JP2007311089A - 燃料電池セパレータ - Google Patents

燃料電池セパレータ Download PDF

Info

Publication number
JP2007311089A
JP2007311089A JP2006137218A JP2006137218A JP2007311089A JP 2007311089 A JP2007311089 A JP 2007311089A JP 2006137218 A JP2006137218 A JP 2006137218A JP 2006137218 A JP2006137218 A JP 2006137218A JP 2007311089 A JP2007311089 A JP 2007311089A
Authority
JP
Japan
Prior art keywords
gas
separator
fuel cell
porous body
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006137218A
Other languages
English (en)
Inventor
Masaya Kosakai
正也 小境
Tsutomu Okuzawa
務 奥澤
Hiroshi Takahashi
宏 高橋
Hidekazu Fujimura
秀和 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006137218A priority Critical patent/JP2007311089A/ja
Publication of JP2007311089A publication Critical patent/JP2007311089A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】セパレータの反応ガス流路において、水分による流路閉塞を防止し、拡散層との間の接触電気抵抗の低減および伝熱性の向上,触媒電極へ均一なガス供給を可能とした燃料電池セパレータを提供する。
【解決手段】燃料電池の電解質膜・電極触媒複合体へ燃料ガス又は酸化剤ガスを供給するためのセパレータにおいて、ガス拡散層と接する面において、複数の層からなる多孔質体をえる。多孔質体は気孔径,空隙率の異なる複数の層から構成され、ガス拡散層に接する面から緻密層へ次第に気孔径が減少する。
【選択図】図1

