JP2006148564A JP2006148564A JP2007318029A JP 2007318029 A JP2007318029 A JP 2007318029A JP 2006148564 A JP2006148564 A JP 2006148564A JP 2006148564 A JP2006148564 A JP 2006148564A JP 2007318029 A JP2007318029 A JP 2007318029A
Authority
JP
Japan
Prior art keywords
wafer
silicon carbide
single crystal
carbide single
wafer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006148564A
Other languages
English (en)
Other versions
JP5192659B2 (ja
Inventor
Shuichi Tsuchida
秀一 土田
Isao Kamata
功穂 鎌田
Storasta Liutauras
ストラスタ リュタウラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006148564A priority Critical patent/JP5192659B2/ja
Publication of JP2007318029A publication Critical patent/JP2007318029A/ja
Application granted granted Critical
Publication of JP5192659B2 publication Critical patent/JP5192659B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】エレクトロルミネッセンス法により半導体素子製造用の炭化珪素単結晶ウェハのエピタキシャル膜に存在する転位や積層欠陥の面内分布を検査する際に、転位や積層欠陥の位置を高感度かつ高精度で、さらに高速で検出可能な結晶欠陥検査方法および装置を提供する。
【解決手段】エピタキシャル膜の上に、検出すべきEL光を透過する透明電極を配置し、透明電極に電圧を印加して、ウェハ面内の一括測定領域におけるアレイに対応した各位置からのEL光の2次元情報をウェハ表面側から2次元CCDアレイによって一括取得する。ウェハ面内の各一括測定領域を走査することにより、ウェハ面内における検査対象領域全体のEL光に関するマッピングデータを得、該データに基づいてウェハ面内における結晶欠陥の位置を特定する。
【選択図】図1

Description

本発明は、炭化珪素単結晶基板の上にエピタキシャル膜が形成された半導体素子製造用の炭化珪素単結晶ウェハのウェハ面内を走査し、該ウェハ面からのエレクトロルミネッセンス光をマッピング測定することにより、エピタキシャル膜が内包する結晶欠陥の位置を検出するための炭化珪素単結晶ウェハの結晶欠陥検査方法および結晶欠陥検査装置に関する。
炭化珪素(SiC)は、Siと比べてバンドギャップが約3倍、飽和ドリフト速度が約2倍、絶縁破壊電界強度が約10倍と優れた物性値を有し、大きな熱伝導率を有する半導体であることから、現在用いられているSi単結晶半導体の性能を大きく凌駕する次世代の高電圧・低損失半導体素子を実現する材料として期待されている。
現在、市販化されているSiC単結晶は、昇華法を用いて製造されている場合が多い。昇華法では通常、坩堝内に原料のSiC粉末を入れると共に、坩堝の内側上面にSiC粉末と対面する形でSiC種結晶を設置する。このとき、坩堝を2200〜2400℃程度まで加熱することで、SiC粉末を昇華させる。昇華したSiC粉末は、対面するSiC種結晶上で再結晶化され、種結晶上に新たなSiC単結晶が成長される。
この他、原料としてSiH4などのSiを含んだガスと、C38またはC22などのC
を含んだガスとを用いて、昇華法と同様に種結晶上に新たなSiC単結晶を得るいわゆるHTCVD法と呼ばれる製造手法も報告されている。
上記のような方法によって円柱形のバルク状の単結晶を得た後に、これを通常300〜400ミクロン程度の厚さにスライスすることで、SiC単結晶基板が製造される。このSiC単結晶基板を用いて半導体素子を製造する場合には、その半導体素子の耐電圧などの要求仕様に基づいた所要の膜厚およびキャリヤ濃度を有する単結晶層を基板表面からエピタキシャル成長させる場合が多い。
SiC単結晶基板は通常の圧力では液相を持たず、以上のような方法で製造されているが、昇華温度が極めて高いことなどから、転位や積層欠陥などの結晶欠陥を含まないような高品質の結晶成長が難しい。このため、Si単結晶成長で商用化されているような無転位かつ大口径な単結晶の製造技術が実現されていない。
現在市販されているSiC単結晶基板には、103cm-2程度のc軸方向に伝播するら
せん転位、102〜104cm-2程度のc軸方向に伝播する刃状転位、102〜104cm-2程度のc軸と垂直方向に伝播する転位(基底面転位)が存在している。これらの転位密度は、その基板の品質によって大きく異なる。
また、これらの転位はエピタキシャル膜中にも伝播する。このとき、一部の転位は、その向きを変えることもあることが知られている。一方、基板上にエピタキシャル膜を成長させる際に、新たな転位ループや積層欠陥(8H型、3C型など)が生成されることも知られている。したがって、エピタキシャル膜中には、基板より伝播した転位や積層欠陥に加えて、エピタキシャル成長時に導入された転位や積層欠陥が含まれていることになる。さらに、SiCエピタキシャル膜付き単結晶基板を用いて半導体素子を製造する素子化過程においても、新たに転位や積層欠陥が形成される場合がある。これらの転位や積層欠陥は、そのエピタキシャル膜を用いて形成した半導体素子の耐電圧や信頼性を低下させる。
最近では、基板中の転位密度やエピタキシャル成長時の転位発生密度を低減させる技術開発が進められている。しかしながら、エピタキシャル膜中の転位や積層欠陥などの結晶欠陥密度をゼロとし、なおかつ産業化できるようなコストおよび基板口径を実現することは難しい状況である。このため、SiCエピタキシャル膜付き単結晶基板を用いて半導体素子を製造する場合、それらの半導体素子は何らかの結晶欠陥を内包する可能性がある。
結晶欠陥の中には、半導体素子の初期特性を大幅に劣化させるものもあるが、初期特性には影響が出ずに素子の長期信頼性を低下させるものもある。特に、後者の長期信頼性を低下させるような結晶欠陥を内包する半導体素子は、初期特性においては正常素子と何ら変わらない性能を発揮することもあり、初期特性からの判別が極めて困難である。
これまでに、エピタキシャル膜付きSiC単結晶基板内に含まれる転位や積層欠陥による、SiCショットキーバリヤダイオードやMOS(Metal-Oxide-Semiconductor)ゲー
ト構造の長期信頼性低下が報告されている。例えば、このような長期信頼性を有しない半導体素子をインバータなどの応用機器に組み込んだ場合には、当該応用機器の信頼性が大幅に低下することになる。このため、長期信頼性を低下させるような結晶欠陥を内包する半導体素子をスクリーニングするための判別手法の確立が望まれている。
