JP2007300926A - 短干渉核酸(siNA)を用いるアルツハイマー病のRNA干渉媒介性治療 - Google Patents

短干渉核酸(siNA)を用いるアルツハイマー病のRNA干渉媒介性治療 Download PDF

Info

Publication number
JP2007300926A
JP2007300926A JP2007132820A JP2007132820A JP2007300926A JP 2007300926 A JP2007300926 A JP 2007300926A JP 2007132820 A JP2007132820 A JP 2007132820A JP 2007132820 A JP2007132820 A JP 2007132820A JP 2007300926 A JP2007300926 A JP 2007300926A
Authority
JP
Japan
Prior art keywords
sina
nucleotides
sina molecule
molecule
nucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007132820A
Other languages
English (en)
Inventor
James Mcswiggen
マクスウィゲン,ジェームズ
Leonid Beigelman
ベージェルマン,レオニド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sirna Therapeutics Inc
Original Assignee
Sirna Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sirna Therapeutics Inc filed Critical Sirna Therapeutics Inc
Publication of JP2007300926A publication Critical patent/JP2007300926A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/317Chemical structure of the backbone with an inverted bond, e.g. a cap structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/332Abasic residue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

【課題】治療,診断,標的評価およびゲノム発見用途における使用においてBACE遺伝子発現を調節するのに有用な方法および試薬を提供する。
【解決手段】ベータ−セクレターゼ(BACE),アミロイド前駆体蛋白質(APP),pin−1,プレセニリン1(PS−1)および/またはプレセニリン2(PS−2)遺伝子の発現および/または活性に対するRNA干渉(RNAi)を媒介しうる小核酸分子,例えば,短干渉核酸(siNA),短干渉RNA(siRNA),二本鎖RNA(dsRNA),マイクロRNA(miRNA),および短ヘアピンRNA(shRNA)分子及びその使用。該小核酸分子はアルツハイマー病およびBACE,APP,pin−1,PS−1および/またはPS−2の発現または活性の調節に応答する他の任意の病気の治療において有用である。
【選択図】なし