Description

本発明は、燃料電池に係わり、特に導電性の多孔質体からなるセパレータに関する。
固体高分子形燃料電池は、固体高分子電解質膜とその両側を燃料極(以下アノードとする)触媒層と酸化剤極(以下カソードとする)触媒層とで被覆した電解質膜・電極触媒複合体の両側を多孔質のガス拡散層で挟む。さらにその両側に燃料ガスおよび酸化剤ガスを供給するためのセパレータを配置して構成する単位セルを複数個設置して積層体を形成し、この積層体の両端を締付板により締め付けて燃料電池セルスタックを構成する。
セパレータは、その片面に燃料ガス又は酸化剤ガスの流路溝を、もう片方の面に冷却水流路溝を備えた波型形状をしている。このセパレータを用いた燃料電池の場合、アノード側では燃料ガス流路の凸面が、カソード側では酸化剤ガス流路の凸面がガス拡散層に接する。この接触部分において、反応で生じた電子の授受を行い、電気化学反応により生じた熱を冷却水へ伝える。また、燃料ガス又は酸化剤ガスは凹部を流れ、ガス拡散層を介して触媒電極へ供給される。冷却水は隣接する2つのセパレータの冷却水流路側凸面同士が接することにより対向する凹部によって形成されている。
固体高分子形燃料電池では、セパレータ流路を流れる燃料ガス中の水素がガス拡散層内を拡散し、アノードに至ると触媒反応により電子を放出してプロトンになる。プロトンはアノード側からカソード側に固体高分子電解質膜を経て移動するが、電子はアノード側からカソード側に移動することができないため、導電性のガス拡散層とセパレータを介して外部回路を経由してカソード側に移動する。
一方、カソード側では、前記の固体高分子電解質膜を経て移動したプロトンと外部回路から送られてくる電子と、セパレータ流路を流れ、ガス拡散層内を拡散してきた酸化剤ガス(空気)中の酸素とが反応して水を生成する。その生成水の大部分は未反応ガス中に蒸発し、そのままセルスタック外に排出されるが、過飽和となる状態では液相の水として残留する。電気化学反応により生じた液相の水がガス拡散層から滲み出してきた場合、反応ガス流路内に滞留し、反応ガスの拡散を妨げることが考えられる。特許文献1では、多孔質体によってセパレータを構成し、ガス拡散層から滲み出してきた水を効果的に移動させ、反応ガス流路の閉塞を防止している。
特許文献1の構成の場合、反応ガスと冷却水の間に緻密層を有していないため、設計時に反応ガスと冷却水の間の許容差圧が決まってしまうことから、燃料電池の運転範囲に制限が生じる可能性がある。また、この構成は1発電セル毎に冷却水流路を必要とする。
特開2005−142015号公報
従来の燃料電池構造において燃料ガス又は酸化剤ガスを電極触媒へ供給する際に、セパレータ凹部からなるガス流路からガス拡散層へ供給していた。しかしながらガス拡散層と接するセパレータ凸部では十分にガスの拡散がされず、ガスの供給が電極触媒層面内で不均一になる可能性がある。同様に、複数あるガス流路に燃料ガス又は酸化剤ガスを均等に配分できない場合は、ガス拡散層のみで電極触媒へ一様に供給することは難しい。このように、反応ガスの一様な供給ができない状況で燃料電池を高電流密度で作動させた際に、流量の少ない部分で反応ガスが欠乏し、出力電圧の低下が生じる。さらに、反応ガス供給のセパレータ面内分布は、電気化学反応による発熱の面内分布の発生にもつながる。特に、高電流密度の作動時、反応ガス供給量の多い部分で温度が高くなり、固体高分子電解質膜などのセル構成材の局所的な寿命低下を招くため、最高温度を抑えるために許容運転温度範囲を広く設定できないという問題がある。
カソード電極で電気化学反応により生成された水は、ガス拡散層を通してセパレータ流路へ排出される。排出された水がセパレータ流路を閉塞するとその流路でガス供給が出来なくなり、出力低下につながっていた。
また、波型流路構造においては、セパレータ流路溝の凸部でのみ、ガス拡散層又は隣接するセパレータと接触している。このため、発電面積に比べ、セパレータとガス拡散層との接触面積が小さくなり、接触電気抵抗の増加による損失が燃料電池出力の低下につながっていた。
本発明の燃料電池は、セパレータの燃料ガスおよび酸化剤ガス流路に、厚み方向に異なる気孔径,空隙率を有する多孔質体を適用する。このような構成にすることで、生成水を速やかに緻密層側へ移動させ、ガス拡散に必要な流路を確保することが可能である。また、多孔質体を適用することでガス拡散層との間の接触面積を増大させており、電極触媒へガスの均一な供給を行うと共に、接触電気抵抗を低減し、出力密度を向上させることが可能である。さらに、接触面積の増大により伝熱特性が向上し、発電で生じた熱は均一にかつ速やかに冷却部に伝えることが可能となる。
本発明によれば、セパレータガス流路を複数の層からなる多孔質体を具備することにより、発電反応で生じた水によるガス流路閉塞を防止、ガス拡散層とセパレータとの間の接触電気抵抗の低減および伝熱の促進が図られるため、高出力密度化が可能となる燃料電池を提供する。
本発明のセパレータにおいては、2種の流体を分離する緻密層と反応ガスの流路の全部または一部に導電性の多孔質体を備え、例えば、鉄,アルミニウム,ニッケル,チタン,マグネシウム,クロム,モリブデン等およびこれらの合金から形成され、前記多孔質体は、気孔径や空隙率が異なる複数の層から構成されている。
以下に本発明の実施形態について図面を用いて説明する。