上記のような結晶欠陥を含んだ半導体素子の判別、スクリーニング手法を確立するためには、エピタキシャル膜付きSiC単結晶基板内に含まれる転位や積層欠陥などの結晶欠陥を高速かつ高精度に検出し、その基板面内での位置情報を得る必要がある。すなわち、半導体素子の形成前や、形成プロセス中に、そのエピタキシャル膜付きSiC単結晶基板内に含まれる転位や積層欠陥などの結晶欠陥の位置情報を得ることによって、素子完成後にその結晶欠陥位置情報に応じて、結晶欠陥を内包する半導体素子を判別し、スクリーニング処理を行うことが考えられる。
エピタキシャル膜付きSiC単結晶基板内に含まれる転位や積層欠陥などの結晶欠陥を非破壊で検出する手法としては、フォトルミネッセンス法、カソードルミネッセンス法、エレクトロルミネッセンス法(非特許文献1,2)、トポグラフ法などが報告されている。これらの手法を用いたマッピング測定によって、エピタキシャル膜付きSiC単結晶基板内の転位や積層欠陥の位置情報を得ることが可能である。
マテリアルサイエンスフォーラム(Materials Science Forum) Vols 389−393 2002年 1297頁〜1300頁 マテリアルサイエンスフォーラム(Materials Science Forum) Vols 433−436 2003年 901頁〜906頁
上記のようなマッピング測定手法のうち、エレクトロルミネッセンス(Electroluminescence:EL)法を用いた従来の手法(非特許文献1)では、図8に示すように、炭化珪
素単結晶ウェハ31のエピタキシャル膜31b上の全域に金属蒸着によって電極101を形成すると共に裏面の一部に裏面電極7を形成し、この炭化珪素単結晶ウェハ31を可動ステージ8上の接地プレート9に載置する。
そして、これらの電極の間に電源2より電圧を印加してウェハ面内からEL光35を発光させ、エピタキシャル膜31bの測定スポットSからのEL光35を含む採取光をウェハ裏面から取り出し、光選択手段としての分光器102またはバンドパスフィルタへ通過させることによりEL光の波長域の光が取り出され、光電子増倍管、CCD等の光検出器103を用いて測定スポットSにおけるEL信号が検出される。
そして、可動ステージ8をX−Y方向へ移動させることによりウェハ面内における各測定スポットを走査することで、ウェハ面内における測定スポットSごとの発光情報が記録され、ウェハ面内についての結晶欠陥の2次元情報が得られる。
しかしこの従来の方法では、EL光35をウェハ裏面から観察しているため、エピタキシャル膜31b内の2次元的な欠陥位置情報の検出感度および精度に制限があった。
従来の方法では、エピタキシャル膜上に形成する電極として、SiC半導体のバンドギャップに相当する波長380nmを大きく上回る膜厚の蒸着電極を用いていたため、この電極は検出対象のEL光に対して不透明であり、上記のように裏面側からEL光の観察を行っていた。
一方、エピタキシャル膜31b側からEL光を観察する方法として次の方法が知られている(非特許文献2)。この方法では、図9に示すように、炭化珪素単結晶ウェハ31のエピタキシャル膜31b上に金属蒸着によってメッシュ状に電極104を形成すると共に裏面の一部に裏面電極7を形成し、この炭化珪素単結晶ウェハ31を可動ステージ8上の接地プレート9に載置する。
そして、これらの電極の間に電源2より電圧を印加してウェハ面内からEL光35を発光させ、エピタキシャル膜31bの測定スポットSからのEL光35を含む採取光をメッシュ状の電極104の間の開口から取り出して検出する。
しかしこの方法では、上記と同様に電極が不透明であるため、メッシュ状の電極104の格子下の発光観察が不可能であった。そのため、エピタキシャル膜31b内の2次元的な欠陥位置情報の検出感度および精度に制限があった。
また、これら従来の方法では、測定スポットSを単位としてマッピング測定を行っているため、マイクロパイプのような大型結晶欠陥以外の各種転位や積層欠陥などを十分な精度で検出できる高い2次元分解能の結晶欠陥情報を得るためには、測定スポット数を多くする必要がある。そして近年では、SiC単結晶ウェハの口径が大型化し、例えば6インチまでのサイズのウェハを検査することが想定されるが、このような大口径基板に対して高分解能の結晶欠陥情報を得るためには極めて多くの測定スポット数が必要となり、測定時間の長時間化が問題となっていた。
本発明は、エレクトロルミネッセンス法により半導体素子製造用の炭化珪素単結晶ウェハのエピタキシャル膜に存在する転位や積層欠陥の面内分布を検査する際に、転位や積層欠陥の位置を高感度かつ高精度で検出可能な炭化珪素単結晶ウェハの結晶欠陥検査方法および結晶欠陥検査装置を提供することを目的としている。
また本発明は、上記の目的に加えて、素子形成に使用する全ての基板に対して実用的に十分な程度に、転位や積層欠陥の位置を高速に検出可能な炭化珪素単結晶ウェハの結晶欠陥検査方法および結晶欠陥検査装置を提供することを目的としている。
本発明の炭化珪素単結晶ウェハの結晶欠陥検査方法は、炭化珪素単結晶基板の上にエピタキシャル膜が形成された半導体素子製造用の炭化珪素単結晶ウェハにおける結晶欠陥の位置を検出するための炭化珪素単結晶ウェハの結晶欠陥検査方法であって、
前記ウェハのエピタキシャル膜の上に、検出すべきエレクトロルミネッセンス光を透過する透明電極を配置し、
前記透明電極と、接地されたウェハ裏面との間に電圧を印加して、ウェハ面内の測定位
置からエレクトロルミネッセンス光を発光させ、
光検出器によって、前記測定位置からウェハ表面側へ、前記透明電極を透過して発光するエレクトロルミネッセンス光を検出し、
当該エレクトロルミネッセンス光を検出する操作を、前記ウェハと、前記測定位置からのエレクトロルミネッセンス光を光検出器に導く検出用光学系の少なくとも一部とを相対移動させて測定位置を順次移動させることによりウェハ面内の各測定位置について行い、
これにより得られた、ウェハ面内における検査対象領域全体のエレクトロルミネッセンス光に関するマッピングデータに基づいて、ウェハ面内における結晶欠陥の位置を特定することを特徴としている。
上記の発明における好ましい態様では、前記透明電極は、前記ウェハのエピタキシャル膜の上に蒸着され、その厚さが検出すべきエレクトロルミネッセンス光の波長よりも小さい透明蒸着薄膜電極である。透明蒸着薄膜電極は、前記ウェハのエピタキシャル膜の表面に形成された絶縁膜に蒸着するようにしてもよい。
上記の発明における好ましい別の態様では、前記透明電極は、前記ウェハとは独立した、前記ウェハに対して接離可能な透明導電性フィルム電極であり、ウェハ面内の測定位置に該透明導電性フィルム電極を接触させた状態で、該透明導電性フィルム電極と、接地されたウェハ裏面との間に電圧を印加して、ウェハ面内の測定位置からエレクトロルミネッセンス光を発光させる。透明導電性フィルム電極は、前記ウェハのエピタキシャル膜の表面に形成された絶縁膜に接触させるようにしてもよい。
本発明の炭化珪素単結晶ウェハの結晶欠陥検査方法は、前記光検出器は、ウェハ面内の測定位置に対応する一括測定領域におけるアレイに対応した各位置からのエレクトロルミネッセンス光に関する2次元情報を一括取得する2次元CCDアレイであり、
前記検出用光学系は、前記一括測定領域からのエレクトロルミネッセンス像を2次元CCDアレイに導き、
前記ウェハと、前記一括測定領域からのエレクトロルミネッセンス光を光検出器に導く検出用光学系の少なくとも一部とを相対移動させてウェハ面内の一括測定領域を順次移動させ、ウェハ面内の各一括測定領域を走査することにより、ウェハ面内における検査対象領域全体のエレクトロルミネッセンス光に関するマッピングデータを得ることを特徴としている。
本発明の炭化珪素単結晶ウェハの結晶欠陥検査装置は、炭化珪素単結晶基板の上にエピタキシャル膜が形成された半導体素子製造用の炭化珪素単結晶ウェハにおける結晶欠陥の位置を検出するための炭化珪素単結晶ウェハの結晶欠陥検査装置であって、