Description

本発明は,McSwiggen,米国特許出願10/205,309(2002年7月25日出願),Beigelman,米国特許出願60/358,580(2002年2月20日出願),Beigelman,米国特許出願60/363,124(2002年3月11日出願),Beigelman,米国特許出願60/386,782(2002年6月6日出願),Beigelman米国特許出願60/406,784(2002年8月29日出願),Beigelman,米国特許出願60/408,378(2002年9月5日出願),Beigelman,米国特許出願60/409,293(2002年9月9日出願),およびBeigelman,米国特許出願60/440,129(2003年1月15日出願)に基づく優先権を主張する。これらの出願は,図面を含めその全体を本明細書の一部としてここに引用する。
本発明は,種々の用途,例えば,治療,診断,標的評価,および遺伝子発見用途における使用において,アルツハイマー病に関連する遺伝子発現を調節するのに有用な方法および試薬に関する。本発明は,ベータ−セクレターゼ(BACE),アミロイド前駆体蛋白質(APP),pin−1,プレセニリン1(PS−1)および/またはプレセニリン2(PS−2)の遺伝子発現および/または活性の調節に応答する健康状態および疾病の研究,診断,および治療のための化合物,組成物,および方法に関する。本発明はまた,ベータ−セクレターゼ(BACE),アミロイド前駆体蛋白質(APP),pin−1,プレセニリン1(PS−1)および/またはプレセニリン2(PS−2)経路に関与する遺伝子の発現および/または活性の調節に応答する健康状態および疾病に関連する化合物,組成物,および方法に関する。特に,本発明は,ベータ−セクレターゼ(BACE),アミロイド前駆体蛋白質(APP),pin−1,プレセニリン1(PS−1)および/またはプレセニリン2(PS−2)の遺伝子発現に対するRNA干渉(RNAi)を媒介しうる小核酸分子,例えば短干渉核酸(siNA),短干渉RNA(siRNA),二本鎖RNA(dsRNA),マイクロRNA(miRNA),および短ヘアピンRNA(shRNA)分子に関連する。
以下はRNAiに関係する関連技術の説明である。この説明は,以下に記載される本発明を理解するためにのみ提供される。この概要は,以下に記載される研究のいずれかが本発明に対する先行技術であると認めるものではない。
RNA干渉とは,動物において短干渉RNA(siRNA)により媒介される配列特異的転写後遺伝子サイレンシングのプロセスを表す(Fire et al.,1998,Nature,391,806)。植物における対応するプロセスは一般に転写後遺伝子サイレンシングまたはRNAサイレンシングと称され,真菌においてはクエリングとも称される。転写後遺伝子サイレンシングのプロセスは,外来遺伝子の発現を防止するために用いられる進化的に保存された細胞防御メカニズムであると考えられており,異なる叢および門が共通して有している(Fire et al.,1999,Trends Genet.,15,358)。そのような外来遺伝子発現からの防御は,ウイルス感染または宿主ゲノム中へのトランスポゾン要素のランダムインテグレーションから生ずる二本鎖RNA(dsRNA)の生成に応答して,相同的一本鎖RNAまたはウイルスゲノムRNAを特異的に破壊する細胞応答により進化してきたのであろう。細胞におけるdsRNAの存在は,まだ完全には特性決定されていないメカニズムにより,RNAi応答を引き起こす。このメカニズムは,蛋白質キナーゼPKRおよび2’,5’−オリゴアデニレート
シンセターゼのdsRNA媒介性活性化の結果リボヌクレアーゼLによるmRNAの非特異的切断が生ずるインターフェロン応答とは異なるようである。
細胞中に長いdsRNAが存在すると,ダイサーと称されるリボヌクレアーゼIII酵素の活性が刺激される。ダイサーは,dsRNAをプロセシングして短干渉RNA(siRNA)として知られる短い断片のdsRNAにすることに関与している(Berstein et al.,2001,Nature,409,363)。ダイサー活性から生ずる短干渉RNAは,典型的には約21−23ヌクレオチドの長さであり,約19塩基対のデュープレックスを含む(Elbashir et al.,2001,Genes Dev.,15,188)。ダイサーはまた,翻訳制御における関与が示唆されている保存された構造の前駆体RNAから21および22ヌクレオチドの小さな一時的RNA(stRNA)を切り出すことに関与することが示唆されている(Hutvagner et
al.,2001,Science,293,834)。RNAi応答はまた,一般にRNA誘導性サイレンシング複合体(RISC)と称されるエンドヌクレアーゼ複合体を特徴とし,これはsiRNAデュープレックスのアンチセンス鎖に相補的な配列を有する一本鎖RNAの切断を媒介する。標的RNAの切断は,siRNAデュープレックスのアンチセンス鎖に相補的な領域の中央部で生ずる(Elbashir et al.,2001,Genes Dev.,15,188)。
RNAiは種々の系で研究されてきた。Fireら(1998,Nature,391,806)は,C.Elegansにおいて最初にRNAiを観察した。WiannyおよびGoetz(1999,Nature Cell Biol.,2,70)は,マウス胚においてdsRNAにより媒介されるRNAiを記載する。Hammondら(2000,Nature,404,293)は,dsRNAでトランスフェクトしたショウジョウバエ細胞におけるRNAiを記載する。Elbashirら(2001,Nature,411,494)は,培養哺乳動物細胞,例えばヒト胚性腎臓細胞およびHeLa細胞において,合成の21ヌクレオチドRNAのデュープレックスを導入することにより誘導されるRNAiを記載する。ショウジョウバエ胚溶解物における最近の研究(Elbashir et al.,2001,EMBO J,20,6877)は,効率的なRNAi活性を媒介するために必須であるsiRNAの長さ,構造,化学組成,および配列についてのある種の要件を明らかにした。これらの研究は,21ヌクレオチドのsiRNAデュープレックスは3’末端ジヌクレオチドオーバーハングを含む場合に最も活性であることを示した。さらに,一方または両方のsiRNA鎖を2’−デオキシ(2’−H)または2’−O−メチルヌクレオチドで置換するとRNAi活性が破壊されるが,3’末端siRNAオーバーハングヌクレオチドを2’−デオキシヌクレオチド(2’−H)で置換することは許容されることが示された。siRNAデュープレックスの中心における単一のミスマッチ配列もまたRNAi活性を破壊することが示された。さらに,これらの研究はまた,標的RNAにおける切断部位の位置はsiRNAガイド配列の3’末端ではなくガイド配列の5’末端により規定されることを示した(Elbashir et al.,2001,EMBO J.,20,6877)。他の研究は,siRNAデュープレックスの標的相補鎖の5’−リン酸がsiRNA活性に必要であり,siRNAの5’−リン酸成分を維持するためにATPが用いられることを示した(Nykanen et al.,2001,Cell,107,309)。
2ヌクレオチドの3’−オーバーハングを有する21−merのsiRNAデュープレックスの3’末端ヌクレオチドのオーバーハングしているセグメントをデオキシリボヌクレオチドで置き換えても,RNAi活性に有害な影響を有しないことが示されている。siRNAの各末端で4個までのヌクレオチドをデオキシリボヌクレオチドで置き換えることはよく許容されると報告されているが,デオキシリボヌクレオチドで完全に置換するとRNAi活性がなくなる(Elbashir et al.,2001,EMBO J.
,20,6877)。さらに,Elbashirら(上掲)はまた,siRNAを2’−O−メチルヌクレオチドで置換すると,RNAi活性が完全に破壊されたことを報告する。Liら(国際公開WO00/44914)およびBeachら(国際公開WO01/68836)は,siRNAがリン酸−糖骨格またはヌクレオシドのいずれかに窒素またはイオウ複素原子の少なくとも1つを含むよう修飾することができることを予備的に示唆する。しかし,いずれの出願も,siRNA分子においてそのような修飾がどの程度許容されるかを仮定しておらず,そのような修飾siRNAのそれ以上の指針または実例を提供していない。Kreutzerら(カナダ特許出願2,359,180)もまた,dsRNAコンストラクトにおいて二本鎖RNA依存性蛋白質キナーゼPKRの活性化を妨げる目的で用いるためのある種の化学的修飾,特に2’−アミノまたは2’−O−メチルヌクレオチド,および2’−Oまたは4’−Cメチレン架橋を含むヌクレオチドを記載する。しかし,Kreutzerらも同様に,siRNA分子においてこれらの修飾がどの程度許容されるかについての実例または指針を提供していない。
Parrishら(2000,Molecular Cell,6,1977−1087)は,C.elegansにおいて長い(>25nt)siRNA転写産物を用いてunc−22遺伝子を標的とするある種の化学的修飾を試験した。著者らは,T7およびT3RNAポリメラーゼによりチオリン酸ヌクレオチド類似体を取り込ませることによりこれらのsiRNA転写産物中にチオリン酸残基を導入すること,および2個のホスホロチオエート修飾塩基を有するRNAもRNAiとしての有効性を実質的に低下させたことを記載する。さらに,Parrishらは,2残基より多いホスホロチオエート修飾は,干渉活性をアッセイすることができないほど大きくインビトロでRNAを不安定化させたことを報告する(同上,1081)。著者らはまた,長いsiRNA転写産物中のヌクレオチド糖の2’位におけるある種の修飾を試験して,リボヌクレオチドをデオキシヌクレオチドで置換すると,特にウリジンからチミジンおよび/またはシチジンからデオキシシチジンへの置換の場合に,干渉活性が実質的に減少することを見いだした(同上)。さらに,著者らは,ある種の塩基修飾,例えば,siRNAのセンス鎖およびアンチセンス鎖において,ウラシルの代わりに4−チオウラシル,5−ブロモウラシル,5−ヨードウラシル,および3−(アミノアリル)ウラシル,およびグアニンの代わりにイノシンの置換を試験した。4−チオウラシルおよび5−ブロモウラシル置換は許容されたように見えたが,Parrishは,イノシンはいずれの鎖に取り込まれたときにも干渉活性における実質的な減少を生じたことを報告している。Parrishはまた,アンチセンス鎖における5−ヨードウラシルおよび3−(アミノアリル)ウラシルの取り込みによっても,RNAi活性が実質的に減少したことを報告している。
より長いdsRNAの使用が記載されている。例えば,Beachら(国際公開WO01/68836)は,内因性dsRNAを用いて遺伝子発現を弱めるための特定の方法を記載する。Tuschlら(国際公開WO01/75164)は,ショウジョウバエのインビトロRNAiシステム,およびある種の機能的ゲノム用途およびある種の治療用途に特定のsiRNA分子を用いることを記載する。しかし,Tuschl(2001,Chem.Biochem.,2,239−245)は,インターフェロン応答の活性化の危険性のため,遺伝的疾病またはウイルス感染を治癒させるためにRNAiを用いることができることは疑わしいと述べている。Liら(国際公開WO00/44914)は,ある種の標的遺伝子の発現を弱めるために特定のdsRNAを用いることを記載する。Zernicka−Goetzら(国際公開WO01/36646)は,ある種のdsRNA分子を用いて哺乳動物細胞において特別の遺伝子の発現を阻害するある種の方法を記載する。Fireら(国際公開WO99/32619)は,遺伝子発現の阻害に用いるためにある種のdsRNA分子を細胞内に導入するための特別の方法を記載する。Plaetinckら(国際公開WO00/01846)は,特定のdsRNA分子を用いて細胞において特別の表現型を与える原因である特定の遺伝子を同定するある種の方法を記載する。M
elloら(国際公開WO01/29058)は,dsRNA媒介性RNAiに関与する特定の遺伝子の同定を記載する。Deschamps Depailletteら(国際公開WO99/07409)は,ある種の抗ウイルス剤と組み合わせた特別のdsRNA分子からなる特定の組成物を記載する。Waterhouseら(国際公開99/53050)は,ある種のdsRNAを用いて植物細胞における核酸の表現型の発現を減少させるある種の方法を記載する。Driscollら(国際公開WO01/49844)は,標的生物において遺伝子サイレンシングを促進するのに用いるための特定のDNAコンストラクトを記載する。
他の者は,種々のRNAiおよび遺伝子サイレンシングシステムを報告している。例えば,Parrishら(2000,Molecular Cell,6,1977−1087)は,C.elegansのunc−22遺伝子を標的とする特定の化学的に修飾されたsiRNAコンストラクトを記載する。Grossniklaus(国際公開WO01/38551)は,植物においてある種のdsRNAを用いてポリコーム遺伝子発現を制御するためのある種の方法を記載する。Churikovら(国際公開WO01/42443)は,ある種のdsRNAを用いて生物の遺伝的特性を改変するある種の方法を記載する。Cogoniら(国際公開WO01/53475)は,Neurosporaのサイレンシング遺伝子を単離するある種の方法およびその用途を記載する。Reedら(国際公開WO01/68836)は,植物における遺伝子サイレンシングのある種の方法を記載する。Honerら(国際公開WO01/70944)は,ある種のdsRNAを用いてパーキンソン病のモデルとしてトランスジェニック線虫を用いる薬剤スクリーニングのある種の方法を記載する。Deakら(国際公開WO01/72774)は,ショウジョウバエにおけるRNAiに関連するかもしれないある種のショウジョウバエ由来遺伝子産物を記載する。Arndtら(国際公開WO01/92513)は,RNAiを増強する因子を用いて遺伝子抑制を媒介するある種の方法を記載する。Tuschlら(国際公開WO02/44321)は,ある種の合成siRNAコンストラクトを記載する。Pachukら(国際公開WO00/63364)およびSatishchandranら(国際公開WO01/04313)は,ある種のdsRNAを用いてある種のポリヌクレオチド配列の機能を阻害するためのある種の方法および組成物を記載する。Echeverriら(国際公開WO02/38805)は,RNAiにより同定されたある種のC.elegans遺伝子を記載する。Kreutzerら(国際公開WO02/055692,WO02/055693,およびEP1144623B1)は,RNAiを用いて遺伝子発現を阻害するある種の方法を記載する。Grahamら(国際公開WO99/49029およびWO01/70949,およびAU4037501)は,ベクターから発現されるある種のsiRNA分子を記載する。Fireら(US6,506,559)は,RNAiを媒介するある種のsiRNAコンストラクトを用いてインビトロで遺伝子発現を阻害するためのある種の方法を記載する。
McSwiggenら(国際公開WO01/16312)は,BACE,PS−1,およびPS−2発現の核酸媒介性阻害を記載する。
発明の概要
本発明は,小核酸分子,例えば,短干渉核酸(siNA),短干渉RNA(siRNA),二本鎖RNA(dsRNA),マイクロRNA(miRNA),および短ヘアピンRNA(shRNA)分子を用いるRNA干渉(RNAi)によりBACE発現を調節するのに有用な化合物,組成物,および方法に関する。本発明はまた,小核酸分子,例えば,短干渉核酸(siNA),短干渉RNA(siRNA),二本鎖RNA(dsRNA),マイクロRNA(miRNA),および短ヘアピンRNA(shRNA)分子を用いるR
NA干渉(RNAi)により,BACE遺伝子,または遺伝子発現のBACE経路に関与する遺伝子の発現および活性および/またはBACE活性を調節するのに有用な化合物,組成物,および方法に関する。特に,本発明は,BACE遺伝子の発現を調節するのに用いられる小核酸分子,例えば,短干渉核酸(siNA),短干渉RNA(siRNA),二本鎖RNA(dsRNA),マイクロRNA(miRNA),および短ヘアピンRNA(shRNA)分子および方法を特徴とする。本発明のsiNAは,修飾しなくてもよく,化学的に修飾してもよい。本発明のsiNAは,化学的に合成してもよく,ベクターから発現させてもよく,酵素的に合成してもよい。本発明はまた,RNA干渉(RNAi)により細胞におけるBACE遺伝子の発現または活性を調節しうる種々の化学的に修飾された合成短干渉核酸(siNA)分子を特徴とする。化学的に修飾されたsiNAを使用することにより,インビボでのヌクレアーゼ分解に対する耐性の増加,および/または細胞取り込みの改良のため,天然のsiNA分子の種々の特性が改良される。さらに,初期に発表された研究に反して,多くの化学的修飾を有するsiNAはそのRNAi活性を保持している。本発明のsiNA分子は,種々の治療,診断,標的評価,ゲノム発見,遺伝子工学,およびファーマコゲノミクスの用途に有用な試薬および方法を提供する。
1つの態様においては,本発明は,独立してまたは組み合わせて,アルツハイマー病および他の神経変性性疾患または健康状態,例えば,痴呆,および発作/心血管偶発症候(CVA)の維持および/または発達に関連する蛋白質,例えばBACE蛋白質をコードする遺伝子,例えば,表Iに示されるGenBank受託番号により表される配列(本明細書において一般にBACEと称される)を含む配列をコードする遺伝子の発現を調節する,1またはそれ以上のsiNA分子および方法を特徴とする。以下に,例示的BACE遺伝子およびBACE蛋白質,およびそれらの成分またはサブユニットを参照して,種々の観点および態様を記載する。しかし,種々の観点および態様はまた,他のBACE関連蛋白質またはアルツハイマー病に関連する他の蛋白質,例えば,APP,PIN−1,PS−1およびPS−2を発現する他の遺伝子(これらの変異体遺伝子およびスプライシング変種遺伝子も含まれる)にも向けられている。種々の観点および態様はまた,疾病(例えばアルツハイマー病)の進行,発達,または維持に関与するシグナル伝達または遺伝子発現のBACE,APP,PIN−1,PS−1およびPS−2媒介性経路に関与する他の遺伝子にも向けられている。これらの追加の遺伝子は,BACEについて本明細書に記載される方法を用いて,標的部位について分析することができる。すなわち,他の遺伝子の阻害およびそのような阻害の効果は,本明細書に記載されるようにして行うことができる。
1つの態様においては,本発明は,BACE遺伝子の発現をダウンレギュレートするsiNA分子を特徴とし,ここで,例えば,BACE遺伝子はBACEコーディング配列を含む。
1つの態様においては,本発明は,BACE RNAに対するRNAi活性を有するsiNA分子を特徴とし,ここで,siNA分子は,BACEまたは他のBACEコーディング配列,例えば,表Iに示されるGenBank受託番号を有する配列を有する任意のRNAに相補的な配列を含む。表IIIおよびIVに示されるかまたは本明細書に記載される化学的修飾を,本発明の任意のsiNAコンストラクトに適用することができる。さらに,表IVに記載される化学的に修飾されたコンストラクトを,本発明の任意のsiNA配列に適用することができる。
別の態様においては,本発明は,BACE遺伝子に対するRNAi活性を有するsiNA分子を特徴とし,ここで,siNA分子は,BACE遺伝子のヌクレオチド配列,例えば表Iに示されるGenBank受託番号を有するBACE配列に相補的なヌクレオチド配列を含む。別の態様においては,本発明のsiNA分子は,BACE遺伝子のヌクレオ
チド配列と相互作用することができ,このことによりBACE遺伝子発現のサイレンシングを媒介することができるヌクレオチド配列を含み,ここで,siNAは,例えば,BACE遺伝子のクロマチン構造を調節し,BACE遺伝子の転写を防止する細胞プロセスによりBACE遺伝子発現の制御を媒介する。
別の態様においては,本発明は,ヌクレオチド配列,例えば,BACE遺伝子のヌクレオチド配列または配列の一部に相補的なsiNA分子のアンチセンス領域中のヌクレオチド配列を含むsiNA分子を特徴とする。別の態様においては,本発明は,BACE遺伝子配列を含む配列または配列の一部に相補的な領域,例えば,siNAコンストラクトのアンチセンス領域を含むsiNA分子を特徴とする。
1つの態様においては,BACE siNAコンストラクトのアンチセンス領域は,配列番号1−325または651−654のいずれかを有する配列に相補的な配列を含むことができる。アンチセンス領域はまた,配列番号326−650,659−662,667−670,675−678,695,697,699,701,703,または704のいずれかを有する配列を含むことができる。別の態様においては,BACEコンストラクトのセンス領域は,配列番号1−325,651−658,663−666,671−674,694,696,698,700,または702のいずれかを有する配列を含むことができる。センス領域は配列番号683の配列を含むことができ,アンチセンス領域は配列番号684の配列を含むことができる。センス領域は配列番号685の配列を含むことができ,アンチセンス領域は配列番号686の配列を含むことができる。センス領域は配列番号687の配列を含むことができ,アンチセンス領域は配列番号688の配列を含むことができる。センス領域は配列番号689の配列を含むことができ,アンチセンス領域は配列番号690の配列を含むことができる。センス領域は配列番号691の配列を含むことができ,アンチセンス領域は配列番号692の配列を含むことができる。センス領域は配列番号689の配列を含むことができ,アンチセンス領域は配列番号693の配列を含むことができる。
1つの態様においては,本発明のsiNA分子は,配列番号1−704のいずれかを含む。配列番号1−704に示される配列は限定的なものではない。本発明のsiNA分子は,任意の連続するBACE配列(例えば,約19−約25個,または約19,20,21,22,23,24または25個の連続するBACEヌクレオチド)を含むことができる。
さらに別の態様においては,本発明は,表1に示されるGenBank受託番号により表される配列を含む配列または配列の一部に相補的な配列,例えば,siNAコンストラクトのアンチセンス配列を含むsiNA分子を特徴とする。表IIIおよびIVに示され,本明細書に記載される化学的修飾を,本発明の任意のsiRNAコンストラクトに適用することができる。さらに,表IVに記載される化学的に修飾されたコンストラクトを本発明の任意のsiNA配列に適用することができる。
本発明の1つの態様においては,siNA分子は,約19−約29ヌクレオチドを有するアンチセンス鎖を含み,ここで,アンチセンス鎖は,BACE蛋白質をコードするRNA配列に相補的であり,前記siNAは,さらに約19−約29(例えば,約19,20,21,22,23,24,25,26,27,28または29)ヌクレオチドを有するセンス鎖を含み,前記センス鎖および前記アンチセンス鎖は,少なくとも約19の相補的ヌクレオチドを有する別々のヌクレオチド配列である。
本発明の別の態様においては,本発明のsiNA分子は,約19−約29(例えば,約19,20,21,22,23,24,25,26,27,28または29)ヌクレオチ
ドを有するアンチセンス領域を含み,ここで,アンチセンス領域はBACE蛋白質をコードするRNA配列に相補的であり,前記siNAはさらに約19−約29ヌクレオチドを有するセンス領域を含み,ここで,前記センス領域および前記アンチセンス領域は,少なくとも約19の相補的ヌクレオチドを有する直鎖状分子を含む。
本発明の1つの態様においては,siNA分子はBACE蛋白質をコードするヌクレオチド配列またはその一部に相補的なヌクレオチド配列を含むアンチセンス鎖を含む。siNAはさらにセンス鎖を含み,ここで前記センス鎖はBACE遺伝子またはその一部のヌクレオチド配列を含む。
別の態様においては,siNA分子はBACE蛋白質をコードするヌクレオチド配列またはその一部に相補的なヌクレオチド配列を含むアンチセンス領域を含む。siNA分子はさらにセンス領域を含み,ここで,前記センス領域は,BACE遺伝子またはその一部のヌクレオチド配列を含む。
1つの態様においては,本発明のsiNA分子は,BACE遺伝子によりコードされるRNAの発現を調節するRNAi活性を有する。BACE遺伝子は互いにある程度の配列ホモロジーを共有することができるため,異なるBACE標的の間で共有されているか,または特定のBACE標的にユニークである配列を選択することにより,一群のBACE遺伝子(および関連するレセプターまたはリガンド遺伝子)または特定のBACE遺伝子を標的とするようsiNA分子を設計することができる。したがって,1つの態様においては,siNA分子は,1つのsiNA分子でいくつかのBACE遺伝子(例えば,異なるBACEアイソフォーム,スプライシング変種,変異体遺伝子等)を標的とするように,いくつかのBACE遺伝子の間でホモロジーを有するBACE RNA配列の保存領域を標的とするよう設計することができる。別の態様においては,siNA分子がRNAi活性を媒介するためには高度の特異性を必要とするため,siNA分子は特定のBACE
RNA配列にユニークである配列を標的とするよう設計することができる。
1つの態様においては,RNA干渉遺伝子サイレンシング応答のメディエータとして作用する本発明の核酸分子は二本鎖核酸分子である。別の態様においては,本発明のsiNA分子は,約19−約25(例えば,約19,20,21,22,23,24または25)ヌクレオチドを含むオリゴヌクレオチドの間に約19塩基対を含むデュープレックスから構成される。さらに別の態様においては,本発明のsiNA分子は約1−約3(例えば,約1,2,または3)ヌクレオチドのオーバーハング末端を有するデュープレックス,例えば,約19塩基対および3’末端モノヌクレオチド,ジヌクレオチド,またはトリヌクレオチドオーバーハングを有する約21のヌクレオチドのデュープレックスを含む。
1つの態様においては,本発明は,BACEを発現する核酸分子,例えばBACE蛋白質をコードするRNAに対する特異性を有する,1またはそれ以上の化学的に修飾されたsiNAコンストラクトを特徴とする。そのような化学的修飾の非限定的例には,限定されないが,ホスホロチオエートヌクレオチド間結合,2’−デオキシリボヌクレオチド,2’−O−メチルリボヌクレオチド,2’−デオキシ−2’−フルオロリボヌクレオチド,"万能塩基"ヌクレオチド,"非環状"ヌクレオチド,5−C−メチルヌクレオチド,および末端グリセリルおよび/または反転デオキシ無塩基残基を取り込むことが含まれる。これらの化学的修飾は,種々のsiNAコンストラクト中で用いた場合,細胞においてRNAi活性を保ち,同時に,これらの化合物の血清安定性を劇的に増加させることが示されている。さらに,Parrishら(上掲)により公表されたデータに反して,本発明においては,多数(2以上)のホスホロチオエート置換が充分に許容され,修飾siNAコンストラクトの血清安定性を実質的に増加させることが示される。
1つの態様においては,本発明のsiNA分子は,RNAiを媒介する能力を維持しながら,修飾ヌクレオチドを含む。修飾ヌクレオチドを用いて,インビトロまたはインビボでの特性,例えば安定性,活性,および/または生物利用性を改良することができる。例えば,本発明のsiNA分子は,siNA分子中に存在するヌクレオチドの総数のパーセンテージとして修飾ヌクレオチドを含むことができる。すなわち,本発明のsiNA分子は,一般に,約5%−約100%の修飾ヌクレオチド(例えば,約5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%または100%の修飾ヌクレオチド)を含むことができる。所定のsiNA分子中に存在する修飾ヌクレオチドの実際のパーセンテージは,siNA中に存在するヌクレオチドの総数によって異なるであろう。siNA分子が一本鎖である場合,修飾のパーセントは一本鎖siNA分子中に存在するヌクレオチドの総数に基づくことができる。同様に,siNA分子が二本鎖である場合,修飾のパーセントは,センス鎖,アンチセンス鎖,またはセンス鎖およびアンチセンス鎖の両方に存在するヌクレオチドの総数に基づくことができる。
非限定的例においては,核酸分子中に化学的に修飾されたヌクレオチドを導入することは,外的にデリバリーされる天然のRNA分子に固有の,インビボ安定性および生物利用性の潜在的な制限を解消する有力な道具を提供する。例えば,化学的に修飾された核酸分子は血清中でより長い半減期を有する傾向にあるため,化学的に修飾された核酸分子を用いることにより,所定の治療効果に必要な特定の核酸分子の投与量を低下させることができる。さらに,ある種の化学的修飾は,特定の細胞または組織を標的とすることにより,および/または核酸分子の細胞取り込みを改良することにより,核酸分子の生物利用性を改良することができる。したがって,化学的に修飾された核酸分子の活性が,天然の核酸分子と比較して,例えば,全RNA核酸分子と比較したときに低いとしても,分子の改良された安定性および/またはデリバリーのため,修飾核酸分子の全体的活性は天然の分子より高い可能性がある。天然の非修飾siNAとは異なり,化学的に修飾されたsiNAはまた,ヒトにおいてインターフェロン活性を活性化する可能性を最小限にすることができる。
本発明のsiNA分子のアンチセンス領域は,前記アンチセンス領域の3’末端にホスホロチオエートヌクレオチド間結合を含むことができる。アンチセンス領域は,前記アンチセンス領域の5’末端に約1−約5個のホスホロチオエートヌクレオチド間結合を含むことができる。本発明のsiNA分子の3’末端ヌクレオチドオーバーハングは,核酸の糖,塩基,または骨格で化学的に修飾されたリボヌクレオチドまたはデオキシリボヌクレオチドを含むことができる。3’末端ヌクレオチドオーバーハングは,1またはそれ以上の万能塩基リボヌクレオチドを含むことができる。3’末端ヌクレオチドオーバーハングは,1またはそれ以上の非環状ヌクレオチドを含むことができる。
本発明の1つの態様は,本発明の少なくとも1つのsiNA分子をコードする核酸配列を,核酸分子の発現を可能とする様式で含む発現ベクターを提供する。本発明の別の態様は,そのような発現ベクターを含む哺乳動物細胞を提供する。哺乳動物細胞はヒト細胞であってもよい。発現ベクターのsiNA分子は,センス領域およびアンチセンス領域を含むことができる。アンチセンス領域はBACEをコードするRNAまたはDNA配列に相補的な配列を含むことができ,センス領域はアンチセンス領域に相補的な配列を含むことができる。siNA分子は,相補的なセンス領域およびアンチセンス領域を有する2つの別々の鎖を含むことができる。siNA分子は,相補的なセンス領域およびアンチセンス領域を有する一本の鎖を含むことができる。
1つの態様においては,本発明は,細胞の内部でまたは再構成されたインビトロ系においてBACEに対するRNA干渉(RNAi)を媒介しうる化学的に修飾された短干渉核
酸(siNA)分子を特徴とし,ここで,化学的修飾は,式I:
Figure 2007300926
[式中,
各R1およびR2は,独立して,任意のヌクレオチド,非ヌクレオチド,またはポリヌクレオチドであり,これは天然に生ずるものであっても化学的に修飾されたものでもよく,各XおよびYは,独立して,O,S,N,アルキル,または置換アルキルであり,各ZおよびWは,独立して,O,S,N,アルキル,置換アルキル,O−アルキル,S−アルキル,アルカリール,またはアラルキルであり,W,X,Y,およびZは任意に全てOでなくてもよい]
を有する骨格修飾ヌクレオチド間結合を含む,1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)のヌクレオチドを含む。
例えば任意のZ,W,X,および/またはYが独立してイオウ原子を含む式Iを有する化学的に修飾されたヌクレオチド間結合は,siNAデュープレックスの一方または両方のオリゴヌクレオチド鎖に,例えば,センス鎖,アンチセンス鎖,または両方の鎖に存在することができる。本発明のsiNA分子は,センス鎖,アンチセンス鎖,または両方の鎖の3’末端,5’末端,または3’末端および5’末端の両方に,1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の式Iを有する化学的に修飾されたヌクレオチド間結合を含むことができる。例えば,本発明の例示的siNA分子は,センス鎖,アンチセンス鎖,または両方の鎖の5’末端に,約1−約5個またはそれ以上(例えば,約1,2,3,4,5個またはそれ以上)の式Iを有する化学的に修飾されたヌクレオチド間結合を含むことができる。別の非限定的例においては,本発明の例示的siNA分子は,センス鎖,アンチセンス鎖,または両方の鎖に式Iを有する化学的に修飾されたヌクレオチド間結合を有する1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)のピリミジンヌクレオチドを含むことができる。さらに別の非限定的例においては,本発明の例示的siNA分子は,センス鎖,アンチセンス鎖,または両方の鎖に,式Iを有する化学的に修飾されたヌクレオチド間結合を有する1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)のプリンヌクレオチドを含むことができる。別の態様においては,式Iのヌクレオチド間結合を有する本発明のsiNA分子はまた,式I−VIIのいずれかを有する化学的に修飾されたヌクレオチドまたは非ヌクレオチドを含む。
1つの態様においては,本発明は,細胞の内部でまたは再構成されたインビトロ系においてBACEに対するRNA干渉(RNAi)を媒介しうる化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,化学的修飾は,式II:
Figure 2007300926
[式中,
各R3,R4,R5,R6,R7,R8,R10,R11およびR12は,独立して,H,OH,アルキル,置換アルキル,アルカリールまたはアラルキル,F,Cl,Br,CN,CF3,OCF3,OCN,O−アルキル,S−アルキル,N−アルキル,O−アルケニル,S−アルケニル,N−アルケニル,SO−アルキル,アルキル−OSH,アルキル−OH,O−アルキル−OH,O−アルキル−SH,S−アルキル−OH,S−アルキル−SH,アルキル−S−アルキル,アルキル−O−アルキル,ONO2,NO2,N3,NH2,アミノアルキル,アミノ酸,アミノアシル,ONH2,O−アミノアルキル,O−アミノ酸,O−アミノアシル,ヘテロシクロアルキル,ヘテロシクロアルカリール,アミノアルキルアミノ,ポリアルキルアミノ,置換シリル,または式1を有する基であり;R9は,O,S,CH2,S=O,CHF,またはCF2であり,Bは,ヌクレオシド塩基,例えば,アデニン,グアニン,ウラシル,シトシン,チミン,2−アミノアデノシン,5−メチルシトシン,2,6−ジアミノプリン,または標的RNAに相補的であっても相補的でなくてもよい他の任意の天然に生じない塩基,または非ヌクレオシド塩基,例えば,フェニル,ナフチル,3−ニトロピロール,5−ニトロインドール,ネブラリン,ピリドン,ピリジノン,または標的RNAに相補的であっても相補的でなくてもよい他の任意の天然に生じない万能塩基である]
を有する1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)のヌクレオチドまたは非ヌクレオチドを含む。
式IIの化学的に修飾されたヌクレオチドまたは非ヌクレオチドは,siNAデュープレックスの一方または両方のオリゴヌクレオチド鎖,例えば,センス鎖,アンチセンス鎖,または両方の鎖に存在することができる。本発明のsiNA分子は,1またはそれ以上の式IIの化学的に修飾されたヌクレオチドまたは非ヌクレオチドを,センス鎖,アンチセンス鎖,または両方の鎖の3’末端,5’末端,または3’末端および5’末端の両方に含むことができる。例えば,本発明の例示的siNA分子は,約1−約5個またはそれ以上(例えば,約1,2,3,4,5個またはそれ以上)の式IIの化学的に修飾されたヌクレオチドまたは非ヌクレオチドを,センス鎖,アンチセンス鎖,または両方の鎖の5’末端に含むことができる。別の非限定的例においては,本発明の例示的siNA分子は,約1−約5個またはそれ以上(例えば,約1,2,3,4,5個またはそれ以上)の式IIの化学的に修飾されたヌクレオチドまたは非ヌクレオチドを,センス鎖,アンチセンス鎖,または両方の鎖の3’末端に含むことができる。
1つの態様においては,本発明は,細胞の内部でまたは再構成されたインビトロ系においてBACEに対するRNA干渉(RNAi)を媒介しうる化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,化学的修飾は,式III:
Figure 2007300926
[式中,
各R3,R4,R5,R6,R7,R8,R10,R11およびR12は,独立して,H,OH,アルキル,置換アルキル,アルカリールまたはアラルキル,F,Cl,Br,CN,CF3,OCF3,OCN,O−アルキル,S−アルキル,N−アルキル,O−アルケニル,S−アルケニル,N−アルケニル,SO−アルキル,アルキル−OSH,アルキル−OH,O−アルキル−OH,O−アルキル−SH,S−アルキル−OH,S−アルキル−SH,アルキル−S−アルキル,アルキル−O−アルキル,ONO2,NO2,N3,NH2,アミノアルキル,アミノ酸,アミノアシル,ONH2,O−アミノアルキル,O−アミノ酸,O−アミノアシル,ヘテロシクロアルキル,ヘテロシクロアルカリール,アミノアルキルアミノ,ポリアルキルアミノ,置換シリル,または式1を有する基であり;R9は,O,S,CH2,S=O,CHF,またはCF2であり,Bは,ヌクレオシド塩基,例えば,アデニン,グアニン,ウラシル,シトシン,チミン,2−アミノアデノシン,5−メチルシトシン,2,6−ジアミノプリン,または標的RNAに相補的であっても相補的でなくてもよいように用いることができる他の任意の天然に生じない塩基,または非ヌクレオシド塩基,例えば,フェニル,ナフチル,3−ニトロピロール,5−ニトロインドール,ネブラリン,ピリドン,ピリジノン,または標的RNAに相補的であっても相補的でなくてもよい他の任意の天然に生じない万能塩基である]
を有する1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)のヌクレオチドまたは非ヌクレオチドを含む。
式IIIの化学的に修飾されたヌクレオチドまたは非ヌクレオチドは,siNAデュープレックスの一方または両方のオリゴヌクレオチド鎖に,例えば,センス鎖,アンチセンス鎖,または両方の鎖に存在することができる。本発明のsiNA分子は,センス鎖,アンチセンス鎖,または両方の鎖の3’末端,5’末端,または3’末端および5’末端の両方に,1またはそれ以上の式IIIの化学的に修飾されたヌクレオチドまたは非ヌクレオチドを含むことができる。例えば,本発明の例示的siNA分子は,センス鎖,アンチセンス鎖,または両方の鎖の5’末端に,約1−約5個またはそれ以上(例えば,約1,2,3,4,5個またはそれ以上)の式IIIの化学的に修飾されたヌクレオチドまたは非ヌクレオチドを含むことができる。別の非限定的例においては,本発明の例示的siNA分子は,センス鎖,アンチセンス鎖,または両方の鎖の3’末端に,約1−約5個またはそれ以上(例えば,約1,2,3,4,5個またはそれ以上)の式IIIの化学的に修飾されたヌクレオチドまたは非ヌクレオチドを含むことができる。
別の態様においては,本発明のsiNA分子は,式IIまたはIIIを有するヌクレオチドを含み,ここで,式IIまたはIIIを有するヌクレオチドは反転のコンフィギュレーションである。例えば,式IIまたはIIIを有するヌクレオチドは,siNAコンストラクトに3’−3’,3’−2’,2’−3’,または5’−5’コンフィギュレーションで,例えば,siNA鎖の一方または両方の3’末端,5’末端,または3’末端および5’末端の両方に結合させることができる。
1つの態様においては,本発明は,細胞の内部でまたは再構成されたインビトロ系においてBACEに対するRNA干渉(RNAi)を媒介しうる化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,化学的修飾は,式IV:
Figure 2007300926
[式中,
各XおよびYは,独立して,O,S,N,アルキル,置換アルキル,またはアルキルハロであり;各ZおよびWは,独立して,O,S,N,アルキル,置換アルキル,O−アルキル,S−アルキル,アルカリール,アラルキル,またはアルキルハロであり;W,X,YおよびZはすべてOではない]
を有する5’末端リン酸基を含む。
1つの態様においては,本発明は,標的−相補的鎖,例えば,標的RNAに相補的な鎖に式IVを有する5’末端リン酸基を有するsiNA分子を特徴とし,ここで,siNA分子は,全RNA siNA分子を含む。別の態様においては,本発明は,標的−相補的鎖に式IVを有する5’末端リン酸基を有するsiNA分子を特徴とし,ここで,siNA分子はまた,一方または両方の鎖の3’末端に約1−約4個(例えば,約1,2,3,または4個)のデオキシリボヌクレオチドを有する,約1−約3(例えば,約1,2,または3)ヌクレオチドの3’末端ヌクレオチドオーバーハングを含む。別の態様においては,式IVを有する5’末端リン酸基は,本発明のsiNA分子,例えば式I−VIIのいずれかを有する化学的修飾を有するsiNA分子の標的−相補的鎖に存在する。
1つの態様においては,本発明は,細胞の内部でまたは再構成されたインビトロ系においてBACEに対するRNA干渉(RNAi)を媒介しうる化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,化学的修飾は1またはそれ以上のホスホロチオエートヌクレオチド間結合を含む。例えば,非限定的例においては,本発明は,一方のsiNA鎖に約1,2,3,4,5,6,7,8個またはそれ以上のホスホロチオエートヌクレオチド間結合を有する化学的に修飾された短干渉核酸(siNA)を特徴とする。さらに別の態様においては,本発明は,両方のsiNA鎖に独立して約1,2,3,4,5,6,7,8個またはそれ以上のホスホロチオエートヌクレオチド間結合を有する化学的に修飾された短干渉核酸(siNA)を特徴とする。ホスホロチオエートヌクレオチド間結合は,siNAデュープレックスのオリゴヌクレオチド鎖の一方または両方に,例えば,センス鎖,アンチセンス鎖,または両方の鎖に存在することができる。本発明のsiNA分子は,センス鎖,アンチセンス鎖,または両方の鎖の3’末端,5’末端,または3’末端および5’末端の両方に1またはそれ以上のホスホロチオエートヌクレオチド間結合を含むことができる。例えば,本発明の例示的siNA分子は,センス鎖,アンチセンス鎖,または両方の鎖の5’末端に,約1−約5個またはそれ以上(例えば,約1,2,3,4,5,個またはそれ以上)の連続するホスホロチオエートヌクレオチド間結合を含むことができる。別の非限定的例においては,本発明の例示的siNA分子は,センス鎖,アンチセンス鎖,または両方の鎖に,1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)のピリミジンホスホロチオエートヌクレオチド間結合を含むことができる。さらに別の非限定的例においては,本発明の例示的siNA分子は,センス鎖,アンチセンス鎖,または両方の鎖に,1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)のプリンホスホロチオエートヌクレオチド間結合を含むことができる。
1つの態様においては,本発明は,センス鎖が1またはそれ以上,例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の2’−デオキシ,2’−O−メチル,2’−デオキシ−2’−フルオロ,および/または約1またはそれ以上の(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の万能塩基修飾ヌクレオチドを含み,任意にセンス鎖の3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を含み;かつ,アンチセンス鎖が約1−約10個またはそれ以上,特に約1,2,3,4,5,6,7,8,9,10個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の2’−デオキシ,2’−O−メチル,2’−デオキシ−2’−フルオロ,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の万能塩基修飾ヌクレオチドを含み,任意にアンチセンス鎖の3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を含むsiNA分子を特徴とする。別の態様においては,センスおよび/またはアンチセンスsiNA鎖の1またはそれ以上の,例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上のピリミジンヌクレオチドは,2’−デオキシ,2’−O−メチルおよび/または2’−デオキシ−2’−フルオロヌクレオチドで化学的に修飾されており,同じまたは異なる鎖に存在する,1またはそれ以上の,例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を有していても有していなくてもよい。
別の態様においては,本発明は,センス鎖が約1−約5個,特に約1,2,3,4,または5個のホスホロチオエートヌクレオチド間結合,および/または1またはそれ以上(例えば,約1,2,3,4,5個またはそれ以上)の2’−デオキシ,2’−O−メチル,2’−デオキシ−2’−フルオロ,および/または1またはそれ以上(例えば,約1,2,3,4,5個またはそれ以上)の万能塩基修飾ヌクレオチドを含み,任意にセンス鎖の3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を含み;かつ,アンチセンス鎖が約1−約5個またはそれ以上,特に約1,2,3,4,5個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の2’−デオキシ,2’−O−メチル,2’−デオキシ−2’−フルオロ,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の万能塩基修飾ヌクレオチドを含み,任意にアンチセンス鎖の3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を含むsiNA分子を特徴とする。別の態様においては,センスおよび/またはアンチセンスsiNA鎖の1またはそれ以上,例えば約1,2,3,4,5,6,7,8,9,10個またはそれ以上のピリミジンヌクレオチドは,2’−デオキシ,2’−O−メチルおよび/または2’−デオキシ−2’−フルオロヌクレオチドで化学的に修飾されており,同じまたは異なる鎖に存在する,約1−約5個またはそれ以上,例えば,約1,2,3,4,5個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を有していても有してなくてもよい。
1つの態様においては,本発明は,アンチセンス鎖が1またはそれ以上,例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または約1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の2’−デオキシ,2’−O−メチル,2’−デオキシ−2’−フルオロ,および/または1またはそれ以上(例えば,約1,2,3,4
,5,6,7,8,9,10個またはそれ以上)の万能塩基修飾ヌクレオチドを含み,任意にセンス鎖の3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を含み;かつ,アンチセンス鎖が約1−約10個またはそれ以上,特に約1,2,3,4,5,6,7,8,9,10個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の2’−デオキシ,2’−O−メチル,2’−デオキシ−2’−フルオロ,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の万能塩基修飾ヌクレオチドを含み,任意にアンチセンス鎖の3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を含むsiNA分子を特徴とする。別の態様においては,センスおよび/またはアンチセンスsiNA鎖の1またはそれ以上,例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上のピリミジンヌクレオチドは,2’−デオキシ,2’−O−メチルおよび/または2’−デオキシ−2’−フルオロヌクレオチドで化学的に修飾されており,同じまたは異なる鎖に存在する1またはそれ以上,例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を有していても有していなくてもよい。
別の態様においては,本発明は,アンチセンス鎖が約1−約5個またはそれ以上,特に約1,2,3,4,5個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の2’−デオキシ,2’−O−メチル,2’−デオキシ−2’−フルオロ,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の万能塩基修飾ヌクレオチドを含み,任意にセンス鎖の3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を含み;かつ,アンチセンス鎖が約1−約5個またはそれ以上,特に約1,2,3,4,5個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の2’−デオキシ,2’−O−メチル,2’−デオキシ−2’−フルオロ,および/または1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の万能塩基修飾ヌクレオチドを含み,任意にアンチセンス鎖の3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を含む,siNA分子を特徴とする。別の態様においては,センスおよび/またはアンチセンスsiNA鎖の1またはそれ以上,例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上のピリミジンヌクレオチドは,2’−デオキシ,2’−O−メチルおよび/または2’−デオキシ−2’−フルオロヌクレオチドで化学的に修飾されており,同じ鎖または異なる鎖に存在する約1−約5個またはそれ以上,例えば,約1,2,3,4,5個またはそれ以上のホスホロチオエートヌクレオチド間結合,および/または,3’末端,5’末端,または3’末端および5’末端の両方に末端キャップ分子を有していても有していなくてもよい。
1つの態様においては,本発明は,siNA分子の各鎖に約1−約5個またはそれ以上,特に約1,2,3,4,5個またはそれ以上のホスホロチオエートヌクレオチド間結合を有する,化学的に修飾された短干渉核酸(siNA)分子を特徴とする。
別の態様においては,本発明は,2’−5’ヌクレオチド間結合を含むsiNA分子を特徴とする。2’−5’ヌクレオチド間結合は,siNA配列鎖の一方または両方の3’末端,5’末端,または3’末端および5’末端の両方に存在することができる。さらに,2’−5’ヌクレオチド間結合は,siNA配列鎖の一方または両方の種々の他の位置に存在することができ,例えば,siNA分子の一方または両方の鎖のピリミジンヌクレオチドの約1,2,3,4,5,6,7,8,9,10個またはそれ以上,例えばすべて
のヌクレオチド間結合は,2’−5’ヌクレオチド間結合を含むことができ,またはsiNA分子の一方または両方の鎖のプリンヌクレオチドの約1,2,3,4,5,6,7,8,9,10個またはそれ以上,例えばすべてのヌクレオチド間結合は,2’−5’ヌクレオチド間結合を含むことができる。
別の態様においては,本発明の化学的に修飾されたsiNA分子は,2つの鎖を有するデュープレックスを含み,この一方または両方を化学的に修飾することができ,各鎖は約18−約27(例えば,約18,19,20,21,22,23,24,25,26,または27)ヌクレオチドの長さであり,デュープレックスは約18−約23(例えば,約18,19,20,21,22,または23)塩基対を有し,化学的修飾は,式I−VIIのいずれかを有する構造を含む。例えば,本発明の化学的に修飾された例示的なsiNA分子は2つの鎖を有するデュープレックスを含み,この一方または両方は式I−VIIのいずれかまたはそれらの任意の組み合わせを有する化学的修飾で化学的に修飾されていてもよく,各鎖は約21ヌクレオチドからなり,それぞれは2−ヌクレオチドの3’末端ヌクレオチドオーバーハングを有し,デュープレックスは約19塩基対を有する。別の態様においては,本発明のsiNA分子は一本鎖ヘアピン構造を有し,ここで,siNAは約36−約70(例えば,約36,40,45,50,55,60,65,または70)ヌクレオチドの長さであり,約18−約23(例えば,約18,19,20,21,22,または23)塩基対を有し,siNAは式I−VIIのいずれかまたはそれらの任意の組み合わせを有する構造を含む化学的修飾を含むことができる。例えば,本発明の化学的に修飾された例示的なsiNA分子は,式I−VIIのいずれかまたはそれらの任意の組み合わせを有する化学的修飾で化学的に修飾された,約42−約50(例えば,約42,43,44,45,46,47,48,49,または50)ヌクレオチドを有する直鎖状オリゴヌクレオチドを含み,ここで,直鎖状オリゴヌクレオチドは約19塩基対および2−ヌクレオチドの3’末端ヌクレオチドオーバーハングを有するヘアピン構造を形成する。別の態様においては,本発明の直鎖状ヘアピンsiNA分子はステムループモチーフを含み,ここで,siNA分子のループ部分は生物分解性である。例えば,本発明の直鎖状ヘアピンsiNA分子は,siNA分子のループ部分のインビボでの分解により3’末端オーバーハング,例えば約2ヌクレオチドを含む3’末端ヌクレオチドオーバーハングを有する二本鎖siNA分子が生成されうるように設計される。
別の態様においては,本発明のsiNA分子は環状核酸分子を含み,ここで,siNAは約38−約70(例えば,約38,40,45,50,55,60,65,または70)ヌクレオチドの長さであり,約18−約23(例えば,約18,19,20,21,22,または23)塩基対を有し,siNAは化学的修飾を含むことができ,これは式I−VIIのいずれかまたはそれらの任意の組み合わせを有する構造を含む。例えば,本発明の化学的に修飾された例示的なsiNA分子は,式I−VIIのいずれかまたはそれらの任意の組み合わせを有する化学的修飾で化学的に修飾された約42−約50(例えば,約42,43,44,45,46,47,48,49,または50)ヌクレオチドを有する環状オリゴヌクレオチドを含み,環状オリゴヌクレオチドは約19塩基対および2個のループを有するダンベル形状の構造を形成する。
別の態様においては,本発明の環状siNA分子は,2つのループモチーフを含み,ここで,siNA分子のループ部分の一方または両方は生物分解性である。例えば,本発明の環状siNA分子は,siNA分子のループ部分のインビボでの分解により,3’末端オーバーハング,例えば約2ヌクレオチドを含む3’末端ヌクレオチドオーバーハングを有する二本鎖siNA分子が生成することができるように設計される。
1つの態様においては,本発明のsiNA分子は,少なくとも1つ(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の無塩基成分,例えば,式V:
Figure 2007300926
[式中,
各R3,R4,R5,R6,R7,R8,R10,R11,R12,およびR13は,独立して,H,OH,アルキル,置換アルキル,アルカリールまたはアラルキル,F,Cl,Br,CN,CF3,OCF3,OCN,O−アルキル,S−アルキル,N−アルキル,O−アルケニル,S−アルケニル,N−アルケニル,SO−アルキル,アルキル−OSH,アルキル−OH,O−アルキル−OH,O−アルキル−SH,S−アルキル−OH,S−アルキル−SH,アルキル−S−アルキル,アルキル−O−アルキル,ONO2,NO2,N3,NH2,アミノアルキル,アミノ酸,アミノアシル,ONH2,O−アミノアルキル,O−アミノ酸,O−アミノアシル,ヘテロシクロアルキル,ヘテロシクロアルカリール,アミノアルキルアミノ,ポリアルキルアミノ,置換シリル,または式1を有する基であり;R9は,O,S,CH2,S=O,CHF,またはCF2である]