図1は、本発明の第1実施例の断面図である。ここで、多孔質体アノード流路3および多孔質体カソード流路4は片面に複数の冷却水流路溝7を有し、金属等の導電性多孔質体などから形成されている。この構成は、次のとおり。電解質膜・電極触媒複合体1は、
+ とe- とO2 から電気化学反応で水と電気と熱を発生させる部分、ガス拡散層2は、電解質膜・電極触媒複合体1を保護すると同時に電解質膜・電極触媒複合体1にH2 またはO2 を均等分配し且つ生成水を除去する部分、多孔質体アノード流路3は水素を含む燃料ガスを、アノード側ガス拡散層2を介して電解質膜・電極触媒複合体1に送る部分、多孔質体カソード流路4は、酸素を含む酸化剤ガスをカソード側ガス拡散層2を介して電解質膜・電極触媒複合体1に送る部分、多孔質体アノード流路3および多孔質体カソード流路4の凹部からなる冷却水流路7は、電解質膜・電極触媒複合体1で発生した熱を除去して電解質膜・電極触媒複合体1が劣化しないように保護する部分、緻密質層8は、冷却水流路7と、多孔質体アノード流路3または多孔質体カソード流路4を物理的に分離し、ガス側からの漏洩を防止する。多孔質体アノード流路3および多孔質体カソード流路4はセパレータの厚さ方向で空隙率または気孔径の異なる第一の多孔質層5と第二の多孔質層6から形成される。
図2はセパレータの燃料ガス又は酸化剤ガス流路側、図3は冷却水流路側を示している。動作は次のとおり。燃料ガス入口マニホールド9から供給された燃料ガスは、まず、セパレータの多孔質体アノード流路3に入る。その後、アノード側ガス拡散層2に接触し電解質膜・電極触媒複合体1に向かい拡散する。触媒上で電気化学反応によりプロトンになり、電子を放出することによって電力を発生する。プロトンは電解質膜を介してカソード側に移動する。未反応のガスは、燃料ガス出口マニホールド10から排出される。同じように、酸化剤入口マニホールド11から供給された酸化剤ガスもカソード側ガス拡散層2中を電解質膜・電極触媒複合体1に向かい拡散し、到達し、そこで上記プロトンと外部回路を経由して供給される電子と化合して水と熱を生じる。この水は、カソード側ガス拡散層2を介して多孔質体カソード流路4に排出される。一部の水は、電気浸透流または濃度差に基づく浸透流によりアノード側にも排出されるためアノード側ガス拡散層2を介して多孔質体アノード流路側に排出される。また、熱は、冷却水流路7を流れる水で冷却除去する。
電解質膜・電極触媒複合体1のアノード側で電気化学反応により発生した電荷はアノード側ガス拡散層2,多孔質体アノード流路3,緻密層8などを介して外部負荷に供給される。この際、燃料電池の各構成要素の接触面で接触電気抵抗が生じ、外部に取り出す電気エネルギーの損失に繋がる。本発明における燃料電池に適用するセパレータでは、ガス拡散層2と多孔質体アノード流路3または多孔質体カソード流路4の接触面積が増大することから、ガス拡散層2と多孔質体アノード流路3または多孔質体カソード流路4との間の接触電気抵抗の低減に寄与し、燃料電池の高効率化が可能である。
本発明における燃料電池に適用するセパレータでは、ガス拡散層2へ均一に多孔質体アノード流路3または多孔質体カソード流路4の表面が接するため、熱伝導性が向上し、面内一様の温度分布とすることが可能である。このことから、セパレータ面内において電気化学反応によって生成された液相の水の蒸発にも寄与し、生成水の排出にも効果がある。
蒸発されなかった液相の水の排出を効果的に行うためには、ガス拡散層2に接する第一の多孔質層5から第二の多孔質層6へ向け気孔径や空隙率を減少させるように複数の層からなる多孔質体の構成にする。第一の多孔質層5の厚さは第二の多孔質層6よりも厚く、且つ冷却水流路高さが第二の多孔質層6の厚さより低いことが望ましい。さらに、濡れ性を第一の多孔質層5は隣接するガス拡散層2より小さな接触角となるようにする。濡れ性は表面の水滴の接触角により評価可能であることから、第一の多孔質層5の接触角をφm,ガス拡散層2の接触角をφcとすると、φm<φcを満たす撥水処理を行えばよい。ただし、接触角が90°付近は細孔の毛管力による吸水と排水の境目となることから、確実にガス拡散層2から第一の多孔質層5へ水分を移動させるためには、ガス拡散層2の接触角は100°<φc<180°の範囲とすることが好ましい。
燃料電池を高電流密度で作動させると、電気化学反応の増加により多くの水が生成される。このため、液相の水の量も増加する。本実施例のような構成とすることで、ガス拡散層2より染み出してきた液相の水が、濡れ性の違いによる表面張力により第一の多孔質層5へ移動し、さらに気孔径の大きい第一の多孔質層5から気孔径の小さな第二の多孔質層6へ毛管力により速やかに移動可能であり、生成水によるガス流路閉塞を防ぐことが可能となる。ガス拡散層2と第一の多孔質層5との接触角を前記条件を満たすようにすることで、第一の多孔質層5の気孔径がガス拡散層2より小さい場合だけでなく大きい場合も、表面張力により速やかに液相の水を移動させることが可能である。第二の多孔質層6へ移動した水は、セパレータの面内方向のガス流れにより下流側へ移動すると共に、加湿の不足した領域では水分を供給することが可能となる。反応ガス流路を多孔質体とすることで圧力損失が増加するが、第一の多孔質層5の厚さを第二の多孔質層6よりも厚くすることで、第二の多孔質層6における過度の水分保持と第一の多孔質層5の圧力損失増大を防ぐことが可能である。