前記ウェハのエピタキシャル膜の上に配置され、検出すべきエレクトロルミネッセンス光を透過する透明電極と、接地されたウェハ裏面との間に、ウェハ面内の測定位置からエレクトロルミネッセンス光を発光させるための電圧を印加する電源と、
前記測定位置からウェハ表面側へ、前記透明電極を透過して発光するエレクトロルミネッセンス光を検出するための光検出器と、
前記測定位置からのエレクトロルミネッセンス光を光検出器に導く検出用光学系と、
前記ウェハと、検出用光学系の少なくとも一部とを相対移動させて、ウェハ面内の測定位置を順次移動させる相対移動手段と、を備え、
前記相対移動手段によってウェハ面内の測定位置を順次移動させ、ウェハ面内の各測定位置を走査することにより、ウェハ面内における検査対象領域全体のエレクトロルミネッセンス光に関するマッピングデータを得ることを特徴としている。
上記の発明における好ましい態様では、前記透明電極は、前記ウェハのエピタキシャル膜の上に蒸着され、その厚さが検出すべきエレクトロルミネッセンス光の波長よりも小さ
い透明蒸着薄膜電極である。透明蒸着薄膜電極は、前記ウェハのエピタキシャル膜の表面に形成された絶縁膜に蒸着するようにしてもよい。
上記の発明における好ましい別の態様では、前記透明電極は、前記ウェハとは独立した、前記ウェハに対して接離可能な透明導電性フィルム電極であり、ウェハ面内の測定位置に該透明導電性フィルム電極を接触させた状態で、該透明導電性フィルム電極と、接地されたウェハ裏面との間に電圧を印加して、ウェハ面内の測定位置からエレクトロルミネッセンス光を発光させる。透明導電性フィルム電極は、前記ウェハのエピタキシャル膜の表面に形成された絶縁膜に接触させるようにしてもよい。
本発明の炭化珪素単結晶ウェハの結晶欠陥検査装置は、前記光検出器は、ウェハ面内の測定位置に対応する一括測定領域におけるアレイに対応した各位置からのエレクトロルミネッセンス光に関する2次元情報を一括取得する2次元CCDアレイであり、
前記検出用光学系は、前記一括測定領域からのエレクトロルミネッセンス像を2次元CCDアレイに導き、
前記相対移動手段によってウェハ面内の一括測定領域を順次移動させ、ウェハ面内の各一括測定領域を走査することにより、ウェハ面内における検査対象領域全体のエレクトロルミネッセンス光に関するマッピングデータを得ることを特徴としている。
上記の発明によれば、炭化珪素単結晶ウェハのウェハ面からのエレクトロルミネッセンス光を透過する透明電極を用いているので、エピタキシャル膜が形成されたウェハ表面側から発光を検出することができる。したがって、ウェハ面内における転位や積層欠陥の位置を高感度かつ高精度で検出することができる。
また、測定スポットごとにウェハ面からの発光を検出するのではなく、光検出器として2次元CCDアレイを用いることによって、広域の一括測定領域の2次元発光情報を一括取得し、一括測定領域ごとに走査することで、転位や積層欠陥の位置を特定するための十分な分解能を維持しつつ、測定時間を大幅に短縮することができる。これにより、素子形成に使用する全ての基板に対して実用的に十分な程度に、転位や積層欠陥の位置を高速に検出することができる。
本発明によれば、ウェハ面内における転位や積層欠陥の位置を高感度かつ高精度で検出することができる。
また本発明によれば、素子形成に使用する全ての基板に対して実用的に十分な程度に、転位や積層欠陥の位置を高速に検出することができる。
以下、図面を参照しながら本発明の実施例について説明する。
[実施例1]
図1は、実施例1における検査装置の概略構成を示した図、図2(a)は、この検査装置による結晶欠陥検査の対象である炭化珪素単結晶ウェハの面内に配列された素子形成領域および、その中に配列された2次元CCDアレイによる一括測定領域を示した図、図2(b)は、一括測定領域を拡大して示した図である。
同図の検査装置1は、半導体素子製造用の炭化珪素単結晶ウェハ31の面内における結晶欠陥の位置を、炭化珪素単結晶ウェハ31に電圧を印加することにより炭化珪素単結晶ウェハ31から発光したエレクトロルミネッセンス光(EL光)をマッピングして検出するものである。
不図示のコントローラによってX−Y方向へ移動可能な可動ステージ8の上に固定された検査対象である炭化珪素単結晶ウェハ31のエピタキシャル膜31bの上には、電極となる透明蒸着薄膜電極4が形成されている。一方、ウェハ裏面には、裏面全域に、蒸着によって裏面電極7が形成されており、炭化珪素単結晶ウェハ31は、裏面電極7が接地プレート9の上に接触するように載置されている。
透明蒸着薄膜電極4と、接地された裏面電極7との間に、電源2によって電圧を印加することにより、ウェハ面内における透明蒸着薄膜電極4の直下の測定位置からEL光35が発生する。このEL光35は、2次元CCDアレイ3によって検出される。
2次元CCDアレイ3と、炭化珪素単結晶ウェハ31との間には、特に符号を用いて図示していないが、例えば、コリメート用のレンズや反射鏡など、測定位置からのEL光35を2次元CCDアレイ3に導く検出用光学系が必要に応じて設置される。
透明蒸着薄膜電極4は、Al、Ni等の金属を、抵抗蒸着、スパッタ等によって、EL光35の検出波長域における波長よりも薄い厚さで蒸着することによって形成されており、好ましくは、SiC半導体のバンドギャップに相当する波長380nm以下の膜厚を有している。
透明蒸着薄膜電極4は、図1および図2(b)に示すように、1つの測定位置に対応する2次元CCDアレイ3による一括測定領域Aごとに離間して多数形成されている。透明蒸着薄膜電極4および一括測定領域Aの面積は、1〜10mm2程度か、あるいはそれ以
上であることが好ましい。
測定位置の一括測定領域Aの直上の透明蒸着薄膜電極4に電源2より電圧を印加することにより一括測定領域Aから発したEL光35は、2次元CCDアレイ3によって検出され、一括測定領域Aにおけるアレイに対応した各位置からのEL光35に関する2次元情報が一括取得される。
透明蒸着薄膜電極4に印加する電圧は、通常は±数V〜数百Vである。
炭化珪素単結晶ウェハ31のエピタキシャル膜31b内における転位や積層欠陥の情報を高精度に得るためには、1〜20ミクロン程度の2次元分解能が必要となるが、このような分解能で1〜10mm2の一括情報取得を実現するには、1000×1000ピクセ
ル/cm2程度の2次元CCDアレイ3を用いる必要がある。
可動ステージ8を用いたマッピング測定には、例えば、自動または半自動のプロービングステーションを用いることができ、測定位置における透明蒸着薄膜電極4への電圧印加は、例えば、プロービングステーションに設置され電源2と電気的に接続されたプローブピン11を透明蒸着薄膜電極4上へ自動的に接触させる方式で行うことができる。
測定時における炭化珪素単結晶ウェハ31の温度は、室温または、積層欠陥からの発光強度が増大する80〜300K程度が好ましい。室温以下で測定する場合には、冷却装置を設置して炭化珪素単結晶ウェハ31を冷却し、低温に維持しながら測定する。
測定時における検査装置1の各構成要素の操作は、図1のコンピュータ10によって統括制御され、2次元CCDアレイ3からの電気信号は、増幅されA/D変換された後、コンピュータ10に取り込まれる。
以上のような構成を備えた検査装置1を用いて、次のようにして炭化珪素単結晶ウェハ31のウェハ面内における結晶欠陥の位置を検出する測定が行われる。図2(a)に示す
ように、炭化珪素単結晶ウェハ31のウェハ面31Aには、リアクティブイオンエッチングなどの手法を用いて表面に凹凸をつけることで微少なマーカー41が形成されている。このマーカー41は通常、ウェハ面31A内に多数形成され、これを基準として、コンピュータ10には予め素子形成領域D1、D2・・・の位置情報が格納されている。