を有する化合物を含む。
1つの態様においては,本発明のsiNA分子は,少なくとも1つ(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の反転無塩基成分,例えば,式VI:
Figure 2007300926
[式中,
各R3,R4,R5,R6,R7,R8,R10,R11,R12,およびR13は,独立して,H,OH,アルキル,置換アルキル,アルカリールまたはアラルキル,F,Cl,Br,CN,CF3,OCF3,OCN,O−アルキル,S−アルキル,N−アルキル,O−アルケニル,S−アルケニル,N−アルケニル,SO−アルキル,アルキル−OSH,アルキル−OH,O−アルキル−OH,O−アルキル−SH,S−アルキル−OH,S−アルキル−SH,アルキル−S−アルキル,アルキル−O−アルキル,ONO2,NO2,N3,NH2,アミノアルキル,アミノ酸,アミノアシル,ONH2,O−アミノアルキル,O−アミノ酸,O−アミノアシル,ヘテロシクロアルキル,ヘテロシクロアルカリール,アミノアルキルアミノ,ポリアルキルアミノ,置換シリル,または式Iを有する基であり;R9は,0,S,CH2,S=0,CHF,またはCF2であり,R2,R3,R8またはR13のいずれかは,本発明のsiNA分子への結合の点として働く]
を有する化合物を含む。
別の態様においては,本発明のsiNA分子は,少なくとも1つ(例えば,約1,2,3,4,5,6,7,8,9,10個,またはそれ以上)の置換ポリアルキル成分,例えば,式VII:
Figure 2007300926
[式中,各nは,独立して,1−12の整数であり,各R1,R2およびR3は,独立して,H,OH,アルキル,置換アルキル,アルカリールまたはアラルキル,F,Cl,Br,CN,CF3,OCF3,OCN,O−アルキル,S−アルキル,N−アルキル,O−アルケニル,S−アルケニル,N−アルケニル,SO−アルキル,アルキル−OSH,アルキル−OH,O−アルキル−OH,O−アルキル−SH,S−アルキル−OH,S−アルキル−SH,アルキル−S−アルキル,アルキル−O−アルキル,ONO2,NO2,N3,NH2,アミノアルキル,アミノ酸,アミノアシル,ONH2,O−アミノアルキル,O−アミノ酸,O−アミノアシル,ヘテロシクロアルキル,ヘテロシクロアルカリール,アミノアルキルアミノ,ポリアルキルアミノ,置換シリル,または式Iを有する基であり,R1,R2またはR3は,本発明のsiNA分子への結合の点として働く]
を有する化合物を含む。
別の態様においては,本発明は,R1およびR2はヒドロキシル(OH)基であり,nは1であり,R3はOを含み,かつ本発明の二本鎖siNA分子の一方または両方の鎖の3’末端,5’末端,または3’末端および5’末端の両方への,または本発明の一本鎖siNA分子への結合の点である,式VIIを有する化合物を特徴とする。この修飾は,本明細書において"グリセリル"と称される(例えば,図10の修飾6を参照)。
別の態様においては,式V,VIまたはVIIのいずれかを有する本発明の成分は,本発明のsiNA分子の3’末端,5’末端,または3’末端および5’末端の両方に存在する。例えば,式V,VIまたはVIIを有する成分は,siNA分子のアンチセンス鎖,センス鎖,またはアンチセンス鎖およびセンス鎖の両方の3’末端,5’末端,または3’末端および5’末端の両方に存在することができる。さらに,式VIIを有する成分は,本明細書に記載されるように,ヘアピンsiNA分子の3’末端または5’末端に存在することができる。
別の態様においては,本発明のsiNA分子は,式VまたはVIを有する無塩基残基を含み,ここで,式VIまたはVIを有する無塩基残基は,3’−3’,3’−2’,2’−3’,または5’−5’コンフィギュレーションで,例えば,一方または両方のsiNA鎖の3’末端,5’末端,または3’末端および5’末端の両方でsiNAコンストラクトに結合している。
1つの態様においては,本発明のsiNA分子は,例えば,siNA分子の5’末端,3’末端,5’末端および3’末端の両方,またはそれらの任意の組み合わせにおいて,1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)のロック核酸(LNA)ヌクレオチドを含む。
別の態様においては,本発明のsiNA分子は,例えば,siNA分子の5’末端,3’末端,5’末端および3’末端の両方,またはそれらの任意の組み合わせにおいて,1
またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)の非環状ヌクレオチドを含む。
1つの態様においては,本発明は,化学的に修飾されたsiNAがセンス領域を含む,本発明の化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,センス領域中に存在する任意の(例えば,1またはそれ以上,またはすべての)ピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),かつ,センス領域中に存在する任意の(例えば,1またはそれ以上,またはすべての)プリンヌクレオチドは2’−デオキシプリンヌクレオチドである(例えば,すべてのプリンヌクレオチドが2’−デオキシプリンヌクレオチドであるか,あるいは複数のプリンヌクレオチドが2’−デオキシプリンヌクレオチドである)。
1つの態様においては,本発明は,化学的に修飾されたsiNAがセンス領域を含む,本発明の化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,センス領域中に存在する任意の(例えば1またはそれ以上,またはすべての)ピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが−デオキシ−2’−フルオロピリミジンヌクレオチドである),かつ,センス領域中に存在する任意の(例えば,1またはそれ以上,またはすべての)プリンヌクレオチドは2’−デオキシプリンヌクレオチドであり(例えば,すべてのプリンヌクレオチドが2’−デオキシプリンヌクレオチドであるか,あるいは複数のプリンヌクレオチドが2’−デオキシプリンヌクレオチドである),ここで,前記センス領域中に存在する3’末端ヌクレオチドオーバーハングを含む任意のヌクレオチドは2’−デオキシヌクレオチドである。
1つの態様においては,本発明は,化学的に修飾されたsiNAがアンチセンス領域を含む,本発明の化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,アンチセンス領域中に存在する任意の(例えば,1またはそれ以上,またはすべての)ピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),かつ,アンチセンス領域中に存在する任意の(例えば,1またはそれ以上,またはすべての)プリンヌクレオチドは2’−O−メチルプリンヌクレオチドである(例えば,すべてのプリンヌクレオチドが2’−O−メチルプリンヌクレオチドであるか,あるいは複数のプリンヌクレオチドが2’−O−メチルプリンヌクレオチドである)。
1つの態様においては,本発明は,化学的に修飾されたsiNAがアンチセンス領域を含む,本発明の化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,アンチセンス領域中に存在する任意の(例えば,1またはそれ以上,またはすべての)ピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),かつ,アンチセンス領域中に存在する任意の(例えば,1またはそれ以上,またはすべての)プリンヌクレオチドは2’−O−メチルプリンヌクレオチドであり(例えば,すべてのプリンヌクレオチドが2’−O−メチルプリンヌクレオチドであるか,あるいは複数のプリンヌクレオチドが2’−O−メチルプ
リンヌクレオチドである),ここで,前記アンチセンス領域中に存在する3’末端ヌクレオチドオーバーハングを含む任意のヌクレオチドは2’−デオキシヌクレオチドである。
1つの態様においては,本発明は,化学的に修飾されたsiNAがアンチセンス領域を含む本発明の化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,アンチセンス領域中に存在する任意の(例えば,1またはそれ以上,またはすべての)ピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),かつ,アンチセンス領域中に存在する任意の(例えば,1またはそれ以上,またはすべての)プリンヌクレオチドは2’−デオキシプリンヌクレオチドである(例えば,すべてのプリンヌクレオチドが2’−デオキシプリンヌクレオチドであるか,あるいは複数のプリンヌクレオチドが2’−デオキシプリンヌクレオチドである)。
1つの態様においては,本発明は,細胞の内部または再構成されたインビトロ系においてBACEに対するRNA干渉(RNAi)を媒介しうる,本発明の化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,化学的に修飾されたsiNAはセンス領域を含み,ここで,センス領域中に存在する1またはそれ以上のピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),センス領域中に存在する1またはそれ以上のプリンヌクレオチドは2’−デオキシプリンヌクレオチドであり(例えば,すべてのプリンヌクレオチドが2’−デオキシプリンヌクレオチドであるか,あるいは複数のプリンヌクレオチドが2’−デオキシプリンヌクレオチドである),および,センス領域の3’末端,5’末端,または3’末端,および5’末端の両方に存在していてもよい反転デオキシ無塩基修飾を含み,センス領域はさらに約1−約4個(例えば,約1,2,3,または4個)の2’−デオキシリボヌクレオチドを有する3’末端オーバーハングを含んでいてもよく;かつ,化学的に修飾された短干渉核酸分子はアンチセンス領域を含み,ここで,アンチセンス領域中に存在する1またはそれ以上のピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),アンチセンス領域中に存在する1またはそれ以上のプリンヌクレオチドは2’−O−メチルプリンヌクレオチドであり(例えば,すべてのプリンヌクレオチドが2’−O−メチルプリンヌクレオチドであるか,あるいは複数のプリンヌクレオチドが2’−O−メチルプリンヌクレオチドである),および末端キャップ修飾,例えば,本明細書に記載されるかまたは図10に示されるいずれかの修飾を含み,これは任意に,アンチセンス配列の3’末端,5’末端,または3’末端および5’末端の両方に存在してもよく,アンチセンス領域はさらに任意に,約1−約4個(例えば,約1,2,3,または4個)の2’−デオキシヌクレオチドを有する3’末端ヌクレオチドオーバーハングを含んでいてもよく,ここでオーバーハングヌクレオチドはさらに1またはそれ以上(例えば,1,2,3,または4個)のホスホロチオエートヌクレオチド間結合を含むことができる。これらの化学的に修飾されたsiNAの非限定的例は図4および5および本明細書の表IIIに示される。
1つの態様においては,本発明は,細胞の内部でまたは再構成されたインビトロ系においてBACEに対するRNA干渉(RNAi)を媒介しうる本発明の化学的に修飾された短干渉核酸(siNA)分子を特徴とし,ここで,siNAはセンス領域を含み,ここで,センス領域中に存在する1またはそれ以上のピリミジンヌクレオチドは2’−デオキシ
−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),センス領域中に存在する1またはそれ以上のプリンヌクレオチドはプリンリボヌクレオチドであり(例えば,すべてのプリンヌクレオチドがプリンリボヌクレオチドであるか,あるいは複数のプリンヌクレオチドがプリンリボヌクレオチドである),およびセンス領域の3’末端,5’末端,または3’末端および5’末端の両方に任意に存在していてもよい反転デオキシ無塩基修飾を含み,センス領域はさらに任意に,約1−約4個(例えば,約1,2,3,または4個)の2’−デオキシリボヌクレオチドを有する3’末端オーバーハングを含み;かつ,siNAはアンチセンス領域を含み,ここで,アンチセンス領域中に存在する1またはそれ以上のピリミジンヌクレオチドは,2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),アンチセンス領域中に存在する任意のプリンヌクレオチドは2’−O−メチルプリンヌクレオチドであり(例えば,すべてのプリンヌクレオチドが2’−O−メチルプリンヌクレオチドであるか,あるいは複数のプリンヌクレオチドが2’−O−メチルプリンヌクレオチドである),および末端キャップ修飾,例えば,本明細書に記載されるかまたは図10に示される任意の修飾を含み,これは任意にアンチセンス配列の3’末端,5’末端,または3’末端および5’末端の両方に存在してもよく,アンチセンス領域はさらに任意に約1−約4個(例えば,約1,2,3,または4個)の2’−デオキシヌクレオチドを有する3’末端ヌクレオチドオーバーハングを含んでいてもよく,ここで,オーバーハングヌクレオチドはさらに1またはそれ以上(例えば,1,2,3,または4個)のホスホロチオエートヌクレオチド間結合を含むことができる。これらの化学的に修飾されたsiNAの非限定的例は,図4および5および本明細書の表IIIに示される。
1つの態様においては,本発明は,細胞の内部でまたは再構成されたインビトロ系においてBACEに対するRNA干渉(RNAi)を媒介しうる本発明の化学的に修飾された短干渉核酸(siNA)分子を特徴とし,化学的に修飾されたsiNAはセンス領域を含み,ここで,センス領域中に存在する1またはそれ以上のピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),例えば,センス領域中に存在する1またはそれ以上のプリンヌクレオチドは,2’−デオキシヌクレオチド,ロック核酸(LNA)ヌクレオチド,2’−メトキシエチルヌクレオチド,4’−チオヌクレオチド,および2’−O−メチルヌクレオチドからなる群より選択され(例えば,すべてのプリンヌクレオチドが2’−デオキシヌクレオチド,ロック核酸(LNA)ヌクレオチド,2’−メトキシエチルヌクレオチド,4’−チオヌクレオチド,および2’−O−メチルヌクレオチドがからなる群より選択されるか,あるいは複数のプリンヌクレオチドが2’−デオキシヌクレオチド,ロック核酸(LNA)ヌクレオチド,2’−メトキシエチルヌクレオチド,4’−チオヌクレオチド,および2’−O−メチルヌクレオチドからなる群より選択される),かつ,任意にセンス領域の3’末端,5’末端,または3’末端および5’末端の両方に反転デオキシ無塩基修飾が存在していてもよく,センス領域はさらに任意に約1−約4個(例えば,約1,2,3,または4個)の2’−デオキシリボヌクレオチドを有する3’末端オーバーハングを含んでいてもよく;かつ,化学的に修飾された短干渉核酸分子はアンチセンス領域を含み,ここで,アンチセンス領域中に存在する1またはそれ以上のピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジ
ンヌクレオチドである),アンチセンス領域中に存在する1またはそれ以上のプリンヌクレオチドは,2’−デオキシヌクレオチド,ロック核酸(LNA)ヌクレオチド,2’−メトキシエチルヌクレオチド,4’−チオヌクレオチド,および2’−O−メチルヌクレオチドからなる群より選択され(例えば,すべてのプリンヌクレオチドが2’−デオキシヌクレオチド,ロック核酸(LNA)ヌクレオチド,2’−メトキシエチルヌクレオチド,4’−チオヌクレオチド,および2’−O−メチルヌクレオチドからなる群より選択されるか,あるいは複数のプリンヌクレオチドが2’−デオキシヌクレオチド,ロック核酸(LNA)ヌクレオチド,2’−メトキシエチルヌクレオチド,4’−チオヌクレオチド,および2’−O−メチルヌクレオチドからなる群より選択される),および末端キャップ修飾,例えば,本明細書に記載されるかまたは図10に示されるいずれかの修飾を含み,これは任意にアンチセンス配列の3’末端,5’末端,または3’末端および5’末端の両方に存在していてもよく,アンチセンス領域はさらに任意に,約1−約4個(例えば,約1,2,3,または4個)の2’−デオキシヌクレオチドを有する3’末端ヌクレオチドオーバーハングを含んでいてもよく,ここで,オーバーハングヌクレオチドはさらに1またはそれ以上(例えば1,2,3,または4個)のホスホロチオエートヌクレオチド間結合を含むことができる。
別の態様においては,本発明のsiNA分子中に存在する任意の修飾ヌクレオチドは,好ましくは,本発明のsiNA分子のアンチセンス鎖に存在するが,また任意に,センスおよび/またはアンチセンス鎖とセンス鎖の両方に存在していてもよく,これは,天然に生ずるリボヌクレオチドと類似する特性または特徴を有する修飾ヌクレオチドを含む。例えば,本発明は,ノザンコンフォメーション(例えば,ノザン偽回転サイクル,例えば,Saenger,Principles of Nucleic Acid Structure,Springer−Verlag ed.,1984を参照)を有する修飾ヌクレオチドを含むsiNA分子を特徴とする。このように,本発明のsiNA分子中に存在する化学的に修飾されたヌクレオチドは,好ましくは,本発明のsiNA分子のアンチセンス鎖に存在するが,また任意にセンスおよび/またはアンチセンス鎖およびセンス鎖の両方に存在してもよく,これはヌクレアーゼ分解に対して耐性であると同時にRNAiを媒介する能力を維持する。ノザンコンフィギュレーションを有するヌクレオチドの非限定的例としては,ロック核酸(LNA)ヌクレオチド(例えば,2’−O,4’−C−メチレン−(D−リボフラノシル)ヌクレオチド);2’−メトキシエトキシ(MOE)ヌクレオチド;2’−メチル−チオ−エチル,2’−デオキシ−2’−フルオロヌクレオチド,2’−デオキシ−2’−クロロヌクレオチド,2’−アジドヌクレオチド,および2’−O−メチルヌクレオチドが挙げられる。
1つの態様においては,本発明は,細胞の内部でまたは再構成されたインビトロ系においてBACEに対するRNA干渉(RNAi)を媒介しうる化学的に修飾された短干渉核酸分子(siNA)を特徴とし,ここで,化学的修飾は,化学的に修飾されたsiNA分子に共有結合したコンジュゲートを含む。別の態様においては,コンジュゲートは化学的に修飾されたsiNA分子に生物分解性リンカーを介して共有結合している。1つの態様においては,コンジュゲート分子は,化学的に修飾されたsiNA分子のセンス鎖,アンチセンス鎖,または両方の鎖の3’末端に結合している。別の態様においては,コンジュゲート分子は,化学的に修飾されたsiNA分子のセンス鎖,アンチセンス鎖,または両方の鎖の5’末端に結合している。さらに別の態様においては,コンジュゲート分子は,化学的に修飾されたsiNA分子のセンス鎖,アンチセンス鎖,または両方の鎖の3’末端および5’末端の両方,またはそれらの任意の組み合わせに結合している。1つの態様においては,本発明のコンジュゲート分子は,化学的に修飾されたsiNA分子の生物学的システム(例えば細胞)へのデリバリーを促進する分子を含む。別の態様においては,化学的に修飾されたsiNA分子に結合したコンジュゲート分子は,ポリエチレングリコール,ヒト血清アルブミン,または細胞取り込みを媒介することができる細胞レセプター
のリガンドである。化学的に修飾されたsiNA分子に結合させることができる,本発明により企図される特定のコンジュゲート分子の例は,Vargeeseら(米国特許出願10/201,394,本明細書の一部としてここに引用する)に記載される。用いられるコンジュゲートのタイプおよび本発明のsiNA分子のコンジュゲーションの程度は,同時にsiNAがRNAi活性を媒介する能力を維持しながら,siNAコンストラクトの改良された薬物動態学プロファイル,生物利用性,および/または安定性について評価することができる。このように,当業者は,例えば,当該技術分野において一般的に知られる動物モデルにおいて,種々のコンジュゲートで修飾されたsiNAコンストラクトをスクリーニングして,siNAコンジュゲート複合体がRNAiを媒介する能力を維持しながら改良された特性を有するかを判定することができる。
1つの態様においては,本発明は,siNAがさらにsiNAのセンス領域とsiNAのアンチセンス領域とを連結させるヌクレオチド,非ヌクレオチド,または混合ヌクレオチド/非ヌクレオチドリンカーを含む本発明の短干渉核酸(siNA)分子を特徴とする。1つの態様においては,本発明のヌクレオチドリンカーは,2ヌクレオチド以上の長さ,例えば,3,4,5,6,7,8,9,または10ヌクレオチドの長さのリンカーでありうる。別の態様においては,ヌクレオチドリンカーは,核酸アプタマーであってもよい。本明細書において用いる場合,"アプタマー"または"核酸アプタマー"とは,標的分子に特異的に結合する核酸分子を意味し,ここで,核酸分子は,その天然の設定において標的分子により認識される配列を含む配列を有する。あるいは,アプタマーは天然には核酸に結合しない標的分子に結合する核酸分子であってもよい。標的分子は目的とする任意の分子でありうる。例えば,アプタマーを用いて蛋白質のリガンド結合ドメインに結合させ,このことにより,天然に生ずるリガンドと蛋白質との相互作用を妨害することができる。これは非限定的例であり,当業者は当該技術分野において一般に知られる手法を用いて他の態様を容易に生成しうることを認識するであろう(例えば,Gold et al.,1995,Annu.Rev.Biochem.,64,763;Brody and Gold,2000,J:Biotechnol.,74,5;Sun,2000,Curr.Opin.Mol.Ther.,2,100;Kusser,2000,J.Biotechnol.,74,27;Hermann and Patel,2000,Science,287,820;およびJayasena,1999,Clinical
Chemistry,45,1628を参照)。
さらに別の態様においては,本発明の非ヌクレオチドリンカーには,無塩基ヌクレオチド,ポリエーテル,ポリアミン,ポリアミド,ペプチド,炭水化物,脂質,ポリ炭化水素,または他のポリマー性化合物(例えば,ポリエチレングリコール,例えば約2−約100個のエチレングリコール単位を有するもの)が含まれる。特定の例としては,Seela and Kaiser,Nucleic Acids Res.1990,75:6353およびNucleic Acids Res.1987,75:3113;Cload and Schepartz,J.Am.Chem.Soc.1991,173:6324;Richardson and Schepartz,J.Am.Chem.Soc.1991,773:5109;Ma et al.,Nucleic Acids Res.1993,27:2585およびBiochemistry 1993,32:1751;Durand et al.,Nucleic Acids Res.1990,75:6353;McCurdy et al.,Nucleosides&Nucleotides 1991,10:287;Jschke et al.,Tetrahedron Lett.1993,34:301;Ono et al.,Biochemistry 1991,30:9914;Arnold et al.,国際公開WO89/02439;Usman et al.,国際公開WO95/06731;Dudycz et al.,国際公開WO95/11910およびFerentz and Verdine,J.Am.Chem.Soc.1991,773:4000(す
べて本明細書の一部としてここに引用する)に記載されるものが挙げられる。"非ヌクレ
オチド"はさらに,1またはそれ以上のヌクレオチドユニットの代わりに糖および/また
はリン酸置換のいずれかにより核酸鎖中に取り込むことができ,残りの塩基がその酵素活性を発揮することを可能とする任意の基または化合物を意味する。基または化合物は,般に認識されているヌクレオチド塩基,例えばアデノシン,グアニン,シトシン,ウラシルまたはチミンを,例えば糖のC1位に含まない場合,無塩基でありうる。
1つの態様においては,本発明は,細胞の内部または再構成されたインビトロ系においてRNA干渉(RNAi)を媒介しうる短干渉核酸(siNA)分子を特徴とし,ここで,2つの別々のオリゴヌクレオチドから組み立てられたsiNA分子の一方または両方の鎖はリボヌクレオチドを含まない。siNA中のすべての位置は,siNA分子が細胞におけるRNAi活性を支持する能力が維持される程度で,化学的に修飾されたヌクレオチドおよび/または非ヌクレオチド,例えば式I,II,III,IV,V,VI,またはVIIを有するヌクレオチドまたは非ヌクレオチドまたはそれらの任意の組み合わせを含むことができる。
1つの態様においては,本発明のsiNA分子は,細胞または再構成されたインビトロ系においてRNAi活性を媒介する一本鎖siNA分子であり,ここで,siNA分子は,標的核酸配列に対して相補性を有する一本鎖ポリヌクレオチドを含む。別の態様においては,本発明の一本鎖siNA分子は,5’末端リン酸基を含む。別の態様においては,本発明の一本鎖siNA分子は5’末端リン酸基および3’末端リン酸基(例えば,2’,3’−環状リン酸)を含む。別の態様においては,本発明の一本鎖siNA分子は,約19−約29ヌクレオチドを含む。さらに別の態様においては,本発明の一本鎖siNA分子は,本明細書に記載される1またはそれ以上の化学的に修飾されたヌクレオチドまたは非ヌクレオチドを含む。例えば,細胞中においてsiNA分子がRNAi活性を支持する能力が維持される程度に,siNA分子中のすべての位置で,化学的に修飾されたヌクレオチド,例えば式I−VIIのいずれかを有するヌクレオチドまたはそれらの任意の組み合わせを含むことができる。
1つの態様においては,本発明のsiNA分子は,細胞または再構成されたインビトロ系においてRNAi活性を媒介する一本鎖siNA分子であり,ここで,siNA分子は,標的核酸配列に対する相補性を有する一本鎖ポリヌクレオチドを含み,siNA中に存在する1またはそれ以上のピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),アンチセンス領域中に存在する任意のプリンヌクレオチドは2’−O−メチルプリンヌクレオチドであり(例えば,すべてのプリンヌクレオチドが2’−O−メチルプリンヌクレオチドであるか,あるいは複数のプリンヌクレオチドが2’−O−メチルプリンヌクレオチドである),および末端キャップ修飾,例えば本明細書に記載されるかまたは図10に示される任意の修飾を含み,これは任意にアンチセンス配列の3’末端,5’末端,または3’末端および5’末端の両方に存在してもよく,siNAはさらに任意に,siNA分子の3’末端に約1−約4個(例えば,約1,2,3,または4個)の末端2’−デオキシヌクレオチドを含んでいてもよく,ここで,末端ヌクレオチドはさらに1またはそれ以上(例えば,1,2,3,または4個)のホスホロチオエートヌクレオチド間結合を含むことができ,siNAはさらに任意に末端リン酸基,例えば5’末端リン酸基を含むことができる。
1つの態様においては,本発明のsiNA分子は,細胞または再構成されたインビトロ系においてRNAi活性を媒介する一本鎖siNA分子であり,ここで,siNA分子は
,標的核酸配列に対する相補性を有する一本鎖ポリヌクレオチドを含み,siNA中に存在する1またはそれ以上のピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),およびアンチセンス領域中に存在する任意のプリンヌクレオチドは2’−デオキシプリンヌクレオチドであり(例えば,すべてのプリンヌクレオチドが2’−デオキシプリンヌクレオチドであるかあるいは複数のプリンヌクレオチドが2’−デオキシプリンヌクレオチドである),および末端キャップ修飾,例えば,本明細書に記載されるかまたは図10に示される任意の修飾を含み,これは任意にアンチセンス配列の3’末端,5’末端,または3’末端および5’末端の両方に存在してもよく,siNAはさらに任意にsiNA分子の3’末端に約1−約4個(例えば,約1,2,3,または4個)の末端2’−デオキシヌクレオチドを含んでいてもよく,ここで末端ヌクレオチドはさらに1またはそれ以上(例えば,1,2,3,または4個)のホスホロチオエートヌクレオチド間結合を含むことができ,siNAはさらに任意に,末端リン酸基,例えば5’末端リン酸基を含むことができる。
1つの態様においては,本発明のsiNA分子は,細胞または再構成されたインビトロ系においてRNAi活性を媒介する一本鎖siNA分子であり,ここで,siNA分子は,標的核酸配列に対する相補性を有する一本鎖ポリヌクレオチドを含み,siNA中に存在する1またはそれ以上のピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),アンチセンス領域中に存在する任意のプリンヌクレオチドはロック核酸(LNA)ヌクレオチドであり(例えば,すべてのプリンヌクレオチドがLNAヌクレオチドであるか,あるいは複数のプリンヌクレオチドがLNAヌクレオチドである),および末端キャップ修飾,例えば,本明細書に記載されるかまたは図10に示される任意の修飾を含み,これは任意にアンチセンス配列の3’末端,5’末端,または3’末端および5’末端の両方に存在していてもよく,siNAはさらに任意に,siNA分子の3’末端に約1−約4個(例えば,約1,2,3,または4個)の末端2’−デオキシヌクレオチドを含んでいてもよく,ここで末端ヌクレオチドはさらに1またはそれ以上(例えば,1,2,3,または4個)のホスホロチオエートヌクレオチド間結合を含むことができ,siNAはさらに任意に,末端リン酸基,例えば5’末端リン酸基を含むことができる。
1つの態様においては,本発明のsiNA分子は,細胞または再構成されたインビトロ系においてRNAi活性を媒介する一本鎖siNA分子であり,ここで,siNA分子は,標的核酸配列に対する相補性を有する一本鎖ポリヌクレオチドを含み,siNA中に存在する1またはそれ以上のピリミジンヌクレオチドは2’−デオキシ−2’−フルオロピリミジンヌクレオチドであり(例えば,すべてのピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドであるか,あるいは複数のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドである),およびアンチセンス領域中に存在する任意のプリンヌクレオチドは2’−メトキシエチルプリンヌクレオチドであり(例えば,すべてのプリンヌクレオチドが2’−メトキシエチルプリンヌクレオチドであるか,あるいは複数のプリンヌクレオチドが2’−メトキシエチルプリンヌクレオチドである),および末端キャップ修飾,例えば,本明細書に記載されるかまたは図10に示される任意の修飾を含み,これは任意にアンチセンス配列の3’末端,5’末端,または3’末端および5’末端の両方に存在していてもよく,siNAはさらに任意に,siNA分子の3’末端に約1−約4個(例えば,約1,2,3,または4個)の末端2’−デオキシヌクレオチドを含んでいてもよく,ここで末端ヌクレオチドはさらに1またはそれ以上(例えば,1,2,3,または4個)のホスホロチオエートヌクレオチ
ド間結合を含むことができ,siNAはさらに任意に,末端リン酸基,例えば5’末端リン酸基を含むことができる。
別の態様においては,本発明の一本鎖siNA分子中に存在する任意の修飾ヌクレオチドは,天然に生ずるリボヌクレオチドと類似する特性または特徴を有する修飾ヌクレオチドを含む。例えば,本発明は,ノザンコンフォメーション(例えば,ノザン偽回転(pseudorotation)サイクル(例えば,Saenger,Principles
of Nucleic Acid Structure,Springer−Verlag ed.,1984を参照)を有する修飾ヌクレオチドを含むsiNA分子を特徴とする。このように,本発明の一本鎖siNA分子中に存在する化学的に修飾されたヌクレオチドは,好ましくは,ヌクレアーゼ分解に耐性であり,同時にRNAiを媒介する能力を維持する。
1つの態様においては,本発明は,細胞中においてBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNA鎖の一方はBACE遺伝子のRNAに相補的な配列を含み;そして(b)細胞におけるBACE遺伝子の発現を調節するのに適した条件下でsiNA分子を細胞に導入する,ことを含む。
1つの態様においては,本発明は,細胞中においてBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNA鎖の一方はBACE遺伝子のRNAに相補的な配列を含み,siNAのセンス鎖配列は標的RNAの配列と同一の配列を含み;そして(b)細胞中におけるBACE遺伝子の発現を調節するのに適した条件下でsiNA分子を細胞に導入する,ことを含む。
別の態様においては,本発明は,細胞中において2以上のBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNA鎖の一方はBACE遺伝子のRNAに相補的な配列を含み;そして(b)細胞におけるBACE遺伝子の発現を調節するのに適した条件下でsiNA分子を細胞に導入する,ことを含む。
別の態様においては,本発明は,細胞中において2以上のBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNA鎖の一方はBACE遺伝子のRNAに相補的な配列を含み,siNAのセンス鎖配列は,標的RNAの配列と同一の配列を含み;そして(b)細胞におけるBACE遺伝子の発現を調節するのに適した条件下でsiNA分子を細胞に導入する,ことを含む。
1つの態様においては,本発明は,組織外植片におけるBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNA鎖の一方はBACE遺伝子のRNAに相補的な配列を含み;そして(b)組織外植片におけるBACE遺伝子の発現を調節するのに適した条件下で,siNA分子を特定の生物に由来する組織外植片の細胞に導入する,ことを含む。別の態様においては,この方法はさらに,その生物におけるBACE遺伝子の発現を調節するのに適した条件下で,組織外植片をその組織が由来する生物に戻すかまたは別の生物に導入することを含む。
1つの態様においては,本発明は,組織外植片においてBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修
飾してもよく,siNA鎖の一方はBACE遺伝子のRNAに相補的な配列を含み,siNAのセンス鎖配列は標的RNAの配列と同一の配列を含み;そして(b)組織外植片におけるBACE遺伝子の発現を調節するのに適した条件下で,siNA分子を特定の生物に由来する組織外植片の細胞に導入する,ことを含む。別の態様においては,この方法はさらに,その生物におけるBACE遺伝子の発現を調節するのに適した条件下で,組織外植片をその組織が由来する生物に戻すかまたは別の生物に導入することを含む。
別の態様においては,本発明は,組織外植片において2以上のBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNA鎖の一方はBACE遺伝子のRNAに相補的な配列を含み;そして(b)組織外植片におけるBACE遺伝子の発現を調節するのに適した条件下で,siNA分子を特定の生物に由来する組織外植片の細胞に導入する,ことを含む。別の態様においては,この方法はさらに,その生物におけるBACE遺伝子の発現を調節するのに適した条件下で,組織外植片をその組織が由来する生物に戻すかまたは別の生物に導入することを含む。
1つの態様においては,本発明は,生物においてBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNA鎖の一方はBACE遺伝子のRNAに相補的な配列を含み;そして(b)生物におけるBACE遺伝子の発現を調節するのに適した条件下でsiNA分子を生物に導入する,ことを含む。
別の態様においては,本発明は,生物において2以上のBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNA鎖の一方はBACE遺伝子のRNAに相補的な配列を含み;そして(b)生物におけるBACE遺伝子の発現を調節するのに適した条件下でsiNA分子を生物に導入する,ことを含む。
1つの態様においては,本発明は,細胞内においてBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNAはBACE遺伝子のRNAに対する相補性を有する一本鎖配列を含み;そして(b)細胞におけるBACE遺伝子の発現を調節するのに適した条件下でsiNA分子を細胞に導入する,ことを含む。
別の態様においては,本発明は,細胞内において2以上のBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNAはBACE遺伝子のRNAに対する相補性を有する一本鎖配列を含み;そして(b)細胞におけるBACE遺伝子の発現を調節するのに適した条件下で,siNA分子をインビトロまたはインビボで細胞と接触させる,ことを含む。
1つの態様においては,本発明は,組織外植片においてBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNAはBACE遺伝子のRNAに対する相補性を有する一本鎖配列を含み;そして(b)組織外植片におけるBACE遺伝子の発現を調節するのに適した条件下で,siNA分子を特定の生物に由来する組織外植片の細胞と接触させる,ことを含む。別の態様においては,この方法はさらに,その生物におけるBACE遺伝子の発現を調節するのに適した条件下で,組織外植片をその組織が由来する生物に戻すかまたは別の生物に導入することを含む。
別の態様においては,本発明は,組織外植片において2以上のBACE遺伝子の発現を
調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNAはBACE遺伝子のRNAに対する相補性を有する一本鎖配列を含み;そして(b)組織外植片におけるBACE遺伝子の発現を調節するのに適した条件下で,siNA分子を特定の生物に由来する組織外植片の細胞に導入する,ことを含む。別の態様においては,この方法はさらに,その生物におけるBACE遺伝子の発現を調節するのに適した条件下で,組織外植片をその組織が由来する生物に戻すかまたは別の生物に導入することを含む。
1つの態様においては,本発明は,生物においてBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNAはBACE遺伝子のRNAに対する相補性を有する一本鎖配列を含み;そして(b)生物におけるBACE遺伝子の発現を調節するのに適した条件下でsiNA分子を生物に導入する,ことを含む。
別の態様においては,本発明は,生物において2以上のBACE遺伝子の発現を調節する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNAはBACE遺伝子のRNAに対する相補性を有する一本鎖配列を含み;そして(b)生物におけるBACE遺伝子の発現を調節するのに適した条件下でsiNA分子を生物に導入する,ことを含む。
1つの態様においては,本発明は,生物においてBACE遺伝子の発現を調節する方法を特徴とし,該方法は,生物におけるBACE遺伝子の発現を調節するのに適した条件下で,生物を本発明のsiNA分子と接触させることを含む。
別の態様においては,本発明は,生物において2以上のBACE遺伝子の発現を調節する方法を特徴とし,該方法は,生物におけるBACE遺伝子の発現を調節するのに適した条件下で,生物を1またはそれ以上の本発明のsiNA分子と接触させることを含む。
本発明のsiNA分子は,種々のRNA分子を標的とするRNAiにより標的(BACE)遺伝子の発現が阻害されるよう設計することができる。1つの態様においては,本発明のsiNA分子は,標的遺伝子に対応する種々のRNAを標的とするよう用いられる。そのようなRNAの非限定的例には,メッセンジャーRNA(mRNA),標的遺伝子の選択的RNAスプライシング変種,標的遺伝子の転写後修飾RNA,標的遺伝子のプレ−mRNA,および/またはRNAテンプレートが含まれる。選択的スプライシングにより,適当なエクソンの使用により区別される転写産物のファミリーが生ずる場合には,本発明は,適当なエクソンにより遺伝子発現を阻害して,遺伝子ファミリーメンバーの機能を特異的に阻害するかまたはその間を区別するために用いることができる。例えば,選択的スプライシングされた貫膜ドメインを含む蛋白質を,膜結合型および分泌型の両方の形で発現させることができる。本発明を用いて貫膜ドメインを含むエクソンを標的とすることにより,分泌型の蛋白質に対して,膜結合型の薬学的ターゲティングの機能的重要性を判定することができる。これらのRNA分子を標的とすることに関連する本発明の用途の非限定的例には,治療的医薬用途,医薬の発見用途,分子診断および遺伝子機能用途,および遺伝子マッピング,例えば本発明のsiNA分子を用いる単一ヌクレオチド多型のマッピングが含まれる。そのような用途は,既知の遺伝子配列を用いて,または発現配列タグ(EST)から入手可能な部分配列から実行することができる。
別の態様においては,本発明のsiNA分子は,遺伝子ファミリー,例えばBACEファミリー遺伝子に対応する保存配列を標的とするために用いられる。そのように,多くのBACE標的を標的とするsiNA分子は,増加した治療効果を提供することができる。さらに,siNAは,種々の応用法において遺伝子機能の経路を特性決定するために用い
ることができる。例えば,本発明を用いて,経路における標的遺伝子の活性を阻害して,遺伝子機能分析,mRNA機能分析,または翻訳分析において,特性決定されていない遺伝子の機能を決定することができる。本発明は,医薬開発に向けて,種々の疾病および健康状態に関与する可能性のある標的遺伝子経路を決定するために用いることができる。本発明は,例えば,アルツハイマー病の進行および/または維持に関与する遺伝子発現の経路を理解するために用いることができる。
1つの態様においては,本発明のsiNA分子および/または方法は,Genbank受託番号で表されるRNAをコードする遺伝子,例えば,本明細書においてGenbank受託番号(例えば表Iに示されるGenbank受託番号)で表されるRNA配列をコードするBACE遺伝子の発現を阻害するために用いられる。
1つの態様においては,本発明は,(a)予め決定された複雑性を有するsiNAコンストラクトのライブラリを生成し,そして(b)標的RNA配列中のRNAi標的部位を決定するのに適した条件下で,上述の(a)のsiNAコンストラクトをアッセイする,ことを含む方法を特徴とする。別の態様においては,(a)のsiNA分子は,固定された長さ,例えば,約23ヌクレオチドの長さの鎖を含む。さらに別の態様においては,(a)のsiNA分子は,異なる長さのものであり,例えば,約19−約25(例えば,約19,20,21,22,23,24,または25)ヌクレオチドの長さの鎖を有する。1つの態様においては,アッセイは,本明細書に記載されるような再構成されたインビトロsiNAアッセイを含むことができる。別の態様においては,アッセイは,標的RNAが発現されている細胞培養系を含むことができる。別の態様においては,標的RNAのフラグメントを,例えば,ゲル電気泳動,ノザンブロット分析,またはRNAse保護アッセイにより検出可能なレベルの切断について分析して,標的RNA配列中の最も適当な標的部位を決定する。標的RNA配列は,当該技術分野において知られるように,例えば,クローニングおよび/またはインビトロ系については転写,インビボ系においては細胞発現により,得ることができる。
1つの態様においては,本発明は,(a)予め決定された複雑性,例えば4N(Nは,
siNAコンストラクトの鎖のそれぞれにおいて塩基対形成したヌクレオチドの数を示し,例えば,19塩基対を有する21ヌクレオチドのセンス鎖およびアンチセンス鎖を有するsiNAコンストラクトについては,複雑性は419となる)を有するランダム化されたsiNAコンストラクトのライブラリを生成し;そして(b)標的BACE RNA配列中のRNAi標的部位を決定するのに適した条件下で,上述の(a)のsiNAコンストラクトをアッセイする,の各工程を含む方法を特徴とする。別の態様においては,(a)のsiNA分子は,固定された長さ,例えば約23ヌクレオチドの長さの鎖を含む。さらに別の態様においては,(a)のsiNA分子は異なる長さのものであり,例えば,約19−約25(例えば,約19,20,21,22,23,24,または25)ヌクレオチドの長さの鎖を有する。1つの態様においては,アッセイは,本明細書の実施例7に記載されるような,再構成されたインビトロsiNAアッセイを含むことができる。別の態様においては,アッセイは,標的RNAが発現されている細胞培養系を含むことができる。別の態様においては,BACE RNAのフラグメントを,例えば,ゲル電気泳動,ノザンブロット分析,またはRNAse保護アッセイにより検出可能なレベルの切断について分析して,標的BACE RNA配列中の最も適当な標的部位を決定する。標的BACE
RNA配列は,当該技術分野において知られるように,例えば,クローニングおよび/またはインビトロ系については転写により,インビボ系においては細胞発現により,得ることができる。
別の態様においては,本発明は,:(a)標的遺伝子によりコードされるRNA標的の配列を分析し;(b)(a)のRNAの1またはそれ以上の領域に相補的な配列を有する
1またはそれ以上のsiNA分子の組を合成し;そして(c)標的RNA配列中のRNAi標的を決定するのに適した条件下で(b)のsiNA分子をアッセイする,の各工程を含む方法を特徴とする。1つの態様においては,(b)のsiNA分子は,固定された長さ,例えば約23ヌクレオチドの長さの鎖を有する。別の態様においては,(b)のsiNA分子は,異なる長さ,例えば,約19−約25(例えば,約19,20,21,22,23,24,または25)ヌクレオチドの長さの鎖を有する。1つの態様においては,アッセイは,本明細書に記載されるような再構成されたインビトロsiNAアッセイを含んでいてもよい。別の態様においては,アッセイは,標的RNAが発現されている細胞培養系を含むことができる。標的RNAのフラグメントを,検出可能なレベルの切断について,例えばゲル電気泳動,ノザンブロット分析,またはRNAse保護アッセイにより分析して,標的RNA配列中の最も適当な標的部位を決定する。標的RNA配列は,当該技術分野において知られるようにして,例えば,クローニングおよび/またはインビトロ系については転写により,インビボ系においては発現により,得ることができる。
"標的部位"とは,アンチセンス領域中に標的配列に相補的な配列を含むsiNAコンストラクトにより媒介される切断の"標的とされる",標的RNA中の配列を意味する。
"検出可能なレベルの切断"とは,標的RNAのランダム分解から生成するRNAのバックグラウンドから切断産物を識別するのに十分な程度の標的RNAの切断(および切断産物RNAの形成)を意味する。ほとんどの検出方法について,標的RNAの1−5%から切断産物が生成すれば,バックグラウンドから検出するのに充分である。
1つの態様においては,本発明は,化学的に修飾されていてもよい本発明のsiNA分子を薬学的に許容しうる担体または希釈剤中に含む組成物を特徴とする。別の態様においては,本発明は,1またはそれ以上の遺伝子を標的とし,化学的に修飾されていてもよい本発明のsiNA分子を薬学的に許容しうる担体または希釈剤中に含む医薬組成物を特徴とする。別の態様においては,本発明は,被験者において疾病または健康状態を治療または予防する方法を特徴とし,該方法は,被験者における疾病または健康状態の治療または予防に適した条件下で,被験者に本発明の組成物を単独でまたは1またはそれ以上の他の治療用化合物と併用して投与することを含む。さらに別の態様においては,本発明は,被験者において組織拒絶を低減または予防する方法を特徴とし,該方法は,被験者における組織拒絶の低減または予防に適した条件下で被験者に本発明の組成物を投与することを含む。
別の態様においては,本発明は,BACE遺伝子標的を評価する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾してもよく,siNA鎖の一方はBACE標的遺伝子のRNAに相補的な配列を含み;(b)細胞,組織,または生物においてBACE標的遺伝子の発現を調節するのに適した条件下で,siNA分子を細胞,組織,または生物に導入し;そして(c)細胞,組織,または生物における表現型変化をアッセイすることにより,遺伝子の機能を決定する,ことを含む。
別の態様においては,本発明は,BACE標的を評価する方法を特徴とし,該方法は,(a)本発明のsiNA分子を合成し,これは化学的に修飾されていてもよく,siNA鎖の一方はBACE標的遺伝子のRNAに相補的な配列を含み;(b)生物学的システムにおけるBACE標的遺伝子の発現を調節するのに適した条件下で,siNA分子を生物学的システムに導入し;そして(c)生物学的システムにおける表現型の変化をアッセイすることにより,遺伝子の機能を決定する,ことを含む。
"生物学的システム"とは,生物起源,例えば,限定されないが,ヒト,動物,植物,昆虫,細菌,ウイルスまたは他の起源からの,精製されたまたは精製されていない形の物質
を意味し,ここで,システムはRNAi活性に必要な成分を含む。"生物学的システム"との用語には,例えば,細胞,組織,または生物,またはそれらの抽出物が含まれる。生物学的システムとの用語にはまた,インビトロの設定で用いることができる再構成されたRNAi系が含まれる。
"表現型変化"とは,本発明の核酸分子(例えばsiNA)との接触または処理に応答して生ずる任意の検出可能な細胞の変化を意味する。そのような検出可能な変化には,限定されないが,形状,サイズ,増殖,運動性,蛋白質発現またはRNA発現,または当該技術分野において知られる方法によりアッセイすることができる他の物理学的または化学的変化が含まれる。検出可能な変化にはまた,グリーン蛍光蛋白質(GFP)等のレポーター遺伝子/分子,または発現された蛋白質を同定するために用いられる種々のタグ,またはアッセイすることができる任意の他の細胞成分の発現が含まれる。
1つの態様においては,本発明は,化学的に修飾されていてもよい本発明のsiNA分子を含有するキットを特徴とし,これは細胞,組織,または生物におけるBACE標的遺伝子の発現を調節するために用いることができる。別の態様においては,本発明は,化学的に修飾されていてもよい2以上の本発明のsiNA分子を含有するキットを特徴とし,これは細胞,組織,または生物において2以上のBACE標的遺伝子の発現を調節するために用いることができる。
1つの態様においては,本発明は,化学的に修飾されていてもよい本発明の1またはそれ以上のsiNA分子を含有する細胞を特徴とする。別の態様においては,本発明のsiNA分子を含有する細胞は哺乳動物細胞である。さらに別の態様においては,本発明のsiNA分子を含有する細胞はヒト細胞である。
1つの態様においては,化学的に修飾されていてもよい本発明のsiNA分子の合成は,(a)siNA分子の2つの相補的鎖を合成し;(b)二本鎖siNA分子を得るのに適した条件下で2つの相補的鎖を一緒にアニーリングさせる,ことを含む。別の態様においては,siNA分子の2つの相補的鎖の合成は,固相オリゴヌクレオチド合成により行う。さらに別の態様においては,siNA分子の2つの相補的鎖の合成は,固相タンデムオリゴヌクレオチド合成により行う。
1つの態様においては,本発明は,siNAデュープレックス分子を合成する方法を特徴とし,該方法は,(a)siNA分子の第1のオリゴヌクレオチド配列鎖を合成し,ここで,第1のオリゴヌクレオチド配列鎖はsiNAの第2のオリゴヌクレオチド配列鎖の合成の足場として用いることができる切断可能なリンカー分子を含み;(b)第1のオリゴヌクレオチド配列鎖の足場上でsiNAの第2のオリゴヌクレオチド配列鎖を合成し,ここで,第2のオリゴヌクレオチド配列鎖はさらに,siNAデュープレックスを精製するために用いることができる化学成分を含み;(c)2つのsiNAオリゴヌクレオチド鎖がハイブリダイズして安定なデュープレックスを形成するのに適した条件下で(a)のリンカー分子を切断し;そして(d)第2のオリゴヌクレオチド配列鎖の化学成分を利用してsiNAデュープレックスを精製する,の各工程を含む。1つの態様においては,上述の(c)におけるリンカー分子の切断は,オリゴヌクレオチドの脱保護の間に,例えば,メチルアミン等のアルキルアミン塩基を用いて加水分解条件下で行う。1つの態様においては,合成の方法は,調整多孔ガラス(CPG)またはポリスチレン等の固体支持体上での固相合成を含み,ここで,(a)の第1の配列は,固体支持体を足場として用いてスクシニルリンカー等の切断可能なリンカー上で合成される。(a)において第2の鎖を合成するための足場として用いられる切断可能なリンカーは,固体支持体誘導化リンカーと(a)の切断可能なリンカーの切断が同時に行われるように,固体支持体誘導化リンカーと同様の反応性を有することができる。別の態様においては,結合したオリゴヌクレオチ
ド配列の単離に用いることができる(b)の化学成分は,ジメトキシトリチル基等のトリチル基を含み,これは本明細書に記載されるトリチルオン合成戦略において利用することができる。さらに別の態様においては,ジメトキシトリチル基等の化学成分は,精製の間に,例えば酸性条件を用いて除去する。
さらに別の態様においては,siNA合成の方法は溶液相合成またはハイブリッド相合成であり,ここでは,第1の配列に結合され,第2の配列の合成の足場として作用する切断可能なリンカーを用いて,siNAデュープレックスの両方の鎖をタンデムで合成する。別々のsiNA配列鎖がハイブリダイズするのに適した条件下でリンカーを切断することにより,二本鎖siNA分子が形成される。
別の態様においては,本発明は,siNAデュープレックス分子を合成する方法を特徴とし,該方法は,(a)siNA分子の一方のオリゴヌクレオチド配列鎖を合成し,ここで,配列は他方のオリゴヌクレオチド配列の合成の足場として用いることができる切断可能なリンカー分子を含み;(b)第1の配列鎖に対して相補性を有する第2のオリゴヌクレオチド配列を(a)の足場上で合成し,ここで,第2の配列は二本鎖siNA分子の他方の鎖を含み,かつ,第2の配列はさらに,結合したオリゴヌクレオチド配列を単離するために用いることができる化学成分を含み;(c)第2のオリゴヌクレオチド配列鎖の化学成分を利用して,切断可能なリンカーにより接続された両方のsiNAオリゴヌクレオチド鎖を含む全長配列を単離するのに適した条件下で,かつ,2つのsiNAオリゴヌクレオチド鎖がハイブリダイズして安定なデュープレックスを形成するのに適した条件下で,(b)の生成物を精製する,の各工程を含む。1つの態様においては,上述の(c)におけるリンカー分子の切断は,オリゴヌクレオチドの脱保護の間に,例えば加水分解条件下で行う。別の態様においては,上述の(c)におけるリンカー分子の切断は,オリゴヌクレオチドの脱保護の後に行う。別の態様においては,合成の方法は,調整多孔ガラス(CPG)またはポリスチレン等の固体支持体上での固相合成を含み,ここで,(a)の第1の配列は,スクシニルリンカー等の切断可能なリンカー上で,固体支持体を足場として用いて合成する。(a)において第2の鎖を合成するための足場として用いられる切断可能なリンカーは,固体支持体誘導化リンカーおよび(a)の切断可能なリンカーが同時にまたは別々に切断されるように,固体支持体誘導化リンカーと同様の反応性または異なる反応性を有することができる。1つの態様においては,結合したオリゴヌクレオチド配列を単離するために用いることができる(b)の化学成分は,トリチル基,例えばジメトキシトリチル基を含む。
別の態様においては,本発明は,1回の合成プロセスで二本鎖siNA分子を作製する方法を特徴とし,該方法は,(a)第1の配列および第2の配列を有するオリゴヌクレオチドを合成し,ここで,第1の配列は第2の配列に相補的であり,第1のオリゴヌクレオチド配列は切断可能なリンカーを介して第2の配列に連結されており,かつ,第2の配列を有するオリゴヌクレオチドには末端5’−保護基,例えば,5’−O−ジメトキシトリチル基(5’−O−DMT)が残存しており;(b)オリゴヌクレオチドを脱保護し,このことにより脱保護によって2つのオリゴヌクレオチド配列を結合しているリンカーが切断され;そして(c)二本鎖siNA分子を単離するのに適した条件下で,例えば本明細書に記載されるトリチル−オン合成戦略を用いて,(b)の生成物を精製する,の工程を含む。