本実施例におけるセパレータは、燃料ガス側多孔質体アノード流路3と酸化剤ガス側多孔質体カソード流路4に適用できる。この際、燃料ガス側多孔質体アノード流路3と酸化剤ガス側多孔質体カソード流路4の多孔質体の構成は同一である必要はない。例えば、燃料ガス側第一の多孔質部5aより酸化剤ガス側第一の多孔質部5bの気孔径や空隙率が大きい構成とすることができる。
一般的に燃料ガスには改質水素又は純水素が用いられ、酸化剤ガスには空気が用いられているため、燃料ガス側多孔質体アノード流路3と酸化剤ガス側多孔質体カソード流路4では組成の異なるガスが流れる。酸化剤ガスである空気中の酸素のみがカソード触媒で用いられることから、本実施例のように燃料ガス側多孔質体アノード流路3に比して酸化剤ガス側多孔質体カソード流路4の気孔径や空隙率が大きい構造とすることで、酸素の拡散性を向上し、酸化剤利用率の向上および圧力損失の低減が期待できる。
所望の出力電圧を得るためには、燃料電池単セルを複数積層し、スタック化する。この際、スタックの端部でセルの積層方向に締め付ける必要がある。従来の燃料ガス又は酸化剤ガスの流路溝を有した波型流路構造セパレータで、電解質膜・電極触媒複合体およびガス拡散層を挟んだ場合、燃料ガスおよび酸化剤ガスセパレータの凸部同士で挟まれた部分は圧縮され、また凹部ではガス流路に膨らみ、ガス流路面積を減少させている可能性がある。本発明における多孔質体からなるセパレータであれば、セパレータ表面が均一にガス拡散層へ接することから、スタック化の際に締め付けを行った場合も、セパレータの面全体で圧力を伝えるため、電解質膜・電極触媒複合体およびガス拡散層の変形や、それに起因する反応ガス流路面積減少の心配はない。
本発明の燃料電池セパレータの製造方法は、緻密層8の基となる前記金属などからなる金属平板をプレス加工などにより波型流路を形成し、その片面に規定の温度で蒸発する樹脂等を混入した金属粉末を溶射や印刷し、熱処理を行うことで、樹脂等を蒸発させ多孔質層を形成する。混入する樹脂等の形状を変えることで、任意の空隙率,気孔径の多孔質層を形成することが可能である。緻密質層を形成する金属板と多孔質層を形成する金属粉末は同一の材質である必要はない。
また、溶融した金属にガスを吹き込むなどして製造した金属発泡体により形成された多孔質層の片面に、切削などにより複数の流路溝を形成し、その表面に緻密質層を形成する物質を塗布する方法もある。どちらの場合も、冷却水流路断面構造は、図1のような台形に限定されるべきものではなく、矩形形状や曲率を有する形状も含む。このような製造方法により、複数の層からなる多孔質セパレータを製造することが可能となることから、本実施例のような二層構造に限らない。
ガス拡散層2と第一の多孔質層5で接触角を変化させるには、撥水剤の塗布量を変化させる。例えば、PTFEなど撥水性物質を含有する分散液を適度な濃度にし、含浸または塗布する。このとき、分散液の濃度を第一の多孔質層5よりもガス拡散層2が濃くなるようにする。
本発明の第2実施例として、冷却セル数の構成を変化させることが出来る燃料電池を提供する。図1に示すセパレータの緻密層8はアノード側,カソード側ともに波型形状をしており、多孔質体と反対の面は複数の冷却水流路を備える。図1の単セルを複数積層してなる燃料電池スタック図6では、1セル毎に冷却セルが備わっているため、高出力密度での作動において確実に冷却することが可能であり、高温による燃料電池構成材料の寿命低下を防ぐことが可能となる。
図4に示す単セル構造では、一方の緻密層8は平板であるが、もう一方の緻密層8は波型形状をしている。この波型形状をしたセパレータ側は複数の冷却水流路を有する。例えば、アノード側セパレータの緻密層8が波型形状をしている単セルと、カソード側のセパレータの緻密層8が波型形状をしている単セルを組み合わせることにより2セル毎に冷却セルを有する燃料電池を提供することが可能である。低電流密度での運転が主な場合には冷却セルを削減可能であり、燃料電池スタックの体積を削減することが可能である。
図5に示す単セル構造では、アノード側,カソード側どちらのセパレータの緻密層も平板とする。このセルを図4のセルの平板となっているセパレータに接続することで、3セル以上の任意のセル毎に冷却セルを構成できる。さらに、図5のセルのみを複数積層することにより冷却セルを持たない燃料電池スタックを提供することも可能である。
本発明に係わる燃料電池の第一の実施形態による燃料電池単セルアセンブリの断面図1。 本発明に係わる燃料電池の第一の実施形態に適用するセパレータの電解質膜・触媒電極複合体側構造を示す模式的平面図。 本発明に係わる燃料電池の第一の実施形態に適用するセパレータの冷却水流路側構造を示す模式的平面図。 本発明に係わる燃料電池の第二の実施形態による燃料電池単セルアセンブリの断面図2。 本発明に係わる燃料電池の第二の実施形態による燃料電池単セルアセンブリの断面図3。 本発明に係わる燃料電池の第二の実施形態による燃料電池セルアセンブリの断面図。
符号の説明
1…電解質膜・電極触媒複合体、2…ガス拡散層、3…多孔質体アノード流路、4…多孔質体カソード流路、5…第一の多孔質層、6…第二の多孔質層、7…冷却水流路、8…緻密層、9…燃料ガス入口マニホールド、10…燃料ガス出口マニホールド、11…酸化剤ガス入口マニホールド、12…酸化剤ガス出口マニホールド、13…冷却水入口マニホールド、14…冷却水出口マニホールド、15…セパレータ触媒電極・電解質膜複合体側、16…セパレータ冷却水側リブ、17…セパレータ冷却水流路溝。