また、ウェハ面31A内に配列された多数の素子形成領域D1、D2・・・の中の各一括測定領域A(x1,y1)、A(x2,y1)・・・の位置情報と、その中の2次元CCDアレイ3のピクセルに対応する位置情報も同様に、マーカー41を基準として特定することができる。
図1の可動ステージ8を不図示のコントローラによって移動させることにより、炭化珪素単結晶ウェハ31のウェハ面31A内における測定位置を図2(a)の素子形成領域D1の一括測定領域A(x1,y1)に合わせて電圧を印加することにより、2次元CCDアレイ3は、一括測定領域A(x1,y1)におけるアレイに対応した各位置からのEL光に関する2次元情報を一括取得する。
一括測定領域A(x1,y1)におけるEL光の2次元情報を2次元CCDアレイ3によって一括取得した後、図1の可動ステージ8を移動させることにより炭化珪素単結晶ウェハ31のウェハ面31A内における測定位置を一括測定領域A(x2,y1)に移動させる。そして上記と同様にしてEL光の2次元情報を2次元CCDアレイ3によって一括取得する。
このようにして素子形成領域D1内の全ての一括測定領域A(x1,y1),A(x2,y1)・・・について走査を行うことにより、素子形成領域D1全体についてのEL光に関する情報が取得される。
そして、ウェハ面31A内における全ての素子形成領域D1、D2・・・についてこのような測定をすることにより、全ての素子形成領域D1、D2・・・について、すなわちウェハ面31A内における検査対象領域全体ついてのEL光に関するマッピングデータが取得される。
コンピュータ10は、2次元CCDアレイ3のピクセルに基づくこのマッピングデータを、演算処理装置によって解析し、転位や積層欠陥などの結晶欠陥の種類およびその位置情報を算出する。
結晶欠陥の有無は、EL光の強度によって判別することができ、例えば、2次元CCDアレイ3として、カラーCCD(3−CCD)、バンドパスフィルタ切り替え式CCD等を使用することにより、結晶欠陥の有無によって発光強度が大幅に変化する波長域の光を選択的に検出することができる。基底面転位の発光波長は約420nm、単層積層欠陥(単層ショックレータイプ積層欠陥:Single Shockley Stacking Fault)の発光波長は約420nm、成長時導入積層欠陥(In-grown Stacking Fault)の発光波長は約470nm
、複層積層欠陥(複層ショックレータイプ積層欠陥:Double Shockley Stacking Fault)の発光波長は約510nmであり、このような発光波長の強度に基づいて結晶欠陥の有無を判別できる。
例えば、結晶欠陥のない炭化珪素単結晶ウェハの発光スペクトルを検査開始前に予め測定してコンピュータ10の記憶部に格納しておき、ウェハの測定により得られた光強度をこの基準となる発光スペクトルと比較し、結晶欠陥の有無を判定する。
また、コントラスト等として把握される欠陥形状の画像解析等によって、転位、積層欠
陥等の結晶欠陥の種類を判別することができる。
このようにして、図2(b)に示すように、一括測定領域A(x1,y1)等の各測定位置における結晶欠陥の位置51およびその種類、すなわちウェハ面31A内の検出対象領域全体における結晶欠陥の位置51およびその種類が取得され、コンピュータ10に格納される。
以上のようにして、本実施例の検査装置1によって転位や積層欠陥のウェハ面内における位置情報を取得した後、素子形成領域を加工して半導体素子を形成し、ウェハから各素子を切断分離する。このとき、検査装置1によって予め得ておいた結晶欠陥の位置情報に応じて、長期信頼性など素子特性に悪影響を与える結晶欠陥を内包している半導体素子を判別し、スクリーニング処理する。
この他、本実施例の検査装置1を用いた素子形成プロセスとしては、次のものが可能である。例えば、検査装置1によって得られたウェハ面内における結晶欠陥位置情報に応じて、特定の結晶欠陥が存在しない領域にのみ素子形成を行うことができる。あるいは、検査装置1によって得られたウェハ面内における結晶欠陥の位置情報に応じて、特定の結晶欠陥が存在する部位に対してその結晶欠陥を不活性化させるような処理を局所的に行うことによって、特定の結晶欠陥を含まず、あるいは特定の結晶欠陥が不活性化された長期信頼性の高い半導体素子を得ることができる。
図3は、上記実施例1の変形例における検査装置の概略構成を示した図である。この変形例では、透明蒸着薄膜電極4を炭化珪素単結晶ウェハ31のエピタキシャル膜31b上の検査領域全体を被覆するように形成し、電源2へ電気的に接続された端子12を透明蒸着薄膜電極4上に接触させて、炭化珪素単結晶ウェハ31のエピタキシャル膜31b上の検査領域全体に一括して電源2からの電圧を印加するようにしている。
このような方法によっても、炭化珪素単結晶ウェハ31の各一括測定領域Aを走査しながら2次元CCDアレイ3によってEL像を検出することによって、上記実施例1と同様に結晶欠陥の位置を検出することができる。
[実施例2]
図4は、実施例2における検査装置の概略構成を示した図、図5(a)は、この検査装置による結晶欠陥検査の対象である炭化珪素単結晶ウェハの面内に配列された素子形成領域および、その中に配列された2次元CCDアレイによる一括測定領域を示した図、図5(b)は、一括測定領域を拡大して示した図である。
同図の検査装置1は、上記実施例1と同様に、半導体素子製造用の炭化珪素単結晶ウェハ31の面内における結晶欠陥の位置を、炭化珪素単結晶ウェハ31に電圧を印加することにより炭化珪素単結晶ウェハ31から発光したEL光をマッピングして検出するものである。なお、実施例1と同一の構成要素には同一の符号を付してその詳細な説明を省略する。
本実施例の検査装置1は、炭化珪素単結晶ウェハ31とは独立した透明導電性フィルム電極5を備えている。この透明導電性フィルム電極5の具体例としては、導電性微粒子を樹脂内に分散させた柔軟な導電性樹脂フィルム、EL光の検出波長域における光を透過する部材に対して、Al、Ni等の金属を、抵抗蒸着、スパッタ等によって、EL光の検出波長域における波長よりも薄い厚さで蒸着した薄膜、ITO膜等を挙げることができる。
透明導電性フィルム電極5の面積は、一括測定領域Aに対応したサイズであり、好ましくは1〜10mm2程度か、あるいはそれ以上である。透明導電性フィルム電極5には、
例えば融着や挟み込み等によって電源2へ電気的に接続された端子12が固定されており
、また、透明導電性フィルム電極5の上部側の押し付け用部材6と、可動ステージ8とをz方向に相対移動させることで、測定時に透明導電性フィルム電極5を炭化珪素単結晶ウェハ31の一括測定領域A上に接触させるようになっている。
透明導電性フィルム電極5を測定位置の一括測定領域A上に接触させると共に、透明導電性フィルム電極5と、接地された裏面電極7との間に、電源2によって電圧を印加することにより、透明導電性フィルム電極5の直下の一括測定領域AからEL光35が発生する。この一括測定領域Aから発したEL光35は、2次元CCDアレイ3によって検出され、一括測定領域Aにおけるアレイに対応した各位置からのEL光35に関する2次元情報が一括取得される。
2次元CCDアレイ3と、炭化珪素単結晶ウェハ31との間には、特に符号を用いて図示していないが、例えば、コリメート用のレンズや反射鏡など、測定位置からのEL光35を2次元CCDアレイ3に導く検出用光学系が必要に応じて設置される。