別の態様においては,本発明のsiNA分子の合成の方法は,Scaringeらの米国特許5,889,136;6,008,400;および6,111,086(その全体を本明細書の一部としてここに引用する)の教示を含む。
1つの態様においては,本発明はBACEに対するRNAiを媒介するsiNAコンス
トラクトを特徴とし,siNAコンストラクトは,siNAコンストラクトのヌクレアーゼ耐性を増加させる1またはそれ以上の化学的修飾,例えば,式I−VIIのいずれかまたはそれらの任意の組み合わせを有する1またはそれ以上の化学的修飾を含む。
別の態様においては,本発明は,ヌクレアーゼ耐性が増加しているsiNA分子を生成する方法を特徴とし,該方法は,(a)式I−VIIのいずれかまたはそれらの任意の組み合わせを有するヌクレオチドをsiNA分子に導入し,そして(b)ヌクレアーゼ耐性が増加しているsiNA分子を単離するのに適した条件下で工程(a)のsiNA分子をアッセイする,ことを含む。
1つの態様においては,本発明はBACEに対するRNAiを媒介するsiNAコンストラクトを特徴とし,siNAコンストラクトは,siNAコンストラクトのセンス鎖とアンチセンス鎖との間の結合親和性を調節する,1またはそれ以上の本明細書に記載される化学的修飾を含む。
別の態様においては,本発明は,siNA分子のセンス鎖とアンチセンス鎖との間の結合親和性が増加しているsiNA分子を生成する方法を特徴とし,該方法は,(a)式I−VIIのいずれかまたはそれらの任意の組み合わせを有するヌクレオチドをsiNA分子に導入し,そして(b)siNA分子のセンス鎖とアンチセンス鎖との間の結合親和性が増加しているsiNA分子を単離するのに適した条件下で工程(a)のsiNA分子をアッセイする,ことを含む。
1つの態様においては,本発明は,BACEに対するRNAiを媒介するsiNAコンストラクトを特徴とし,siNAコンストラクトは,siNAコンストラクトのアンチセンス鎖と細胞中の相補的標的RNA配列との間の結合親和性を調節する本明細書に記載される1またはそれ以上の化学的修飾を含む。
1つの態様においては,本発明は,BACEに対するRNAiを媒介するsiNAコンストラクトを特徴とし,siNAコンストラクトは,siNAコンストラクトのアンチセンス鎖と細胞中の相補的標的DNA配列との間の結合親和性を調節する本明細書に記載される1またはそれ以上の化学的修飾を含む。
別の態様においては,本発明は,siNA分子のアンチセンス鎖と相補的標的RNA配列との間の結合親和性が増加しているsiNA分子を生成する方法を特徴とし,該方法は,(a)式I−VIIのいずれかまたはそれらの任意の組み合わせを有するヌクレオチドをsiNA分子に導入し,そして(b)siNA分子のアンチセンス鎖と相補的標的RNA配列との間の結合親和性が増加しているsiNA分子を同定するのに適した条件下で工程(a)のsiNA分子をアッセイする,ことを含む。
別の態様においては,本発明は,siNA分子のアンチセンス鎖と相補的標的DNA配列との間の結合親和性が増加しているsiNA分子を生成する方法を特徴とし,該方法は,(a)式I−VIIのいずれかまたはそれらの任意の組み合わせを有するヌクレオチドをsiNA分子に導入し,そして(b)siNA分子のアンチセンス鎖と相補的標的DNA配列との間の結合親和性が増加しているsiNA分子を単離するのに適した条件下で,工程(a)のsiNA分子をアッセイする,ことを含む。
1つの態様においては,本発明は,BACEに対するRNAiを媒介するsiNAコンストラクトを特徴とし,siNAコンストラクトは,化学的に修飾されたsiNAコンストラクトに対する配列ホモロジーを有する追加の内因性siNA分子を生成しうる細胞性ポリメラーゼのポリメラーゼ活性を調節する,本明細書に記載される1またはそれ以上の
化学的修飾を含む。
別の態様においては,本発明は,化学的に修飾されたsiNA分子に対して配列ホモロジーを有する追加の内因性siNA分子を生成しうる細胞性ポリメラーゼのポリメラーゼ活性の増加を媒介することができるsiNA分子を生成する方法を特徴とし,該方法は,(a)式I−VIIのいずれかまたはそれらの任意の組み合わせを有するヌクレオチドをsiNA分子に導入し,そして(b)化学的に修飾されたsiNA分子に対して配列ホモロジーを有する追加の内因性siNA分子を生成しうる細胞性ポリメラーゼのポリメラーゼ活性の増加を媒介することができるsiNA分子を単離するのに適した条件下で,工程(a)のsiNA分子をアッセイする,ことを含む。
1つの態様においては,本発明は,細胞においてBACEに対するRNAiを媒介する化学的に修飾されたsiNAコンストラクトを特徴とし,ここで,化学的修飾は,そのようなsiNAコンストラクトにより媒介されるRNAiの効率を低下させるような様式で,siNAと標的RNA分子,DNA分子および/または蛋白質またはRNAiに必須の他の因子との相互作用に有意に影響を与えない。
別の態様においては,本発明は,BACEに対する改良されたRNAi活性を有するsiNA分子を生成する方法を特徴とし,該方法は,(a)式I−VIIのいずれかまたはそれらの任意の組み合わせを有するヌクレオチドをsiNA分子に導入し,そして(b)改良されたRNAi活性を有するsiNA分子を単離するのに適した条件下で,工程(a)のsiNA分子をアッセイする,ことを含む。
さらに別の態様においては,本発明は,BACE標的RNAに対する改良されたRNAi活性を有するsiNA分子を生成する方法を特徴とし,該方法は,(a)式I−VIIのいずれかまたはそれらの任意の組み合わせを有するヌクレオチドをsiNA分子に導入し,そして(b)標的RNAに対する改良されたRNAi活性を有するsiNA分子を単離するのに適した条件下で,工程(a)のsiNA分子をアッセイする,ことを含む。
さらに別の態様においては,本発明は,BACE標的DNAに対する改良されたRNAi活性を有するsiNA分子を生成する方法を特徴とし,該方法は,(a)式I−VIIのいずれかまたはそれらの任意の組み合わせを有するヌクレオチドをsiNA分子に導入し,そして(b)標的DNAに対する改良されたRNAi活性を有するsiNA分子を単離するのに適した条件下で,工程(a)のsiNA分子をアッセイする,ことを含む。
1つの態様においては,本発明は,BACEに対するRNAiを媒介するsiNAコンストラクトを特徴とし,ここで,siNAコンストラクトは,siNAコンストラクトの細胞取り込みを調節する本明細書に記載される1またはそれ以上の化学的修飾を含む。
別の態様においては,本発明は,改良された細胞取り込みを有する,BACEに対するsiNA分子を生成する方法を特徴とし,該方法は(a)式I−VIIのいずれかまたはそれらの任意の組み合わせを有するヌクレオチドをsiNA分子に導入し,そして(b)改良された細胞取り込みを有するsiNA分子を単離するのに適した条件下で,工程(a)のsiNA分子をアッセイする,ことを含む。
1つの態様においては,本発明は,BACEに対するRNAiを媒介するsiNAコンストラクトを特徴とし,ここで,siNAコンストラクトは,例えば,siNAコンストラクトの薬物動態学を改良するポリエチレングリコールまたは同等のコンジュゲート等のポリマー性コンジュゲートを結合させることにより,またはインビボで特定の組織のタイプまたは細胞のタイプにターゲティングするコンジュゲートを結合させることにより,s
iNAコンストラクトの生物利用性を増加させる,本明細書に記載される1またはそれ以上の化学的修飾を含む。そのようなコンジュゲートの非限定的例は,Vargeese et al.,米国特許出願10/201,394(本明細書の一部としてここに引用する)に記載されている。
1つの態様においては,本発明は,改良された生物利用性を有する本発明のsiNA分子を生成する方法を特徴とし,該方法は,(a)コンジュゲートをsiNA分子の構造中に導入し,そして(b)改良された生物利用性を有するsiNA分子を単離するのに適した条件下で,工程(a)のsiNA分子をアッセイする,ことを含む。そのようなコンジュゲートには,細胞レセプターのリガンド,例えば,天然に生ずる蛋白質リガンドに由来するペプチド;蛋白質局在化配列,例えば細胞ZIPコード配列;抗体;核酸アプタマー;ビタミンおよび他の補因子,例えば葉酸およびN−アセチルガラクトースアミン;ポリマー,例えばポリエチレングリコール(PEG);リン脂質;ポリアミン,例えばスペルミンまたはスペルミジン;および他のものが含まれる。
別の態様においては,本発明は,改良された生物利用性を有する本発明のsiNA分子を生成する方法を特徴とし,該方法は,(a)賦形剤処方をsiNA分子に導入し,そして(b)改良された生物利用性を有するsiNA分子を単離するのに適した条件下で,工程(a)のsiNA分子をアッセイする,ことを含む。そのような賦形剤には,ポリマー,例えばシクロデキストリン,脂質,カチオン性脂質,ポリアミン,リン脂質,およびその他のものが含まれる。
別の態様においては,本発明は,改良された生物利用性を有する本発明のsiNA分子を生成する方法を特徴とし,該方法は,(a)式I−VIIのいずれかまたはそれらの任意の組み合わせを有するヌクレオチドをsiNA分子に導入し,そして(b)改良された生物利用性を有するsiNA分子を単離するのに適した条件下で工程(a)のsiNA分子をアッセイする,ことを含む。
別の態様においては,本発明のsiNA化合物にポリエチレングリコール(PEG)を共有結合的に結合させることができる。結合したPEGは,任意の分子量のものであってよく,好ましくは約2,000−約50,000ダルトン(Da)である。
本発明は,単独で,またはインビトロまたはインビボでRNAを試験サンプルおよび/または被験者に導入するのに必要な試薬の少なくとも1つを有するキットの成分として,用いることができる。例えば,キットの好ましい成分には,siNAおよびsiNAの導入を促進するベヒクルが含まれる。そのようなキットはまた,キットのユーザが本発明を実施できるようにするための指針を含むことができる。
本明細書において用いる場合,"短干渉核酸","siNA","短干渉RNA","siR
NA","短干渉核酸分子","短干渉オリゴヌクレオチド分子",または"化学的に修飾された短干渉核酸分子"との用語は,配列特異的様式でRNA干渉("RNAi")または遺伝
子サイレンシングを媒介しうる任意の核酸分子を表す(例えば,Bass,2001,Nature,411,428−429;Elbashir et al.,2001,Nature,411,494−498;およびKreutzer et al.,国際公開WO00/44895;Zernicka−Goetz et al.,国際公開WO01/36646;Fire,国際公開WO99/32619;Plaetinck et al.,国際公開WO00/01846;Mello and Fire,国際公開WO01/29058;Deschamps−Depaillette,国際公開WO99/07409;およびLi et al.,国際公開WO00/44914;Allshire,2002,Science,297,1818−1819;Volpe et
al.,2002,Science,297,1833−1837;Jenuwein,2002,Science,297,2215−2218;およびHall et al.,2002,Science,297,2232−2237;Hutvagner and Zamore,2002,Science,297,2056−60;McManus et al.,2002,RNA,8,842−850;Reinhart et al.,2002,Gene&Dev.,16,1616−1626;およびReinhart&Bartel,2002,Science,297,1831を参照)。本発明のsiNA分子の非限定的例は,図4−6および本明細書の表IIおよびIIIに示される。例えば,siNAは,自己相補的なセンス領域およびアンチセンス領域を含む二本鎖ポリヌクレオチド分子であってもよく,ここで,アンチセンス領域は標的核酸分子またはその一部中のヌクレオチド配列に相補的なヌクレオチド配列を含み,センス領域は標的核酸配列またはその一部に対応するヌクレオチド配列を有する。siNAは2つの別々のオリゴヌクレオチドから組み立てることができ,ここで一方の鎖はセンス鎖であり,他方はアンチセンス鎖であり,アンチセンス鎖およびセンス鎖は自己相補的であり(すなわち,各鎖は,他方の鎖中のヌクレオチド配列に相補的なヌクレオチド配列を含む);アンチセンス鎖は標的核酸分子またはその一部中のヌクレオチド配列に相補的なヌクレオチド配列を含み,センス鎖は標的核酸配列またはその一部に対応するヌクレオチド配列を含む。あるいは,siNAは単一のオリゴヌクレオチドから組み立ててもよく,ここで,siNAの自己相補的センス領域およびアンチセンス領域は,核酸系または非核酸系のリンカーにより連結されている。siNAは,自己相補的センス領域およびアンチセンス領域を有するヘアピン二次構造を有するポリヌクレオチドであってもよく,ここで,アンチセンス領域は別の標的核酸分子またはその一部中のヌクレオチド配列に相補的なヌクレオチド配列を含み,センス領域は,標的核酸配列またはその一部に対応するヌクレオチド配列を有する。siNAは2またはそれ以上のループ構造および自己相補的センス領域およびアンチセンス領域を含むステムを有する環状一本鎖ポリヌクレオチドであってもよく,ここで,アンチセンス領域は標的核酸分子またはその一部中のヌクレオチド配列に相補的なヌクレオチド配列を含み,センス領域は標的核酸配列またはその一部に対応するヌクレオチド配列を有し,環状ポリヌクレオチドは,インビボまたはインビトロでプロセシングされて,RNAiを媒介しうる活性なsiNA分子を生ずることができる。siNAはまた,標的核酸分子またはその一部中のヌクレオチド配列に相補的なヌクレオチド配列を有する一本鎖ポリヌクレオチドを含んでいてもよく(例えば,そのようなsiNA分子がsiNA分子中に標的核酸配列またはその一部に対応するヌクレオチド配列の存在を必要としない場合),ここで,一本鎖ポリヌクレオチドはさらに末端リン酸基,例えば5’−リン酸(例えば,Martinez et al.,2002,Cell.,110,563−574およびSchwarz eta l.,2002,Molecular Cell,10,537−568を参照),または5’,3’−二リン酸を含んでいてもよい。ある態様においては,本発明のsiNA分子は,標的遺伝子のヌクレオチド配列に相補的なヌクレオチド配列を含む。別の態様においては,本発明のsiNA分子は,標的遺伝子の発現の阻害が引き起こされるように,標的遺伝子のヌクレオチド配列と相互作用する。本明細書において用いる場合,siNA分子はRNAのみを含む分子に限定される必要はなく,化学的に修飾されたヌクレオチドおよび非ヌクレオチドも包含する。ある態様においては,本発明の短干渉核酸分子は2’−ヒドロキシ(2’−OH)含有ヌクレオチドを欠失している。本出願人は,ある態様において,RNAiを媒介するために2’−ヒドロキシ基を有するヌクレオチドの存在を必要としない短干渉核酸を記載する。すなわち,本発明の短干渉核酸分子は,任意にリボヌクレオチド(例えば,2’−OH基を有するヌクレオチド)を含まなくてもよい。しかし,RNAiを支持するためにsiNA分子中にリボヌクレオチドの存在を必要としないそのようなsiNA分子は,2’−OH基を有する1またはそれ以上のヌクレオチドを含む,結合したリンカーまたは他の結合しているかまたは会合している基,成分,または鎖を有することができる。任意に,siNA分子は,ヌクレオチド位置の約5,10,20,30,40,または50%にリボヌクレオチドを含
むことができる。本発明の修飾短干渉核酸分子はまた,短干渉修飾オリゴヌクレオチド"
siMON"と称される。本明細書において用いる場合,siNAとの用語は,配列特異
的RNAiを媒介しうる核酸分子を記述するために用いられる他の用語,例えば,短干渉RNA(siRNA),二本鎖RNA(dsRNA),マイクロRNA(miRNA),短ヘアピンRNA(shRNA),短干渉オリゴヌクレオチド,短干渉核酸,短干渉修飾オリゴヌクレオチド,化学的に修飾されたsiRNA,転写後遺伝子サイレンシングRNA(ptgsRNA),および他のものと同等であることを意味する。さらに,本明細書において用いる場合,RNAiとの用語は,配列特異的RNA干渉を記述する他の用語,例えば転写後遺伝子サイレンシング,または後成遺伝学(epigenetics)と同等であることを意味する。例えば,本発明のsiNA分子を用いて,転写後レベルまたは転写前レベルの両方で後成的に遺伝子をサイレンシングさせることができる。非限定的例においては,本発明のsiNA分子による遺伝子発現の後成的制御は,クロマチン構造のsiNA媒介性修飾により生じて遺伝子発現を変化させることができる(例えば,Allshire,2002,Science,297,1818−1819;Volpe et al.,2002,Science,297,1833−1837;Jenuwein,2002,Science,297,2215−2218;およびHall et al.,2002,Science,297,2232−2237を参照)。
"調節する"とは,遺伝子の発現,または1またはそれ以上の蛋白質または蛋白質サブユニットをコードするRNA分子または同等のRNA分子のレベル,または蛋白質または蛋白質サブユニットの1またはそれ以上の活性が,発現,レベル,または活性が,調節剤の非存在下で観察されるより高いかまたは低いように,アップレギュレートまたはダウンレギュレートされることを意味する。例えば,"調節する"との用語は,"阻害する"ことを意味しうるが,"調節する"との用語の使用はこの定義には限定されない。
"阻害する"とは,遺伝子発現産物の活性または1またはそれ以上の遺伝子産物をコードするRNAまたは同等のRNAのレベルが,本発明の核酸分子の非存在下において観察されるレベルより減少することを意味する。1つの態様においては,siNA分子による阻害は,好ましくは,RNAi応答を媒介することができない不活性または減弱化分子の存在下で観察されるレベルより低い。別の態様においては,本発明のsiNA分子による遺伝子発現の阻害は,siNA分子の存在下において,存在しない場合よりも大きい。
"遺伝子"または"標的遺伝子"とは,RNAをコードする核酸を意味し,例えば,限定されないが,ポリペプチドをコードする構造遺伝子などの核酸配列が含まれる。標的遺伝子は,細胞に由来する遺伝子,内因性遺伝子,トランスジン,または外来遺伝子,例えば,病原体(例えばウイルス)の感染後に細胞中に存在する病原体の遺伝子でありうる。標的遺伝子を含有する細胞は,任意の生物,例えば,植物,動物,原生動物,ウイルス,細菌または真菌に由来するかその中に含まれうる。植物の非限定的例には,単子葉植物,双子葉植物,または裸子植物が含まれる。動物の非限定的例には脊椎動物または無脊椎動物が含まれる。真菌の非限定的例には糸状菌または酵母が含まれる。
本明細書において用いる場合,"BACE"または"ベータセクレターゼ"とは,ベータ−セクレターゼ活性を有する任意の蛋白質,ペプチド,またはポリペプチド,例えばベータ−アミロイドの生成に関与するものを意味する。BACEとの用語はまた,BACE蛋白質をコードするヌクレオチド配列を表す。
本明細書において用いる場合,"APP"または"アミロイド前駆体蛋白質"とは,プロセシングされてベータ−アミロイドを生成する任意の蛋白質,ペプチド,またはポリペプチドを意味する。APPとの用語はまた,アミロイド前駆体蛋白質をコードするヌクレオチド配列を表す。
本明細書において用いる場合,"プレセニリン"または"PS",例えば,"PS−1"または"PS−2"とは,ガンマセクレターゼ活性を有する,例えばβ−アミロイドの生成に関与する,任意の蛋白質,ペプチド,またはポリペプチドを意味する。プレセニリンとの用語はまた,プレセニリン蛋白質,例えば,PS−1またはPS−2をコードするヌクレオチド配列を表す。
本明細書において用いる場合,"PIN−1"とは,ペプチジル−プロリルシス/トランスイソメラーゼ活性を有する,例えば,神経細線維もつれの発達に関与する,任意の蛋白質,ペプチド,またはポリペプチドを意味する。PIN−1との用語はまた,PIN−1蛋白質をコードするヌクレオチド配列を表す。
"高度に保存された配列領域"とは,標的遺伝子中の1またはそれ以上の領域のヌクレオチド配列が,1つの世代と他の世代とで,または1つの生物学的システムと他の生物学的システムとで有意に相違しないことを意味する。
"センス領域"とは,siNA分子のアンチセンス領域に対する相補性を有する,siNA分子のヌクレオチド配列を意味する。さらに,siNA分子のセンス領域は,標的核酸配列とホモロジーを有する核酸配列を含むことができる。
"アンチセンス領域"とは,標的核酸配列に対する相補性を有する,siNA分子のヌクレオチド配列を意味する。さらに,siNA分子のアンチセンス領域は,siNA分子のセンス領域に対する相補性を有する核酸配列を任意に含むことができる。
"標的核酸"とは,その発現または活性が調節されるべき任意の核酸配列を意味する。標的核酸はDNAまたはRNAでありうる。
"相補性"とは,核酸が,伝統的なワトソン−クリックまたは他の非伝統的なタイプのいずれかにより,別の核酸配列と水素結合を形成しうることを意味する。本発明の核酸分子に関して,核酸分子とその相補的配列との結合自由エネルギーは,核酸の適切な機能,例えば,RNAi活性を進行させるのに十分なものである。核酸分子についての結合自由エネルギーの決定は当該技術分野においてよく知られている(例えば,Turner et
al.,1987,CSH Symp.Quant.Biol.LII pp.123−133;Frier et al,1986,Proc.Nat.Acad.Sci.USA 83:9373−9377;Turner et al.,1987,J.Am.Chem.Soc.109:3783−3785を参照)。相補性のパーセンテージは,核酸分子中の,第2の核酸配列と水素結合(例えば,ワトソン−クリック塩基対形成)を形成しうる連続する残基のパーセンテージを示す(例えば,10塩基中の5,6,7.8,9,10塩基は,50%,60%,70%,80%,90%,および100%の相補性である)。"完全な相補性"とは,核酸配列の連続する残基がすべて第2の核酸配列中の同じ数の連続する残基と水素結合するであろうことを意味する。
本発明のsiRNA分子は,種々の病原性の神経変性性適応症および健康状態,例えば,アルツハイマー病,痴呆,発作(CVA),および細胞または組織におけるBACEのレベルに関連する他のいずれかの疾病または健康状態を,単独でまたは他の療法との組み合わせで治療する新規な治療法である。BACEの発現(特にBACEのRNAレベル)の低減,したがってそれぞれの蛋白質のレベルの低減は,疾病または健康状態の症状をある程度軽減させる。
本発明の1つの態様においては,本発明のsiNA分子の各配列は,独立して,約18
−約24ヌクレオチドの長さであり,特定の態様においては,約18,19,20,21,22,23,または24ヌクレオチドの長さである。別の態様においては,本発明のsiNAデュープレックスは,独立して,約17−約23(例えば,約17,18,19,20,21,22または23)塩基対を含む。さらに別の態様においては,ヘアピンまたは環状構造を含む本発明のsiNA分子は,約35−約55(例えば,約35,40,45,50または55)ヌクレオチドの長さであるか,または約38−約44(例えば,38,39,40,41,42,43または44)ヌクレオチドの長さであり,約16−約22(例えば,約16,17,18,19,20,21または22)塩基対を含む。本発明の例示的siNA分子は,表IIおよびIIIおよび図4および5に示される。本発明の例示的合成siNA分子は,表IIIおよび/または図4−5に示される。
本明細書において用いる場合,"細胞"は,その通常の生物学的意味で用いられ,多細胞生物全体を指さず,特にヒトを指さない。細胞は生物中で,例えば,鳥類,植物および哺乳動物,例えばヒト,ウシ,ヤギ,無尾サル,有尾サル,ブタ,イヌおよびネコ中で存在することができる。細胞は,原核生物(例えば細菌細胞)または真核生物(例えば哺乳動物または植物細胞)であってもよい。細胞は体細胞起源でも生殖細胞系起源でもよく,全能細胞でも多能性細胞でもよく,分裂していても分裂していなくてもよい。細胞はまた,配偶子または胚,幹細胞,または完全に分化した細胞に由来するか,またはこれらを含むものであってもよい。
本発明のsiNA分子は,直接加えてもよく,またはカチオン性脂質と複合体化して,リポソーム中に封入して,または他の方法により,標的細胞または組織にデリバリーすることができる。核酸または核酸複合体は,関連する組織にエクスビボで,または注射,注入ポンプまたはステントを用いてインビボで,バイオポリマー中に取り込ませてまたは取り込ませずに,局所的に投与することができる。特定の態様においては,本発明の核酸分子は表II−IIIおよび/または図4−5に示される配列を含む。そのような核酸分子の例は,これらの表および図面において規定される配列から本質的になる。さらに,表IVに記載される化学的に修飾されたコンストラクトを本発明の任意のsiNA配列に適用することができる。
別の観点においては,本発明は本発明の1またはそれ以上のsiNA分子を含む哺乳動物細胞を提供する。1またはそれ以上のsiNA分子は,独立して,同じまたは異なる部位を標的とすることができる。
"RNA"とは,少なくとも1つのリボヌクレオチド残基を含む分子を意味する。"リボ
ヌクレオチド"とは,β−D−リボフラノース成分の2’位にヒドロキシル基を有するヌ
クレオチドを意味する。この用語は,二本鎖RNA,一本鎖RNA,単離されたRNA,例えば部分的に生成されたRNA,本質的に純粋なRNA,合成RNA,組換え的に製造されたRNA,ならびに1またはそれ以上のヌクレオチドの付加,欠失,置換および/または変更により天然に生ずるRNAと異なるように変更されたRNAを含む。そのような変更は,非ヌクレオチド物質の付加,例えば,siNAの末端または内部(例えばRNAの少なくとも1またはそれ以上のヌクレオチド)への付加を含むことができる。本発明のRNA分子中のヌクレオチドはまた,標準的ではないヌクレオチド,例えば,天然に生じないヌクレオチドまたは化学的に合成されたヌクレオチドまたはデオキシヌクレオチドを含むことができる。これらの変更されたRNAは,類似体または天然に生ずるRNAの類似体と称することができる。
"被験者"とは,外植された細胞のドナーまたはレシピエントである生物または細胞それ自体を意味する。"被験者"とはまた,本発明の核酸分子を投与することができる生物を表す。1つの態様においては,被験者は哺乳動物または哺乳動物細胞である。別の態様にお
いては,被験者はヒトまたはヒト細胞である。
本明細書において用いる場合,"ホスホロチオエート"との用語は,式I(式中,Zおよび/またはWはイオウ原子を含む)を有するヌクレオチド間結合を表す。したがって,ホスホロチオエートとの用語は,ホスホロチオエートおよびホスホロジチオエートヌクレオチド間結合の両方を表す。
本明細書において用いる場合,"万能塩基"との用語は,天然のDNA/RNA塩基のそれぞれと,これらをほとんど区別せずに塩基対を形成するヌクレオチド塩基類似体を表す。万能塩基の非限定的例としては,当該技術分野において知られるように(例えば,Loakes,2001,Nucleic Acids Research,29,2437−2447を参照),C−フェニル,C−ナフチルおよび他の芳香族誘導体,イノシン,アゾールカルボキサミド,およびニトロアゾール誘導体,例えば,3−ニトロピロール,4−ニトロインドール,5−ニトロインドール,および6−ニトロインドールが挙げられる。
本明細書において用いる場合,"非環状ヌクレオチド"との用語は,非環状リボース糖を有する任意のヌクレオチド,例えば,リボース炭素(C1,C2,C3,C4,またはC5)のいずれかが,独立してまたは組み合わせてヌクレオチド中に存在しないヌクレオチドを表す。
本発明の核酸分子は,個別に,または他の薬剤と組み合わせてまたは一緒に,本明細書に記載される疾病または健康状態(例えば,アルツハイマー病および他の神経変性性状態)を治療するために用いることができる。例えば,特定の疾病または健康状態を治療するために,治療に適した条件下で,siNA分子を個別にまたは1またはそれ以上の薬剤と組み合わせて被験者に投与することができ,または当業者には明らかな他の適当な細胞に投与することができる。
さらに別の態様においては,siNA分子を他の既知の治療法と組み合わせて用いて,上述の健康状態または疾病を治療することができる。例えば,本明細書に記載される分子を1またはそれ以上の既知の治療剤と組み合わせて用いて,疾病または健康状態を治療することができる。本発明のsiNA分子と容易に組み合わせることができる他の治療剤の非限定的例は,酵素的核酸分子,アロステリック核酸分子,アンチセンス,デコイ,またはアプタマー核酸分子,抗体,例えばモノクローナル抗体,小分子,および他の有機および/または無機化合物,例えば金属,塩およびイオンである。
1つの態様においては,本発明は,本発明の少なくとも1つのsiNA分子をコードする核酸配列を,そのsiNA分子の発現を可能とするように含む発現ベクターを特徴とする。例えば,ベクターは,デュープレックスを含むsiNA分子の両方の鎖をコードする配列を含むことができる。ベクターはまた,自己相補的でありしたがってsiNA分子を形成する1つの核酸分子をコードする配列を含むことができる。そのような発現ベクターの非限定的例は,Paul et al.,2002,Nature Biotechnology,19,505;Miyagishi and Taira,2002,Nature Biotechnology,19,497;Lee et al.,2002,Nature Biotechnology,19,500;およびNovina et al.,2002,Nature Medicine,advance online publication doi:10.1038/nm725に記載されている。
別の態様においては,本発明は,本発明の発現ベクターを含む哺乳動物細胞,例えば,
ヒト細胞を特徴とする。
さらに別の態様においては,本発明の発現ベクターは,Genbank受託番号,例えば表Iに示されるGenbank受託番号で表されるRNA分子に対する相補性を有するsiNA分子の配列を含む。
1つの態様においては,本発明の発現ベクターは,2またはそれ以上のsiNA分子をコードする核酸配列を含み,これらは同じであっても異なっていてもよい。
本発明の別の観点においては,標的RNA分子と相互作用して,標的RNA分子(例えば,本明細書においてGenbank受託番号で表される標的RNA分子)をコードする遺伝子をダウンレギュレートするsiNA分子は,DNAまたはRNAベクター中に挿入された転写ユニットから発現される。組換えベクターは,DNAプラスミドまたはウイルスベクターでありうる。siNAを発現するウイルスベクターは,限定されないが,アデノ随伴ウイルス,レトロウイルス,アデノウイルス,またはアルファウイルスに基づいて構築することができる。siNA分子を発現しうる組換えベクターは,本明細書に記載されるようにデリバリーされ,標的細胞中に残留する。あるいは,siNA分子の過渡的発現を与えるウイルスベクターを用いることもできる。そのようなベクターは,必要に応じて繰り返し投与することができる。いったん発現されれば,siNA分子は結合してRNA干渉(RNAi)により遺伝子機能または発現をダウンレギュレートする。siNAを発現するベクターのデリバリーは,全身的(例えば,静脈内または筋肉内投与により),被験者から外植された標的細胞に投与した後,被験者に再導入することにより,または所望の標的細胞中への導入を可能とする他のいずれかの手段により行うことができる。
"ベクター"とは,所望の核酸をデリバリーするために用いられる,任意の核酸および/またはウイルスに基づく手法を意味する。
本発明の他の特徴および利点は,以下の本発明の好ましい態様の説明および特許請求の範囲から明らかであろう。
図面の簡単な説明
図1は,siNA分子を合成するスキームの非限定的例を示す。相補的siNA配列鎖である鎖1および鎖2をタンデムで合成し,切断可能な結合,例えばヌクレオチドスクシネートまたは無塩基スクシネートで結合させる。これは,固体支持体上の固相合成において用いられる切断可能なリンカーと同じであっても異なっていていてもよい。合成は固相でも液相でもよく,示される例においては合成は固相合成である。合成は,タンデムオリゴヌクレオチドの末端ヌクレオチド上にジメトキシトリチル基等の保護基が残るように実施する。オリゴヌクレオチドを切断および脱保護すると,2つのsiNA鎖は自発的にハイブリダイズしてsiNAデュープレックスを形成するため,末端保護基の性質を利用してデュープレックスを精製することができる。これは,例えば,末端保護基を有するデュープレックス/オリゴヌクレオチドのみが単離されるトリチルオン精製法を適用することにより行うことができる。
図2は,本発明の方法により合成された精製siNAデュープレックスのMALDI−TOV質量分析を示す。示される2つのピークは,別々のsiNA配列鎖の推定質量に対応する。この結果は,タンデム合成から生成されたsiNAデュープレックスを,単純なトリチルオン精製方法論を用いて単一物質として精製しうることを示す。
図3は,RNAiに関与する標的RNA分解の提唱されるメカニズムの非限定的例を示
す図である。外来一本鎖RNA,例えばウイルス,トランスポゾン,または他の外因性RNAからRNA依存性RNAポリメラーゼ(RdRP)により生成される二本鎖RNA(dsRNA)が,ダイサー(DICER)酵素を活性化し,次にこれはsiNAデュープレックスを生成する。あるいは,合成されたまたは発現されたsiNAを適当な手段により細胞内に直接導入することができる。活性なsiNA複合体が形成され,これは標的RNAを認識し,その結果,RISCエンドヌクレアーゼ複合体により標的RNAが分解されるか,またはRNA依存性RNAポリメラーゼ(RdRP)により追加のRNAが合成され,これはダイサーを活性化して追加のsiNA分子が生じ,このことによりRNAi応答が増幅される。
図4A−Fは,本発明の化学的に修飾されたsiNAコンストラクトの非限定的例を示す。図中,Nは任意のヌクレオチド(アデノシン,グアニン,シトシン,ウリジン,または任意にチミジン)を表し,例えば,括弧(NN)により表されるオーバーハング領域においてチミジンで置換されていてもよい。siNAコンストラクトのセンス鎖およびアンチセンス鎖について種々の修飾が示されている。
図4A:センス鎖は,4個のホスホロチオエート5’−および3’末端ヌクレオチド間結合を有する21ヌクレオチドを含み,ここで,2つの末端3’−ヌクレオチドは任意に塩基対形成してもよく,存在しうるすべてのピリミジンヌクレオチドは(NN)ヌクレオチドを除き2’−O−メチルまたは2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,これはリボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。アンチセンス鎖は21ヌクレオチドを含み,任意に3’末端グリセリル成分を有していてもよく,ここで,2個の末端3’−ヌクレオチドは任意に標的RNA配列に相補的であってもよく,1個の3’末端ホスホロチオエートヌクレオチド間結合および4個の5’末端ホスホロチオエートヌクレオチド間結合を有していてもよく,存在しうるすべてのピリミジンヌクレオチドは(NN)ヌクレオチドを除き2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,これはリボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。
図4B:センス鎖は21ヌクレオチドを含み,ここで,2個の末端3’−ヌクレオチドは,任意に塩基対形成してもよく,存在しうるすべてのピリミジンヌクレオチドは(NN)ヌクレオチドを除き2’−O−メチルまたは2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,これはリボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。アンチセンス鎖は21ヌクレオチドを含み,任意に3’末端グリセリル成分を有していてもよく,ここで,2個の末端3’−ヌクレオチドは,任意に標的RNA配列に相補的であってもよく,存在しうるすべてのピリミジンヌクレオチドは(NN)ヌクレオチドを除き2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,これはリボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。
図4C:センス鎖は5’末端キャップ成分および3’末端キャップ成分を有する21ヌクレオチドを含み,ここで,2個の末端3’−ヌクレオチドは任意に塩基対形成していてもよく,存在しうるすべてのピリミジンヌクレオチドは(NN)ヌクレオチドを除き2’−O−メチルまたは2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,これはリボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。アンチセンス鎖は,21ヌクレオチドを含み,任意に3’末端グリセリル成分を有していてもよく,ここで,2個の末端3’−ヌクレオチドは任意に標的RNA配列に相補的であってもよく,1個の3’末端ホスホロチオエートヌクレオチド間結合を有していてもよく,存在しうるすべてのピリミジンヌクレオチドは(NN)
ヌクレオチドを除き2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,これはリボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。
図4D:センス鎖は5’末端キャップ成分および3’末端キャップ成分を有する21ヌクレオチドを含み,ここで,2個の末端3’−ヌクレオチドは任意に塩基対形成してもよく,存在しうるすべてのピリミジンヌクレオチドは(NN)ヌクレオチドを除き2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,これはリボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができ,存在しうるすべてのプリンヌクレオチドは2’−デオキシヌクレオチドである。アンチセンス鎖は21ヌクレオチドを含み,これは任意に3’末端グリセリル成分を有していてもよく,ここで,2個の末端3’−ヌクレオチドは任意に標的RNA配列に相補的であってもよく,1個の3’末端ホスホロチオエートヌクレオチド間結合を有していてもよく,存在しうるすべてのピリミジンヌクレオチドは2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,存在しうるすべてのプリンヌクレオチドは(NN)ヌクレオチドを除き2’−O−メチル修飾ヌクレオチドであり,これはリボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。
図4E:センス鎖は5’末端キャップ成分および3’末端キャップ成分を有する21ヌクレオチドを含み,ここで,2個の末端3’−ヌクレオチドは任意に塩基対形成してもよく,存在しうるすべてのピリミジンヌクレオチドは(NN)ヌクレオチドを除き2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,これは,リボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。アンチセンス鎖は21ヌクレオチドを含み,任意に3’末端グリセリル成分を有していてもよく,ここで,2個の末端3’−ヌクレオチドは任意に標的RNA配列に相補的であってもよく,存在しうるすべてのピリミジンヌクレオチドは2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,存在しうるすべてのプリンヌクレオチドは(NN)ヌクレオチドを除き2’−O−メチル修飾ヌクレオチドであり,これは,リボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。
図4F:センス鎖は5’末端キャップ成分および3’末端キャップ成分を有する21ヌクレオチドを含み,ここで,2個の末端3’−ヌクレオチドは任意に塩基対形成してもよく,存在しうるすべてのピリミジンヌクレオチドは(NN)ヌクレオチドを除き2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,これはリボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。アンチセンス鎖は21ヌクレオチドを含み,任意に3’末端グリセリル成分を有していてもよく,ここで,2個の末端3’−ヌクレオチドは任意に標的RNA配列に相補的であってもよく,1個の3’末端ホスホロチオエートヌクレオチド間結合を有していてもよく,存在しうるすべてのピリミジンヌクレオチドは2’−デオキシ−2’−フルオロ修飾ヌクレオチドであり,存在しうるすべてのプリンヌクレオチドは(NN)ヌクレオチドを除き2’−デオキシヌクレオチドであり,これはリボヌクレオチド,デオキシヌクレオチド,万能塩基,または本明細書に記載される他の化学的修飾を含むことができる。コンストラクトA−Fのアンチセンス鎖は,本発明のいずれかの標的核酸配列に相補的な配列を含む。
図5A−Fは,本発明の化学的に修飾された特定のsiNA配列の非限定的例を示す。A−Fは,図4A−Fに示される化学的修飾をBACE siNA配列に適用したものである。
図6は,本発明の種々のsiNAコンストラクトの非限定的例を示す。示される例(コンストラクト1,2,および3)は典型的な約19塩基対を有するが,本発明の異なる態様には本明細書に記載される任意の数の塩基対が含まれる。括弧内の領域は,例えば約1,2,3,または4ヌクレオチドの長さ,好ましくは約2ヌクレオチドを含むヌクレオチドオーバーハングを表す。コンストラクト1および2は,RNAi活性用に独立して用いることができる。コンストラクト2は,ポリヌクレオチドまたは非ヌクレオチドリンカーを含むことができ,これは,任意に,生物分解性リンカーとして設計することができる。1つの態様においては,コンストラクト2に示されるループ構造は生物分解性リンカーを含むことができ,このことにより,インビボおよび/またはインビトロでコンストラクト1が形成される。別の例においては,同じ原理でコンストラクト2を生成するためにコンストラクト3を用いることができ,ここで,リンカーはインビボおよび/またはインビトロで活性なsiNAコンストラクト2を生成するために用いられ,これは任意に別の生物分解性リンカーを用いてインビボおよび/またはインビトロで活性なsiNAコンストラクト1を生成することができる。そのように,siNAコンストラクトの安定性および/または活性は,インビボまたはインビトロで,および/またはインビトロにおいて用いるためのsiNAコンストラクトの設計に基づいて調節することができる。
図7A−Cは,siNAヘアピンコンストラクトを生成するための発現カセットを作製するために用いられるスキームの概略図である。
図7A:5’−制限部位(Rl)配列,次に予め決定されたBACE標的配列と同一の配列を有する領域(siNAのセンス領域)を含むようにDNAオリゴマーを合成する。ここで,センス領域は,例えば,約19,20,21,または22ヌクレオチド(N)の長さを有し,その後に例えば約3−約10ヌクレオチドを含む規定された配列(X)のループ配列を有する。
7B:次に,合成コンストラクトをDNAポリメラーゼにより伸長して,自己相補的配列を有するヘアピン構造を生成し,このことにより,BACE標的配列に対する特異性を有し,自己相補的センス領域およびアンチセンス領域を有するsiNA転写産物が得られる。
図7C:コンストラクトを加熱(例えば約95℃に)して,配列を直鎖状とすることにより,第1の鎖の3’−制限配列に対するプライマーを用いて相補的な第2のDNA鎖を伸長することができる。次に,二本鎖DNAを細胞における発現用の適当なベクター中に挿入する。コンストラクトは,例えば,制限部位を設計することにより,および/またはPaulら(2002,Nature Biotechllology,29,505−508)に記載されるようにポリU末端領域を利用することにより,転写により3’末端ヌクレオチドオーバーハングが生ずるように設計することができる。
図8A−Cは,発現カセットを作製して二本鎖siNAコンストラクトを生成するために用いられるスキームの概略図である。
図8A:5’−制限(R1)部位配列,次に予め決定されたBACE標的配列と同一の配列を有する領域(siNAのセンス領域)を有するように,DNAオリゴマーを合成する。ここで,センス領域は,例えば,約19,20,21,または22ヌクレオチド(N)の長さを含み,その後に規定された配列(X)のループ配列に隣接する3’−制限部位(R2)を有する。
図8B:次に,合成コンストラクトをDNAポリメラーゼで伸長させて,自己相補的配列を有するヘアピン構造を生成する。
図8C:コンストラクトをR1およびR2に特異的な制限酵素で処理して二本鎖DNAを生成し,次にこれを細胞における発現用の適当なベクター中に挿入する。U6プロモーター領域がdsDNAの両側を挟むように転写カセットを設計し,このことによりsiNAの別々のセンス鎖およびアンチセンス鎖が生ずる。ポリT末端配列をコンストラクトに付加して,得られる転写産物中にUオーバーハングを生成することができる。
図9A−Eは,特定の標的核酸配列,例えばメッセンジャーRNA中のsiNA媒介性RNAiの標的部位を決定するために用いられる方法の概略図である。
図9A:siNAコンストラクトのアンチセンス領域が標的核酸配列の全域で標的部位に対する相補性を有し,センス領域がsiNAのアンチセンス領域に相補的な配列を含むよう,siNAオリゴヌクレオチドのプールを合成する。
図9BおよびC:配列をプールし,ベクターの細胞中へのトランスフェクションによりsiNAが発現するように(図9C),ベクター中に挿入する(図9B)。
図9D:標的核酸配列の調節に伴う表現型の変化に基づいて細胞を分類する。
図9E:分類された細胞からsiNAを単離し,シークエンスして,標的核酸配列中の有効な標的部位を同定する。
図10は,例えば,本発明のsiNA配列の3’末端を安定化させるために用いることができる,種々の安定化化学(1−10)の非限定的例を示す:(1)[3−3’]−反転デオキシリボース;(2)デオキシリボヌクレオチド;(3)[5’−3’]−3’−デオキシリボヌクレオチド;(4)[5’−3’]−リボヌクレオチド;(5)[5’−3’]−3’−O−メチルリボヌクレオチド;(6)3’−グリセリル;(7)[3’−5’]−3’−デオキシリボヌクレオチド;(8)[3’−3’]−デオキシリボヌクレオチド;(9)[5’−2’]−デオキシリボヌクレオチド;および(10)[5−3’]−ジデオキシリボヌクレオチド。図面に示されている修飾および非修飾の骨格化学に加えて,これらの化学を本明細書に記載されるような別の骨格修飾,例えば,式Iを有する骨格修飾と組み合わせることができる。さらに,示される末端修飾の5’側に示される2’−デオキシヌクレオチドは,本明細書に記載される別の修飾または非修飾ヌクレオチドまたは非ヌクレオチド,例えば,式I−VIIまたはそれらの任意の組み合わせを有する修飾であってもよい。
図11は,ヌクレアーゼに耐性であるがRNAi活性を媒介する能力を保持している本発明の化学的に修飾されたsiNAコンストラクトを同定するために用いられる戦略の非限定的例を示す。経験に基づく設計パラメータ(例えば,2’−修飾,塩基修飾,骨格修飾,末端キャップ修飾等の導入)に基づいてsiNAコンストラクトに化学修飾を導入する。修飾されたコンストラクトを適当な系(例えば,示されるようにヌクレアーゼ耐性についてはヒト血清,またはPK/デリバリーパラメータについては動物モデル)で試験する。平行して,例えば,細胞培養系において,例えばルシフェラーゼレポーターアッセイにより,RNAi活性についてsiNAコンストラクトを試験する。次に,特定の特徴を有するがRNAi活性を保持しているリードsiNAコンストラクトを同定し,これをさらに修飾し,再びアッセイする。この同じ方法を用いて,改良された薬物動態学的プロファイル,デリバリー,およびRNAi活性を有するsiNA−コンジュゲート分子を同定することができる。
図12は,BACE mRNAを標的とするsiNAにより媒介される,A549細胞
におけるBACE mRNAの減少の非限定的例を示す。A549細胞を25nMのsiNAと複合体化した0.25μg/ウエルの脂質でトランスフェクトした。リボヌクレオチドおよび3’末端ジチミジンキャップを含むsiNAコンストラクトのスクリーニング産物を,未処理細胞,スクランブル化siNA対照コンストラクト(Scram1およびScram2),および脂質のみでトランスフェクトした細胞(トランスフェクション対照)と比較した。図面に示されるように,すべてのsiNAコンストラクトはBACE RNA発現の有意な減少を示す。
発明の詳細な説明
本発明の核酸分子の作用のメカニズム
以下の議論は,現在知られている短干渉RNAにより媒介されるRNA干渉の提唱されるメカニズムを記載するが,限定を意味するものではなく,先行技術であると認めるものではない。本出願人は,本明細書において,化学的に修飾された短干渉核酸がsiRNA分子と類似のまたは改良されたRNAi媒介能力を有し,インビボで改良された安定性および活性を有すると予測されることを示す。したがって,この議論は,siRNAのみに限定されることを意味するものではなく,siNA全体に適用することができる。"RN
Aiを媒介する改良された能力"または"改良されたRNAi活性"とは,インビトロおよ
び/またはインビボで測定されたRNAi活性を含むことを意味し,ここで,RNAi活性はsiNAがRNAiを媒介する能力と本発明のsiNAの安定性との両方を反映する。本発明においては,これらの活性の積を,全RNA siRNAまたは複数のリボヌクレオチドを含むsiNAと比較して,インビトロおよび/またはインビボで増加させることができる。場合によっては,siNA分子の活性または安定性は低下するかもしれないが(すなわち,10分の1以下),siNA分子の全体的活性はインビトロおよび/またはインビボで増強される。
RNA干渉とは,動物において短干渉RNA(siRNA)により媒介される配列特異的転写後遺伝子サイレンシングのプロセスを表す(Fire et al.,1998,Nature,391,806)。植物における対応するプロセスは一般に転写後遺伝子サイレンシングまたはRNAサイレンシングと称され,真菌においてはクエリングとも称される。転写後遺伝子サイレンシングのプロセスは,外来遺伝子の発現を防止するために用いられる進化的に保存された細胞防御メカニズムであると考えられており,異なる叢および門が共通して有している(Fire et al.,1999,Trends Genet.,15,358)。そのような外来遺伝子発現からの防御は,ウイルス感染または宿主ゲノム中へのトランスポゾン要素のランダムインテグレーションから生ずる二本鎖RNA(dsRNA)の生成に応答して,相同的一本鎖RNAまたはウイルスゲノムRNAを特異的に破壊する細胞応答により進化してきたのであろう。細胞におけるdsRNAの存在は,まだ完全には特性決定されていないメカニズムにより,RNAi応答を引き起こす。このメカニズムは,蛋白質キナーゼPKRおよび2’,5’−オリゴアデニレートシンセターゼのdsRNA媒介性活性化の結果,リボヌクレアーゼLによるmRNAの非特異的切断が生ずるインターフェロン応答とは異なるようである。
細胞中に長いdsRNAが存在すると,ダイサーと称されるリボヌクレアーゼIII酵素の活性が刺激される。ダイサーは,dsRNAをプロセシングして短干渉RNA(siRNA)として知られる短い断片のdsRNAとすることに関与している(Berstein et al.,2001,Nature,409,363)。ダイサー活性から生ずる短干渉RNAは,典型的には約21−23ヌクレオチドの長さであり,約19塩基対のデュープレックスを含む。ダイサーはまた,翻訳制御における関与が示唆されている保存された構造の前駆体RNAから21および22ヌクレオチドの小さな一時的RNA(stRNA)を切り出すことに関与することが示唆されている(Hutvagner et
al.,2001,Science,293,834)。RNAi応答はまた,一般に
RNA誘導性サイレンシング複合体(RISC)と称される,siRNAを含むエンドヌクレアーゼ複合体を特徴とし,これはsiRNAと相同な配列を有する一本鎖RNAの切断を媒介する。標的RNAの切断は,siRNAデュープレックスのガイド配列に相補的な領域の中央部で生ずる(Elbashir et al.,2001,Genes Dev.,15,188)。さらに,RNA干渉には,小さいRNA(例えば,マイクロRNAまたはmiRNA)に媒介される遺伝子サイレンシングが関与する場合もある。これはおそらくは,クロマチン構造を制御する細胞性メカニズムによるものであり,このことにより標的遺伝子配列の転写が妨害される(例えば,Allshire,2002,Science,297,1818−1819;Volpe et al.,2002,Science,297,1833−1837;Jenuwein,2002,Science,297,2215−2218;およびHall et al.,2002,Science,297,2232−2237を参照)。このように,本発明のsiNA分子は,RNA転写産物との相互作用を介して,あるいは特定の遺伝子配列との相互作用により,遺伝子サイレンシングを媒介するために用いることができ,そのような相互作用により転写レベルまたは転写後レベルのいずれかで遺伝子サイレンシングが生ずる。
RNAiは種々の系で研究されてきた。Fireら(1998,Nature,391,806)は,C.Elegansにおいて最初にRNAiを観察した。WiannyおよびGoetz(1999,Nature Cell Biol.,2,70)は,マウス胚においてdsRNAにより媒介されるRNAiを記載する。Hammondら(2000,Nature,404,293)は,dsRNAでトランスフェクトしたショウジョウバエ細胞におけるRNAiを記載する。Elbashirら(2001,Nature,411,494)は,培養哺乳動物細胞,例えばヒト胚性腎臓細胞およびHeLa細胞において,合成の21ヌクレオチドRNAのデュープレックスを導入することにより誘導されるRNAiを記載する。ショウジョウバエ胚溶解物における最近の研究(Elbashir et al.,2001,EMBO J,20,6877)は,効率的なRNAi活性を媒介するために必須であるsiRNAの長さ,構造,化学組成,および配列についてのある種の要件を明らかにした。これらの研究は,21ヌクレオチドのsiRNAデュープレックスは3’末端ジヌクレオチドオーバーハングを含む場合に最も活性であることを示した。さらに,一方または両方のsiRNA鎖を2’−デオキシ(2’−H)または2’−O−メチルヌクレオチドで置換するとRNAi活性が破壊されるが,3’末端siRNAオーバーハングヌクレオチドを2’−デオキシヌクレオチド(2’−H)で置換することは許容されることが示された。siRNAデュープレックスの中心における単一のミスマッチ配列もまたRNAi活性を破壊することが示された。さらに,これらの研究はまた,標的RNAにおける切断部位の位置はsiRNAガイド配列の3’末端ではなくガイド配列の5’末端により規定されることを示した(Elbashir et al.,2001,EMBO J.,20,6877)。他の研究は,siRNAデュープレックスの標的相補鎖の5’−リン酸がsiRNA活性に必要であり,siRNAの5’−リン酸成分を維持するためにATPが用いられることを示した(Nykanen et al.,2001,Cell,107,309)。
核酸分子の合成
100ヌクレオチドを越える長さの核酸の合成は,自動化方法を用いては困難であり,そのような分子の治療コストは非常に高くなる。本発明においては,好ましくは,小さい核酸モチーフ("小さい"とは,100ヌクレオチド以下の長さ,好ましくは80ヌクレオチド以下の長さ,最も好ましくは50ヌクレオチド以下の長さの核酸モチーフ,例えば,別々のsiNAオリゴヌクレオチド配列またはタンデムで合成されたsiNA配列を表す)が外的デリバリーに用いられる。これらの分子は構造が簡単であるため,核酸が蛋白質および/またはRNA構造の標的領域に進入する能力が高い。本発明の例示的分子は化学的に合成するが,他の分子も同様に合成することができる。