Claims (5)

  1. 電解質膜・電極触媒複合体と、前記複合体の燃料極に燃料ガスを供給する導電性のガス拡散層と燃料ガス流路を備えた導電性セパレータおよび、前記複合体の酸化剤極に酸化剤ガスを供給する導電性のガス拡散層と酸化剤ガス供給流路を備えた導電性セパレータを有する燃料電池において、セパレータは厚さ方向に複数の層から形成される多孔質体を備え、燃料ガス又は酸化剤ガスが多孔質体内部を流れ、且つ前記ガス拡散層と接する面の反対の面に2種の流体を分離する緻密層を有することを特徴とする燃料電池。
  2. 第1項記載のセパレータにおいて、電解質膜・電極触媒複合体側から緻密層側へ向かい多孔質体の気孔径が減少する構造となることを特徴とする燃料電池。
  3. 第1項記載のセパレータにおいて、電解質膜・電極触媒複合体側から緻密層側へ向かい多孔質体の空隙率が減少する構造となることを特徴とする燃料電池。
  4. 前記請求項1に記載のセパレータにおいて、多孔質体はガス拡散層より濡れ性が高いことを特徴とする燃料電池。
  5. 第1項記載のセパレータにおいて、燃料ガスセパレータと酸化剤ガスセパレータとで、多孔質体の構成が異なることを特徴とする燃料電池。
JP2006137218A 2006-05-17 2006-05-17 燃料電池セパレータ Pending JP2007311089A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137218A JP2007311089A (ja) 2006-05-17 2006-05-17 燃料電池セパレータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137218A JP2007311089A (ja) 2006-05-17 2006-05-17 燃料電池セパレータ

Publications (1)

Publication Number Publication Date
JP2007311089A true JP2007311089A (ja) 2007-11-29

Family

ID=38843778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137218A Pending JP2007311089A (ja) 2006-05-17 2006-05-17 燃料電池セパレータ

Country Status (1)

Country Link
JP (1) JP2007311089A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084703A (ja) * 2006-09-28 2008-04-10 Hitachi Ltd 燃料電池
JP2010518563A (ja) * 2007-02-06 2010-05-27 ヌベラ・フュエル・セルズ・ヨーロッパ・ソチエタ・ア・レスポンサビリタ・リミタータ 多孔質集電体が設けられる燃料電池のための双極ユニット
JP2010129299A (ja) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd 燃料電池用セパレータ及びその製造方法
WO2010113277A1 (ja) 2009-03-31 2010-10-07 トヨタ車体 株式会社 燃料電池
JP2011076814A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 燃料電池用バイポーラープレートおよび燃料電池
JP2011525693A (ja) * 2008-06-23 2011-09-22 ヌヴェラ・フュエル・セルズ・インコーポレーテッド 物質移動の限界を低減させた燃料電池
JP2014089893A (ja) * 2012-10-30 2014-05-15 Sumitomo Electric Ind Ltd 燃料電池
JP2021061182A (ja) * 2019-10-08 2021-04-15 株式会社豊田中央研究所 燃料電池スタック

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084703A (ja) * 2006-09-28 2008-04-10 Hitachi Ltd 燃料電池
JP2010518563A (ja) * 2007-02-06 2010-05-27 ヌベラ・フュエル・セルズ・ヨーロッパ・ソチエタ・ア・レスポンサビリタ・リミタータ 多孔質集電体が設けられる燃料電池のための双極ユニット
US9005835B2 (en) 2008-06-23 2015-04-14 Nuvera Fuel Cells, Inc. Fuel cell with reduced mass transfer limitations
EP2294646B1 (en) * 2008-06-23 2018-04-11 Nuvera Fuel Cells, LLC Fuel cell with reduced mass transfer limitations
JP2011525693A (ja) * 2008-06-23 2011-09-22 ヌヴェラ・フュエル・セルズ・インコーポレーテッド 物質移動の限界を低減させた燃料電池
KR101813919B1 (ko) * 2008-06-23 2018-01-02 누베라 퓨엘 셀스, 엘엘씨 감소된 질량 전달 제한을 갖는 연료 전지
KR101782808B1 (ko) * 2008-06-23 2017-09-28 누베라 퓨엘 셀스, 엘엘씨 감소된 질량 전달 제한을 갖는 연료 전지
JP2010129299A (ja) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd 燃料電池用セパレータ及びその製造方法
WO2010113277A1 (ja) 2009-03-31 2010-10-07 トヨタ車体 株式会社 燃料電池
US8835064B2 (en) 2009-03-31 2014-09-16 Toyota Shatai Kabushiki Kaisha Fuel battery
CN102405547A (zh) * 2009-03-31 2012-04-04 丰田车体株式会社 燃料电池
JP2011076814A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 燃料電池用バイポーラープレートおよび燃料電池
JP2014089893A (ja) * 2012-10-30 2014-05-15 Sumitomo Electric Ind Ltd 燃料電池
JP2021061182A (ja) * 2019-10-08 2021-04-15 株式会社豊田中央研究所 燃料電池スタック
JP7354746B2 (ja) 2019-10-08 2023-10-03 株式会社豊田中央研究所 燃料電池スタック

Similar Documents

Publication Publication Date Title
JP5011362B2 (ja) 燃料電池用バイポーラープレートおよび燃料電池
JP2007311089A (ja) 燃料電池セパレータ
US10847816B2 (en) Fuel cell
JP5135370B2 (ja) 固体高分子形燃料電池
US20090098435A1 (en) Fuel cells
JP7192148B2 (ja) 燃料電池プレート、バイポーラプレートおよび燃料電池装置
JP2002367655A (ja) 燃料電池
JP2013065413A (ja) 燃料電池
JP2005174648A (ja) 燃料電池
JP2007141599A (ja) 燃料電池および燃料電池システム
US20040157111A1 (en) Fuel cell
JP2008147145A (ja) 燃料電池及びこの燃料電池の製造方法
JP2007087742A (ja) 固体高分子形燃料電池
JP2006164764A (ja) 燃料電池
JP5341321B2 (ja) 固体高分子型燃料電池用電解質膜・電極構造体
JP5352228B2 (ja) 燃料電池
JP4635462B2 (ja) 多孔質のセパレータを備える燃料電池
JP4923387B2 (ja) 多孔質のセパレータを備える燃料電池
JP4923386B2 (ja) 多孔質のセパレータを備える燃料電池
JP5130686B2 (ja) 燃料電池
JP2009048905A (ja) 燃料電池
CN117766795A (zh) 燃料电池堆
JP2011086519A (ja) 燃料電池スタック、および、セパレータ
JP4678830B2 (ja) 燃料電池スタック
JP2007273326A (ja) 燃料電池セル