測定時における検査装置1の各構成要素の操作は、図4のコンピュータ10によって統括制御され、2次元CCDアレイ3からの電気信号は、増幅されA/D変換された後、コンピュータ10に取り込まれる。
以上のような構成を備えた検査装置1を用いて、次のようにして炭化珪素単結晶ウェハ31のウェハ面内における結晶欠陥の位置を検出する測定が行われる。図5(a)に示すように、炭化珪素単結晶ウェハ31のウェハ面31Aには、リアクティブイオンエッチングなどの手法を用いて表面に凹凸をつけることで微少なマーカー41が形成され、これを基準として、コンピュータ10には予め素子形成領域D1、D2・・・の位置情報が格納されている。
また、ウェハ面31A内に配列された多数の素子形成領域D1、D2・・・の中の各一括測定領域A(x1,y1)、A(x2,y1)・・・の位置情報と、その中の2次元CCDアレイ3のピクセルに対応する位置情報も同様に、マーカー41を基準として特定することができる。
図4の可動ステージ8を不図示のコントローラによって移動させることにより、炭化珪素単結晶ウェハ31のウェハ面31A内における測定位置を図5(a)の素子形成領域D1の一括測定領域A(x1,y1)に合わせて電圧を印加することにより、2次元CCDアレイ3は、一括測定領域A(x1,y1)におけるアレイに対応した各位置からのEL光に関する2次元情報を一括取得する。
一括測定領域A(x1,y1)におけるEL光の2次元情報を2次元CCDアレイ3によって一括取得した後、図4の可動ステージ8を移動させることにより炭化珪素単結晶ウェハ31のウェハ面31A内における測定位置を一括測定領域A(x2,y1)に移動させる。そして上記と同様にしてEL光の2次元情報を2次元CCDアレイ3によって一括取得する。
このようにして素子形成領域D1内の全ての一括測定領域A(x1,y1),A(x2,y1)・・・について走査を行うことにより、素子形成領域D1全体についてのEL光に関する情報が取得される。
そして、ウェハ面31A内における全ての素子形成領域D1、D2・・・についてこのような測定をすることにより、全ての素子形成領域D1、D2・・・について、すなわちウェハ面31A内における検査対象領域全体ついてのEL光に関するマッピングデータが
取得される。
コンピュータ10は、2次元CCDアレイ3のピクセルに基づくこのマッピングデータを、演算処理装置によって解析し、転位や積層欠陥などの結晶欠陥の種類およびその位置情報を算出する。
結晶欠陥の有無は、EL光の強度によって判別することができ、例えば、2次元CCDアレイ9として、カラーCCD(3−CCD)、バンドパスフィルタ切り替え式CCD等を使用することにより、結晶欠陥の有無によって発光強度が大幅に変化する波長域の光を選択的に検出することができる。
例えば、結晶欠陥のない炭化珪素単結晶ウェハの発光スペクトルを検査開始前に予め測定してコンピュータ10の記憶部に格納しておき、ウェハの測定により得られた光強度をこの基準となる発光スペクトルと比較し、結晶欠陥の有無を判定する。
また、コントラスト等として把握される欠陥形状の画像解析等によって、転位、積層欠陥等の結晶欠陥の種類を判別することができる。
このようにして、図5(b)に示すように、一括測定領域A(x1,y1)等の各測定位置における結晶欠陥の位置51およびその種類、すなわちウェハ面31A内の検出対象領域全体における結晶欠陥の位置51およびその種類が取得され、コンピュータ10に格納される。
以上のようにして、本実施例の検査装置1によって転位や積層欠陥のウェハ面内における位置情報を取得した後、素子形成領域を加工して半導体素子を形成し、ウェハから各素子を切断分離する。このとき、検査装置1によって予め得ておいた結晶欠陥の位置情報に応じて、長期信頼性など素子特性に悪影響を与える結晶欠陥を内包している半導体素子を判別し、スクリーニング処理する。
この他、本実施例の検査装置1を用いた素子形成プロセスとしては、次のものが可能である。例えば、検査装置1によって得られたウェハ面内における結晶欠陥位置情報に応じて、特定の結晶欠陥が存在しない領域にのみ素子形成を行うことができる。あるいは、検査装置1によって得られたウェハ面内における結晶欠陥の位置情報に応じて、特定の結晶欠陥が存在する部位に対してその結晶欠陥を不活性化させるような処理を局所的に行うことによって、特定の結晶欠陥を含まず、あるいは特定の結晶欠陥が不活性化された長期信頼性の高い半導体素子を得ることができる。
図6は、上記実施例2の変形例における検査装置の概略構成を示した図である。この変形例では、透明導電性フィルム電極5を炭化珪素単結晶ウェハ31のエピタキシャル膜31b上の検査領域全体を被覆するように密着させ、電源2へ電気的に接続された端子12を透明導電性フィルム電極5上に接触させて、炭化珪素単結晶ウェハ31のエピタキシャル膜31b上の検査領域全体に一括して電源2からの電圧を印加するようにしている。
このような方法によっても、炭化珪素単結晶ウェハ31の各一括測定領域Aを走査しながら2次元CCDアレイ3によってEL像を検出することによって、上記実施例2と同様に結晶欠陥の位置を検出することができる。
以上、実施例に基づき本発明を説明したが、本発明はこの実施例に何ら限定されることはなく、その要旨を逸脱しない範囲内において各種の変形、変更が可能である。その一例を以下に記述する。
本発明において、検査対象の炭化珪素単結晶ウェハにおけるエピタキシャル膜や基板の結晶型、結晶面などは特に限定されるものではなく、例えば、n型4H−SiC基板上にn型4H−SiC膜をエピタキシャル成長させたもの、n型4H−SiCエピタキシャル膜にイオン打ち込みによってp型層を形成したものなど、各種のものが検査対象となり、これらの転位、積層欠陥等を検出可能である。
本発明において、検出対象となる結晶欠陥の種類には、らせん転位、刃状転位、基底面転位(Basal Plane Dislocation))などの各種転位、および単層積層欠陥(単層ショッ
クレータイプ積層欠陥:Single Shockley Stacking Fault)、成長時導入積層欠陥(In-grown Stacking Fault)、複層積層欠陥(複層ショックレータイプ積層欠陥:Double Shockley Stacking Fault)などの各種積層欠陥が含まれる。
上述の各実施例では、検出用光学系を固定し、可動ステージ8によって炭化珪素単結晶ウェハ31を移動させてウェハ上を走査するようにしたが、本発明では、ウェハ面と、検出用光学系の少なくとも一部とを相対移動させて、ウェハ面内の測定位置を順次移動させるようにすればよく、例えば、図7に示すような構成としてもよい。
図7の検査装置1は、炭化珪素単結晶ウェハ31の測定位置からのEL光35を2次元CCDアレイ3へ導くための検出用光学系として、X方向移動ステージ21に固定された反射鏡22、Y方向移動ステージ23に固定された反射鏡24、および対物レンズ25を備えており、接地プレート9上の炭化珪素単結晶ウェハ31は一定位置に固定されている。測定位置からのEL光35は、上方へ向かい対物レンズ25を通過して反射鏡24で反射されてY方向へ向かい、その後、反射鏡22で反射されてX方向へ向かい、2次元CCDアレイ3へ入射する。X方向移動ステージ21およびY方向移動ステージ23を移動させることによって、対物レンズ25により焦点合わせされた測定位置を移動させ、これにより、位置固定された炭化珪素単結晶ウェハ31のウェハ面内を走査するようにしている。
本発明では、炭化珪素単結晶ウェハ31のエピタキシャル膜31b上に酸化膜、窒化膜等の絶縁膜を形成し、この上に透明蒸着薄膜電極4を蒸着するか、あるいは透明導電性フィルム電極5を接触させるようにしてもよい。