オリゴヌクレオチド(例えば,ある種の修飾オリゴヌクレオチドまたはリボヌクレオチドを欠失しているオリゴヌクレオチドの一部)は,例えば,Caruthers et al.,1992,Methods in Enzymology 211,3−19,Thompson et al.,国際公開99/54459,Wincott et al.,1995,Nucleic Acids Res.23,2677−2684,Wincott et al.,1997,Methods Mol.Bio.,74,59,Brennan et al.,1998,Biotechnol Bioeng.,61,33−45,およびBrennan,米国特許6,001,311に記載されるような,当該技術分野において知られるプロトコルを用いて合成する(これらの文献はすべて本明細書の一部としてここに引用する)。オリゴヌクレオチドの合成は,一般の核酸保護基およびカップリング基,例えば5’末端にジメトキシトリチル,および3’末端にホスホルアミダイトを用いて行う。非限定的例においては,394 Applied Biosystems,Inc.合成器で,0.2μmolスケールのプロトコルで,2’−O−メチル化ヌクレオチドについては2.5分間のカップリング工程,および2’−デオキシヌクレオチドまたは2’−デオキシ−2’−フルオロヌクレオチドについては45秒間のカップリング工程で,小スケールの合成を行う。表Vは,合成サイクルで用いる試薬の量および接触時間の概要を示す。あるいは,0.2μmolスケールでの合成は,96ウエルプレート合成機,例えば,Protogene(Palo Alto,CA)により製造される装置で,サイクルに最少の改変を加えて行うことができる。2’−O−メチル残基の各カップリングサイクルにおいては,ポリマー結合5’−ヒドロキシルに対して33倍過剰(60μLの0.11M=6.6μmol)の2’−O−メチルホスホルアミダイトおよび105倍過剰のS−エチルテトラゾール(60μLの0.25M=15μmol)を用いることができる。デオキシ残基の各カップリングサイクルにおいては,ポリマー結合5’−ヒドロキシルに対して22倍過剰(40μLの0.11M=4.4μmol)のデオキシホスホルアミダイトおよび70倍過剰のS−エチルテトラゾール(40μLの0.25M=10μmol)を用いることができる。394 Applied Biosystems,Inc.合成機における平均カップリング収率は,トリチル画分の比色定量により決定して,典型的には97.5−99%である。394 Applied Biosystems,Inc.合成器で用いる他のオリゴヌクレオチド合成試薬は以下のとおりである:脱トリチル化溶液は塩化メチレン中3%TCA(ABI)であり;
キャッピングは,THF中16%N−メチルイミダゾール(ABI)およびTHF中10%無水酢酸/10%2,6−ルチジン(ABI)中で行い;酸化溶液は,THF中16.9mM I2,49mMピリジン,9%水(PERSEPTIVE(登録商標))である
。Burdick&Jackson合成等級アセトニトリルは試薬瓶から直接用いる。S−エチルテトラゾール溶液(アセトニトリル中0.25M)は,American International Chemical,Inc.から入手した固体から作成する。あるいは,ホスホロチオエート結合の導入のためには,ボーケージ試薬(3H−1,2−ベンゾジチオール−3−オン1,1−ジオキシド,アセトニトリル中0.05M)を用いる。
DNA系オリゴヌクレオチドの脱保護は以下のように行う:ポリマー結合トリチルオンオリゴリボヌクレオチドを4mLのガラスねじ蓋バイアルに移し,40%水性メチルアミン(1mL)の溶液中で65℃で10分間懸濁する。−20℃に冷却した後,上清をポリマー支持体から取り出す。支持体を1.0mLのEtOH:MeCN:H2O/3:1:
1で3回洗浄し,ボルテックスし,次に上清を最初の上清に加える。オリゴリボヌクレオチドを含む合わせた上清を乾燥して,白色粉末を得る。
本発明のある種のsiNA分子を含むRNAについて用いられる合成方法は,Usmanら(1987 J.Am.Chem.Soc.,109,7845),Scaring
eら(1990 Nucleic Acids Res.,18,5433)およびWincottら(1995 Nucleic Acids Res.23,2677−2684),Wincottら(1997,Methods Mol.Bio.,74,59)に記載の方法にしたがい,慣用の核酸保護基およびカップリング基,例えば,5’末端にジメトキシトリチル,および3’末端にホスホルアミダイトを用いて行う。非限定的例においては,小スケールの合成は,394 Applied Biosystems,Inc.合成機で,改変した0.2μmolスケールのプロトコルを用いて,アルキルシリル保護ヌクレオチドについては7.5分間のカップリング工程を,2’−O−メチル化ヌクレオチドについては2.5分間のカップリング工程を行う。表Vは,合成サイクルにおいて用いる試薬の量および接触時間の概要を示す。あるいは,0.2μmolスケールでの合成は,96ウエルプレート合成機,例えば,Protogene(Palo Alto,CA)により製造される装置で,サイクルに最少の改変を加えて行うことができる。2’−O−メチル残基の各カップリングサイクルにおいては,ポリマー結合5’−ヒドロキシルに対して33倍過剰(60μLの0.11M=6.6μmol)の2’−O−メチルホスホルアミダイトおよび75倍過剰のS−エチルテトラゾール(60μLの0.25M=15μmol)を用いることができる。リボ残基の各カップリングサイクルにおいては,ポリマー結合5’−ヒドロキシルに対して66倍過剰(120μLの0.11M=13.2μumol)のアルキルシリル(リボ)保護ホスホルアミダイトおよび150倍過剰のS−エチルテトラゾール(120μLの0.25M=30μmol)を用いることができる。394 Applied Biosystems,Inc.合成機における平均カップリング収率は,トリチル画分の比色定量により決定して,典型的には97.5−99%である。394 Applied Biosystems,Inc.合成器で用いる他のオリゴヌクレオチド合成試薬は以下のとおりである:脱トリチル化溶液は塩化メチレン中3%TCA(ABI)であり;キャッピングは,THF中16%N−メチルイミダゾ
ール(ABI)およびTHF中10%無水酢酸/10%2,6−ルチジン(ABI)中で行い;酸化溶液は,THF中16.9mM I2,49mMピリジン,9%水(PERS
EPTIVE(登録商標))である。Burdick&Jackson合成等級アセトニトリルは試薬瓶から直接用いる。S−エチルテトラゾール溶液(アセトニトリル中0.25M)は,American International Chemical,Inc.から入手した固体から作成する。あるいは,ホスホロチオエート結合の導入のためには,ボーケージ試薬(3H−1,2−ベンゾジチオール−3−オン1,1−ジオキシド,アセトニトリル中0.05M)を用いる。
RNAの脱保護は,2ポットプロトコルまたは1ポットプロトコルのいずれかを用いて行う。2ポットプロトコルについては,ポリマー結合トリチルオンオリゴリボヌクレオチドを4mLのガラスねじ蓋バイアルに移し,40%水性メチルアミン(1mL)の溶液中で65℃で10分間懸濁する。−20℃に冷却した後,上清をポリマー支持体から取り出す。支持体を1.0mLのEtOH:MeCN:H2O/3:1:1で3回洗浄し,ボル
テックスし,次に上清を最初の上清に加える。オリゴリボヌクレオチドを含む合わせた上清を乾燥して,白色粉末を得る。塩基脱保護オリゴリボヌクレオチドを無水TEA/HF/NMP溶液(1.5mL N−メチルピロリジノン,750μL TEAおよび1.0mL TEA・3HFの溶液300μL,HF濃度1.4M)に再懸濁し,65℃に加熱する。1.5時間後,オリゴマーを1.5M NH4HCO3で反応を停止させる。
あるいは,1ポットプロトコルのためには,ポリマー結合トリチルオンオリゴリボヌクレオチドを4mLのガラスねじ蓋バイアルに移し,33%エタノール性メチルアミン/DMSO:1/1(0.8mL)の溶液中で,65℃で15分間懸濁する。バイアルを室温にする。TEA・3HF(0.1mL)を加え,バイアルを65℃で15分間加熱する。試料を−20℃に冷却し,次に1.5M NH4HCO3で反応を停止させる。
トリチルオンオリゴマーの精製のためには,停止したNH4HCO3溶液を,アセトニトリル,続いて50mM TEAAで予備洗浄したC−18含有カートリッジに負荷する。負荷したカートリッジを水で洗浄した後,RNAを0.5%TFAで13分間脱トリチル化する。次にカートリッジを水で再び洗浄し,1M NaClで塩交換し,再び水で洗浄する。次に,30%アセトニトリルでオリゴヌクレオチドを溶出する。
平均段階カップリング収率は,典型的には>98%である(Wincott et al.,1995 Nucleic Acids Res.23,2677−2684)。当業者は,合成のスケールは,上述の例より大きくまたは小さく,例えば,限定されないが,96ウエルのフォーマットに適合させることができること認識するであろう。
あるいは,本発明の核酸分子は,別々に合成して,合成後に例えばライゲーションにより(Moore et al.,1992,Science 256,9923;Draper et al.国際公開WO93/23569;Shabarova et al.,1991,Nucleic Acids Research 19,4247;Bellon et al.,1997,Nucleosides&Nucleotides,16,951;Bellon et al.,1997,Nucleosides&Nucleotides,Bellon et al.,1997,Bioconjugate Chem.8,204),または合成および/または脱保護の後にハイブリダイゼーションにより,一緒につなげてもよい。
本発明のsiNA分子はまた,本明細書の実施例1に記載されるようにタンデム合成法により合成することができる。この方法では,両方のsiNA鎖を,切断可能なリンカーにより分離された単一の連続するオリゴヌクレオチドフラグメントまたは鎖として合成し,次にこれを切断して別々のsiNAフラグメントまたは鎖を生成し,これはハイブリダイズしてsiNAデュープレックスの精製を可能とする。リンカーはポリヌクレオチドリンカーであっても非ヌクレオチドリンカーであってもよい。本明細書に記載されるsiNAのタンデム合成は,マルチウエル/マルチプレート合成プラットフォーム,例えば96ウエルまたは同様のより大きなマルチウエルプラットフォームのいずれにも容易に適合させることができる。本明細書に記載されるsiNAのタンデム合成はまた,バッチリアクター,合成カラムなどを用いる大規模合成プラットフォームにも容易に適合させることができる。
siNA分子はまた,一方のフラグメントがRNA分子のセンス領域を含み,第2のフラグメントがアンチセンス領域を含む2つの別々の核酸鎖またはフラグメントから組み立ててもよい。
本発明の核酸分子は,広範囲に修飾して,ヌクレアーゼ耐性基,例えば,2’−アミノ,2’−C−アリル,2’−フルオロ,2’−O−メチル,2’−Hによる修飾により安定性を高めることができる(概説として,Usman and Cedergren,1992,TIBS 17,34;Usman et al.,1994,Nucleic
Acids Symp.Ser.31,163を参照)。siNAコンストラクトは,一般的な方法を用いてゲル電気泳動により精製するか,または高速液体クロマトグラフィー(HPLC;Wincott et al.,(上掲)を参照,その全体を本明細書の一部としてここに引用する)により精製し,水に再懸濁する。
本発明の別の観点においては,本発明のsiNA分子は,DNAまたはRNAベクター中に挿入された転写ユニットから発現される。組換えベクターは,DNAプラスミドまたはウイルスベクターでありうる。siNAを発現するウイルスベクターは,限定されないが,アデノ随伴ウイルス,レトロウイルス,アデノウイルスまたはアルファウイルスに基
づいて構築することができる。siNA分子を発現しうる組換えベクターを本明細書に記載されるようにデリバリーし,標的細胞中に残留させることができる。あるいは,siNA分子の過渡的発現を与えるウイルスベクターを用いてもよい。
本発明の核酸分子の活性の最適化
修飾(塩基,糖および/またはリン酸)を有する化学的に合成した核酸分子は,血清リボヌクレアーゼによる分解を防止することができ,このことによりその抗力を高めることができる(例えば,Eckstein et al.,国際公開WO92/07065;Perrault et al.,1990 Nature 344,565;Pieken et al.,1991 Science 253,314;Usman and
Cedergren,1992 Trends in Biochem.Sci.17,334;Usman et al.,国際公開WO93/15187;Rossi et al.,国際公開WO91/03162;Sproat,米国特許5,334,711;Gold et al.,US6,300,074およびBurgin et al.,(上掲)を参照(これらはすべて本明細書の一部としてここに引用する)。上述の参考文献はすべて,本明細書に記載される核酸分子の塩基,リン酸および/または糖成分になしうる種々の化学修飾を記載する。細胞中におけるその抗力を増強するよう修飾し,およびオリゴヌクレオチドの合成時間を短縮し化学物質の必要性を減少するために核酸分子から塩基を除去することが望ましい。
当該技術分野には,そのヌクレアーゼ安定性および効力を有意に増強することができる,核酸分子中に導入することができる糖,塩基およびリン酸修飾を記述するいくつかの例がある。例えば,オリゴヌクレオチドは,ヌクレアーゼ耐性基,例えば,2’−アミノ,2’−C−アリル,2'−フルオロ,2’−O−メチル,2’−O−アリル,2'−H等のヌクレオチド塩基修飾で修飾することにより,安定性を高め,および/または生物学的活性を増強するために修飾される(総説については,Usman and Cedergren,1992 TITBS 17,34;Usman et al.,1994 Nucleic Acids Symp.Ser.31,163;Burgin et al.,1996 Biochemisty 35,14090を参照)。核酸分子の糖修飾は,当該技術分野において広く記載されている(Eckstein et al.,国際公開WO92/07065;Perrault et al.Nature 1990,344,565−568;Pieken et al.Science 1991,253,314−317;Usman and Cedergren,Trends in Biochem.Sci.1992,17,334−339;Usman et al.国際公開WO93/15187;Sproat,米国特許5,334,711,Beigelman et al.,1995 J.Biol.Chem.270,25702;Beigelman et al.,国際公開WO97/26270;Beigelman et al.,米国特許5,716,824;Usman et al.,米国特許5,627,053;Woolf et al.,国際公開WO98/13526;Thompson et al.,米国特許出願60/082,404(1998年4月20日出願);Karpeisky et al.,1998,Tetrahedron Lett.,39,1131;Earnshaw and Gait,1998,Biopolymers(Nucleic Acid Sciences),48,39−55;Verma and Eckstein,1998,Annu.Rev.Biochem.,67,99−134;およびBurlina et al.,1997,Bioorg.Med.Chem.,5,1999−2010を参照,これらの参考文献はすべて,その全体を本明細書の一部としてここに引用する)。これらの刊行物は,触媒活性を変更することなく,糖,塩基および/またはリン酸修飾等を核酸分子中に組み込む位置を決定する一般的方法および戦略を記載しており,本明細書の一部としてここに引用する。このような教示の観点から,siNAが細胞においてRNAiを促進する能力が有意に阻害さ
れない限り,本明細書に記載されるように,同様の修飾を用いて本発明のsiNA核酸分子を修飾することができる。
ホスホロチオエート,ホスホロジチオエート,および/または5’−メチルホスホネート結合によるオリゴヌクレオチドのヌクレオチド間結合の化学修飾は安定性を改良するが,過剰な修飾はある種の毒性または活性の低下を引き起こしうる。したがって,核酸分子を設計する場合,これらのヌクレオチド間結合の量は最小にすべきである。これらの結合の濃度を減少させると,毒性が低下し,これらの分子の効力が増加し特異性が高くなるはずである。
活性を維持または増強する化学的修飾を有する短干渉核酸(siNA)分子が提供される。そのような核酸はまた,一般に非修飾核酸よりヌクレアーゼに対する耐性が高い。したがって,インビトロおよび/またはインビボで活性は顕著に低下しないはずである。調節が目的である場合には,外的にデリバリーされる治療用核酸分子は,最適には,望ましくない蛋白質のレベルが低下するのに充分長い時間標的RNAの翻訳が調節されるまで細胞内で安定であるべきである。この時間は,疾病の状態により数時間から数日まで様々である。RNAおよびDNAの化学合成における進歩(Wincott et al.,1995,Nucleic Acids Res.23,2677;Caruthers et al.,1992,Metlaods in Enzymology 211,3−19(本明細書の一部としてここに引用する))により,上述のようにヌクレオチド修飾を導入してそのヌクレアーゼ安定性を高めることにより,核酸分子を改変する可能性が拡大した。
1つの態様においては,本発明の核酸分子は,1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)のGクランプヌクレオチドを含む。Gクランプヌクレオチドは,修飾シトシン類似体であり,ここで,修飾は,デュープレックス中の相補的グアニンのワトソン・クリックおよびフーグスティーン面の両方の水素結合の能力を与える。例えば,Lin and Matteucci,1998,J.Am.Chem.Soc.,120,8531−8532を参照。オリゴヌクレオチド中の単一のGクランプ類似体置換により,相補的オリゴヌクレオチドにハイブリダイズしたときのらせん熱安定性およびミスマッチ識別性を実質的に増強することができる。そのようなヌクレオチドを本発明の核酸分子中に取り込ませることにより,核酸標的の相補的配列またはテンプレート鎖に対する親和性および特異性の両方が増強される。別の態様においては,本発明の核酸分子は1またはそれ以上(例えば,約1,2,3,4,5,6,7,8,9,10個またはそれ以上)のLNA"ロック核酸"ヌクレオチド,例えば,2’,4’−Cメチレンビシクロヌクレオチドを含む(例えば,Wengel et al.,国際公開WO00/66604およびWO99/14226を参照)。
別の態様においては,本発明は,本発明のsiNA分子のコンジュゲートおよび/または複合体を特徴とする。そのようなコンジュゲートおよび/または複合体は,生物学的システム,例えば細胞へのsiNA分子のデリバリーを容易にするために用いることができる。本発明により提供されるコンジュゲートおよび複合体は,治療用化合物を細胞膜を超えて輸送し,薬物動態学を変更し,および/または本発明の核酸分子の局在化を調節することにより,治療的活性を付与することができる。本発明は,分子,例えば,限定されないが,小分子,脂質,リン脂質,ヌクレオシド,ヌクレオチド,核酸,抗体,トキシン,負に荷電したポリマーおよび他のポリマー,例えば,蛋白質,ペプチド,ホルモン,炭水化物,ポリエチレングリコール,またはポリアミンを,細胞膜を横切ってデリバリーするための,新規コンジュゲートおよび複合体の設計および合成を包含する。一般に,記載されるトランスポーターは,個々にまたは多成分系の一部として,分解性リンカー付きでまたはなしで用いるよう設計される。これらの化合物は,血清の存在下または非存在下で,
本発明の核酸分子を異なる組織に由来する多数の細胞タイプにデリバリーおよび/または局在化することを改良すると予測される(Sullenger and Cech,米国特許5,854,038を参照)。本明細書に記載される分子のコンジュゲートは,生物分解性のリンカー,例えば生物分解性核酸リンカー分子を介して,生物学的に活性な分子に結合させることができる。
本明細書において用いる場合,"生物分解性リンカー"との用語は,1つの分子を別の分子に,例えば,生物学的に活性な分子を本発明のsiNA分子に,または本発明のsiNA分子のセンス鎖とアンチセンス鎖とを接続するための生物分解性リンカーとして設計される核酸または非核酸リンカー分子を表す。生物分解性リンカーは,特定の目的,例えば特定の組織または細胞タイプへのデリバリーのためにその安定性を調節することができるように設計する。核酸に基づく生物分解性リンカー分子の安定性は,リボヌクレオチド,デオキシリボヌクレオチド,および化学的に修飾されたヌクレオチド,例えば,2’−O−メチル,2’−フルオロ,2’−アミノ,2’−O−アミノ,2’−C−アリル,2’−O−アリル,および他の2’−修飾または塩基修飾ヌクレオチドの種々の組み合わせを用いることにより調節することができる。生物分解性核酸リンカー分子は,ダイマー,トリマー,テトラマー,またはより長い核酸分子,例えば,約2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,または20ヌクレオチドの長さのオリゴヌクレオチドであることができ,またはリン酸に基づく結合,例えば,ホスホルアミデートまたはホスホジエステル結合を有する単一のヌクレオチドを含むことができる。生物分解性核酸リンカー分子はまた,核酸骨格,核酸糖,または核酸塩基修飾を含むことができる。
本明細書において用いる場合,"生物分解性"との用語は,生物学的システムにおける分解,例えば酵素的分解または化学的分解を表す。
本明細書において用いる場合,"生物学的に活性な分子"との用語は,システムにおいて生物学的応答を導き出すかまたは調節することができる化合物または分子を表す。本発明により単独または他の分子との組み合わせで企図される生物学的に活性なsiNA分子の非限定的例としては,治療上活性な分子,例えば,抗体,ホルモン,抗ウイルス剤,ペプチド,蛋白質,化学療法剤,小分子,ビタミン,補因子,ヌクレオシド,ヌクレオチド,オリゴヌクレオチド,酵素的核酸,アンチセンス核酸,トリプレックス形成オリゴヌクレオチド,2,5−Aキメラ,siNA,dsRNA,アロザイム,アプタマー,デコイおよびこれらの類似体が含まれる。本発明の生物学的に活性な分子には,他の生物学的に活性な分子の薬物動態学および/または薬力学を調節することができる分子,例えば,脂質およびポリマー,例えば,ポリアミン,ポリアミド,ポリエチレングリコールおよび他のポリエーテルも含まれる。
本明細書において用いる場合,"リン脂質"との用語は,少なくとも1つのリン酸基を含む疎水性分子を表す。例えば,リン脂質は,リン酸含有基および飽和または不飽和アルキル基を含むことができ,これは,OH,COOH,オキソ,アミン,または置換もしくは未置換アリール基で任意に置換されていてもよい。
外的にデリバリーされた治療用核酸分子(例えば,siNA分子)は,最適には,RNA転写産物のレベルが低下するのに充分長い時間RNAの逆転写が調節されるまで細胞内で安定であるべきである。核酸分子は,有効な細胞内治療用薬剤として機能するためには,ヌクレアーゼに耐性である。本明細書におよび当該技術分野において記載される核酸分子の化学合成の改良により,上述したように,ヌクレオチド修飾を導入してそのヌクレアーゼ安定性を増強させることにより,核酸分子を修飾する可能性が拡大した。
さらに別の態様においては,RNAiに関与する蛋白質の酵素活性を維持するかまたは増強させる化学的修飾を有するsiNA分子が提供される。そのような核酸はまた,一般に非修飾核酸よりヌクレアーゼに対してより耐性が高い。したがって,インビトロおよび/またはインビボで,活性は顕著に低下しないであろう。
本発明の核酸系分子の使用は,組み合わせ療法の可能性を提供することにより,疾病の進行のよりよい治療につながるであろう(例えば,異なる遺伝子を標的とする多数のsiNA分子,既知の小分子阻害剤とカップリングさせた核酸分子,または分子(異なる酵素的核酸分子モチーフを含む)および/または他の化学的または生物学的分子の組み合わせによる間欠的治療)。siNA分子を用いる被験者の治療にはまた,異なる種類の核酸分子,例えば,酵素的核酸分子(リボザイム),アロザイム,アンチセンス,2,5−Aオリゴアデニレート,デコイ,およびアプタマーの組み合わせが含まれる。
別の観点においては,本発明のsiNA分子は,1またはそれ以上の5’および/または3’−キャップ構造を,例えばセンスsiNA鎖のみに,アンチセンスsiNA鎖のみに,または両方のsiNA鎖に含む。
"キャップ構造"とは,オリゴヌクレオチドのいずれかの末端に組み込まれている化学的修飾を意味する(例えば,Adamic et al.,米国特許5,998,203(本明細書の一部としてここに引用する)を参照)。これらの末端修飾は,核酸分子をエキソヌクレアーゼ分解から保護し,デリバリーおよび/または細胞中の局在化を助けるであろう。キャップは5’末端(5’−キャップ)に存在してもよく,または3’末端(3’−キャップ)に存在してもよく,両方の末端に存在してもよい。非限定的例においては,5’−キャップは,グリセリル,反転デオキシ無塩基残基(成分);4’,5’−メチレンヌクレオチド;1−(ベータ−D−エリスロフラノシル)ヌクレオチド,4’−チオヌクレオチド;炭素環式ヌクレオチド;1,5−アンヒドロヘキシトールヌクレオチド;L−ヌクレオチド;アルファ−ヌクレオチド;修飾塩基ヌクレオチド;ホスホロジチオエート結合;スレオ−ペントフラノシルヌクレオチド;非環状3’,4’−セコヌクレオチド;非環状3,4−ジヒドロキシブチルヌクレオチド;非環状3,5−ジヒドロキシペンチルヌクレオチド,3’−3’−反転ヌクレオチド成分;3’−3’−反転無塩基成分;3’−2’−反転ヌクレオチド成分;3’−2’−反転無塩基成分;1,4−ブタンジオールリン酸;3’−ホスホルアミデート;ヘキシルリン酸;アミノヘキシルリン酸;3’−リン酸;3’−ホスホロチオエート;ホスホロジチオエート;または架橋または非架橋メチルホスホネート成分からなる群より選択される。
非限定的例においては,3’−キャップは,例えば,グリセリル,反転デオキシ無塩基残基(成分),4’,5’−メチレンヌクレオチド;1−(ベータ−D−エリスロフラノシル)ヌクレオチド;4’−チオヌクレオチド,炭素環式ヌクレオチド;5’−アミノ−アルキルリン酸;1,3−ジアミノ−2−プロピルリン酸;3−アミノプロピルリン酸;6−アミノヘキシルリン酸;1,2−アミノドデシルリン酸;ヒドロキシプロピルリン酸;1,5−アンヒドロヘキシトールヌクレオチド;L−ヌクレオチド;アルファ−ヌクレオチド;修飾塩基ヌクレオチド;ホスホロジチオエート;スレオペントフラノシルヌクレオチド;非環状3’,4’セコヌクレオチド;3,4−ジヒドロキシブチルヌクレオチド;3,5−ジヒドロキシペンチルヌクレオチド,5’−5’−反転ヌクレオチド成分;5’−5’−反転無塩基成分;5’−ホスホルアミデート;5’−ホスホロチオエート;1,4−ブタンジオールリン酸;5’−アミノ;架橋および/または非架橋5’−ホスホルアミデート,ホスホロチオエートおよび/またはホスホロジチオエート,架橋または非架橋メチルホスホネートおよび5’−メルカプト成分からなる群より選択される(より詳細には,Beaucage and Iyer,1993,Tetrahedron 49,1925(本明細書の一部としてここに引用する)を参照)。
"非ヌクレオチド"との用語は,1またはそれ以上のヌクレオチドユニットの代わりに核酸鎖中に導入することができ,糖および/またはリン酸置換のいずれかを含み,残りの塩基がその酵素的活性を発揮することを可能とする任意の基または化合物を意味する。基または化合物は,一般に認識されているヌクレオチド塩基,例えば,アデノシン,グアニン,シトシン,ウラシルまたはチミンを含まず,したがって1’位に塩基を欠失している場合,無塩基である。
"アルキル"基とは,飽和脂肪族炭化水素を表し,直鎖,分枝鎖,および環状アルキル基が含まれる。好ましくは,アルキル基は1−12個の炭素を有する。より好ましくは,これは1−7個の炭素,より好ましくは1−4個の炭素を有する低級アルキルである。アルキルは置換されていてもされていなくてもよい。置換されている場合,置換基は,好ましくは,ヒドロキシル,シアノ,アルコキシ,=O,=S,NO2またはN(CH32,ア
ミノ,またはSHである。この用語は,また,少なくとも1つの炭素−炭素二重結合を含む不飽和炭化水素基であるアルケニル基を含み,直鎖,分枝鎖,および環状基を含む。好ましくは,アルケニル基は1−12個の炭素を有する。より好ましくは,これは1−7個の炭素原子,より好ましくは1−4個の炭素原子の低級アルケニルである。アルケニル基は置換されていてもされていなくてもよい。置換されている場合,置換基は,好ましくは,ヒドロキシル,シアノ,アルコキシ,=O,=S,NO2,ハロゲン,N(CH32
アミノ,またはSHから選択される。"アルキル"との用語はまた,少なくとも1つの炭素−炭素三重結合を含む不飽和の炭化水素基を有するアルキニル基を含み,直鎖,分枝鎖,および環状基を含む。好ましくは,アルキニル基は1−12個の炭素を有する。より好ましくは,これは1−7個の炭素,より好ましくは1−4個の炭素を有する低級アルキニルである。アルキニル基は,置換されていてもされていなくてもよい。置換されている場合,置換基は,好ましくは,ヒドロキシル,シアノ,アルコキシ,=O,=S,NO2また
はN(CH32,アミノまたはSHである。
そのようなアルキル基はまた,アリール,アルキルアリール,炭素環式アリール,複素環アリール,アミドおよびエステル基を含むことができる。"アリール"基とは,共役したパイ電子系を有する少なくとも1つの環を有する芳香族基を表し,炭素環式アリール,複素環アリールおよび二アリール基が含まれる。これらはすべて任意に置換されていてもよい。アリール基の好ましい置換基は,ハロゲン,トリハロメチル,ヒドロキシル,SH,OH,シアノ,アルコキシ,アルキル,アルケニル,アルキニル,およびアミノ基である。"アルキルアリール"基は,アリール基(上述)に共有結合したアルキル基(上述)を表す。炭素環式アリール基は,芳香族環の環原子がすべて炭素原子である基である。炭素原子は任意に置換されていてもよい。複素環アリール基は,芳香族環中の環原子として1−3個の複素原子を有し,環原子の残りが炭素原子である基である。適当な複素原子には,酸素,イオウ,および窒素が含まれ,例えば,フラニル,チエニル,ピリジル,ピロリル,N−低級アルキルピロロ,ピリミジル,ピラジニル,イミダゾリル等が挙げられる。これらはすべて任意に置換されていてもよい。"アミド"とは,−C(O)−NH−R(式中,Rはアルキル,アリール,アルキルアリールまたは水素のいずれかである)を表す。"
エステル"とは,−C(O)−OR’(式中,Rはアルキル,アリール,アルキルアリー
ルまたは水素のいずれかである)を表す。
本明細書において用いる場合,"ヌクレオチド"は,当該技術分野においては,天然塩基(標準的),および当該技術分野においてよく知られる修飾塩基を含むと認識されている。そのような塩基は,一般にヌクレオチド糖成分の1’位に位置する。ヌクレオチドは一般に,塩基,糖およびリン酸基を含む。ヌクレオチドは,糖,リン酸および/または塩基成分において修飾されていてもされていなくてもよい(互換的に,ヌクレオチド類似体,修飾ヌクレオチド,非天然ヌクレオチド,非標準的ヌクレオチド等とも称される。例えば
,Usman and McSwiggen(上掲);Eckstein et al.,国際公開WO92/07065;Usman et al.,国際公開WO93/15187;Uhlman&Peyman,(上掲)(すべて本明細書の一部としてここに引用する)を参照)。当該技術分野において知られる修飾核酸塩基のいくつかの例があり,Limbach et al.,1994,Nucleic Acids Res.22,2183にまとめられている。核酸中に導入することができる塩基修飾のいくつかの非限定的例としては,例えば,イノシン,プリン,ピリジン−4−オン,ピリジン−2−オン,フェニル,シュードウラシル,2,4,6−トリメトキシベンゼン,3−メチルウラシル,ジヒドロウリジン,ナフチル,アミノフェニル,5−アルキルシチジン(例えば5−メチルシチジン),5−アルキルウリジン(例えばリボチミジン),5−ハロウリジン(例えば5−ブロモウリジン)または6−アザピリミジンまたは6−アルキルピリミジン(例えば6−メチルウリジン),プロピンおよびその他のものが挙げられる(Burgin et al.,1996,Biochemistry,35,14090;Uhlman&Peyman,上掲)。この観点において,"修飾塩基"とは,1’位におけるアデニン,グアニン,シトシンおよびウラシル以外のヌクレオチド塩基またはそれらの同等物を意味する。
1つの態様においては,本発明はリン酸骨格修飾を有する修飾されたsiNA分子を特徴とし,これは1またはそれ以上のホスホロチオエート,ホスホロジチオエート,メチルホスホネート,ホスホトリエステル,モルホリノ,アミデート,カルバメート,カルボキシメチル,アセトアミデート,ポリアミド,スルホネート,スルホンアミド,スルファメート,ホルムアセタール,チオホルムアセタール,および/またはアルキルシリル置換を含む。オリゴヌクレオチド骨格修飾の概説については,Hunziker and Leumann,1995,Nucleic Acid Analogues:Synthesis and Properties,Modern Synthetic Methods,VCH,331−417,およびMesmaeker et al.,1994,Novel Backbone Replacements for Oligonucleotides,Carbohydrate Modifications in Antisense Research,ACS,24−39を参照されたい。
"無塩基"とは,1’位において塩基を欠失しているか,または塩基の代わりに他の化学基を有する糖成分を意味する(例えば,Adamic et al.,米国特許5,998,203を参照)。
"非修飾ヌクレオシド"とは,β−D−リボ−フラノースの1’炭素に結合した塩基,アデニン,シトシン,グアニン,チミンまたはウラシルのいずれかの塩基を意味する。
"修飾ヌクレオシド"とは,非修飾ヌクレオチドの塩基,糖および/またはリン酸の化学構造中に修飾を含む任意のヌクレオチド塩基を意味する。修飾ヌクレオチドの非限定的例は式I−VIIに示されるか,および/または本明細書に記載される他の修飾である。
本発明において記載される2’−修飾ヌクレオチドに関して,"アミノ"とは,2’−NH2または2’−O−NH2を意味し,これは修飾されていてもされていなくてもよい。そのような修飾基は,例えば,Eckstein et al.,米国特許5,672,695およびMatulic−Adamic et al.,米国特許6,248,878(いずれもその全体を本明細書の一部としてここに引用する)に記載されている。
核酸siNA構造に対する種々の修飾を作成して,これらの分子の有用性を高めることができる。例えば,このような修飾は,製品寿命,インビトロの半減期,安定性,およびそのようなオリゴヌクレオチドを標的部位に導入する容易さを高め,例えば,細胞膜の透
過性を高め,標的とする細胞を認識し結合する能力を付与するであろう。
核酸分子の投与
本発明のsiNA分子は,単独で,または他の療法と組み合わせて,種々の神経変性性疾病,例えば,アルツハイマー病,痴呆,発作(CVA),および細胞または組織におけるBACEのレベルに関連する他のいずれかの疾病または健康状態の治療に用いるために適合させることができる。例えば,siNA分子は,被験者に投与するためのリポソーム等のデリバリーベヒクル,担体および希釈剤,およびそれらの塩を含むことができ,および/または薬学的に許容しうる処方中に存在することができる。核酸分子のデリバリーの方法は,Akhtar et al.,1992,Trends Cell Bio.,2,139;Delivery Strategies for Antisense Oligonucleotide Therapeutics,ed.Akhtar,1995;Maurer et al.,1999,Mol.Membr.Biol.,16,129−140;Hofland and Huang,1999,Handb.Exp.Pharmacol.,137,165−192;およびLee et al..2000,ACSSymp.Ser.,752,184−192(いずれも本明細書の一部としてここに引用する)に記載されている。Beigelman et al.,米国特許6,395,713およびSullivan et al.,PCT WO94/02595は,さらに,核酸分子をデリバリーするための一般的な方法を記載する。これらのプロトコルを用いて,事実上いかなる核酸分子もデリバリーすることができる。核酸分子は当業者に知られる種々の方法によって細胞に投与することができ,これには,限定されないが,リポソームへの封入,イオントホレシス,または他のベヒクル,例えば,ヒドロゲル,シクロデキストリン(例えば,Gonzalez et al.,1999,Bioconjugate Chem.,10,1068−1074を参照),生分解性ナノカプセル,および生体接着性小球体への組み込み,または蛋白質性ベクター(O’Hare and Normand,国際公開WO00/53722)によるものが含まれる。あるいは,核酸/ベヒクルの組み合わせを,直接注入により,または注入ポンプを用いることにより局所的にデリバリーする。本発明の核酸分子の直接注入は,標準的な針とシリンジの方法論を用いて,または例えばConry et al.,1999,Cliva.Cancer Res.,5,2330−2337およびBarry et al.,国際公開WO99/31262に記載される無針手法により,皮下,筋肉内,または皮膚内に行うことができる。本発明の分子は医薬品として用いることができる。医薬品は,被験者における疾病状態を予防し,発症を調節しまたは治療する(症状をある程度,好ましくは症状をすべて軽減する)。
すなわち,本発明は,本発明の1またはそれ以上の核酸を,許容しうる担体,例えば安定剤,緩衝液等に含む医薬組成物を特徴とする。本発明のポリヌクレオチドは,安定剤,緩衝液等を用いてまたは用いずに医薬組成物を形成することにより,任意の標準的な手段により,投与(例えば,RNA,DNAまたは蛋白質)し,被験者に導入することができる。リポソームデリバリーメカニズムを利用することが望ましい場合には,リポソームを形成する標準的なプロトコルにしたがうことができる。本発明の組成物はまた,経口投与用には錠剤,カプセルまたはエリキシルとして;直腸投与用には座剤として;滅菌溶液として;注入投与の用には懸濁液として,および当該技術分野において知られる他の組成物として,処方し使用することができる。
本発明はまた,記載される化合物の薬学的に許容しうる処方を含む。これらの処方には,上述の化合物の塩,例えば,酸付加塩(例えば,塩酸,シュウ酸,酢酸およびベンゼンスルホン酸の塩)が含まれる。
医薬組成物または処方は,細胞または被験者(例えばヒト)への投与(例えば全身投与
)に適当な形態の組成物または処方を表す。適当な形態は,部分的には,使用する投与経路(例えば経口,経皮,または注射)に依存する。そのような形態は,組成物または処方が標的細胞(すなわち,負に荷電した核酸がデリバリーされることが望まれる細胞)に到達することを妨害してはならない。例えば,血流中に注入される医薬組成物は可溶性でなければならない。他の因子は当該技術分野において知られており,例えば,毒性,および組成物または処方がその効果を発揮することを妨害する形態等を考慮することが含まれる。
"全身投与"とは,インビボでの全身吸収,または血流中における薬剤の蓄積の後に全身に分配されることを意味する。全身的吸収をもたらす投与経路には,限定されないが,静脈内,皮下,腹腔内,吸入,経口,肺内および筋肉内が含まれる。これらの投与経路のそれぞれは,本発明のsiNA分子をアクセス可能な疾患組織に暴露する。薬剤が循環中に入る速度は,分子量またはサイズの関数であることが示されている。本発明の化合物を含むリポソームまたは他の薬剤担体を使用することにより,薬剤を,例えば,あるタイプの組織(例えば網状内皮系(RES)の組織)に局在化させることが可能である。薬剤と細胞(例えば白血球およびマクロファージ)の表面との会合を容易にすることができるリポソーム処方もまた有用である。この方法は,マクロファージおよび白血球による異常な細胞(例えば過剰のBACEを産生する細胞)の免疫認識の特異性を利用することにより,薬剤の標的細胞への輸送を増強するであろう。
"薬学的に許容しうる処方"とは,本発明の核酸分子をその所望の活性に最も適した物理学的位置に有効に分布させることができる組成物または処方を意味する。本発明の核酸分子とともに処方するのに適した薬剤の非限定的例には以下のものが含まれる:CNS中への薬剤の侵入を促進することができるP−糖蛋白質阻害剤(Pluronic P85等)(Jolliet−Riant and Tillement,1999,Fundam.Clin.Pharmacol.,13,16−26);大脳内移植後の徐放輸送用の生分解性ポリマー,例えばポリ(DL−ラクチド−co−グリコリド)微小球(Emerich,DF et al,1999,Cell Transplant,8,47−58)(Alkermes,Inc.Cambridge,MA);および薬剤を脳血管関門を越えて輸送することができ,神経の取り込みメカニズムを変更しうる,例えばポリブチルシアノアクリレートから作成される充填されたナノ粒子(Prog Neuropsychopharmacol Biol Psychiatry,23,941−949,1999)。本発明の核酸分子のデリバリー戦略の他の非限定的例には,Boado
et al.,1998,J.Pharm.Sci.,87,1308−1315;Tyler et al.,1999,FEBS Lett.,421,280−284;Pardridge et al.,1995,PNAS USA.,92,5592−5596;Boado,1995,Adv.Drug Delivery Rev.,15,73−107;Aldrian−Herrada et al.,1998,Nucleic Acids Res.,26,4910−4916;およびTyler et
al.,1999,PNAS USA.,96,7053−7058に記載される物質が含まれる。
本発明はまた,ポリ(エチレングリコール)脂質(PEG−修飾,または長期間循環リポソームまたはステルスリポソーム)を含む表面修飾リポソームを含む組成物の使用を特徴とする。これらの処方は,標的組織における薬剤の蓄積を増加させる方法を提供する。この種類の薬剤担体は,単核食細胞システム(MPSまたはRES)によるオプソニン作用および排除に抵抗性であり,したがって,封入された薬剤の血流循環時間を長くし,組織への暴露を増強する(Lasic et al.Chem.Rev.1995,95,2601−2627;Ishiwata et al.,Chem.Pharm.Bull.1995,43,1005−1011)。そのようなリポソームは,おそらくは脈管
新生標的組織における溢出および捕獲のため,腫瘍中に選択的に蓄積することが示されている(Lasic et al.,Science 1995,267,1275−1276;Oku et al.,1995,Biochim.Biophys.Acta,1238,86−90)。長期間循環リポソームは,特に,MPSの組織で蓄積することが知られている慣用のカチオン性リポソームと比べて,DNAおよびRNAの薬物動態学および薬力学を増強する(Liu et al.,J.Biol.Chem.1995,42,24864−24870;Choi et al.,国際公開WO96/10391;Ansell et al.,国際公開WO96/10390;Holland et al.,国際公開WO96/10392)。長期間循環リポソームはまた,代謝的に攻撃的なMPS組織,例えば肝臓および脾臓における蓄積を回避するその能力に基づいて,カチオン性リポソームと比較して薬剤をヌクレアーゼ分解からより強く保護するようである。
本発明はまた,薬学的に有効量の所望の化合物を薬学的に許容しうる担体または希釈剤中に含む,保存または投与用に調製される組成物を含む。治療用途に用いるための許容しうる担体または希釈剤は,医薬の技術分野においてよく知られており,例えばRemington's Pharmaceutical Sciences,Mack Publ
ishing Co.(A.R.Gennaro edit.1985)(本明細書の一部としてここに引用する)に記載されている。例えば,保存剤,安定剤,染料,および風味剤を用いることができる。これらには,安息香酸ナトリウム,ソルビン酸,およびp−ヒドロキシ安息香酸のエステルが含まれる。さらに,抗酸化剤および懸濁剤を用いてもよい。
薬学的に有効な用量とは,疾患状態の予防,発症の阻害,または治療(症状をある程度緩和し,好ましくはすべての症状を緩和する)に必要な用量である。薬学的に有効な用量は,疾患の種類,用いる組成物,投与の経路,治療する哺乳動物の種類,考慮中の特定の哺乳動物の物理学的特性,同時に投与される薬剤,および医薬の分野の当業者が認識するであろう他の因子によって異なる。一般に,負に荷電したポリマーの効力に依存して,約0.1mg/kg−約100mg/kg体重/日の活性成分を投与する。
本発明の核酸分子およびその処方は,慣用的な無毒性の薬学的に許容しうる担体,アジュバントおよびベヒクルを含む用量単位処方中で,経口的に,局所的に,非経口的に,吸入またはスプレーにより,または直腸に投与することができる。本明細書において用いる場合,非経口的との用語には,経皮,皮下,血管内(例えば,静脈内),筋肉内,または髄腔内注射または注入の手法等が含まれる。さらに,本発明の核酸分子および薬学的に許容しうる担体を含む医薬処方が提供される。1またはそれ以上の本発明の核酸分子は,1またはそれ以上の無毒性の薬学的に許容しうる担体および/または希釈剤,および/またはアジュバント,および所望の場合には他の活性成分とともに存在することができる。本発明の核酸分子を含有する医薬組成物は,経口使用に適した形,例えば,錠剤,トローチ剤,菱形剤,水性または油性懸濁液,分散可能な粉体または顆粒,乳剤,硬カプセルまたは軟カプセル,またはシロップまたはエリキシル剤の形であることができる。
経口で使用することが意図される組成物は,医薬組成物の製造について当該技術分野において知られる任意の方法にしたがって製造することができ,そのような組成物は,薬学的に洗練された口に合う製品を提供するために,1またはそれ以上のそのような甘味剤,芳香剤,着色剤または保存剤を含んでいてもよい。錠剤は,錠剤の製造に適した無毒性の薬学的に許容しうる賦形剤との混合物として活性成分を含む。これらの賦形剤は,例えば,不活性希釈剤,例えば,炭酸カルシウム,炭酸ナトリウム,ラクトース,リン酸カルシウムまたはリン酸ナトリウム;顆粒化剤および崩壊剤,例えば,コーンスターチ,またはアルギン酸;結合剤,例えば,デンプン,ゼラチンまたはアラビアゴム,および潤滑剤,
例えば,ステアリン酸マグネシウム,ステアリン酸またはタルクでありうる。錠剤は被覆しなくてもよく,既知の手法により被覆してもよい。場合によっては,既知の手法によりそのような被覆を調製して,胃腸管における崩壊および吸収を遅延させ,このことによりより長い期間の持続的な作用を与えることができる。例えば,遅延用材料,例えばグリセリルモノステアレートまたはグリセリルジステアレートを用いることができる。
経口使用のための処方は,活性成分が不活性固体希釈剤,例えば,炭酸カルシウム,リン酸カルシウムまたはカオリンと混合されている硬ゼラチンカプセル,または活性成分が水または油状媒体,例えば,ピーナッツ油,液体パラフィンまたはオリーブ油と混合されている軟ゼラチンカプセルであってもよい。
水性懸濁液は,水性懸濁液の製造に適した賦形剤との混合物中に活性物質を含む。そのような賦形剤は,懸濁剤,例えば,カルボキシメチルセルロースナトリウム,メチルセルロース,ヒドロプロピル−メチルセルロース,アルギン酸ナトリウム,ポリビニルピロリドン,トララガントガムおよびアラビアゴムである。分散剤または湿潤剤は,天然に生ずるホフファチド,例えば,レシチン,またはアルキレンオキシドと脂肪酸との縮合生成物,例えば,ステアリン酸ポリオキシエチレン,またはエチレンオキシドと長鎖脂肪族アルコールとの縮合生成物,例えば,ヘプタデカエチレンオキシセタノール,またはエチレンオキシドと脂肪酸およびヘキシトールから誘導された部分エステルとの縮合生成物,例えば,ポリオキシエチレンソルビトールモノオレエート,またはエチレンオキシドと脂肪酸および無水ヘキシトールから誘導された部分エステルとの縮合生成物,例えば,ポリエチレンソルビタンモノオレエートであってもよい。水性懸濁液はまた,1またはそれ以上の保存剤,例えば,エチル−,またはn−プロピル−p−ヒドロキシベンゾエート,1またはそれ以上の着色剤,1またはそれ以上の芳香剤,および1またはそれ以上の甘味剤,例えばショ糖またはサッカリンを含んでいてもよい。
油性懸濁液は,活性成分を植物油,例えば,アラキス油,オリーブ油,ゴマ油またはココナッツ油,または無機油,例えば液体パラフィン中に懸濁させることにより処方することができる。油性懸濁液は,増粘剤,例えば,密ロウ,硬パラフィンまたはセチルアルコールを含むことができる。甘味剤および芳香剤を加えて,口に合う経口製品を得ることができる。これらの組成物は,抗酸化剤,例えばアスコルビン酸を加えることにより保存することができる。
水を加えることにより水性懸濁液を製造するのに適した分散可能な粉体および顆粒は,活性成分を,分散剤または湿潤剤,懸濁剤および1またはそれ以上の保存剤との混合物中で与える。適当な分散剤または湿潤剤または懸濁剤は,上で例示したとおりである。さらに別の賦形剤,例えば,甘味剤,芳香剤および着色剤が存在していてもよい。
本発明の医薬組成物はまた,水中油エマルジョンの形であってもよい。油相は,植物油またはミネラルオイルまたはこれらの混合物であってもよい。適当な乳化剤としては,天然に生ずるガム,例えば,アラビアゴムまたはトラガガントゴム,天然に生ずるホスファチド類,例えば,大豆,レクチン,および脂肪酸とヘキシトールから誘導されるエステルまたは部分エステル,無水物,例えば,ソルビタンモノオレエート,および前記部分エステルとエチレンオキシドとの縮合生成物,例えば,ポリオキシエチレンソルビタンモノオレエートが挙げられる。エマルジョンは,甘味料および芳香剤を含んでいてもよい。
シロップおよびエリキシルは,甘味剤,例えば,グリセロール,プロピレングリコール,ソルビトール,グルコースまたはショ糖を用いて処方することができる。このような処方はまた,粘滑剤,保存剤および甘味料および着色料を含んでいてもよい。医薬組成物は,滅菌した注射可能な水性または油性の懸濁液の形であってもよい。この懸濁液は,上述
した適当な分散剤または湿潤剤および懸濁剤を用いて,当該技術分野において知られるように処方することができる。滅菌した注射可能な製品はまた,無毒性の非経口的に許容可能な希釈剤または溶媒中の滅菌した注射可能な溶液または懸濁液,例えば,1,3−ブタンジオール中の溶液であってもよい。用いることのできる許容可能なベヒクルおよび溶媒の例は,水,リンゲル溶液および等張塩化ナトリウム溶液である。さらに,滅菌し固定した油を溶媒または懸濁媒体として便利に用いることができる。この目的のためには,任意の非刺激性の固定した油,例えば,合成のモノグリセリドまたはジグリセリドを用いることができる。さらに,脂肪酸,例えば,オレイン酸を注射可能な薬剤の製造において用いることができる。
本発明の核酸分子はまた,例えば,薬剤の直腸投与用に,座剤の形で投与することができる。これらの組成物は,薬剤を,通常の温度では固体であるが直腸温度では液体であり,したがって直腸中で溶融して薬剤を放出する適当な非刺激性賦形剤と混合することにより製造することができる。そのような材料としては,カカオバターおよびポリエチレングリコールが挙げられる。
本発明の核酸分子は,滅菌媒体中で非経口的に投与することができる。薬剤は,使用するベヒクルおよび濃度に応じて,ベヒクル中に懸濁されていてもよく,溶解されていてもよい。アジュバント,例えば局所麻酔剤,保存剤および緩衝剤をベヒクル中に溶解することも有利である。
上述した健康状態の治療には,体重1キログラムあたり1日あたり約0.1mg−約140mgのオーダーの投与量レベルが有用である(被験者あたり1日あたり約0.5mg−約7g)。担体物質と組み合わせて1回投与量形を生成することができる活性成分の量は,治療される宿主および投与の特定のモードに依存して様々である。投与量単位形は,一般に,約1mg−約500mgの活性成分を含む。
特定の被験者についての特定の投与量レベルは,種々の因子,例えば,用いる特定の化合物の活性,年齢,体重,一般的健康状態,性別,食事,投与時間,投与経路,および排出速度,薬剤の組み合わせ,および治療をしている特定の疾病の重篤性に依存することが理解されるであろう。
ヒト以外の動物に投与するためには,組成物を動物飼料または飲料水に加えてもよい。動物が治療上適当な量の組成物を飼料とともに接種できるよう,動物飼料および飲用水組成物を処方することが便利であろう。飼料または飲料水に加えるように組成物をプレミックスとして製造することも便利であろう。
本発明の核酸分子はまた,他の治療用化合物と組み合わせて被験者に投与して,全体的治療効果を高めることができる。ある適応症の治療に複数の化合物を用いることにより,副作用の存在を低下させながら有益な効果を高めることができる。
1つの態様においては,本発明は,特定の細胞タイプに本発明の核酸分子を投与するのに適した組成物を提供する。例えば,アシアロ糖蛋白質レセプター(ASGPr)(Wu
and Wu,1987,J.Biol.Chem.262,4429−4432)は,肝細胞に独特であり,分枝鎖ガラクトース末端糖蛋白質,例えばアシアロオロソムコイド(ASOR)に結合する。別の例においては,多くの癌細胞中で葉酸レセプターが過剰発現されている。そのような糖蛋白質,合成グリココンジュゲート,または葉酸のレセプターへの結合は,オリゴサッカライド鎖の分枝の程度に強く依存する親和性で生ずる。例えば,三触角構造は,二触角または一触角鎖より高い親和性で結合する(Baenziger and Fiete,1980,Cell,22,611−620;Connol
ly et al.,1982,J.Biol.Chem.,257,939−945)。Lee and Lee(1987,Glycoconjugate J.,4,317−328)は,ガラクトースと比較してレセプターに対してより高い親和性を有するN−アセチル−D−ガラクトースアミンを炭水化物成分として用いることによりこの高い特異性を得た。この"クラスタリング効果"はまた,マンノシル末端糖蛋白質またはグリココンジュゲートの結合および取込についても記載されている(Ponpipom et al.,1981,J.Med.Client.,24,1388−1395)。ガラクトース,ガラクトースアミンまたは葉酸に基づくコンジュゲートを使用して外来性化合物を細胞膜を超えて輸送することにより,例えば,肝疾患,肝臓の癌,または他の癌の治療に標的化デリバリー法を提供することができる。また,バイオコンジュゲートの使用により,治療に必要な治療用化合物の必要用量を低下させることができる。さらに,本発明の核酸バイオコンジュゲートを使用することにより,治療薬の生物利用性,薬力学,および薬物動態学的パラメータを調節することができる。そのようなバイオコンジュゲートの非限定的例は,Vargeese et al.,米国特許出願10/201,394,(2001年8月13日出願);およびMatulic−Adamic et al,米国特許出願60/362,016(2002年3月6日出願)に記載されている。
あるいは,本発明のある種のsiNA分子は,細胞中で真核生物プロモーターから発現させることができる(例えば,Izant and Weintraub,1985 Science 229,345;McGarry andLindquist,1986
Proc.Natl.Acad.Sci. USA 83,399;Scanlon et al.,1991,Proc.Natl.Acad.Sci. USA ,88,10591−5;Kashani−Sabet et al.,1992 Antisense Res.Dev.,2,3−15;Dropulic et al.,1992
J.Virol 66,1432−41;Weerasinghe et al.,1991 J.Virol,65,5531−4;Ojwang et al.,1992
Proc.Natl.Acad.Sci. USA 89,10802−6;Chen
et al.,1992 Nucleic Acids Res.,20,4581−9;Sarver et al.,1990 Science 247,1222−1225;Thompson et al.,1995 Nucleic Acids Res.23,2259;Good et al.,1997,Gene Therapy,4,45)。当業者は,真核生物細胞中で任意の核酸を適当なDNA/RNAベクターから発現させることができることを認識するであろう。そのような核酸の活性は,酵素的核酸によりそれらを一次転写産物から放出させることにより増大させることができる(Draper et al.,PCT WO93/23569,Sullivan et al.,PCT WO94/02595;Ohkawa et al.,1992 Nucleic Acids Symp.Ser.,27,15−6;Taira et al.,1991, Nucleic Acids Res.,19,5125−30;Ventura et al.,1993 Nucleic Acids Res.,21,3249−55;Chowrira et al.,1994 J.Biol.Chem.269,25856)。
本発明の別の観点においては,本発明のRNA分子は,DNAまたはRNAベクター中に挿入された転写ユニットから発現させることができる(例えばCouture et al.,1996,TIG.,12,510を参照)。組換えベクターは,DNAプラスミドであってもウイルスベクターであってもよい。siNAを発現するウイルスベクターは,限定されないが,アデノ随伴ウイルス,レトロウイルス,アデノウイルス,またはアルファウイルスに基づいて構築することができる。別の態様においては,polIIIに基づくコンストラクトを用いて,本発明の核酸分子を発現させる(例えば,Thompson,米国特許5,902,880および6,146,886を参照)。siNA分子を
発現しうる組換えベクターは,上述のようにデリバリーされ,標的細胞中に残留することができる。あるいは,核酸分子の過渡的発現を与えるウイルスベクターを用いることもできる。そのようなベクターは,必要に応じて繰り返し投与することができる。いったん発現されれば,siNA分子は標的mRNAと相互作用して,RNAi応答を生ずる。siNA分子を発現するベクターの輸送は,全身的(例えば,静脈内または筋肉内投与により),患者から外植された標的細胞に投与した後,被験者に再導入することにより,または所望の標的細胞中への導入を可能とする他のいずれかの手段により,行うことができる(総説については,Couture et al.,1996,TIG.,12,510を参照)。
1つの観点においては,本発明は,少なくとも1つの本発明のsiNA分子をコードする核酸配列を含む発現ベクターを特徴とする。発現ベクターは,siNAデュープレックスの一方または両方の鎖,または自己ハイブリダイズしてsiNAデュープレックスを生ずる1本の自己相補的鎖をコードすることができる。本発明のsiNA分子をコードする核酸配列は,そのsiNA分子の発現を可能とする様式で動作可能なように連結することができる(例えば,Paul et al.,2002,Nature Biotechnology,19,505;Miyagishi and Taira,2002,Nature Biotechnology,19,497;Lee et al.,2002,Nature Biotechnology,19,500;およびNovina
et al.,2002,Nature Medicine,advance online publication doi:10.1038/nm725を参照)。
別の観点においては,本発明は,以下を含む発現ベクターを特徴とする:a)転写開始領域(例えば真核生物pol I,IIまたはIIIの開始領域);b)転写終止領域(例えば真核生物pol I,IIまたはIIIの終止領域);およびc)本発明のsiNA分子の少なくとも1つをコードする核酸配列を含み,前記配列は,siNA分子の発現および/またはデリバリーを可能とする様式で,前記開始領域および前記終止領域に動作可能なように連結されている。ベクターは,任意に,本発明のsiNAをコードする配列の5'側または3’側に動作可能なように連結された蛋白質のオープンリーディングフレ
ーム(ORF);および/またはイントロン(介在配列)を含んでいてもよい。
siNA分子配列の転写は,真核生物RNAポリメラーゼI(pol I),RNAポリメラーゼII(pol II),またはRNAポリメラーゼIII(pol III)のプロモーターにより推進させることができる。pol IIまたはpol IIIプロモーターからの転写産物は,すべての細胞において高いレベルで発現される。あるタイプの細胞におけるあるpol IIプロモーターのレベルは,近くに存在する遺伝子制御配列(エンハンサー,サイレンサー等)の性質に依存する。原核生物RNAポリメラーゼ酵素が適当な細胞中で発現される限り,原核生物RNAポリメラーゼプロモーターもまた用いられる(Elroy−Stein and Moss,1990 Proc.Natl.Acad.Sci. USA ,87,6743−7;Gao and Huang 1993 Nucleic Acids Res.,21,2867−72;Lieberet.al.,1993 Methods Enzymol.,217,47−66;Zhou et al.,1990 Mol.Cell.Biol.,10,4529−37)。何人かの研究者が,そのようなプロモーターから発現した核酸分子が哺乳動物細胞中で機能しうることを示している(例えば,Kashani−Sabet et al.,1992 Antisense Res.Dev.,2,3−15;Ojwang et al.,1992 Proc.Natl.Acad.Sci. USA ,89,10802−6;Chen et al.,1992 Nucleic Acids Res.,20,4581−9;Yu et al.,1993 Proc.Natl.Acad.Sci. USA ,90,6340−4;L'Huillier et al
.,1992 EMBO J.11,4411−8;Lisziewicz et al.,1993 Proc.Natl.Acad.Sci.U.S.A.,90,8000−4;Thompson et al.,1995 Nucleic Acids Res.23,2259;Sullenger&Cech,1993,Science,262,1566)。より詳細には,転写ユニット,例えばU6小核(snRNA),転移RNA(tRNA)およびアデノウイルスVA RNAをコードする遺伝子に由来するものは,細胞中において高濃度の所望のRNA分子(例えばsiNA)を生成するのに有用である(Thompson et al.,(上掲);Couture and Stinchcomb,1996,(上掲);Noonberg et al.,1994,Nucleic Acid Res.,22,2830;Noonberg et al.,米国特許5,1624,803;Good et al.,1997,Gene Ther.4,45;Beicrelman et al.,国際公開WO96/18736)。上述のsiNA転写ユニットは,哺乳動物細胞中に導入するために種々のベクター中に組み込むことができる。ベクターとしては,限定されないが,プラスミドDNAベクター,ウイルスDNAベクター(例えばアデノウイルスまたはアデノ随伴ウイルスベクター),またはウイルスRNAベクター(例えばレトロウイルスまたはアルファウイルスベクター)が挙げられる(総説については,Couture and Stinchcomb,1996,(上掲)を参照)。
別の観点においては,本発明は,本発明のsiNA分子の少なくとも1つをコードする核酸配列を,そのsiNA分子の発現を可能とする様式で含む発現ベクターを特徴とする。1つの態様においては,発現ベクターは,a)転写開始領域;b)転写終止領域;およびc)siNA分子の少なくとも一方の鎖をコードする核酸配列を含み;この配列は,siNA分子の発現および/またはデリバリーを可能とする様式で,開始領域および終止領域に動作可能なように連結されている。
別の態様においては,発現ベクターは,a)転写開始領域;b)転写終止領域;c)オープンリーディングフレーム;およびd)siNA分子の少なくとも一方の鎖をコードする核酸配列を含み,この配列は,オープンリーディングフレームの3'−末端に動作可能
なように連結されており,配列は,siNA分子の発現および/またはデリバリーを可能とする様式で,開始領域,オープンリーディングフレームおよび終止領域に動作可能なように連結されている。さらに別の態様においては,発現ベクターは,a)転写開始領域;b)転写終止領域;c)イントロン;およびd)少なくとも1つのsiNA分子をコードする核酸配列を含み;この配列は,核酸分子の発現および/またはデリバリーを可能とする様式で,開始領域,イントロンおよび終止領域に動作可能なように連結されている。
別の態様においては,発現ベクターは,a)転写開始領域;b)転写終止領域;c)イントロン;d)オープンリーディングフレーム;およびe)siNA分子の少なくとも一方の鎖をコードする核酸配列を含み,この配列は,オープンリーディングフレームの3'
−末端に動作可能なように連結されており,配列は,siNA分子の発現および/またはデリバリーを可能とする様式で,開始領域,イントロン,オープンリーディングフレームおよび終止領域に動作可能なように連結されている。
BACEの生物学および生化学
アルツハイマー病は,進行性の不溶性プラーク形成および脳における4kDのアミロイドβペプチド(Aβ)から構成される血管沈着を特徴とする。これらのプラークは,シナプスの多大な喪失を示すジストロフィー性軸索,神経細線維もつれの形成,およびグリオーシスを特徴とする。Aβは,大きなタイプI貫膜蛋白質であるβ−アミロイド前駆体蛋白質(APP)の蛋白質分解性切断から生ずる(Kang et al.,1987,Nature,325,733)。APPがプロセシングされてAβが生成するためには,
β−セクレターゼおよびγ−セクレターゼによる2つの切断部位が必要である。APPのβ−セクレターゼ切断により100kDの可溶性アミノ末端フラグメントであるAPPsβが細胞質に放出され,後に12kDの貫膜カルボキシ末端フラグメントであるC99が残る。あるいは,APPはα−セクレターゼにより切断されて,細胞質APPsαおよび貫膜C83フラグメントが生成する。残った貫膜フラグメントであるC99およびC83はいずれも,γ−セクレターゼによりさらに切断されて,それぞれ,アルツハイマー関連Aβおよび非病原性ペプチドp3が放出され分泌される(Vassar et al.,1999,Science,286,735−741)。家族性アルツハイマー病の初期の発病は,P1位におけるMetからLeuへの置換を有する変異体APP蛋白質を特徴とし,これは"スウェーデン"型家族性変異の特性を表す(Mullan et al.,1992,Nature Genet.,1,345)。このAPP変異は,β−セクレターゼ切断の劇的な増強を特徴とする(Citron et al.,1992,Nature,360,672)。
β−アミロイド蛋白質の放出に関与するβ−セクレターゼおよびγ−セクレターゼの構成物の同定は,アルツハイマー病の治療戦略の開発に最も重要である。この点に関しては,α−セクレターゼの特性決定もまた重要である。α−セクレターゼ切断がβ−セクレターゼ切断と競合して,非病原性および病原性蛋白質産生の相対的な量が変化するかもしれないためである。AAPのα−切断において2つのメタロプロテアーゼ,ADAM10およびTACEが関与することが示されている(Buxbaum et al.,1999,J.Biol.Chem.,273,27765,およびLammich et al.,1999,Proc.Natl.Acad.Sci.U.S.A.,96,3922)。γ−セクレターゼ活性の研究はプレセニリン依存性を示し(DeStooper et al.,1998,Nature,391,387,およびDeStooper et al.,1999,Nature,398,518),このため,プレセニリンは蛋白質分解活性を示さないにもかかわらず,プレセニリンはγ−セクレターゼであると提唱されてきた(Wolfe et al.,1999,Nature,398,513)。
研究により,貫膜アスパラギン酸プロテアーゼベータ部位APP切断酵素であるBACEによるAAPのβ−セクレターゼ切断が示されている(Vassar et al.,(上掲))。β−セクレターゼの他の潜在的候補が提案されているが(概説として,Evin et al.,1999,Proc.Natl.Acad.Sci.U.S.A.,96,3922を参照),この酵素から予測される完全な特性は明らかにされていない。研究により,BACE発現および局在化はβ−セクレターゼについて予測されるものであること,細胞におけるBACEの過剰発現によりAPPおよびスウェーデン型APPのβ−セクレターゼ切断が増加すること,単離されたBACEはAPP由来ペプチド基質に対して部位特異的蛋白質分解活性を示すこと,およびアンチセンス媒介性の内因性BACE阻害によりセクレターゼ活性が劇的に低下することが示されている(Vassar et al.,(上掲))。
アルツハイマー病の現在の治療戦略は,予防または症状の軽減および/または疾病進行の減速のいずれかに頼っている。アルツハイマーの治療用に2つの薬剤が認可されている:ドネペジル(Aricept(登録商標))およびタクリン(Cognex(登録商標))。いずれもコリン作動性薬であり,脳で利用可能なアセチルコリンの量を増加させることにより認知能力の喪失を遅らせようとするものである。抗酸化化合物,例えば,アルファ−トコフェロール(ビタミンE),メラトニン,およびセレゲリン(Eldepryl(登録商標))を用いる抗酸化剤療法は,フリーラジカル傷害を最小限にすることにより疾病進行を遅らせようとするものである。エストロゲン置換療法は,限定されたデータに基づいて,アルツハイマー病の発達に予防的利点を与える可能性があると考えられている。抗炎症剤の使用もアルツハイマーのリスクの低減と関連するかもしれない。カルシウ
ムチャネルブロッカー,例えばNimodipine(登録商標)は,カルシウムの過負荷から神経細胞を保護し,このことにより神経細胞の生存を長くするため,アルツハイマー病の治療に利点がある可能性があると考えられている。ヌートロピック化合物,例えばアセチル−L−カルニチン(Alcar(登録商標))およびインスリンは,細胞代謝に基づく認識および記憶機能の増強のため,アルツハイマー病の治療にある程度の利点を有することが提唱されている。
上述の治療戦略はすべてアルツハイマー患者の生活の質を改善することができるが,この疾病の総合的な治療および予防についての必要性は依然として満たされていない。したがって,アルツハイマー病に伴う生理学的変化を逆転させるのに有効な治療法,特に,アミロイドβペプチドの沈着を排除および/または後退させることができる治療法が求められている。小核酸分子(例えば,RNA干渉(RNAi)を媒介しうる短干渉核酸(siNA),短干渉RNA(siRNA),二本鎖RNA(dsRNA),マイクロRNA(miRNA),および短ヘアピンRNA(shRNA)分子)等の化合物を使用して,アミロイドβペプチドの放出を助けるプロテアーゼであるβ−セクレターゼ(BACE),γ−セクレターゼ(プレセニリン),およびアミロイド前駆体蛋白質(APP)の発現を調節することは,治療のために重要である。
以下は本発明の核酸の選択,単離,合成および活性を示す非限定的例である。
実施例1:siNAコンストラクトのタンデム合成
本発明の例示的siNA分子は,切断可能なリンカー,例えば,スクシニル系リンカーを用いて,タンデムで合成する。本明細書に記載されるタンデム合成の後に,1段階精製プロセスを行って,RNAi分子を高収率で得る。この方法はハイスループットRNAiスクリーニングを支えるsiNA合成に非常に適しており,マルチカラムまたはマルチウエルの合成プラットフォームに容易に適合させることができる。
5’末端ジメトキシトリチル(5’−O−DMT)基がそのまま残るsiNAオリゴおよびその相補鎖のタンデム合成(トリチルオン合成)が完了した後,オリゴヌクレオチドを上述のようにして脱保護する。脱保護の後,siNA配列鎖を自発的にハイブリダイズさせる。このハイブリダイゼーションにより,一方の鎖が5’−O−DMT基を保持し,相補鎖が末端5’−ヒドロキシルを含むデュープレックスが得られる。新たに形成されたデュープレックスは,1つの分子のみがジメトキシトリチル基を有するにもかかわらず,日常的な固相抽出精製(トリチルオン精製)の間,単一の分子として振る舞う。これらの鎖は安定なデュープレックスを形成するため,オリゴの対を例えばC18カートリッジを用いて精製するためには,このジメトキシトリチル基(または同等の基,例えば他のトリチル基または他の疎水性成分)のみが必要である。
タンデムリンカー,例えば反転デオキシ無塩基スクシネートまたはグリセリルスクシネートリンカー(図1を参照)または同等の切断可能なリンカーを導入する時点までは,標準的なホスホルアミダイト合成化学を用いる。用いることができるリンカー結合条件の非限定的例には,活性化剤,例えばブロモトリピロリジノホスホニウムヘキサフルオロリン酸(PyBrOP)の存在下で,妨害塩基,例えばジイソプロピルエチルアミン(DIPA)および/またはDMAPを使用することが含まれる。リンカーを結合させた後,標準的な合成化学を用いて第2の配列の合成を完了し,末端の5’−O−DMTはそのまま残す。合成後,得られたオリゴヌクレオチドを本明細書に記載される方法にしたがって脱保護し,適当な緩衝液,例えば,50mM NaOAcまたは1.5M NH42CO3
反応を停止させる。
siNAデュープレックスの精製は,固相抽出,例えば,1カラム容量(CV)のアセトニトリル,2CVのH2O,および2CVの50mM NaOAcで調整したWate
rs C18 SepPak lgカートリッジを用いて,容易に行うことができる。サンプルを負荷し,1CVのH2Oまたは50mM NaOAcで洗浄する。失敗配列は1
CVの14%ACN(水性;50mM NaOAcおよび50mMNaClを含む)で溶出する。次にカラムを1CVのH2O等で洗浄し,例えば,1CVの1%水性トリフルオ
ロ酢酸(TFA)をカラムに通し,次にさらに1CVの1%水性TFAをカラムに加えて約10分間放置することにより,カラム上で脱トリチル化を行う。残りのTFA溶液を除去し,カラムをH2Oで,次に1CVの1MNaClおよび再度のH2Oで洗浄する。次に,siNAデュープレックス生成物を,例えば,1CVの20%水性CANを用いて溶出する。
図2は,精製したsiNAコンストラクトのMALDI−TOV質量分析の例を示し,ここで,各ピークはsiNAデュープレックスの個々のsiNA鎖の計算質量に対応する。同じ精製siNAは,キャピラリーゲル電気泳動(CGE)で分析したときに3つのピークを与える。1つのピークはおそらくはデュープレックスsiNAに対応し,2つのピークはおそらく個々のsiNA配列鎖に対応する。同じsiNAコンストラクトのイオン交換HPLC分析では単一のピークしか示されない。以下に記載されるルシフェラーゼレポーターアッセイを用いる精製siNAコンストラクトの試験は,別々に合成したオリゴヌクレオチド配列鎖から生成したsiNAコンストラクトと比較して,RNAi活性が同じであることを示した。
実施例2:任意のRNA配列中の潜在的siNA標的部位の同定
目的とするRNA標的,例えばウイルスまたはヒトmRNA転写産物の配列を,例えばコンピュータフォールディングアルゴリズムを用いることにより,標的部位についてスクリーニングする。非限定的例においては,Genbank等のデータベースから得られる遺伝子またはRNA遺伝子転写産物の配列を用いて,標的に対して相補性を有するsiNA標的を生成する。そのような配列は,データベースから得ることができるか,または当該技術分野において知られるように実験的に決定することができる。既知の標的部位,例えば,リボザイムまたはアンチセンス等の他の核酸分子を用いた研究に基づいて有効な標的部位であると決定されている標的部位,または疾病または健康状態と関連していることが知られている標的,例えば変異または欠失を含む部位を用いて,これらの部位を標的とするsiNA分子を設計することができる。種々のパラメータを用いて,標的RNA配列中でいずれの部位が最も適当な標的部位であるかを判定することができる。これらのパラメータには,限定されないが,二次または三次RNA構造,標的配列のヌクレオチド塩基組成,標的配列の種々の領域間のホモロジーの程度,またはRNA転写産物中の標的配列の相対的位置が含まれる。これらの判定に基づいて,RNA転写産物中の任意の数の標的部位を選択して,例えば,インビトロRNA切断アッセイ,培養細胞,または動物モデルを用いることにより,効力についてsiNA分子をスクリーニングすることができる。非限定的例においては,用いるべきsiNAコンストラクトのサイズに基づいて,転写産物中のいずれかの位置の1−1000個の標的部位を選択する。当該技術分野において知られる方法,例えば標的遺伝子発現の有効な減少を判定するマルチウエルまたはマルチプレートアッセイを用いて,siNA分子をスクリーニングするためのハイスループットスクリーニングアッセイを開発することができる。
実施例3:RNA中のsiNA分子標的部位の選択
以下の非限定的工程を用いて,所定の遺伝子配列または転写産物を標的とするsiNAの選択を行うことができる。
1.標的配列をインシリコで解析して,標的配列中に含まれる特定の長さのすべてのフ
ラグメントまたはサブ配列,例えば23ヌクレオチドフラグメントのリストを作成する。この工程は,典型的にはあつらえのPerlスクリプトを用いて行うが,市販の配列分析プログラム,例えば,Oligo,MacVector,またはthe GCG Wisconsin Packageも同様に用いることができる。
2.場合によっては,siNAは2以上の標的配列に対応する。これは,例えば,同じ遺伝子の異なる転写産物を標的とする場合,2以上の遺伝子の異なる転写産物を標的とする場合,またはヒト遺伝子と動物ホモログとの両方を標的とする場合に生じうる。この場合には,それぞれの標的について特定の長さのサブ配列のリストを生成し,次にリストを比較して,各リスト中でマッチング配列を見いだす。次に,サブ配列を,所定のサブ配列を含む標的配列の数にしたがってランク付けする。この目的は,標的配列のほとんどまたはすべてに存在するサブ配列を見いだすことである。あるいは,ランク付けにより,標的配列にユニークなサブ配列,例えば変異体標的配列を同定することができる。このような方法により,変異体配列を特異的に標的とし,正常な配列の発現に影響を及ぼさないsiNAの使用が可能となるであろう。
3.場合によっては,siNAのサブ配列は,1またはそれ以上の配列中には存在しないが,所望の標的配列中に存在する。これは,siNAが標的とされないままでいるべきパラロガスファミリーのメンバーを有する遺伝子を標的とする場合に生じうる。上述のケース2におけるように,それぞれの標的について特定の長さのサブ配列のリストを生成し,次にリストを比較して,標的遺伝子中に存在するが標的ではないパラログ中には存在しない配列を見いだす。
4.ランク付けされたsiNAサブ配列をさらに分析して,GC含量にしたがってランク付けすることができる。30−70%のGCを含有する部位が好ましく,40−60%のGCを含有する部位がさらに好ましい。
5.ランク付けされたsiNAサブ配列をさらに分析して,自己フォールディングおよび内部ヘアピンにしたがってランク付けすることができる。内部フォールディングがより弱いことが好ましい。強いヘアピン構造は回避すべきである。
6.ランク付けされたsiNAサブ配列をさらに分析して,配列中にGGGまたはCCCの連続を有するか否かにしたがってランク付けすることができる。いずれかの鎖にGGG(またはさらに多いG)が存在すると,オリゴヌクレオチド合成に問題が生じることがあり,RNAi活性を妨害する可能性がある。したがって,よりよい配列が利用可能である限り,これは回避する。CCCはアンチセンス鎖にGGGを配置するため,標的鎖中で検索する。
7.ランク付けされたsiNAサブ配列をさらに分析して,配列の3’末端にジヌクレオチドUU(ウリジンジヌクレオチド)を,および/または配列の5’末端にAA(アンチセンス配列に3’UUを生ずる)を有するか否かにしたがってランク付けする。これらの配列により,末端TTチミジンジヌクレオチドを有するsiNA分子を設計することが可能となる。
8.上述のようにランク付けされたサブ配列のリストから4個または5個の標的部位を選択する。次に,例えば,23ヌクレオチドを有するサブ配列において,それぞれの選択された23−merサブ配列の右側21ヌクレオチドをsiNAデュープレックスの上側(センス)鎖用に設計し合成し,一方,それぞれの選択された23−merサブ配列の左側21ヌクレオチドの逆相補鎖をsiNAデュープレックスの下側(アンチセンス)鎖用に設計し合成する(表IIおよびIIIを参照)。末端TT残基が配列にとって望ましい
場合には(パラグラフ7に記載されるように),オリゴを合成する前にセンス鎖およびアンチセンス鎖の両方の2つの3’末端ヌクレオチドをTTで置き換える。
9.siNA分子をインビトロ,培養細胞または動物モデル系においてスクリーニングして,最も活性なsiNA分子,または標的RNA配列中の最も好ましい標的部位を同定する。
別の方法においては,BACE標的配列に特異的なsiNAコンストラクトのプールを用いて,BACE RNAを発現する細胞,例えばA549細胞,7PA2チャイニーズハムスター卵巣(CHO)細胞またはAPPsw(スウェーデン型アミロイド前駆体蛋白質を発現)細胞において標的部位をスクリーニングする。この方法において用いられる一般的戦略は図9に示される。そのようなプールの非限定的例は,配列番号1−325,651−658,663−666,および671−674を含むセンス配列,およびそれぞれ配列番号326−650,659−662,667−670,および675−678を含むアンチセンス配列を有する配列を含むプールである。BACEを発現する細胞(例えばA549細胞)をsiNAコンストラクトのプールでトランスフェクトし,BACEの阻害に伴う表現型を示す細胞を分類する。siNAコンストラクトのプールは,適当なベクター中に挿入した転写カセットから発現させることができる(例えば,図7および図8を参照)。ポジティブの表現型変化(例えば,増殖の低下,BACE mRNAレベルの低下またはBACE蛋白質発現の低下)を示す細胞からのsiNAをシークエンスして,標的BACE RNA配列中の最も適当な標的部位を決定する。
実施例4:BACEを標的とするsiNAの設計
siNAの標的部位は,実施例3に記載されるsiNA分子のライブラリを用いて,あるいは本明細書の実施例6に記載されるようなインビトロsiNAシステムを用いて,BACE RNA標的の配列を分析し,任意にフォールディング(siNAの標的へのアクセス可能性を判定するために分析される任意の所与の配列の構造)に基づいて標的部位に優先順位を付けることにより,選択した。siNA分子は,それぞれの標的に結合することができるように設計し,任意に個々にコンピュータフォールディングにより分析して,siNA分子が標的配列と相互作用しうるか否かを評価した。種々の長さのsiNA分子を選択して,活性を最適化することができる。一般に,標的RNAと結合するかさもなくばこれと相互作用する十分な数の相補的ヌクレオチド塩基が選択されるが,種々の長さまたは塩基組成のsiNAデュープレックスに適応させるように,相補性の程度を調節することができる。そのような方法論を用いることにより,siNA分子は,任意の既知のRNA配列,例えば,任意の遺伝子転写産物に対応するRNA配列中の部位を標的とするよう設計することができる。
化学的に修飾されたsiNAコンストラクトを設計して,RNAi活性を媒介する能力を保存しながら,インビボでの全身投与のためのヌクレアーゼ安定性および/または改良された薬物動態学,局在化,およびデリバリー特性を提供することができる。本明細書に記載される合成方法および一般に当該技術分野において知られる合成方法を用いて,本明細書に記載される化学修飾を合成的に導入する。次に,血清および/または細胞/組織抽出物(例えば肝臓抽出物)中で,合成siNAコンストラクトをヌクレアーゼ安定性についてアッセイする。合成siNAコンストラクトはまた,適当なアッセイ,例えば本明細書に記載されるルシフェラーゼレポーターアッセイまたはRNAi活性を定量しうる他の適当なアッセイを用いて,RNAi活性についても平行して試験する。ヌクレアーゼ安定性およびRNAi活性の両方を有する合成siNAコンストラクトは,さらに改変して,安定性および活性のアッセイにおいて再評価することができる。次に,任意の選択されたRNAを標的とするいずれかのsiNA配列に安定化活性siNAコンストラクトの化学的修飾を適用して,例えば,標的スクリーニングアッセイにおいて用いて,治療薬を開発
するためのsiNA化合物のリードを拾い上げることができる(例えば,図11を参照)。
実施例5:siNAの化学合成および精製
siNA分子は,RNAメッセージ中の種々の部位,例えば,本明細書に記載されるRNA配列中の標的配列と相互作用するよう設計することができる。siNA分子の一方の鎖の配列は,上述した標的部位配列に相補的である。siNA分子は,本明細書に記載される方法を用いて化学的に合成することができる。対照配列として用いられる不活性siNA分子は,siNA分子の配列を標的配列に相補的ではないようにスクランブル化することにより,合成することができる。一般に,siNAコンストラクトは,本明細書に記載されるように,固相オリゴヌクレオチド合成方法を用いて合成することができる(例えば,Usman et al.,米国特許5,804,683;5,831,071;5,998,203;6,117,657;6,353,098;6,362,323;6,437,117;6,469,158;Scaringe et al.,米国特許6,111,086;6,008,400;6,111,086を参照(いずれもその全体を本明細書の一部としてここに引用する))。
非限定的例においては,RNAオリゴヌクレオチドは,当該技術分野において知られるように,ホスホルアミダイト化学を用いて段階的様式で合成する。標準的なホスホルアミダイト化学においては,5’−O−ジメトキシトリチル,2’−O−tert−ブチルジメチルシリル,3’−O−2−シアノエチルN,N−ジイソプロピルホスホルアミダイト基,および環外アミン保護基(例えば,N6−ベンゾイルアデノシン,N4−アセチルシチジン,およびN2−イソブチリルグアノシン)のいずれかを含むヌクレオシドを使用する。あるいは,Scaringe(上掲)により記載されるように,RNAの合成において2’−O−シリルエーテルを酸不安定性2’−O−オルトエステル保護基と組み合わせて用いてもよい。異なる2’化学は異なる保護基を必要とし,例えば,Usman et
al.,米国特許5,631,360(その全体を本明細書の一部としてここに引用する)に記載されるように,2’−デオキシ−2’−アミノヌクレオシドにはN−フタロイル保護を用いることができる。
固相合成の間に,各ヌクレオチドを順番に(3’−から5’−方向に)固体支持体結合オリゴヌクレオチドに付加する。鎖の3’末端の最初のヌクレオシドを種々のリンカーを用いて固体支持体(例えば,調整多孔ガラスまたはポリスチレン)に共有結合させる。ヌクレオチド前駆体,リボヌクレオシドホスホルアミダイト,および活性化剤を混合して,第1のヌクレオシドの5’末端上に第2のヌクレオシドホスホルアミダイトをカップリングさせる。次に支持体を洗浄し,未反応5’−ヒドロキシル基を無水酢酸等のキャッピング試薬を用いてキャッピングして,不活性な5’−アセチル成分を得る。次に3価リン結合を酸化してより安定なリン酸結合とする。ヌクレオチド付加サイクルの最後に,適当な条件下で(例えば,トリチル系の基については酸性条件,シリル系の基についてはフッ化物を用いて),5’−O−保護基を切断する。それぞれの次のヌクレオチドについてこのサイクルを繰り返す。
合成条件を改変して,例えば,合成すべきsiNAの特定の化学組成に応じて,異なるカップリング時間,異なる試薬/ホスホルアミダイト濃度,異なる接触時間,異なる固体支持体および固体支持体リンカー化学を用いることにより,カップリング効率を最適化することができる。siNAの脱保護および精製は,一般に記載されているようにして行うことができる(Scaringe(上掲),Usman et al.,米国特許5,831,071,米国特許6,353,098,米国特許6,437,117,およびBellon et al.,米国特許6,054,576,米国特許6,162,909,米国特許6,303,773(これらはすべてその全体を本明細書の一部としてここに引
用する))。
さらに,脱保護条件を改変して,可能な限り最高の収量および純度のsiNAコンストラクトを得る。例えば,本出願人は,2’−デオキシ−2’−フルオロヌクレオチドを含むオリゴヌクレオチドは不適切な脱保護条件下で分解しうることを見いだした。そのようなオリゴヌクレオチドは,水性メチルアミンを用いて約35℃で30分間脱保護する。2’−デオキシ−2’−フルオロ含有オリゴヌクレオチドがリボヌクレオチドをも含む場合には,水性メチルアミンで約35℃で30分間脱保護した後,TEA−HFを加え,反応液をさらに15分間約65℃に維持する。
実施例6:siNA活性を評価するためのRNAiインビトロアッセイ
RNAiを無細胞システムにおいて再現するインビトロアッセイを用いて,BACE RNA標的を標的とするsiNAコンストラクトを評価する。アッセイは,Tuschlら(1999,Genes and Development,13,3191−3197)およびZamoreら(2000,Cell,101,25−33)に記載され,BACE標的RNA用に適合させた系を含む。シンシチウム胚盤葉に由来するショウジョウバエ抽出物を用いてインビトロでRNAi活性を再構築する。標的RNAは,BACEを発現する適当なプラスミドからT7RNAポリメラーゼを用いてインビトロ転写することにより,または本明細書に記載されるように化学合成により作製する。センスおよびアンチセンスsiNA鎖(例えば各20μM)は,緩衝液(例えば,100mM酢酸カリウム,30mM HEPES−KOH,pH7.4,2mM酢酸マグネシウム)中で90℃で1分間,次に37℃で1時間インキュベートすることによりアニーリングさせ,次に溶解緩衝液(例えば100mM酢酸カリウム,30mM HEPES−KOH(pH7.4),2mM酢酸マグネシウム)で希釈する。アニーリングは,アガロースゲルを用いてTBE緩衝液でゲル電気泳動し,臭化エチジウムで染色することによりモニターすることができる。ショウジョウバエの溶解物は,OregonRハエからの0−2時間齢の胚を用いて調製し,酵母糖蜜寒天上に回収し,絨毛膜を除去し溶解する。溶解物を遠心分離し,上清を単離する。アッセイは,50%溶解物[vol/vol],RNA(10−50pMの最終濃度),およびsiNA(10nMの最終濃度)を含む10%[vol/vol]溶解緩衝液を含有する反応混合物を含む。反応混合物はまた,10mMのクレアチンリン酸,10μg/mlのクレアチンホスホキナーゼ,100μMのGTP,100μMのUTP,100μMのCTP,500μMのATP,5mMのDTT,0.1U/μLのRNasin(Promega),および100μMの各アミノ酸を含む。酢酸カリウムの最終濃度は100mMに調節する。反応は氷上で予め組立て,25℃で10分間プレインキュベートした後にRNAを加え,25℃でさらに60分間インキュベートする。4倍容量の1.25x Passive Lysis Buffer(Promega)で反応を停止させる。標的RNAの切断は,RT−PCR分析または当該技術分野において知られる他の方法によりアッセイし,反応からsiNAが省略されている対照反応と比較する。
あるいは,アッセイ用の内部標識した標的RNAを[アルファ−32P]CTPの存在下でインビトロ転写により調製し,スピンクロマトグラフィーによりG50セファデックスカラムを通し,さらに精製することなく標的RNAとして用いる。任意に,標的RNAはT4ポリヌクレオチドキナーゼ酵素を用いて5’−32P末端標識してもよい。アッセイは上述のようにして行い,標的RNAおよびRNAiにより生成する特異的RNA切断産物をゲルのオートラジオグラフィーで可視化する。切断のパーセントは,無傷の対照RNAまたはsiNAなしの対照反応からのRNA,およびアッセイにより生成する切断産物を表すバンドをPhosphorImager(登録商標)で定量することにより決定する。
1つの態様においては,このアッセイを用いて,siNA媒介性RNAi切断のためのBACE RNA標的の標的部位を決定する。すなわち,例えば,標識した標的RNAの電気泳動によりアッセイ反応を分析することにより,またはノザンブロットにより,ならびに当該技術分野において知られる他の方法論により,複数のsiNAコンストラクトをBACE RNA標的のRNAi媒介性切断についてスクリーニングする。
実施例7:BACE標的RNAのインビボでの核酸阻害
上述したようにして,ヒトBACE RNAを標的とするsiNA分子を設計し,合成する。これらの核酸分子は,例えば以下の方法を用いることにより,インビボで切断活性について試験することができる。BACE RNA中の標的配列およびヌクレオチドの位置は表IIおよびIIIに示される。
2つのフォーマットを用いて,BACEを標的とするsiNAの効力を試験する。第1に,例えば,A549細胞,7PA2チャイニーズハムスター卵巣(CHO)細胞またはAPPsw(スウェーデン型アミロイド前駆体蛋白質発現)細胞を用いて,細胞培養において試薬を試験して,RNAおよび蛋白質の阻害の程度を決定する。本明細書に記載されるように,siNA試薬(例えば,表IIおよびIIIを参照)をBACE標的に対して選択する。これらの試薬を適当なトランスフェクション試薬により,例えば,A549細胞,7PA2チャイニースハムスター卵巣(CHO)細胞またはAPPsw(スウェーデン型アミロイド前駆体蛋白質発現)細胞にデリバリーした後,RNA阻害を測定する。増幅のリアルタイムPCRモニタリング(例えば,ABI7700 Taqman(登録商標))を用いて,アクチンに対する標的RNAの相対量を測定する。無関係標的に対して,または同じ全体の長さおよび化学を有するがそれぞれの位置でランダムに置換されているランダム化siNA対照に対して作製したオリゴヌクレオチド配列の混合物に対して,比較を行う。標的に対して一次および二次のリード試薬を選択し,最適化を行う。最適なトランスフェクション試薬濃度を選択した後,リードsiNA分子を用いてRNAの阻害の経時変化を測定する。さらに,細胞播種フォーマットを用いて,RNA阻害を判定することができる。
siNAの細胞へのデリバリー
細胞(例えば,A549細胞,7PA2,CHO,またはAPPsw細胞)は,トランスフェクションの前日に,例えば,EGM−2(BioWhittaker)中で1x105細胞/ウエルで6−ウエルディッシュに播種する。siNA(例えば最終濃度20n
M)およびカチオン性脂質(例えば最終濃度2μg/ml)を,ポリスチレン管でEGM基礎培地(BioWhittaker)中で,37℃で30分間複合体化させる。ボルテックスした後,複合体化したsiNAを各ウエルに加え,示される時間インキュベートする。最初の最適化実験のためには,細胞を例えば,1x103で96ウエルプレートに播
種し,記載されるようにしてsiNA複合体を加える。siNAの細胞へのデリバリーの効率は,脂質と複合体化した蛍光siNAを用いて決定する。6ウエルディッシュ中の細胞をsiNAとともに24時間インキュベートし,PBSですすぎ,2%パラホルムアルデヒド中で室温で15分間固定する。siNAの取り込みは蛍光顕微鏡を用いて可視化する。
Taqmanおよび光サイクラーによるmRNAの定量
siNAのデリバリーの後,例えば,6ウエル用にはQiagenRNA精製キットを,または96ウエルアッセイ用にはRneasy抽出キットを用いて,細胞から総RNAを調製する。Taqman分析のためには,5’末端に共有結合させたレポーター染料(FAMまたはJOE)および3’末端にコンジュゲート化したクエンチャー染料TAMRAを有する二重標識プローブを合成する。1段階RT−PCR増幅は,例えば,ABI PRISM 7700 Sequence Detectorで,10μlの総RNA,
100nMのフォワードプライマー,900nMのリバースプライマー,100nMのプローブ,1XTaqMan PCR反応緩衝液(PE−Applied Biosystems),5.5mM MgCl2,300μMの各dATP,dCTP,dGTP,お
よびdTTP,10UのRNase阻害剤(Promega),1.25UのAmpliTaqGold(PE−Applied Biosystems)および10UのM−MLVリバーストランスクリプターゼ(Promega)から構成される50μlの反応液を用いて行う。熱サイクリング条件は,48℃で30分間,95℃で10分間,次に95℃で15秒間および60℃で1分間を40サイクルからなるものでありうる。mRNAレベルの定量は,段階的に希釈した総細胞RNA(300,100,33,11ng/rxn)から生成した標準に対して行い,平行してTaqMan反応で測定したβ−アクチンまたはGAPDH mRNAに対して標準化する。目的とする各遺伝子について,上側プライマーおよび下側プライマー,および蛍光標識したプローブを設計する。特定のPCR産物中へのSYBR GreenI染料のリアルタイム取り込みは,ガラスキャピラリー管で光サイクラーを用いて測定することができる。対照cRNAを用いて,各プライマー対について標準曲線を作成する。値は,各サンプルにおいてGAPDHに対する相対的発現として表す。
ウエスタンブロッティング
核抽出物は,標準的なマイクロ調製手法(例えば,Andrews and Faller,1991,Nucleic Acids Research,19,2499を参照)を用いて調製することができる。例えばTCA沈殿を用いて,上清からの蛋白質抽出物を調製する。等量の20%TCAを細胞上清に加え,氷上で1時間インキュベートし,5分間の遠心分離によりペレット化する。ペレットをアセトンで洗浄し,乾燥し,水に再懸濁する。細胞蛋白質抽出物を10%Bis−Tris NuPage(核抽出物)または4−12%Tris−グリシン(上清抽出物)ポリアクリルアミドゲルに流し,ニトロセルロース膜に移す。非特異的結合は,例えば,5%無脂乳とともに1時間インキュベートすることによりブロッキングすることができ,次に一次抗体で4℃で16時間反応させる。洗浄した後,二次抗体,例えば(1:10,000希釈)を室温で1時間適用し,SuperSignal試薬(Pierce)でシグナルを検出する。
実施例8:BACE遺伝子発現のダウンレギュレーションを評価するのに有用なモデル
細胞培養
Vassarら(1999,Science,286,735−741)は,BACE阻害を研究するための培養細胞モデルを記載する。BACE mRNAを標的とする特異的アンチセンス核酸分子を用いて,脂質媒介性トランスフェクションにより101細胞およびAPPsw(スウェーデン型アミロイド前駆体蛋白質を発現)細胞における内因性BACE発現の阻害実験を行った。アンチセンス処理により,ノザンブロット分析により両方のBACE mRNAが,およびELISAによりAPPspsw("スウェーデン"型β−セクレターゼ切断産物)が劇的に減少し,いずれのパラメータについても75−80%の最大阻害が得られた。このモデルはまた,APPsw細胞におけるアミロイドβ−ペプチド産生に及ぼすBACE阻害の影響を研究するために用いることができる。同様に,そのようなモデルを用いて,本発明のsiRNA分子を有効性および効力についてスクリーニングすることができる。
いくつかの細胞培養系においては,カチオン性脂質が培養細胞に対するオリゴヌクレオチドの生物利用性を増強することが示されている(Bennet,et al.,1992,Mol.Pharmacology,41,1023−1033)。1つの態様においては,細胞培養実験用に本発明のsiNA分子をカチオン性脂質と複合体化させる。siNAおよびカチオン性脂質混合物を細胞に加える直前に無血清DMEM中で調製する。DMEMプラス添加物を室温(約20−25℃)に暖め,カチオン性脂質を所望の最終濃
度で加え,溶液を軽くボルテックスする。siNA分子を所望の最終濃度で加え,溶液を再び軽くボルテックスし,室温で10分間インキュベートする。用量応答実験においては,10分間のインキュベート後にRNA/脂質複合体をDMEMで連続希釈する。
動物モデル
動物モデルにおいて抗BACE剤の効力を評価することは,ヒトの臨床試験の重要な前提条件である。Gamesら(1995,Nature,373,523−527)は,変異体ヒト家族性APP型(Valの代わりにPhe717)を過剰発現させたトランスジェニックマウスモデルを記載する。このモデルから,アルツハイマー病の病理上顕著な特徴の多くを進行的に発症するマウスが得られ,したがって,本発明のsiNAコンストラクト等の治療用薬剤を試験するモデルを提供する。
実施例9:BACE RNA発現のRNAi媒介性阻害
siNAコンストラクト(表IIおよびIII)を,例えばA549細胞において,BACE RNA発現を低下させる効力について試験する。トランスフェクションの時点で細胞が70−90%コンフルエントであるように,トランスフェクションの約24時間前に,96ウエルプレートに5,000−7,500細胞/ウエル,100μl/ウエルで細胞を播種する。トランスフェクションのためには,アニーリングしたsiNAを50μl/ウエルの容量でトランスフェクション試薬(リポフェクタミン2000,Invitrogen)と混合し,室温で20分間インキュベートする。siNAトランスフェクション混合物を細胞に加えて,150μlの容量中最終siNA濃度を25nMとする。各siNAトランスフェクション混合物を3回のsiNA処理用に3つのウエルに加える。細胞をsiNAトランスフェクション混合物の連続的存在下で37℃で24時間インキュベートする。24時間において,処理した細胞の各ウエルからRNAを調製する。まずトランスフェクション混合物を有する上清を除去して廃棄し,次に細胞を溶解し,各ウエルからRNAを調製する。処理後の標的遺伝子の発現を,標的遺伝子および標準化用に対照遺伝子(36B4,RNAポリメラーゼサブユニット)についてRT−PCRにより評価する。3回の実験のデータを平均し,各処理について標準偏差を求める。標準化したデータをグラフに表し,活性なsiNAによる標的mRNAの減少のパーセントをそれぞれの反転対照siNAと比較して判定する。
非限定的例においては,siNAコンストラクトを活性についてスクリーニングし(図12を参照),未処理細胞,スクランブル化siNA対照コンストラクト(Scram1およびScram2),および脂質のみでトランスフェクトした細胞(トランスフェクション対照)と比較する。図12に示されるように,siNAコンストラクトは,BACE
RNAの発現の有意な低下を示す。そのようなスクリーニングから得られたリードを,次にさらにアッセイする。非限定的例においては,リボヌクレオチドおよび3’末端ジチミジンキャップを含むsiNAコンストラクト,ならびに,2’−デオキシ−2’−フルオロピリミジンヌクレオチドおよびプリンリボヌクレオチドを含み,siNAのセンス鎖が5’および3’末端反転デオキシ無塩基キャップでさらに修飾されており,アンチセンス鎖が3’末端ホスホロチオエートヌクレオチド間結合を含む,化学的に修飾されたsiNAコンストラクトをアッセイする。表IVに記載されるさらに別の安定化化学も同様に活性についてアッセイする。これらのsiNAコンストラクトを,適当なマッチした化学の反転対照と比較する。さらに,siNAコンストラクトはまた,未処理細胞,脂質およびスクランブル化siNAコンストラクトでトランスフェクトした細胞,および脂質のみでトランスフェクトした細胞(トランスフェクション対照)とも比較する。
実施例10:適応症
BACE発現の調節に関連しうる特定の変性性状態および疾病状態としては,限定されないが,アルツハイマー病,痴呆,発作(CVA),および単独でまたは他の療法との組
み合わせで,細胞または組織におけるBACEのレベルに関連する他のいずれかの疾病または健康状態が挙げられる。BACE発現(特にBACE RNAのレベル)の低下,したがって,それぞれの蛋白質のレベルの低下は,疾病または健康状態の症状をある程度軽減する。
当業者は,他の薬剤化合物および療法を本発明の核酸分子(例えばsiNA分子)と容易に組み合わせまたは併用することができ,したがって,本発明の範囲内であることを認識するであろう。
実施例11:診断用途
本発明のsiNA分子は,種々の応用において,例えば,臨床,工業,環境,農業および/または研究の設定において,種々の診断用途,例えば分子標的(例えばRNA)の同定に用いることができる。そのようなsiNA分子の診断における使用は,再構成されたRNAi系,例えば,細胞溶解物または部分的に精製された細胞溶解物を利用することを含む。本発明のsiNA分子を診断手段として使用し,疾病に罹患した細胞内の遺伝的浮動および変異を検査するか,または細胞において内因性のまたは外来の(例えばウイルス)RNAの存在を検出することができる。siNA活性と標的RNAの構造との間の密接な関係により,分子のいずれの領域においても,標的RNAの塩基対形成および3次元構造を変更する変異を検出することができる。本発明に記載されるsiNA分子を複数使用することにより,インビトロならびに細胞および組織におけるRNAの構造および機能に重要なヌクレオチド変化をマッピングすることができる。siNA分子による標的RNAの切断を使用して,遺伝子の発現を阻害し,疾病または感染の進行における特定の遺伝子産物の役割を明らかにすることができる。このようにして,他の遺伝子標的を疾病の重要な介在物として明らかにすることができる。これらの実験は,組み合わせ療法の可能性を提供することにより,疾病進行のよりよい治療につながるであろう(例えば,異なる遺伝子を標的とする多数のsiNA分子,既知の小分子阻害剤と組み合わせたsiNA分子,siNA分子および/または他の化学的または生物学的分子と組み合わせた間欠的治療)。本発明のsiNA分子の他のインビトロにおける使用は当該技術分野においてよく知られており,これには,疾病,感染または関連する健康状態に伴うmRNAの存在の検出が含まれる。そのようなRNAは,siNA分子で処理した後,標準的な方法論,例えば蛍光共鳴エネルギー移動(FRET)を使用して切断産物の存在を判定することにより検出する。
特定の例においては,標的RNAの野生型または変異型のみしか切断できないsiNA分子をアッセイに使用する。第1のsiNA分子(すなわち,野生型の標的RNAのみを切断するもの)を用いて試料中の野生型RNAの存在を同定し,第2のsiNA分子(すなわち,変異型の標的RNAのみを切断するもの)を用いて試料中の変異型RNAを同定する。反応対照として,野生型および変異型の両方のRNAの合成基質を両方のsiNA分子で切断し,反応におけるsiNA分子の相対効率および"非標的"RNA種を切断しないことを明らかにする。合成基質からの切断産物は,試料集団中の野生型および変異型RNAの分析のためのサイズマーカーの生成にも役立つ。したがって,それぞれの分析は2つのsiNA分子,2つの基質,および1つの未知の試料を必要とし,これらを組み合わせて6つの反応を行う。切断産物の存在をRNase保護アッセイを用いて確認し,各RNAの完全長および切断フラグメントをポリアクリルアミドゲルの1レーンで分析できるようにする。標的細胞における変異体RNAの発現および所望の表現型の変化の推定されるリスクへの洞察を得るために,必ずしも結果を定量する必要はない。その蛋白質産物が表現型(すなわち,疾病に関連するかまたは感染に関連する)の発生に関与することが示唆されるmRNAの発現はリスクを確立するのに十分である。同等の比活性のプローブを両方の転写産物に使用すれば,RNAレベルの定性的比較で十分であり,初期の診断のコストが低減する。RNAレベルを定性的に比較するにしても定量的に比較するにしても,
より高い変異型と野生型の比率はより高いリスクと相関関係があるであろう。
本明細書において言及されるすべての特許および刊行物は,本発明の属する技術分野の技術者のレベルを示す。本明細書において引用されるすべての参考文献は,それぞれの参考文献が個々にその全体が本明細書の一部としてここに引用されることと同じ程度に,本明細書の一部として引用される。
当業者は,本発明が,その目的を実施し,記載される結果および利点,ならびに本明細書に固有のものを得るためによく適合していることを容易に理解するであろう。本明細書に記載される方法および組成物は,現在のところ好ましい態様の代表的なものであり,例示的なものであって,本発明の範囲を限定することを意図するものではない。当業者は,特許請求の範囲において定義される本発明の精神の中に包含される変更および他の用途をなすであろう。
当業者は,本発明の範囲および精神から逸脱することなく,本明細書に開示される本発明に対して種々の置換および改変をなすことが可能であることを容易に理解するであろう。すなわち,そのような追加の態様は,本発明および特許請求の範囲の範囲内である。本発明は,RNAi活性を媒介する改良された活性を有する核酸コンストラクトを得るために本明細書に記載される化学的修飾の種々の組み合わせおよび/または置換を試験することを当業者に教示する。そのような改良された活性は,改良された安定性,改良された生物利用性,および/またはRNAiを媒介する細胞応答の改良された活性化を含むことができる。したがって,本明細書に記載される特定の態様は限定ではなく,当業者は,改良されたRNAi活性を有するsiNA分子を同定するために,過度の実験なしに本明細書に記載される修飾の特定の組み合わせを試験しうることを容易に理解することができる。
本明細書に例示的に記載されている発明は,本明細書に特定的に開示されていない任意の要素または限定なしでも適切に実施することができる。すなわち,例えば,本明細書における各例において,"・・・を含む","・・・から本質的になる"および"・・・からな
る"との用語は,他の2つのいずれかと置き換えることができる。本明細書において用い
られる用語および表現は,説明の用語として用いるものであり,限定ではない。そのような用語および表現の使用においては,示されかつ記載されている特徴またはその一部の等価物を排除することを意図するものではなく,特許請求の範囲に記載される本発明の範囲中で種々の変更が可能であることが理解される。すなわち,好ましい態様および任意の特徴により本発明を特定的に開示してきたが,当業者には本明細書に記載される概念の変更および変種が可能であり,そのような変更および変種も特許請求の範囲に定義される本発明の範囲内であると考えられることが理解されるべきである。
さらに,発明の特徴および観点がマーカッシュグループまたは他の代替グループの用語で記載されている場合,当業者は,本発明が,マーカッシュグループまたは他のグループの個々のメンバーまたはサブグループに関してもまた記載されていることを認識するであろう。
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
Figure 2007300926
図1は,siNA分子を合成するスキームの例を示す。 図2は,本発明の方法により合成された精製siNAデュープレックスのMALDI−TOV質量分析を示す。 図3は,RNAiに関与する標的RNA分解の提唱されるメカニズムの例を示す図である。 図4は,化学的に修飾されたsiNAコンストラクトの例を示す。 図5は,化学的に修飾された特定のsiNA配列の例を示す。 図6は,種々siNAコンストラクトの例を示す。 図7は,siNAヘアピンコンストラクトを生成するための発現カセットを作製するために用いられるスキームの概略図である。 図8は,発現カセットを作製して二本鎖siNAコンストラクトを生成するために用いられるスキームの概略図である。 図9は,特定の標的核酸配列を決定するために用いられる方法の概略図である。 図10は,siNA配列の3’末端を安定化させるために用いることができる,種々の安定化化学の例を示す。 図11は,化学的に修飾されたsiNAコンストラクトを同定するために用いられる戦略の例を示す。 図12は,BACE mRNAを標的とするsiNAにより媒介されるBACE mRNAの減少の例を示す。

Claims (32)

  1. RNA干渉により1またはそれ以上のBACE遺伝子の発現をダウンレギュレートする短干渉核酸(siNA)分子。
  2. 前記BACE遺伝子がGenbank受託番号NM_012104を含む配列をコードする,請求項1記載のsiNA分子。
  3. 前記siNA分子がリボヌクレオチドを含まない,請求項1記載のsiNA分子。
  4. 前記siNA分子がリボヌクレオチドを含む,請求項1記載のsiNA分子。
  5. 前記siNA分子が二本鎖である,請求項1記載のsiNA分子。
  6. 前記siNA分子がBACE蛋白質をコードするヌクレオチド配列またはその一部に相補的なヌクレオチド配列を含むアンチセンス鎖を含み,前記siNA分子がさらにセンス鎖を含み,ここで,前記センス鎖がBACE遺伝子またはその一部のヌクレオチド配列に対応するヌクレオチド配列を含む,請求項5記載のsiNA分子。
  7. 前記アンチセンス鎖および前記センス鎖がそれぞれ約19−約29ヌクレオチドを含み,前記アンチセンス鎖および前記センス鎖が少なくとも約19の相補的ヌクレオチドを共有する,請求項6記載のsiNA分子。
  8. 前記siNA分子がBACE蛋白質をコードするヌクレオチド配列またはその一部に相補的なヌクレオチド配列を含むアンチセンス領域を含み,前記siNA分子がさらにセンス領域を含み,ここで,前記センス領域はBACE遺伝子またはその一部のヌクレオチド配列に対応するヌクレオチド配列を含む,請求項5記載のsiNA分子。
  9. 前記アンチセンス領域および前記センス領域がそれぞれ約19−約29ヌクレオチドを含み,前記アンチセンス領域および前記センス領域が少なくとも約19の相補的ヌクレオチドを共有する,請求項8記載のsiNA分子。
  10. 前記siNA分子が一本鎖である,請求項1記載のsiNA分子。
  11. 前記siNA分子がBACE蛋白質をコードするヌクレオチド配列またはその一部に相補的なヌクレオチド配列を含む,請求項10記載のsiNA分子。
  12. 前記siNA分子が約19−約29ヌクレオチドを有する配列を含む,請求項11記載のsiNA分子。
  13. 前記siNA分子がセンス領域およびアンチセンス領域を含み,前記アンチセンス領域はBACE蛋白質をコードするヌクレオチド配列またはその一部に相補的なヌクレオチド配列を含み,前記センス領域は前記アンチセンス領域に相補的なヌクレオチド配列を含む,請求項1記載のsiNA分子。
  14. 前記siNA分子が2つのオリゴヌクレオチドフラグメントから組み立てられ,一方のオリゴヌクレオチドフラグメントは前記siNA分子のセンス領域を含み,第2のオリゴヌクレオチドフラグメントはアンチセンス領域を含む,請求項1記載のsiNA分子。
  15. 前記センス領域および前記アンチセンス領域が別々のオリゴヌクレオチドを含む,請求項
    13記載のsiNA分子。
  16. 前記センス領域および前記アンチセンス領域がリンカー分子により連結されている,請求項13記載のsiNA分子。
  17. 前記リンカー分子がポリヌクレオチドリンカーである,請求項16記載のsiNA分子。
  18. 前記リンカー分子が非ヌクレオチドリンカーである,請求項16記載のsiNA分子。
  19. 前記センス領域が3’末端オーバーハングを含み,前記アンチセンス領域が3’末端オーバーハングを含む,請求項13記載のsiNA分子。
  20. 前記3’末端オーバーハングがそれぞれ約2ヌクレオチドを含む,請求項19記載のsiNA分子。
  21. アンチセンス領域の3’末端オーバーハングがBACE蛋白質をコードするRNAに相補的である,請求項19記載のsiNA分子。
  22. 前記センス領域が1またはそれ以上の2’−O−メチルピリミジンヌクレオチドおよび1またはそれ以上の2’−デオキシプリンヌクレオチドを含む,請求項13記載のsiNA分子。
  23. 前記センス領域中に存在する任意のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドを含み,前記センス領域中に存在する任意のプリンヌクレオチドが2’−デオキシプリンヌクレオチドを含む,請求項13記載のsiNA分子。
  24. 前記センス領域中に存在する3’末端ヌクレオチドオーバーハングを含む任意のヌクレオチドが2’−デオキシヌクレオチドを含む,請求項19記載のsiNA分子。
  25. 前記センス領域が3’末端および5’末端を含み,および末端キャップ成分が前記センス領域の5’末端,3’末端,または5’末端および3’末端の両方に存在する,請求項13記載のsiNA分子。
  26. 前記末端キャップ成分が反転デオキシ無塩基成分である,請求項25記載のsiNA分子。
  27. 前記アンチセンス領域が1またはそれ以上の2’−デオキシ−2’−フルオロピリミジンヌクレオチドおよび1またはそれ以上の2’−O−メチルプリンヌクレオチドを含む,請求項13記載のsiNA分子。
  28. 前記アンチセンス領域中に存在する任意のピリミジンヌクレオチドが2’−デオキシ−2’−フルオロピリミジンヌクレオチドを含み,前記アンチセンス領域中に存在する任意のプリンヌクレオチドが2’−O−メチルプリンヌクレオチドを含む,請求項13記載のsiNA分子。
  29. 前記アンチセンス領域中に存在する3’末端ヌクレオチドオーバーハングを含む任意のヌクレオチドが2’−デオキシヌクレオチドを含む,請求項19記載のsiNA分子。
  30. 前記アンチセンス領域が前記アンチセンス領域の3’末端にホスホロチオエートヌクレオチド間結合を含む,請求項28記載のsiNA分子。
  31. 前記アンチセンス領域が,前記アンチセンス領域の3’末端にグリセリル修飾を含む,請求項13記載のsiNA分子。
  32. 前記3’末端オーバーハングがデオキシリボヌクレオチドを含む,請求項19記載のsiNA分子。
JP2007132820A 2002-02-20 2007-05-18 短干渉核酸(siNA)を用いるアルツハイマー病のRNA干渉媒介性治療 Pending JP2007300926A (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US35858002P 2002-02-20 2002-02-20
US36312402P 2002-03-11 2002-03-11
US38678202P 2002-06-06 2002-06-06
US10/205,309 US20030190635A1 (en) 2002-02-20 2002-07-25 RNA interference mediated treatment of Alzheimer's disease using short interfering RNA
US40678402P 2002-08-29 2002-08-29
US40837802P 2002-09-05 2002-09-05
US40929302P 2002-09-09 2002-09-09
US44012903P 2003-01-15 2003-01-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003569788A Division JP2005517432A (ja) 2002-02-20 2003-02-18 短干渉核酸(siNA)を用いるアルツハイマー病のRNA干渉媒介性治療

Publications (1)

Publication Number Publication Date
JP2007300926A true JP2007300926A (ja) 2007-11-22

Family

ID=27761712

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003569788A Pending JP2005517432A (ja) 2002-02-20 2003-02-18 短干渉核酸(siNA)を用いるアルツハイマー病のRNA干渉媒介性治療
JP2007132820A Pending JP2007300926A (ja) 2002-02-20 2007-05-18 短干渉核酸(siNA)を用いるアルツハイマー病のRNA干渉媒介性治療

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003569788A Pending JP2005517432A (ja) 2002-02-20 2003-02-18 短干渉核酸(siNA)を用いるアルツハイマー病のRNA干渉媒介性治療

Country Status (8)

Country Link
US (1) US20030190635A1 (ja)
EP (1) EP1423404B1 (ja)
JP (2) JP2005517432A (ja)
AT (1) ATE521620T1 (ja)
AU (1) AU2003213090B2 (ja)
CA (1) CA2455506A1 (ja)
GB (1) GB2396155B (ja)
WO (1) WO2003070895A2 (ja)

Families Citing this family (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642589A4 (en) * 1992-05-11 1997-05-21 Ribozyme Pharm Inc METHOD AND REAGENT TO INHIBIT VIRAL REPLICATION.
US20030206887A1 (en) * 1992-05-14 2003-11-06 David Morrissey RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA)
US5639647A (en) * 1994-03-29 1997-06-17 Ribozyme Pharmaceuticals, Inc. 2'-deoxy-2'alkylnucleotide containing nucleic acid
US20040142895A1 (en) * 1995-10-26 2004-07-22 Sirna Therapeutics, Inc. Nucleic acid-based modulation of gene expression in the vascular endothelial growth factor pathway
US20030216335A1 (en) * 2001-11-30 2003-11-20 Jennifer Lockridge Method and reagent for the modulation of female reproductive diseases and conditions
US20040220128A1 (en) * 1995-10-26 2004-11-04 Sirna Therapeutics, Inc. Nucleic acid based modulation of female reproductive diseases and conditions
US9096636B2 (en) 1996-06-06 2015-08-04 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US7812149B2 (en) 1996-06-06 2010-10-12 Isis Pharmaceuticals, Inc. 2′-Fluoro substituted oligomeric compounds and compositions for use in gene modulations
CA2326823A1 (en) * 1998-04-20 1999-10-28 Ribozyme Pharmaceuticals, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
US7829693B2 (en) * 1999-11-24 2010-11-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
DE10100586C1 (de) * 2001-01-09 2002-04-11 Ribopharma Ag Verfahren zur Hemmung der Expression eines Ziegens
CA2398282A1 (en) * 2000-02-11 2001-08-16 Ribozyme Pharmaceuticals, Inc. Method and reagent for the modulation and diagnosis of cd20 and nogo gene expression
US8202979B2 (en) * 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
US20080039414A1 (en) * 2002-02-20 2008-02-14 Sima Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20050032733A1 (en) * 2001-05-18 2005-02-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA)
US20050020525A1 (en) * 2002-02-20 2005-01-27 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20070026394A1 (en) * 2000-02-11 2007-02-01 Lawrence Blatt Modulation of gene expression associated with inflammation proliferation and neurite outgrowth using nucleic acid based technologies
US8273866B2 (en) * 2002-02-20 2012-09-25 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA)
US7423142B2 (en) * 2001-01-09 2008-09-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US7767802B2 (en) * 2001-01-09 2010-08-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US8546143B2 (en) 2001-01-09 2013-10-01 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
US7226739B2 (en) 2001-03-02 2007-06-05 Isis Pharmaceuticals, Inc Methods for rapid detection and identification of bioagents in epidemiological and forensic investigations
US20040121313A1 (en) 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in organs for transplantation
US7718354B2 (en) 2001-03-02 2010-05-18 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US7666588B2 (en) 2001-03-02 2010-02-23 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US20030027135A1 (en) 2001-03-02 2003-02-06 Ecker David J. Method for rapid detection and identification of bioagents
US20050143333A1 (en) * 2001-05-18 2005-06-30 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA)
US20050158735A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of proliferating cell nuclear antigen (PCNA) gene expression using short interfering nucleic acid (siNA)
US20050159378A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA)
US20050137155A1 (en) * 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA)
US20050277133A1 (en) * 2001-05-18 2005-12-15 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
US20050209180A1 (en) * 2001-05-18 2005-09-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hepatitis C virus (HCV) expression using short interfering nucleic acid (siNA)
US20050222066A1 (en) * 2001-05-18 2005-10-06 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050164966A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of type 1 insulin-like growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050287128A1 (en) * 2001-05-18 2005-12-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TGF-beta and TGF-beta receptor gene expression using short interfering nucleic acid (siNA)
US20060241075A1 (en) * 2001-05-18 2006-10-26 Sirna Therapeutics, Inc. RNA interference mediated inhibition of desmoglein gene expression using short interfering nucleic acid (siNA)
US20050182007A1 (en) * 2001-05-18 2005-08-18 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA)
US20050148530A1 (en) * 2002-02-20 2005-07-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050048529A1 (en) * 2002-02-20 2005-03-03 Sirna Therapeutics, Inc. RNA interference mediated inhibition of intercellular adhesion molecule (ICAM) gene expression using short interfering nucleic acid (siNA)
US20050153915A1 (en) * 2001-05-18 2005-07-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of early growth response gene expression using short interfering nucleic acid (siNA)
US20050079610A1 (en) * 2001-05-18 2005-04-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Fos gene expression using short interfering nucleic acid (siNA)
US20050014172A1 (en) * 2002-02-20 2005-01-20 Ivan Richards RNA interference mediated inhibition of muscarinic cholinergic receptor gene expression using short interfering nucleic acid (siNA)
US20050288242A1 (en) * 2001-05-18 2005-12-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of RAS gene expression using short interfering nucleic acid (siNA)
US20050171040A1 (en) * 2001-05-18 2005-08-04 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cholesteryl ester transfer protein (CEPT) gene expression using short interfering nucleic acid (siNA)
US20050159376A1 (en) * 2002-02-20 2005-07-21 Slrna Therapeutics, Inc. RNA interference mediated inhibition 5-alpha reductase and androgen receptor gene expression using short interfering nucleic acid (siNA)
US20050159380A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of angiopoietin gene expression using short interfering nucleic acid (siNA)
US9994853B2 (en) 2001-05-18 2018-06-12 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
US20040219671A1 (en) * 2002-02-20 2004-11-04 Sirna Therapeutics, Inc. RNA interference mediated treatment of parkinson disease using short interfering nucleic acid (siNA)
US20030124513A1 (en) * 2001-05-29 2003-07-03 Mcswiggen James Enzymatic nucleic acid treatment of diseases or conditions related to levels of HIV
US20060019913A1 (en) * 2001-05-18 2006-01-26 Sirna Therapeutics, Inc. RNA interference mediated inhibtion of protein tyrosine phosphatase-1B (PTP-1B) gene expression using short interfering nucleic acid (siNA)
US20050233996A1 (en) * 2002-02-20 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hairless (HR) gene expression using short interfering nucleic acid (siNA)
US20050203040A1 (en) * 2001-05-18 2005-09-15 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA)
US20040019001A1 (en) * 2002-02-20 2004-01-29 Mcswiggen James A. RNA interference mediated inhibition of protein typrosine phosphatase-1B (PTP-1B) gene expression using short interfering RNA
US20060211642A1 (en) * 2001-05-18 2006-09-21 Sirna Therapeutics, Inc. RNA inteference mediated inhibition of hepatitis C virus (HVC) gene expression using short interfering nucleic acid (siNA)
US20050159379A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc RNA interference mediated inhibition of gastric inhibitory polypeptide (GIP) and gastric inhibitory polypeptide receptor (GIPR) gene expression using short interfering nucleic acid (siNA)
US20050182006A1 (en) * 2001-05-18 2005-08-18 Sirna Therapeutics, Inc RNA interference mediated inhibition of protein kinase C alpha (PKC-alpha) gene expression using short interfering nucleic acid (siNA)
US20050196767A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acis (siNA)
US20050119212A1 (en) * 2001-05-18 2005-06-02 Sirna Therapeutics, Inc. RNA interference mediated inhibition of FAS and FASL gene expression using short interfering nucleic acid (siNA)
US20050196781A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of STAT3 gene expression using short interfering nucleic acid (siNA)
US20040198682A1 (en) * 2001-11-30 2004-10-07 Mcswiggen James RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (siNA)
US20070093437A1 (en) * 2001-05-18 2007-04-26 Sirna Therapeutics, Inc. Rna interference mediated inhibition of xiap gene expression using short interfering nucleic acid (sina)
US20050170371A1 (en) * 2001-05-18 2005-08-04 Sirna Therapeutics, Inc. RNA interference mediated inhibition of 5-alpha reductase and androgen receptor gene expression using short interfering nucleic acid (siNA)
US20050261219A1 (en) * 2001-05-18 2005-11-24 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
US20050187174A1 (en) * 2001-05-18 2005-08-25 Sirna Therapeutics, Inc. RNA interference mediated inhibition of intercellular adhesion molecule (ICAM) gene expression using short interfering nucleic acid (siNA)
US20050176666A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GPRA and AAA1 gene expression using short interfering nucleic acid (siNA)
US20050124566A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of myostatin gene expression using short interfering nucleic acid (siNA)
US20070270579A1 (en) * 2001-05-18 2007-11-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050196765A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of checkpoint Kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA)
US20050227935A1 (en) * 2001-05-18 2005-10-13 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TNF and TNF receptor gene expression using short interfering nucleic acid (siNA)
US20050256068A1 (en) * 2001-05-18 2005-11-17 Sirna Therapeutics, Inc. RNA interference mediated inhibition of stearoyl-CoA desaturase (SCD) gene expression using short interfering nucleic acid (siNA)
US20080188430A1 (en) * 2001-05-18 2008-08-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA)
US20090299045A1 (en) * 2001-05-18 2009-12-03 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition Of Interleukin and Interleukin Gene Expression Using Short Interfering Nucleic Acid (siNA)
US20050153914A1 (en) * 2001-05-18 2005-07-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of MDR P-glycoprotein gene expression using short interfering nucleic acid (siNA)
US20050233997A1 (en) * 2001-05-18 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA)
US20050267058A1 (en) * 2001-05-18 2005-12-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (sINA)
US20050070497A1 (en) * 2001-05-18 2005-03-31 Sirna Therapeutics, Inc. RNA interference mediated inhibtion of tyrosine phosphatase-1B (PTP-1B) gene expression using short interfering nucleic acid (siNA)
US20050136436A1 (en) * 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of G72 and D-amino acid oxidase (DAAO) gene expression using short interfering nucleic acid (siNA)
US20050176664A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cholinergic muscarinic receptor (CHRM3) gene expression using short interfering nucleic acid (siNA)
US20050282188A1 (en) * 2001-05-18 2005-12-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050233344A1 (en) * 2001-05-18 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet derived growth factor (PDGF) and platelet derived growth factor receptor (PDGFR) gene expression using short interfering nucleic acid (siNA)
US20050159382A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA)
US20050164968A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of ADAM33 gene expression using short interfering nucleic acid (siNA)
US20070042983A1 (en) * 2001-05-18 2007-02-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050164224A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA)
US20050124569A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of CXCR4 gene expression using short interfering nucleic acid (siNA)
US20050054598A1 (en) * 2002-02-20 2005-03-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition hairless (HR) gene expression using short interfering nucleic acid (siNA)
US7109165B2 (en) * 2001-05-18 2006-09-19 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US20050191638A1 (en) * 2002-02-20 2005-09-01 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
US7517864B2 (en) * 2001-05-18 2009-04-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050159381A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of chromosome translocation gene expression using short interfering nucleic acid (siNA)
US20050124567A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TRPM7 gene expression using short interfering nucleic acid (siNA)
US20060160757A1 (en) * 2002-02-20 2006-07-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition hairless of (HR) gene expression using short interfering nucleic acid (siNA)
US20050191618A1 (en) * 2001-05-18 2005-09-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of human immunodeficiency virus (HIV) gene expression using short interfering nucleic acid (siNA)
US20050054596A1 (en) * 2001-11-30 2005-03-10 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
US7217510B2 (en) 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
US7745418B2 (en) 2001-10-12 2010-06-29 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting viral replication
DE10163098B4 (de) 2001-10-12 2005-06-02 Alnylam Europe Ag Verfahren zur Hemmung der Replikation von Viren
DE10230997A1 (de) * 2001-10-26 2003-07-17 Ribopharma Ag Medikament zur Erhöhung der Wirksamkeit eines Rezeptor-vermittelt Apoptose in Tumorzellen auslösenden Arzneimittels
US20040121348A1 (en) * 2001-10-26 2004-06-24 Ribopharma Ag Compositions and methods for treating pancreatic cancer
US20050075304A1 (en) * 2001-11-30 2005-04-07 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20040138163A1 (en) * 2002-05-29 2004-07-15 Mcswiggen James RNA interference mediated inhibition of vascular edothelial growth factor and vascular edothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
DE10202419A1 (de) * 2002-01-22 2003-08-07 Ribopharma Ag Verfahren zur Hemmung der Expression eines durch eine Chromosomen-Aberration entstandenen Zielgens
US20050222064A1 (en) * 2002-02-20 2005-10-06 Sirna Therapeutics, Inc. Polycationic compositions for cellular delivery of polynucleotides
US20050137153A1 (en) * 2002-02-20 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of alpha-1 antitrypsin (AAT) gene expression using short interfering nucleic acid (siNA)
WO2003106476A1 (en) * 2002-02-20 2003-12-24 Sirna Therapeutics, Inc Nucleic acid mediated inhibition of enterococcus infection and cytolysin toxin activity
US20050096284A1 (en) * 2002-02-20 2005-05-05 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
US9181551B2 (en) 2002-02-20 2015-11-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
WO2003070966A2 (en) * 2002-02-20 2003-08-28 Sirna Therapeutics, Inc RNA INTERFERENCE MEDIATED TARGET DISCOVERY AND TARGET VALIDATION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US9657294B2 (en) 2002-02-20 2017-05-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US7683166B2 (en) * 2002-02-20 2010-03-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
EP1527176B2 (en) 2002-08-05 2017-03-22 Silence Therapeutics GmbH Further novel forms of interfering rna molecules
ES2695050T3 (es) * 2002-08-05 2018-12-28 Silence Therapeutics Gmbh Nuevas formas adicionales de moléculas de ARN de interferencia
AU2012216354B2 (en) * 2002-08-05 2016-01-14 Silence Therapeutics Gmbh Further novel forms of interfering RNA molecules
AU2003261449A1 (en) 2002-08-07 2004-02-25 Compositions for rna interference and methods of use thereof
AU2003260489A1 (en) 2002-09-04 2004-03-29 Novartis Ag Treatment of neurological disorders by dsrna adminitration
US7923547B2 (en) 2002-09-05 2011-04-12 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20060287269A1 (en) * 2002-09-09 2006-12-21 The Regents Of The University Of California Short interfering nucleic acid hybrids and methods thereof
US20040053289A1 (en) * 2002-09-09 2004-03-18 The Regents Of The University Of California Short interfering nucleic acid hybrids and methods thereof
ES2334125T3 (es) * 2002-11-04 2010-03-05 University Of Massachusetts Interferencia de arn especifico de alelos.
AU2003291755A1 (en) 2002-11-05 2004-06-07 Isis Pharmaceuticals, Inc. Oligomers comprising modified bases for binding cytosine and uracil or thymine and their use
US9150605B2 (en) 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2′-modified nucleosides for use in gene modulation
US9827263B2 (en) 2002-11-05 2017-11-28 Ionis Pharmaceuticals, Inc. 2′-methoxy substituted oligomeric compounds and compositions for use in gene modulations
AU2003295389A1 (en) * 2002-11-05 2004-06-03 Isis Pharmaceuticals, Inc. Conjugated oligomeric compounds and their use in gene modulation
US20050048641A1 (en) * 2002-11-26 2005-03-03 Medtronic, Inc. System and method for delivering polynucleotides to the central nervous system
US7605249B2 (en) 2002-11-26 2009-10-20 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US7829694B2 (en) * 2002-11-26 2010-11-09 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US7618948B2 (en) * 2002-11-26 2009-11-17 Medtronic, Inc. Devices, systems and methods for improving and/or cognitive function through brain delivery of siRNA
JP2006516193A (ja) 2002-12-06 2006-06-29 アイシス・ファーマシューティカルス・インコーポレーテッド ヒトおよび動物における病原体の迅速な同定方法
US7994149B2 (en) 2003-02-03 2011-08-09 Medtronic, Inc. Method for treatment of Huntington's disease through intracranial delivery of sirna
US7732591B2 (en) * 2003-11-25 2010-06-08 Medtronic, Inc. Compositions, devices and methods for treatment of huntington's disease through intracranial delivery of sirna
WO2004076664A2 (en) * 2003-02-21 2004-09-10 University Of South Florida Vectors for regulating gene expression
WO2004092383A2 (en) * 2003-04-15 2004-10-28 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF SEVERE ACUTE RESPIRATORY SYNDROME (SARS) VIRUS GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US8046171B2 (en) 2003-04-18 2011-10-25 Ibis Biosciences, Inc. Methods and apparatus for genetic evaluation
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
WO2005014815A1 (en) * 2003-08-08 2005-02-17 President And Fellows Of Harvard College siRNA BASED METHODS FOR TREATING ALZHEIMER’S DISEASE
NZ545360A (en) * 2003-08-28 2009-06-26 Novartis Ag Interfering RNA duplex having blunt-ends and 3'-modifications
US20050123952A1 (en) * 2003-09-04 2005-06-09 Griffey Richard H. Methods of rapid detection and identification of bioagents using microRNA
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US20120122099A1 (en) 2003-09-11 2012-05-17 Rangarajan Sampath Compositions for use in identification of bacteria
US8680063B2 (en) 2003-09-12 2014-03-25 University Of Massachusetts RNA interference for the treatment of gain-of-function disorders
ES2808561T3 (es) * 2003-09-12 2021-03-01 Univ Massachusetts Interferencia por ARN para el tratamiento de trastornos de ganancia de función
AU2004281142A1 (en) * 2003-10-20 2005-04-28 Locomogene, Inc. Method of inhibiting secretase activity
WO2005056021A1 (en) 2003-12-04 2005-06-23 University Of South Florida Polynucleotides for reducing respiratory syncytial virus gene expression
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
CA2554212A1 (en) * 2004-02-10 2005-08-25 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using multifunctional short interfering nucleic acid (multifunctional sina)
US7666592B2 (en) 2004-02-18 2010-02-23 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8119336B2 (en) 2004-03-03 2012-02-21 Ibis Biosciences, Inc. Compositions for use in identification of alphaviruses
US8569474B2 (en) 2004-03-09 2013-10-29 Isis Pharmaceuticals, Inc. Double stranded constructs comprising one or more short strands hybridized to a longer strand
US20050208090A1 (en) * 2004-03-18 2005-09-22 Medtronic, Inc. Methods and systems for treatment of neurological diseases of the central nervous system
EP2540734B1 (en) 2004-04-05 2016-03-30 Alnylam Pharmaceuticals, Inc. Process and reagents for oligonucleotide synthesis and purification
WO2005096781A2 (en) 2004-04-06 2005-10-20 University Of Massachusetts Methods and compositions for treating gain-of-function disorders using rna interference
JP4584986B2 (ja) 2004-04-27 2010-11-24 アルニラム ファーマスーティカルズ インコーポレイテッド 2−アリールプロピル部分を含む1本鎖及び2本鎖オリゴヌクレオチド
US7674778B2 (en) 2004-04-30 2010-03-09 Alnylam Pharmaceuticals Oligonucleotides comprising a conjugate group linked through a C5-modified pyrimidine
ES2641832T3 (es) 2004-05-24 2017-11-14 Ibis Biosciences, Inc. Espectrometría de masas con filtración de iones selectiva por establecimiento de umbrales digitales
US10508277B2 (en) 2004-05-24 2019-12-17 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
US20050266411A1 (en) 2004-05-25 2005-12-01 Hofstadler Steven A Methods for rapid forensic analysis of mitochondrial DNA
US8394947B2 (en) 2004-06-03 2013-03-12 Isis Pharmaceuticals, Inc. Positionally modified siRNA constructs
EP1773401B1 (en) * 2004-06-21 2013-01-02 Medtronic, Inc. Medical systems and methods for delivering compositions to cells
JP2008504840A (ja) 2004-06-30 2008-02-21 アルニラム ファーマスーティカルズ インコーポレイテッド 非リン酸骨格結合を含むオリゴヌクレオチド
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
EP1828215A2 (en) 2004-07-21 2007-09-05 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a modified or non-natural nucleobase
CA2574603C (en) 2004-08-04 2014-11-04 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a ligand tethered to a modified or non-natural nucleobase
JP4903146B2 (ja) 2004-08-16 2012-03-28 イミューン ディズィーズ インスティテュート インコーポレイテッド Rna干渉を送達する方法およびその使用法
US7884086B2 (en) 2004-09-08 2011-02-08 Isis Pharmaceuticals, Inc. Conjugates for use in hepatocyte free uptake assays
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
CA2600184A1 (en) 2005-03-03 2006-09-08 Isis Pharmaceuticals, Inc. Compositions for use in identification of adventitious viruses
US7902352B2 (en) * 2005-05-06 2011-03-08 Medtronic, Inc. Isolated nucleic acid duplex for reducing huntington gene expression
WO2006121960A2 (en) * 2005-05-06 2006-11-16 Medtronic, Inc. Methods and sequences to suppress primate huntington gene expression
US9133517B2 (en) 2005-06-28 2015-09-15 Medtronics, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
US20070161590A1 (en) * 2005-06-28 2007-07-12 Medtronic, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
US20080280843A1 (en) * 2006-05-24 2008-11-13 Van Bilsen Paul Methods and kits for linking polymorphic sequences to expanded repeat mutations
CA2616281C (en) 2005-07-21 2014-04-22 Isis Pharmaceuticals, Inc. Methods for rapid identification and quantitation of mitochondrial dna variants
US7919583B2 (en) 2005-08-08 2011-04-05 Discovery Genomics, Inc. Integration-site directed vector systems
US20090176725A1 (en) * 2005-08-17 2009-07-09 Sirna Therapeutics Inc. Chemically modified short interfering nucleic acid molecules that mediate rna interference
JP2009504782A (ja) * 2005-08-18 2009-02-05 アルナイラム ファーマシューティカルズ インコーポレイテッド 神経疾患を治療するための方法および組成物
EP1800695A1 (en) * 2005-12-21 2007-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Immuno-RNA-constructs
EP1976567B1 (en) * 2005-12-28 2020-05-13 The Scripps Research Institute Natural antisense and non-coding rna transcripts as drug targets
FI20060246A0 (fi) 2006-03-16 2006-03-16 Jukka Westermarck Uusi kasvua stimuloiva proteiini ja sen käyttö
GB0608838D0 (en) 2006-05-04 2006-06-14 Novartis Ag Organic compounds
US9273356B2 (en) 2006-05-24 2016-03-01 Medtronic, Inc. Methods and kits for linking polymorphic sequences to expanded repeat mutations
US20080039415A1 (en) * 2006-08-11 2008-02-14 Gregory Robert Stewart Retrograde transport of sirna and therapeutic uses to treat neurologic disorders
FI20060751A0 (fi) 2006-08-23 2006-08-23 Valtion Teknillinen Menetelmä prostatasyövän hoitoon ja mainitusta menetelmästä hyödyntävien potilaiden seulonta
CA2663029C (en) 2006-09-14 2016-07-19 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US9375440B2 (en) * 2006-11-03 2016-06-28 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US8324367B2 (en) 2006-11-03 2012-12-04 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US7988668B2 (en) * 2006-11-21 2011-08-02 Medtronic, Inc. Microsyringe for pre-packaged delivery of pharmaceuticals
US7819842B2 (en) 2006-11-21 2010-10-26 Medtronic, Inc. Chronically implantable guide tube for repeated intermittent delivery of materials or fluids to targeted tissue sites
US20080171906A1 (en) * 2007-01-16 2008-07-17 Everaerts Frank J L Tissue performance via hydrolysis and cross-linking
WO2008104002A2 (en) 2007-02-23 2008-08-28 Ibis Biosciences, Inc. Methods for rapid forensic dna analysis
EP2139496A2 (en) * 2007-04-19 2010-01-06 Vib Vzw Oligonucleotide compositions for the treatment of alzheimer's disease
WO2008131419A2 (en) * 2007-04-23 2008-10-30 Alnylam Pharmaceuticals, Inc. Glycoconjugates of rna interference agents
WO2008143774A2 (en) * 2007-05-01 2008-11-27 University Of Massachusetts Methods and compositions for locating snp heterozygosity for allele specific diagnosis and therapy
WO2008151023A2 (en) 2007-06-01 2008-12-11 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
KR100934028B1 (ko) 2007-10-29 2009-12-28 재단법인서울대학교산학협력재단 글라이코 프로테인 시냅틱 2 에 의한 타우 단백질 변환과 치매질환 예방 및 치료에 대한 치료조성물
US20110269814A1 (en) * 2008-03-26 2011-11-03 Alnylam Pharamaceuticals, Inc. 2'-f modified rna interference agents
US8309791B2 (en) 2008-07-16 2012-11-13 Recombinectics, Inc. Method for producing a transgenic pig using a hyper-methylated transposon
EP2349549B1 (en) 2008-09-16 2012-07-18 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, and system
US8534447B2 (en) 2008-09-16 2013-09-17 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
EP2347254A2 (en) 2008-09-16 2011-07-27 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
JP6091752B2 (ja) 2008-12-04 2017-03-08 クルナ・インコーポレーテッド Epoに対する天然アンチセンス転写物の抑制によるエリスロポエチン(epo)関連疾患の治療
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
FI20090161A0 (fi) 2009-04-22 2009-04-22 Faron Pharmaceuticals Oy Uusi solu ja siihen pohjautuvia terapeuttisia ja diagnostisia menetelmiä
US20120128673A1 (en) 2009-05-20 2012-05-24 Schering Corporation Modulation of pilr receptors to treat microbial infections
US20100316639A1 (en) 2009-06-16 2010-12-16 Genentech, Inc. Biomarkers for igf-1r inhibitor therapy
ES2620960T3 (es) * 2009-06-16 2017-06-30 Curna, Inc. Tratamiento de enfermedades relacionadas con un gen de colágeno mediante la inhibición de un transcrito antisentido natural a un gen de colágeno
WO2011008971A1 (en) 2009-07-17 2011-01-20 Ibis Biosciences, Inc. Lift and mount apparatus
WO2011008972A1 (en) 2009-07-17 2011-01-20 Ibis Biosciences, Inc. Systems for bioagent identification
CN102482670B (zh) * 2009-08-21 2018-06-15 库尔纳公司 通过抑制‘hsp70-相互作用蛋白的c末端’(chip)的天然反义转录物而治疗chip相关疾病
WO2011031600A1 (en) 2009-09-10 2011-03-17 Schering Corporation Use of il-33 antagonists to treat fibrotic disease
ES2628739T3 (es) 2009-10-15 2017-08-03 Ibis Biosciences, Inc. Amplificación por desplazamiento múltiple
WO2011084357A1 (en) 2009-12-17 2011-07-14 Schering Corporation Modulation of pilr to treat immune disorders
WO2012027206A1 (en) 2010-08-24 2012-03-01 Merck Sharp & Dohme Corp. SINGLE-STRANDED RNAi AGENTS CONTAINING AN INTERNAL, NON-NUCLEIC ACID SPACER
US9260471B2 (en) 2010-10-29 2016-02-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA)
AU2011336467A1 (en) 2010-12-01 2013-07-04 Spinal Modulation, Inc. Agent delivery systems for selective neuromodulation
FI20115640A0 (fi) 2011-06-22 2011-06-22 Turun Yliopisto Yhdistelmähoito
FI20115876A0 (fi) 2011-09-06 2011-09-06 Turun Yliopisto Yhdistelmähoito
ES2694592T3 (es) 2012-03-15 2018-12-21 Curna, Inc. Tratamiento de enfermedades relacionadas con el factor neurotrófico derivado del cerebro (BDNF) por inhibición del transcrito antisentido natural de BDNF
US10166241B2 (en) 2012-07-13 2019-01-01 Turun Yliopisto Combination Therapy III
WO2016205416A1 (en) * 2015-06-15 2016-12-22 uBiome, Inc. Method and system for sequencing in characterization of antibody binding behavior
WO2017007825A1 (en) 2015-07-06 2017-01-12 Rxi Pharmaceuticals Corporation Methods for treating neurological disorders using a synergistic small molecule and nucleic acids therapeutic approach
PT109454A (pt) 2016-06-14 2017-12-14 Phyzat Biopharmaceuticals Lda Ácidos nucleicos de interferência e composições que os compreendem
WO2021160937A1 (en) 2020-02-11 2021-08-19 Turun Yliopisto Therapy of ras-dependent cancers
EP4247952A2 (en) 2020-11-23 2023-09-27 Phyzat Biopharmaceuticals, Lda. Sina molecules, methods of production and uses thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962219A (en) * 1990-06-11 1999-10-05 Nexstar Pharmaceuticals, Inc. Systematic evolution of ligands by exponential enrichment: chemi-selex
PL169576B1 (pl) * 1990-10-12 1996-08-30 Max Planck Gesellschaft Sposób wytwarzania czasteczki RNA o aktywnosci katalitycznej PL PL
DE4216134A1 (de) * 1991-06-20 1992-12-24 Europ Lab Molekularbiolog Synthetische katalytische oligonukleotidstrukturen
JPH08501928A (ja) * 1992-07-02 1996-03-05 ハイブライドン インコーポレイテッド 治療剤としての自己安定化オリゴヌクレオチド
JPH08505872A (ja) * 1993-01-22 1996-06-25 ユニバーシティ・リサーチ・コーポレイション 治療剤の局所化
US5624803A (en) * 1993-10-14 1997-04-29 The Regents Of The University Of California In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom
US5902880A (en) * 1994-08-19 1999-05-11 Ribozyme Pharmaceuticals, Inc. RNA polymerase III-based expression of therapeutic RNAs
US5627053A (en) * 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
WO1995028493A1 (en) * 1994-04-13 1995-10-26 The Rockefeller University Aav-mediated delivery of dna to cells of the nervous system
US5716824A (en) * 1995-04-20 1998-02-10 Ribozyme Pharmaceuticals, Inc. 2'-O-alkylthioalkyl and 2-C-alkylthioalkyl-containing enzymatic nucleic acids (ribozymes)
US5998203A (en) * 1996-04-16 1999-12-07 Ribozyme Pharmaceuticals, Inc. Enzymatic nucleic acids containing 5'-and/or 3'-cap structures
US6001311A (en) * 1997-02-05 1999-12-14 Protogene Laboratories, Inc. Apparatus for diverse chemical synthesis using two-dimensional array
US6395713B1 (en) * 1997-07-23 2002-05-28 Ribozyme Pharmaceuticals, Inc. Compositions for the delivery of negatively charged molecules
GB9827152D0 (en) * 1998-07-03 1999-02-03 Devgen Nv Characterisation of gene function using double stranded rna inhibition
KR100866676B1 (ko) * 1998-09-24 2008-11-11 파마시아 앤드 업존 캄파니 엘엘씨 알츠하이머병 세크레타제
DE19956568A1 (de) * 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
US6046320A (en) * 1999-04-09 2000-04-04 Isis Pharmaceuticals Inc. Antisense modulation of MDMX expression
WO2001016312A2 (en) * 1999-08-31 2001-03-08 Ribozyme Pharmaceuticals, Inc. Nucleic acid based modulators of gene expression
CA2386270A1 (en) * 1999-10-15 2001-04-26 University Of Massachusetts Rna interference pathway genes as tools for targeted genetic interference
GB9927444D0 (en) * 1999-11-19 2000-01-19 Cancer Res Campaign Tech Inhibiting gene expression
US6831171B2 (en) * 2000-02-08 2004-12-14 Yale University Nucleic acid catalysts with endonuclease activity
WO2003070918A2 (en) * 2002-02-20 2003-08-28 Ribozyme Pharmaceuticals, Incorporated Rna interference by modified short interfering nucleic acid
EP1272630A2 (en) 2000-03-16 2003-01-08 Genetica, Inc. Methods and compositions for rna interference
ES2336887T5 (es) * 2000-03-30 2019-03-06 Whitehead Inst Biomedical Res Mediadores de interferencia por ARN específicos de secuencias de ARN
WO2005003350A2 (en) * 2003-06-27 2005-01-13 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED TREATMENT OF ALZHEIMER’S DISEASE USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP1873259B1 (en) * 2000-12-01 2012-01-25 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. RNA interference mediated by 21 and 22nt RNAs
US20030232435A1 (en) * 2002-06-14 2003-12-18 Isis Pharmaceuticals Inc. Antisense modulation of amyloid beta protein precursor expression

Also Published As

Publication number Publication date
ATE521620T1 (de) 2011-09-15
WO2003070895A2 (en) 2003-08-28
EP1423404A4 (en) 2004-09-01
GB0404907D0 (en) 2004-04-07
GB2396155B (en) 2005-09-14
CA2455506A1 (en) 2003-08-28
EP1423404B1 (en) 2011-08-24
US20030190635A1 (en) 2003-10-09
AU2003213090B2 (en) 2007-06-07
WO2003070895A3 (en) 2004-01-15
GB2396155A (en) 2004-06-16
AU2003213090A1 (en) 2003-09-09
EP1423404A2 (en) 2004-06-02
JP2005517432A (ja) 2005-06-16

Similar Documents

Publication Publication Date Title
JP2007300926A (ja) 短干渉核酸(siNA)を用いるアルツハイマー病のRNA干渉媒介性治療
JP2005517430A (ja) 短干渉核酸(siNA)を用いる蛋白質チロシンホスファターゼ−1b(ptp−1b)遺伝子発現のRNA干渉媒介性阻害
JP2005517433A (ja) 短干渉核酸(siNA)を用いるTNFおよびTNFレセプタースーパーファミリー遺伝子発現のRNA干渉媒介性阻害
JP2005517452A (ja) 短干渉核酸(siNA)を用いるBCL2遺伝子発現のRNA干渉媒介性阻害
JP2006271387A (ja) 短干渉核酸(siNA)を用いる遺伝子発現のRNA干渉媒介性阻害
US20040219671A1 (en) RNA interference mediated treatment of parkinson disease using short interfering nucleic acid (siNA)
JP2009000105A (ja) 短干渉核酸(siNA)を用いた血管内皮成長因子および血管内皮成長因子レセプター遺伝子発現のRNA干渉媒介阻害
JP2006502694A (ja) 短干渉核酸(siNA)を用いるHIV遺伝子発現のRNA干渉媒介性阻害
JP2008506351A (ja) 短鎖干渉核酸(siNA)を用いる、RNA干渉を介した遺伝子発現の阻害
JP2013078311A (ja) 短干渉核酸(siNA)を用いるC型肝炎ウイルス(HCV)遺伝子発現のRNA干渉媒介性阻害
EP1472265A2 (en) Rna interference mediated inhibition of polycomb group protein ezh2 gene expression using short interfering nucleic acid (sina)
US20050054598A1 (en) RNA interference mediated inhibition hairless (HR) gene expression using short interfering nucleic acid (siNA)
JP2007525206A (ja) 短鎖干渉核酸(siNA)を用いた、RNA干渉を介したコリン作動性ムスカリン受容体(CHRM3)遺伝子発現の阻害
JP2007522794A (ja) 短鎖干渉核酸(siNA)を用いた、RNA干渉を介したCETP遺伝子発現の阻害
WO2003070742A1 (en) RNA INTERFERENCE MEDIATED INHIBITION OF TELOMERASE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050233996A1 (en) RNA interference mediated inhibition of hairless (HR) gene expression using short interfering nucleic acid (siNA)
EP1465910A2 (en) Rna interference mediated inhibition of checkpoint kinase-1 (chk-1) gene expression using short interfering nucleic acid
JP2005517423A (ja) 短干渉核酸(siNA)を用いるTGF−ベータおよびTGF−ベータレセプター遺伝子の発現のRNA干渉媒介性阻害
US8017765B2 (en) RNA interference mediated treatment of alzheimer's disease using short interfering nucleic acid (siNA)
EP1741781A2 (en) RNA interference mediated treatment of Alzheimer's disease using short interfering nucleic acid (siNA)
EP1495041A1 (en) RNA INTERFERENCE MEDIATED INHIBITION OF G72 AND D-AMINO ACID OXIDASE (DAAO) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
JP2007527709A (ja) 短鎖干渉核酸(siNA)を用いた、RNA干渉を介したGPRA及び/又はAAA1遺伝子発現の阻害
US20060160757A1 (en) RNA interference mediated inhibition hairless of (HR) gene expression using short interfering nucleic acid (siNA)
JP2005517437A (ja) 短干渉核酸(siNa)を用いる表皮成長因子レセプター遺伝子発現のRNA干渉媒介性阻害
JP2007525205A (ja) 短干渉核酸(siNA)を使用した,RNA干渉により仲介されるHairless(HR)遺伝子発現の抑制

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090116

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310