本発明では、裏面電極7は、場合に応じて、ウェハ裏面の全域または任意の一部に形成することができる。また、測定時にウェハに対してある程度の電流を流す場合には裏面電極を形成することが望ましいが、場合によっては、裏面電極を形成せずに、ウェハ裏面をそのまま接地プレート9の上に載置してもよい。
上記の各実施例では、2次元CCDアレイ3を用いて一括測定領域Aごとにアレイに対応した各点からのEL光を、EL像として一括検出したが、2次元CCDアレイ3の代わりに、光電子増倍管等の光検出器と、分光器、フィルタ等の波長選択手段を用いて、従来例の図8および図9のように、測定スポットSからのスポット光を対物レンズ等の検出光学系を通じて光検出器で検出し、各測定スポットSごとに走査する方式でマッピング測定を行ってもよい。
実施例1における検査装置の概略構成を示した図である。 図2(a)は、実施例1の検査装置による結晶欠陥検査の対象である炭化珪素単結晶ウェハの面内に配列された素子形成領域および、その中に配列された2次元CCDアレイによる一括測定領域を示した図、図2(b)は、一括測定領域を拡大して示した図である。 実施例1の変形例における検査装置の概略構成を示した図である。 実施例2における検査装置の概略構成を示した図である。 図5(a)は、実施例2の検査装置による結晶欠陥検査の対象である炭化珪素単結晶ウェハの面内に配列された素子形成領域および、その中に配列された2次元CCDアレイによる一括測定領域を示した図、図5(b)は、一括測定領域を拡大して示した図である。 実施例2の変形例における検査装置の概略構成を示した図である。 実施例1の変形例における検査装置の概略構成を示した図である。 従来における検査装置の概略構成を示した図である。 従来における検査装置の概略構成を示した図である。
符号の説明
1 検査装置
2 電源
3 2次元CCDアレイ
4 透明蒸着薄膜電極
5 透明導電性フィルム電極
6 押し付け用部材
7 裏面電極
8 可動ステージ
9 接地プレート
10 コンピュータ
11 プローブピン
12 端子
21 X方向移動ステージ
22 反射鏡
23 Y方向移動ステージ
24 反射鏡
25 対物レンズ
31 炭化珪素単結晶ウェハ
31a 炭化珪素単結晶基板
31b エピタキシャル膜
31A ウェハ面
35 EL光
41 マーカー
51 結晶欠陥の位置
A 一括測定領域
D 素子形成領域

Claims (12)

  1. 炭化珪素単結晶基板の上にエピタキシャル膜が形成された半導体素子製造用の炭化珪素単結晶ウェハにおける結晶欠陥の位置を検出するための炭化珪素単結晶ウェハの結晶欠陥検査方法であって、
    前記ウェハのエピタキシャル膜の上に、検出すべきエレクトロルミネッセンス光を透過する透明電極を配置し、
    前記透明電極と、接地されたウェハ裏面との間に電圧を印加して、ウェハ面内の測定位置からエレクトロルミネッセンス光を発光させ、
    光検出器によって、前記測定位置からウェハ表面側へ、前記透明電極を透過して発光するエレクトロルミネッセンス光を検出し、
    当該エレクトロルミネッセンス光を検出する操作を、前記ウェハと、前記測定位置からのエレクトロルミネッセンス光を光検出器に導く検出用光学系の少なくとも一部とを相対移動させて測定位置を順次移動させることによりウェハ面内の各測定位置について行い、
    これにより得られた、ウェハ面内における検査対象領域全体のエレクトロルミネッセンス光に関するマッピングデータに基づいて、ウェハ面内における結晶欠陥の位置を特定することを特徴とする炭化珪素単結晶ウェハの結晶欠陥検査方法。
  2. 前記透明電極は、前記ウェハのエピタキシャル膜の上に蒸着され、その厚さが検出すべきエレクトロルミネッセンス光の波長よりも小さい透明蒸着薄膜電極であることを特徴とする請求項1に記載の炭化珪素単結晶ウェハの結晶欠陥検査方法。
  3. 前記透明蒸着薄膜電極は、前記ウェハのエピタキシャル膜の表面に形成された絶縁膜に蒸着されることを特徴とする請求項2に記載の炭化珪素単結晶ウェハの結晶欠陥検査方法。
  4. 前記透明電極は、前記ウェハとは独立した、前記ウェハに対して接離可能な透明導電性フィルム電極であり、ウェハ面内の測定位置に該透明導電性フィルム電極を接触させた状態で、該透明導電性フィルム電極と、接地されたウェハ裏面との間に電圧を印加して、ウェハ面内の測定位置からエレクトロルミネッセンス光を発光させることを特徴とする請求項1に記載の炭化珪素単結晶ウェハの結晶欠陥検査方法。
  5. 前記透明導電性フィルム電極を、前記ウェハのエピタキシャル膜の表面に形成された絶縁膜に接触させることを特徴とする請求項4に記載の炭化珪素単結晶ウェハの結晶欠陥検査方法。
  6. 前記光検出器は、ウェハ面内の測定位置に対応する一括測定領域におけるアレイに対応した各位置からのエレクトロルミネッセンス光に関する2次元情報を一括取得する2次元CCDアレイであり、
    前記検出用光学系は、前記一括測定領域からのエレクトロルミネッセンス像を2次元CCDアレイに導き、
    前記ウェハと、前記一括測定領域からのエレクトロルミネッセンス光を光検出器に導く検出用光学系の少なくとも一部とを相対移動させてウェハ面内の一括測定領域を順次移動させ、ウェハ面内の各一括測定領域を走査することにより、ウェハ面内における検査対象領域全体のエレクトロルミネッセンス光に関するマッピングデータを得ることを特徴とする請求項1〜5のいずれかに記載の炭化珪素単結晶ウェハの結晶欠陥検査方法。
  7. 炭化珪素単結晶基板の上にエピタキシャル膜が形成された半導体素子製造用の炭化珪素単結晶ウェハにおける結晶欠陥の位置を検出するための炭化珪素単結晶ウェハの結晶欠陥検査装置であって、
    前記ウェハのエピタキシャル膜の上に配置され、検出すべきエレクトロルミネッセンス光を透過する透明電極と、接地されたウェハ裏面との間に、ウェハ面内の測定位置からエレクトロルミネッセンス光を発光させるための電圧を印加する電源と、
    前記測定位置からウェハ表面側へ、前記透明電極を透過して発光するエレクトロルミネッセンス光を検出するための光検出器と、
    前記測定位置からのエレクトロルミネッセンス光を光検出器に導く検出用光学系と、
    前記ウェハと、検出用光学系の少なくとも一部とを相対移動させて、ウェハ面内の測定位置を順次移動させる相対移動手段と、を備え、
    前記相対移動手段によってウェハ面内の測定位置を順次移動させ、ウェハ面内の各測定位置を走査することにより、ウェハ面内における検査対象領域全体のエレクトロルミネッセンス光に関するマッピングデータを得ることを特徴とする炭化珪素単結晶ウェハの結晶欠陥検査装置。
  8. 前記透明電極は、前記ウェハのエピタキシャル膜の上に蒸着され、その厚さが検出すべきエレクトロルミネッセンス光の波長よりも小さい透明蒸着薄膜電極であることを特徴とする請求項7に記載の炭化珪素単結晶ウェハの結晶欠陥検査装置。
  9. 前記透明蒸着薄膜電極は、前記ウェハのエピタキシャル膜の表面に形成された絶縁膜に蒸着されることを特徴とする請求項8に記載の炭化珪素単結晶ウェハの結晶欠陥検査装置。
  10. 前記透明電極は、前記ウェハとは独立した、前記ウェハに対して接離可能な透明導電性フィルム電極であり、ウェハ面内の測定位置に該透明導電性フィルム電極を接触させた状態で、該透明導電性フィルム電極と、接地されたウェハ裏面との間に電圧を印加して、ウェハ面内の測定位置からエレクトロルミネッセンス光を発光させることを特徴とする請求項7に記載の炭化珪素単結晶ウェハの結晶欠陥検査装置。
  11. 前記透明導電性フィルム電極を、前記ウェハのエピタキシャル膜の表面に形成された絶縁膜に接触させることを特徴とする請求項10に記載の炭化珪素単結晶ウェハの結晶欠陥検査装置。
  12. 前記光検出器は、ウェハ面内の測定位置に対応する一括測定領域におけるアレイに対応した各位置からのエレクトロルミネッセンス光に関する2次元情報を一括取得する2次元CCDアレイであり、
    前記検出用光学系は、前記一括測定領域からのエレクトロルミネッセンス像を2次元CCDアレイに導き、
    前記相対移動手段によってウェハ面内の一括測定領域を順次移動させ、ウェハ面内の各一括測定領域を走査することにより、ウェハ面内における検査対象領域全体のエレクトロルミネッセンス光に関するマッピングデータを得ることを特徴とする請求項7〜11のいずれかに記載の炭化珪素単結晶ウェハの結晶欠陥検査装置。
JP2006148564A 2006-05-29 2006-05-29 炭化珪素単結晶ウェハの結晶欠陥検査方法および結晶欠陥検査装置 Expired - Fee Related JP5192659B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148564A JP5192659B2 (ja) 2006-05-29 2006-05-29 炭化珪素単結晶ウェハの結晶欠陥検査方法および結晶欠陥検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148564A JP5192659B2 (ja) 2006-05-29 2006-05-29 炭化珪素単結晶ウェハの結晶欠陥検査方法および結晶欠陥検査装置

Publications (2)

Publication Number Publication Date
JP2007318029A true JP2007318029A (ja) 2007-12-06
JP5192659B2 JP5192659B2 (ja) 2013-05-08

Family

ID=38851600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148564A Expired - Fee Related JP5192659B2 (ja) 2006-05-29 2006-05-29 炭化珪素単結晶ウェハの結晶欠陥検査方法および結晶欠陥検査装置

Country Status (1)

Country Link
JP (1) JP5192659B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063729A (zh) * 2011-10-21 2013-04-24 上海华虹Nec电子有限公司 检测外延硅缺陷的方法
JP2013118212A (ja) * 2011-12-01 2013-06-13 Showa Denko Kk 炭化珪素半導体装置の製造方法及びその検査方法、並びに、炭化珪素半導体ウェハの製造方法及びその検査方法
KR101453033B1 (ko) 2008-12-02 2014-10-23 주식회사 엘지실트론 에피택셜 웨이퍼의 에피 적층결함 검출방법
US9431348B2 (en) 2012-04-27 2016-08-30 Fuji Electric Co., Ltd. Semiconductor device manufacturing method and manufacturing device for marking a crystal defect
CN107144574A (zh) * 2017-06-06 2017-09-08 深圳振华富电子有限公司 检测晶圆缺陷的装置及方法
JP2019099438A (ja) * 2017-12-06 2019-06-24 昭和電工株式会社 SiCエピタキシャルウェハの評価方法及び製造方法
WO2021025044A1 (ja) * 2019-08-08 2021-02-11 住友化学株式会社 エピタキシャル基板
EP3789759A1 (fr) 2019-09-09 2021-03-10 Electricité de France Cartographie d'impuretés par électroluminescence dans des dispositifs à matériaux semi-conducteurs
CN114717639A (zh) * 2022-06-07 2022-07-08 浙江大学杭州国际科创中心 基于光电化学腐蚀工艺定位氧化镓晶片表面缺陷的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521576A (ja) * 1991-07-15 1993-01-29 Matsushita Electric Works Ltd 半導体の液晶解析方法
JPH05273131A (ja) * 1992-03-24 1993-10-22 Sumitomo Metal Ind Ltd ルミネッセンス測定方法
JPH0927526A (ja) * 1995-03-16 1997-01-28 Toshiba Ceramics Co Ltd 半導体基材の検査方法
JP2000003946A (ja) * 1998-06-15 2000-01-07 Denso Corp 炭化珪素半導体基板の検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521576A (ja) * 1991-07-15 1993-01-29 Matsushita Electric Works Ltd 半導体の液晶解析方法
JPH05273131A (ja) * 1992-03-24 1993-10-22 Sumitomo Metal Ind Ltd ルミネッセンス測定方法
JPH0927526A (ja) * 1995-03-16 1997-01-28 Toshiba Ceramics Co Ltd 半導体基材の検査方法
JP2000003946A (ja) * 1998-06-15 2000-01-07 Denso Corp 炭化珪素半導体基板の検査方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012006163; Hiroyuki Fujisawa, Takashi Tsuji, Syunsuke Izumi, Katsunori Ueno, Isaho Kamata, T. Tsuchida, Tamotsu: '"Electroluminescence Analysis of Al+ and B+ Implanted pn Diodes' Materials Science Forum Volumes 389 - 393, 2002, pp. 1297-1300, Trans tech publications inc. *
JPN6012051182; 鎌田功穂,土田秀一,三柳俊之,中村智宣: 'SiC単結晶膜中欠陥の高分解能非破壊観察法の開発' 電力中央研究所報告 , 200509, P.i-18, 財団法人 電力中央研究所 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453033B1 (ko) 2008-12-02 2014-10-23 주식회사 엘지실트론 에피택셜 웨이퍼의 에피 적층결함 검출방법
CN103063729A (zh) * 2011-10-21 2013-04-24 上海华虹Nec电子有限公司 检测外延硅缺陷的方法
JP2013118212A (ja) * 2011-12-01 2013-06-13 Showa Denko Kk 炭化珪素半導体装置の製造方法及びその検査方法、並びに、炭化珪素半導体ウェハの製造方法及びその検査方法
US9431348B2 (en) 2012-04-27 2016-08-30 Fuji Electric Co., Ltd. Semiconductor device manufacturing method and manufacturing device for marking a crystal defect
DE112013002341B4 (de) 2012-04-27 2023-01-12 Fuji Electric Co., Ltd. Herstellungsverfahren und Herstellungsvorrichtung für Halbleitervorrichtungen
CN107144574A (zh) * 2017-06-06 2017-09-08 深圳振华富电子有限公司 检测晶圆缺陷的装置及方法
JP2019099438A (ja) * 2017-12-06 2019-06-24 昭和電工株式会社 SiCエピタキシャルウェハの評価方法及び製造方法
US11315839B2 (en) 2017-12-06 2022-04-26 Showa Denko K.K. Evaluation method and manufacturing method of SiC epitaxial wafer
WO2021025044A1 (ja) * 2019-08-08 2021-02-11 住友化学株式会社 エピタキシャル基板
EP3789759A1 (fr) 2019-09-09 2021-03-10 Electricité de France Cartographie d'impuretés par électroluminescence dans des dispositifs à matériaux semi-conducteurs
CN114717639A (zh) * 2022-06-07 2022-07-08 浙江大学杭州国际科创中心 基于光电化学腐蚀工艺定位氧化镓晶片表面缺陷的方法
CN114717639B (zh) * 2022-06-07 2022-09-16 浙江大学杭州国际科创中心 基于光电化学腐蚀工艺定位氧化镓晶片表面缺陷的方法

Also Published As

Publication number Publication date
JP5192659B2 (ja) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5192661B2 (ja) 炭化珪素半導体素子の製造方法
JP5192659B2 (ja) 炭化珪素単結晶ウェハの結晶欠陥検査方法および結晶欠陥検査装置
JP5000424B2 (ja) 炭化珪素単結晶ウェハの欠陥検出方法、及び炭化珪素半導体素子の製造方法
JP5515162B2 (ja) 半導体ウエハの製造方法
Kato et al. X-ray topography used to observe dislocations in epitaxially grown diamond film
JP5192660B2 (ja) 炭化珪素単結晶の結晶欠陥検査方法および結晶欠陥検査装置
Chien et al. Visualizing nanoscale electronic band alignment at the La 2/3 Ca 1/3 MnO 3/Nb: SrTiO 3 interface
JP2020064890A (ja) SiC基板の評価方法及びSiCエピタキシャルウェハの製造方法
WO2020236448A1 (en) Nondestructive characterization for crystalline wafers
Nagano et al. Plan-View and Cross-Sectional Photoluminescence Imaging Analyses of Threading Dislocations in 4H-SiC Epilayers
Hassan et al. Influence of structural defects on carrier lifetime in 4H-SiC epitaxial layers: Optical lifetime mapping
Berechman et al. Electrical and structural investigation of triangular defects in 4H-SiC junction barrier Schottky devices
Mondiali et al. Dislocation engineering in SiGe on periodic and aperiodic Si (001) templates studied by fast scanning X-ray nanodiffraction
Shikata et al. Analysis method of diamond dislocation vectors using reflectance mode X-ray topography
Na et al. Revisiting stacking fault identification based on the characteristic photoluminescence emission wavelengths of silicon carbide epitaxial wafers
TW200427978A (en) Detection method and apparatus
US11513079B2 (en) Method and system for wafer defect inspection
JP5343721B2 (ja) シリコン基板の評価方法及び半導体デバイスの製造方法
De Sio et al. X-ray micro beam analysis of the photoresponse of an enlarged CVD diamond single crystal
JP5720560B2 (ja) 半導体基板の評価方法
Tsui et al. Techniques for combinatorial molecular beam epitaxy
Kodolitsch et al. Impact of crystalline defects in 4H-SiC epitaxial layers on the electrical characteristics and blocking capability of SiC power devices
Cohen‐Taguri et al. Atomic structure and electrical properties of In (Te) nanocontacts on CdZnTe (110) by scanning probe microscopy
TWI727141B (zh) 用於評估半導體結構的方法
CN112304909A (zh) 一种鉴别SiC中缺陷的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

R150 Certificate of patent or registration of utility model

Ref document number: 5192659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees