JP2007298450A - Electric potential measuring apparatus and image forming apparatus - Google Patents

Electric potential measuring apparatus and image forming apparatus Download PDF

Info

Publication number
JP2007298450A
JP2007298450A JP2006127826A JP2006127826A JP2007298450A JP 2007298450 A JP2007298450 A JP 2007298450A JP 2006127826 A JP2006127826 A JP 2006127826A JP 2006127826 A JP2006127826 A JP 2006127826A JP 2007298450 A JP2007298450 A JP 2007298450A
Authority
JP
Japan
Prior art keywords
shield case
permanent magnet
detection electrode
potential measuring
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006127826A
Other languages
Japanese (ja)
Inventor
Yoshitaka Zaitsu
義貴 財津
Takashi Ushijima
隆志 牛島
Atsushi Katori
篤史 香取
Kaoru Noguchi
薫 野口
Kazuhiko Kato
和彦 加藤
Toshiyuki Ogawa
俊之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006127826A priority Critical patent/JP2007298450A/en
Publication of JP2007298450A publication Critical patent/JP2007298450A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the possibility of deterioration in the electric potential measurement accuracy in an electric potential measuring apparatus, by approaching and accumulating a particle as a toner, having magnetism near a permanent magnet and its neighbour, even when the apparatus is to be used in an environment where particles like the toner, having magnetism in the electric potential measuring apparatus in which a vibrator is vibrated by a driving means which includes the permanent magnet exist. <P>SOLUTION: The electric potential measuring apparatus comprises a shielding case 2 which has an aperture 3 at the opposite position to an object to be measured 1, the vibrator 7 which is arranged capable of vibration within the shield case 2, a detection electrode 9 which is arranged on the vibrator 7, the driving means which makes the electrostatic capacity between the detection electrode 9 and the object to be measured 1 changed by driving the vibrator 7, and a signal processing means 10 which obtains information about the electric potential of the object to be measured 1 by processing the electrical signal which is generated at the detection electrode 9. The driving means includes the permanent magnet 8 and an electromagnetic coil 9. The permanent magnet 8 is located inside the shielding case 2 and is arranged at the outside of a space, which is formed making the aperture 3 extend vertically, from the aperture 3 of the shielding case 2 to the bottom of the shielding case 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被測定物体(測定対象)の電位を非接触で測定することが可能な電位測定装置、及び前記電位測定装置を有する画像形成装置に関するものである。 The present invention relates to a potential measuring device capable of measuring the potential of a measured object (measurement target) in a non-contact manner, and an image forming apparatus having the potential measuring device.

感光ドラムを有し電子写真方式によって画像形成を行う画像形成装置において、常に安定した画質を得るためには、どの様な環境下でも感光ドラム表面の電位分布が適当に(典型的には均一に)なる様に感光ドラム表面を帯電しておく必要がある。このため、感光ドラム表面の電位を電位測定装置で測定し、その結果を利用して感光ドラム表面の電位を均一に保つ様にフィードバック制御を行う機能を画像形成装置に搭載することが、従来、しばしば行われている。 In an image forming apparatus having a photosensitive drum and performing image formation by electrophotography, in order to obtain a stable image quality at all times, the potential distribution on the surface of the photosensitive drum is appropriately (typically uniform) in any environment. ) So that the surface of the photosensitive drum is charged. For this reason, the image forming apparatus is conventionally equipped with a function for measuring the potential of the photosensitive drum surface with a potential measuring device and performing feedback control so as to keep the potential of the photosensitive drum surface uniform using the result. Often done.

この様な目的で用いられる電位測定装置に対して、従来、多く要求される機能の一つとして、被測定物体の表面電位を非接触で測定する機能が挙げられる。なぜなら、電位測定装置が感光ドラム表面に接触すると感光ドラム表面の電位分布が均一でなくなり、形成される画像に乱れが生じる原因となるからである。この様な電位測定の方式を本明細書では「非接触式」と呼ぶ。 One of the functions that are conventionally required for the potential measuring device used for such a purpose is a function of measuring the surface potential of the object to be measured in a non-contact manner. This is because when the potential measuring device comes into contact with the surface of the photosensitive drum, the potential distribution on the surface of the photosensitive drum is not uniform, which causes a disturbance in the formed image. Such a potential measurement method is referred to as “non-contact type” in this specification.

非接触式の電位測定装置の測定原理としては、被測定物体とこれに対向して配置された検知電極との間の静電容量を微小に変動させて、被測定物体の表面電位に比例した振幅を有する電流信号を得る方式がよく利用されている。 The measurement principle of the non-contact potential measuring device is that the capacitance between the object to be measured and the sensing electrode arranged opposite to the object to be measured is slightly changed, and is proportional to the surface potential of the object to be measured. A method of obtaining a current signal having an amplitude is often used.

非接触式の電位測定装置の原理を以下に説明する。
被測定物体の表面と電位測定装置に内蔵される検知電極との間に生じる電界により、検知電極には被測定物体の表面電位Vに比例した電気量Qの電荷が誘起される。
QとVの関係は
Q=CV・・・(1)
という式で表される。ここで、Cは検知電極と被測定物体の表面との間の静電容量である。式(1)より、検知電極上に誘起される電気量Qを測定して被測定物体の表面電位Vを得ることが可能となる。
The principle of the non-contact potential measuring device will be described below.
Due to the electric field generated between the surface of the object to be measured and the sensing electrode built in the potential measuring device, an electric charge Q of an electric quantity proportional to the surface potential V of the object to be measured is induced on the sensing electrode.
The relationship between Q and V is Q = CV (1)
It is expressed by the formula. Here, C is a capacitance between the detection electrode and the surface of the object to be measured. From equation (1), it is possible to obtain the surface potential V of the object to be measured by measuring the quantity of electricity Q induced on the sensing electrode.

しかし、検知電極上に誘起される電気量Qを高速且つ正確に直接測定することは実際には困難である。そこで、実用的な方法として、検知電極と被測定物体の表面との間の静電容量Cの大きさを周期的に変化させ、検知電極で発生する交流電流信号を測定することにより被測定物体の表面電位を得る方法がしばしば用いられている。 However, it is actually difficult to directly measure the quantity of electricity Q induced on the detection electrode at high speed and accurately. Therefore, as a practical method, the size of the electrostatic capacitance C between the detection electrode and the surface of the object to be measured is periodically changed, and an alternating current signal generated at the detection electrode is measured to measure the object to be measured. The method of obtaining the surface potential of the above is often used.

上記の方法によって被測定物体の表面電位を得るのが可能であることを以下に示す。
静電容量Cが時刻tの関数であるとすると、検知電極で発生する交流電流信号iは、検知電極に誘起される電気量の時間微分値であることと、式(1)から次の式で表される。
i(t)=dQ/dt=d(CV)/dt ・・・(2)
ここで、被測定物体の表面電位Vの変化速度が静電容量Cの変化速度に対して十分遅い場合には、Vは微小時間dtにおいて一定であるとみなすことができるので、式(2)は次の式で表される。
i(t)=dQ(t)/dt=V・dC(t)/dt ・・・(3)
The following shows that the surface potential of the object to be measured can be obtained by the above method.
Assuming that the capacitance C is a function of time t, the alternating current signal i generated at the detection electrode is a time differential value of the amount of electricity induced at the detection electrode, and the following equation is obtained from equation (1): It is represented by
i (t) = dQ / dt = d (CV) / dt (2)
Here, when the rate of change of the surface potential V of the object to be measured is sufficiently slow with respect to the rate of change of the capacitance C, it can be assumed that V is constant in the minute time dt. Is represented by the following equation.
i (t) = dQ (t) / dt = V · dC (t) / dt (3)

式(3)より、検知電極で発生する交流電流信号iの大きさは測定対象の表面電位Vの1次の関数であるから、交流電流信号の振幅を測定することで測定対象の表面電位を得ることが可能である。また、式(3)より、測定対象の表面電位Vが同じならば、測定対象の表面電位に対する交流電流信号iの大きさ、すなわち電位測定装置の感度は、静電容量の変化速度に比例することが分かる。 From the equation (3), the magnitude of the alternating current signal i generated at the sensing electrode is a linear function of the surface potential V of the measurement target. Therefore, by measuring the amplitude of the alternating current signal, the surface potential of the measurement target is determined. It is possible to obtain. Further, from the equation (3), if the surface potential V of the measurement target is the same, the magnitude of the alternating current signal i with respect to the surface potential of the measurement target, that is, the sensitivity of the potential measurement device is proportional to the change rate of the capacitance. I understand that.

検知電極と測定対象表面との間の静電容量Cを周期的に変化させる方法の一つとして、検知電極と測定対象表面との間の距離を変化させて静電容量Cを周期的に変化させる方法が挙げられる。検知電極と測定対象の表面との間の静電容量Cは近似的に
C=A・S/x ・・・(4)
の様な式で表される。ここで、Aは物質の誘電率などに係る比例定数、Sは検知電極の面積、xは検知電極と被測定物体の表面との間の距離である。式(4)より、距離xが周期的に変化すると静電容量Cも周期的に変化することが分かる。
As one method of periodically changing the capacitance C between the detection electrode and the measurement target surface, the capacitance C is changed periodically by changing the distance between the detection electrode and the measurement target surface. The method of making it include. The capacitance C between the sensing electrode and the surface of the object to be measured is approximately C = A · S / x (4)
It is expressed by the following formula. Here, A is a proportional constant related to the dielectric constant of the substance, S is the area of the detection electrode, and x is the distance between the detection electrode and the surface of the object to be measured. From equation (4), it can be seen that when the distance x changes periodically, the capacitance C also changes periodically.

検知電極と測定対象の表面との間の距離を周期的に変化させる手段の一つとして、振動体の先端に検知電極を配置し、検知電極を測定対象の表面にほぼ垂直な方向に振動させる手段が挙げられる。こうした振動を起こす駆動手段としては、永久磁石と電磁コイルを用いて振動体を振動させる手段がしばしば用いられる。永久磁石と電磁コイルで振動体を振動させる利点としては、比較的少ない消費電力で振動体を振動させることが可能である点、製造や実装のコストも比較的低い点などが挙げられる。 As one means for periodically changing the distance between the detection electrode and the surface of the measurement object, the detection electrode is arranged at the tip of the vibrating body, and the detection electrode is vibrated in a direction substantially perpendicular to the surface of the measurement object. Means are mentioned. As drive means for causing such vibration, means for vibrating a vibrating body using a permanent magnet and an electromagnetic coil is often used. Advantages of vibrating the vibrating body with the permanent magnet and the electromagnetic coil include that the vibrating body can be vibrated with relatively low power consumption and that the manufacturing and mounting costs are relatively low.

被測定物体に対する検知電極の露出面積(上記Sに相当)を周期的に変化させて静電容量Cを周期的に変化することも可能である。この場合も、駆動手段としては、永久磁石と電磁コイルを用いてシャッタ部材などの振動体を振動させる手段がしばしば用いられる。電位の測定原理は上記したものと基本的に同じである。 It is also possible to periodically change the capacitance C by periodically changing the exposed area (corresponding to S) of the detection electrode with respect to the object to be measured. Also in this case, as the driving means, means for vibrating a vibrating body such as a shutter member using a permanent magnet and an electromagnetic coil is often used. The principle of potential measurement is basically the same as described above.

永久磁石と電磁コイルによって振動体を駆動させる電位測定装置の従来例として、図9に示す電位測定装置を以下に説明する(特許文献1参照)。 As a conventional example of a potential measuring device that drives a vibrating body with a permanent magnet and an electromagnetic coil, the potential measuring device shown in FIG. 9 will be described below (see Patent Document 1).

図9の構成において、被測定物体51に対向する面に開口53を有するシールドケース52内の底部に支持部材54が固定されており、支持部材54には振動体の端部が固定されている。この振動体は2つの振動板55からなり、各振動板55の片方の端部は支持部材54に固定されている。電磁コイル56は空芯であり、シールドケース52の開口53の直下に位置する様に振動板55のもう一方の端部に固定されている。永久磁石58は電磁コイル56の空芯部を貫通する様にシールドケース52内の底部に固定されている。ここで、電磁コイル56と永久磁石58との配置位置は逆であってもよい。また、図9中のN及びSの記号は永久磁石58の磁化方向を表しており、NとSの位置は逆であってもよい。電磁コイル56の開口53に対向する面には検知電極59が配置されており、検知電極59には、電気信号を信号処理手段60に伝達させる配線61が接続されている。 In the configuration of FIG. 9, a support member 54 is fixed to the bottom of the shield case 52 having an opening 53 on the surface facing the object to be measured 51, and the end of the vibrating body is fixed to the support member 54. . The vibrating body includes two diaphragms 55, and one end of each diaphragm 55 is fixed to the support member 54. The electromagnetic coil 56 is an air core, and is fixed to the other end of the diaphragm 55 so as to be located immediately below the opening 53 of the shield case 52. The permanent magnet 58 is fixed to the bottom of the shield case 52 so as to penetrate the air core of the electromagnetic coil 56. Here, the arrangement positions of the electromagnetic coil 56 and the permanent magnet 58 may be reversed. Further, the symbols N and S in FIG. 9 indicate the magnetization direction of the permanent magnet 58, and the positions of N and S may be reversed. A detection electrode 59 is disposed on the surface of the electromagnetic coil 56 facing the opening 53, and a wiring 61 that transmits an electric signal to the signal processing means 60 is connected to the detection electrode 59.

特許文献1に記載の電位測定装置による電位測定の原理を以下に説明する。
駆動信号源(図9では省略されている)から周期性を有する駆動電流を電磁コイル56に入力すると、電磁コイル56と永久磁石58との間に引力或いは斥力が周期的に働き、振動板55が曲げ方向に振動する。これにより、電磁コイル56が被測定物体51の表面に対して垂直方向に周期的に変位する。こうして被測定物体51の表面と検知電極59との間の距離が周期的に変化するので、被測定物体51の表面と検知電極59との間の静電容量も周期的に変化し、上記式(3)に従って検知電極59に被測定物体51の表面電位に比例した交流電流信号が発生する。この交流電流信号は、配線61を介して信号処理手段60に入力され、信号処理手段60において電圧信号への変換及び増幅、整流などの処理を施された後に電位測定信号として出力される。
特開平8−110361号公報
The principle of potential measurement by the potential measuring device described in Patent Document 1 will be described below.
When a periodic drive current is input to the electromagnetic coil 56 from a drive signal source (not shown in FIG. 9), an attractive force or a repulsive force acts periodically between the electromagnetic coil 56 and the permanent magnet 58, and the diaphragm 55 Vibrates in the bending direction. Thereby, the electromagnetic coil 56 is periodically displaced in the direction perpendicular to the surface of the object 51 to be measured. Thus, since the distance between the surface of the object to be measured 51 and the detection electrode 59 changes periodically, the capacitance between the surface of the object to be measured 51 and the detection electrode 59 also changes periodically, and the above formula According to (3), an alternating current signal proportional to the surface potential of the object to be measured 51 is generated at the detection electrode 59. This alternating current signal is input to the signal processing means 60 via the wiring 61, and after being subjected to processing such as conversion to a voltage signal, amplification, and rectification in the signal processing means 60, it is output as a potential measurement signal.
JP-A-8-110361

ところで、感光ドラムを有し電子写真方式により画像形成を行う画像形成装置では、感光ドラムに静電気分布として形成された潜像は、トナーと呼ばれる微粒子が静電気力で感光ドラムに付着し、被印刷物体に転写されることで、実際の画像として形成される。前記トナーには、磁性を有するトナーと磁性を有さないトナーとが存在し、従来、どちらのトナーも利用されている。ここで、永久磁石を有する上述した様な従来の電位測定装置を、磁性を有するトナーを用いる画像形成装置に搭載して長時間使用すると、電位測定装置内に侵入した磁性を有するトナーによって電位測定装置の電位測定精度が劣化する可能性がある。以下にその理由を述べる。 By the way, in an image forming apparatus that has a photosensitive drum and forms an image by electrophotography, a latent image formed as a static electricity distribution on the photosensitive drum has fine particles called toner adhered to the photosensitive drum by electrostatic force, and the object to be printed To form an actual image. The toner includes magnetic toner and non-magnetic toner, and both toners are conventionally used. Here, when a conventional potential measuring device having a permanent magnet as described above is mounted on an image forming apparatus using magnetic toner and used for a long time, the potential is measured by the magnetic toner that has entered the potential measuring device. The potential measurement accuracy of the device may deteriorate. The reason is described below.

磁性を有するトナーが何らかの理由で電位測定装置のシールドケース開口から電位測定装置内部に侵入した場合、磁性を有するトナーが永久磁石に吸着される可能性がある。永久磁石に一旦吸着された磁性を有するトナーは、分解清掃などにより意図的に除去されない限り吸着されたままとなり易い。従って、使用時間の増加に伴い永久磁石とその近傍に堆積する磁性を有するトナーの粒子数も増加しやすい。この様にして永久磁石の近傍に堆積した磁性を有するトナーは、電磁コイルと永久磁石との間の空間の閉塞や振動体の共振周波数の変化などを引き起こし、振動体の振幅を減少させる原因などとなる可能性がある。振動体の振動振幅が減少すると、検知電極から得られる電流信号の振幅が減少し、電位測定信号のS/N比が低下することにもなりかねない。 When the toner having magnetism enters the potential measuring device from the opening of the shield case of the potential measuring device for some reason, the toner having magnetism may be attracted to the permanent magnet. The magnetic toner once attracted to the permanent magnet tends to remain attracted unless it is intentionally removed by disassembly and cleaning. Therefore, as the usage time increases, the number of particles of toner having magnetism deposited in the vicinity of the permanent magnet tends to increase. The toner having magnetism deposited in the vicinity of the permanent magnet in this manner causes a blockage of the space between the electromagnetic coil and the permanent magnet, a change in the resonance frequency of the vibrating body, and the like, which causes a decrease in the amplitude of the vibrating body. There is a possibility. If the vibration amplitude of the vibrating body is reduced, the amplitude of the current signal obtained from the detection electrode may be reduced, and the S / N ratio of the potential measurement signal may be lowered.

つまり、永久磁石を有する上述した様な電位測定装置を、トナーなど、磁性を持つ粒子が存在する環境で使う場合、こうした粒子が永久磁石とその近傍に引き寄せられ易く、部材の重量変化や空間部の詰りなどを引き起こして好ましくない事態が起こり得る。こうしたことは、上記の如き電位測定装置に限らず、永久磁石を含む電磁櫛歯タイプなどの駆動手段でシャッタ部材などを駆動して検知電極と測定対象表面との間の静電容量を周期的に変化させる電位測定装置でも起こり得る。しかしながら、上述した従来の電位測定装置は、こうした課題については全く考慮していない。 That is, when the above-described potential measuring device having a permanent magnet is used in an environment where magnetic particles such as toner exist, such particles are easily attracted to the permanent magnet and the vicinity thereof, and the weight change of the member and the space portion Undesirable situations may occur due to clogging. This is not limited to the potential measuring device as described above, and the electrostatic capacity between the detection electrode and the surface to be measured is periodically changed by driving a shutter member or the like with a driving means such as an electromagnetic comb type including a permanent magnet. It can also occur in an electric potential measuring device that changes to However, the above-described conventional potential measuring device does not consider such a problem at all.

上記課題に鑑み、本発明の電位測定装置は、以下の要素を有する。
すなわち、測定対象に対向する部分に開口を有するシールドケースと、
前記シールドケース内に振動可能に配置された振動体と、
前記振動体上において、前記シールドケースの開口に対応する位置に配置された検知電極と、
前記振動体を駆動する駆動手段と、
前記検知電極で発生する電気信号を処理する信号処理手段と、
を有する。
そして、前記駆動手段は永久磁石と電磁コイルとを含み、該永久磁石は前記シールドケース内部であって、かつ前記シールドケースの開口から該開口を前記シールドケースの底部まで垂直に延在させて形成される空間の外に配置される。
In view of the above problems, the potential measuring device of the present invention has the following elements.
That is, a shield case having an opening in a portion facing the measurement object;
A vibrating body disposed in the shield case so as to vibrate;
On the vibrating body, a detection electrode disposed at a position corresponding to the opening of the shield case;
Drive means for driving the vibrator;
Signal processing means for processing an electrical signal generated at the detection electrode;
Have
The drive means includes a permanent magnet and an electromagnetic coil, and the permanent magnet is formed inside the shield case and extending vertically from the opening of the shield case to the bottom of the shield case. Placed outside the space to be.

更に、好ましくは、前記シールドケース内部に、前記シールドケースの開口及び前記検知電極が存在する空間と前記永久磁石が存在する空間とを分離するための遮蔽壁を配置してもよい。 Furthermore, it is preferable that a shielding wall for separating an opening of the shield case and a space where the detection electrode is present from a space where the permanent magnet is present may be disposed inside the shield case.

また、上記課題に鑑み、本発明の電位測定装置は、以下の要素を有する。
すなわち、測定対象に対向する部分に開口を有するシールドケースと、
前記シールドケース内の前記開口に対向する位置に固定配置された検知電極と、
シャッタと、
前記シャッタを駆動する駆動手段と、
前記検知電極で発生する電気信号を処理する信号処理手段と、
を有する。
そして、前記駆動手段は永久磁石と電磁コイルとを含み、該永久磁石は前記シールドケース内部であって、かつ前記シールドケースの開口から該開口を前記シールドケースの底部まで垂直に延在させて形成される空間の外に配置され、前記シールドケースの開口及び前記検知電極が存在する空間と、前記永久磁石が存在する空間とを分離するための遮蔽壁が配置される。
Moreover, in view of the said subject, the electric potential measuring apparatus of this invention has the following elements.
That is, a shield case having an opening in a portion facing the measurement object;
A detection electrode fixedly arranged at a position facing the opening in the shield case;
A shutter;
Driving means for driving the shutter;
Signal processing means for processing an electrical signal generated at the detection electrode;
Have
The drive means includes a permanent magnet and an electromagnetic coil, and the permanent magnet is formed inside the shield case and extending vertically from the opening of the shield case to the bottom of the shield case. And a shielding wall for separating the space where the opening of the shield case and the detection electrode are present from the space where the permanent magnet is present.

また、上記課題に鑑み、本発明の電位測定装置は、上記の電位測定装置と、前記電位測定装置より得られる出力信号を処理する信号処理装置と、画像形成手段を備える。そして、前記電位測定装置の検知電極の形成された部分が前記画像形成手段の電位測定の対象と対向して配置され、前記画像形成手段が前記信号処理装置の信号検出結果を用いて画像形成の制御を行う。 In view of the above problems, a potential measuring device of the present invention includes the above-described potential measuring device, a signal processing device that processes an output signal obtained from the potential measuring device, and an image forming unit. A portion where the detection electrode of the potential measuring device is formed is disposed to face a potential measurement target of the image forming means, and the image forming means uses the signal detection result of the signal processing device to perform image formation. Take control.

本発明の電位測定装置によれば、前記永久磁石は前記シールドケース内部であって、かつ前記シールドケースの開口から該開口を前記シールドケースの底部まで垂直に延在させて形成される空間の外に配置される構造を少なくとも備える。従って、シールドケース開口より電位測定装置内部に侵入する磁性を有するトナーなどの粒子が永久磁石の近傍に到達して永久磁石に吸着される可能性が低下する。よって、磁性を有するトナーなどの粒子により永久磁石を有する電位測定装置の正常な動作が妨げられる可能性を低減させることが可能となる。更に、上記の如き遮蔽壁を配置する場合には、この効果を向上させることができる。 According to the potential measuring device of the present invention, the permanent magnet is inside the shield case and outside the space formed by extending the opening vertically from the shield case opening to the bottom of the shield case. At least a structure to be arranged. Therefore, the possibility that particles such as magnetic toner entering the potential measuring device from the opening of the shield case reach the vicinity of the permanent magnet and is attracted to the permanent magnet is reduced. Therefore, it is possible to reduce the possibility that normal operation of the potential measuring device having a permanent magnet is hindered by particles such as magnetic toner. Furthermore, this effect can be improved when the shielding wall as described above is arranged.

また、磁性を有するトナーなどを用いる画像形成装置に、本発明の永久磁石を有する電位測定装置を用いることで、画質の安定化を図ることが比較的長期間にわたって可能となる。 Further, by using the potential measuring device having the permanent magnet of the present invention for an image forming apparatus using magnetic toner or the like, it is possible to stabilize the image quality over a relatively long period of time.

以下に、本発明の実施形態を説明する。電位測定装置の一実施形態は、測定対象に対向する部分に開口を有するシールドケースと、シールドケース内に振動可能に配置された振動体と、振動体上において、前記シールドケースの開口に対向する位置に配置された検知電極を有する。そして、振動体を駆動して前記検知電極と測定対象間の静電容量を変化させるための永久磁石と電磁コイルを含む駆動手段と、検知電極で発生する電気信号を処理して測定対象の電位の情報を取得する信号処理手段を備える。更に、シールドケース内部に、シールドケースの開口及び検知電極が存在する空間と永久磁石が存在する空間とを分離するために配置された遮蔽壁を有する。ここにおいて、永久磁石は、シールドケース内部であって、かつシールドケースの開口から該開口をシールドケースの底部まで略垂直に延在させて形成される空間の外に配置されている。 Hereinafter, embodiments of the present invention will be described. One embodiment of a potential measuring device is a shield case having an opening at a portion facing a measurement object, a vibrating body arranged to be vibrated in the shield case, and facing the opening of the shield case on the vibrating body. It has a sensing electrode arranged at a position. Then, a driving means including a permanent magnet and an electromagnetic coil for driving the vibrating body to change the capacitance between the detection electrode and the measurement target, and an electric signal generated at the detection electrode to process the potential of the measurement target Signal processing means for acquiring the information. Furthermore, the shielding case has a shielding wall disposed in order to separate the space where the opening of the shielding case and the detection electrode are present from the space where the permanent magnet is present. Here, the permanent magnet is disposed inside the shield case and outside the space formed by extending the opening from the shield case to the bottom of the shield case substantially perpendicularly.

振動体を片持ち梁式に構成する場合、振動体は、シールドケース内側の底部に配置された支持部材に、例えば、検知電極の配置された側とは反対側の端部を固定された振動板として構成される。遮蔽壁は、振動板を貫通せしめる貫通口を有して検知電極と永久磁石との間にあたる位置に配置されている。これにより、振動体の振動を妨げない様に遮蔽壁を設けることが可能となる。 When the vibrating body is configured as a cantilever type, the vibrating body is a vibration in which, for example, the end opposite to the side where the detection electrode is arranged is fixed to the support member arranged at the bottom inside the shield case. Configured as a plate. The shielding wall has a through-hole through which the diaphragm is penetrated and is disposed at a position between the detection electrode and the permanent magnet. Thereby, it is possible to provide a shielding wall so as not to disturb the vibration of the vibrating body.

振動体は、2枚の振動板を連結したトーションヒンジを有する構造としても構成できる。この構成では、シールドケース内側の底部に配置された支持部材が少なくとも1個以上存在する。この場合、振動体は、検知電極が配置された検知振動板と、駆動手段の少なくとも一部分が配置された駆動振動板を有する。そして、検知振動板と駆動振動板とに両端を固定されたねじりバネと、検知振動板と駆動振動板のうちの少なくとも片方の振動板と支持部材とに両端を固定された少なくとも1本のねじりバネを備える。 The vibrating body can also be configured as a structure having a torsion hinge connecting two diaphragms. In this configuration, there are at least one support member disposed on the bottom inside the shield case. In this case, the vibrating body includes a detection diaphragm on which the detection electrode is disposed and a driving diaphragm on which at least a part of the driving unit is disposed. And a torsion spring having both ends fixed to the detection diaphragm and the driving diaphragm, and at least one torsion having both ends fixed to at least one of the detection diaphragm and the driving diaphragm and the support member. Provide a spring.

更に、遮蔽壁は、検知振動板と駆動振動板に両端を固定されたねじりバネを貫通せしめる貫通口を有する。この構成によれば、ねじりバネは振動板と比較して断面積及び変位が非常に小さいので遮蔽壁の貫通口を小さくすることが可能となる。よって、磁性を有するトナーなどが永久磁石の近傍に到達して永久磁石に吸着される可能性が更に低下する。これにより、磁性を有するトナーなどにより永久磁石を有する電位測定装置の正常な動作が妨げられる可能性を大幅に低減させることが可能となる。 Further, the shielding wall has a through-hole through which a torsion spring having both ends fixed to the detection diaphragm and the driving diaphragm is passed. According to this configuration, the torsion spring has a very small cross-sectional area and displacement compared to the diaphragm, so that the through hole of the shielding wall can be made small. Therefore, the possibility that magnetic toner or the like reaches the vicinity of the permanent magnet and is attracted to the permanent magnet is further reduced. As a result, it is possible to greatly reduce the possibility that normal operation of the potential measuring device having a permanent magnet is hindered by toner having magnetism or the like.

この構成においては、検知電極が2枚配置され、各検知電極で発生する互いに逆相な信号を差動増幅することにより伝送ノイズをキャンセルする電位測定装置とすることができる。ここでは、検知振動板がねじりバネを中心軸とした回転方向に振動可能に設けられ、且つ2枚の検知電極が、検知振動板上において、回転振動の中心軸を挟んで互いに反対側に位置する様に配置される。そして、信号処理手段が、各々の検知電極で発生する電気信号の差を演算して増幅する機能を有する。この構成では、各々の検知電極と信号処理手段とを接続する配線上で重畳する同相ノイズが除去される一方で必要な信号成分の強度は2倍になるので、電位測定信号のS/N比が向上する。よって、電位測定装置の電位測定精度を向上させることが可能となる。 In this configuration, two sensing electrodes are arranged, and a potential measuring device that cancels transmission noise by differentially amplifying signals having opposite phases generated at each sensing electrode can be obtained. Here, the detection diaphragm is provided so as to be able to vibrate in the rotational direction with the torsion spring as the central axis, and the two detection electrodes are positioned on opposite sides of the detection vibration plate across the central axis of the rotational vibration. To be arranged. The signal processing means has a function of calculating and amplifying the difference between the electrical signals generated at the respective detection electrodes. In this configuration, the common-mode noise superimposed on the wiring connecting each detection electrode and the signal processing means is removed, while the intensity of the necessary signal component is doubled, so the S / N ratio of the potential measurement signal Will improve. Therefore, the potential measurement accuracy of the potential measuring device can be improved.

別の実施形態の電位測定装置は、測定対象に対向する部分に開口を有するシールドケースと、シールドケース内において、シールドケースの開口に対向する位置に固定的に配置された検知電極を有する。そして、開口を介する検知電極の測定対象に対する露出程度を変化させるためにシールドケース内に振動可能に配置されたシャッタと、シャッタを駆動して検知電極と測定対象間の静電容量を変化させるための永久磁石と電磁コイルを含む駆動手段を備える。更に、検知電極で発生する電気信号を処理して測定対象の電位の情報を取得する信号処理手段を有し、シールドケース内部に、シールドケースの開口及び検知電極が存在する空間と永久磁石が存在する空間とを分離するための遮蔽壁が配置されている。この構成では、シャッタが、例えば、検知電極に対応する部分に開口部を有して平行移動して振動するシャッタ部材であり、且つ、遮蔽壁が、シャッタ部材を貫通せしめる貫通口を有して開口部と永久磁石との間にあたる位置に配置されている。 The potential measuring device according to another embodiment includes a shield case having an opening at a portion facing the measurement target, and a detection electrode fixedly disposed at a position facing the opening of the shield case in the shield case. In order to change the capacitance between the detection electrode and the measurement target by driving the shutter and the shutter disposed so as to vibrate in the shield case in order to change the degree of exposure of the detection electrode to the measurement target through the opening. Drive means including a permanent magnet and an electromagnetic coil. In addition, it has signal processing means to process the electrical signal generated at the detection electrode and acquire information on the potential of the object to be measured. Inside the shield case, there is a space where the opening of the shield case and the detection electrode exist and a permanent magnet. A shielding wall is arranged for separating the space to be separated. In this configuration, the shutter is, for example, a shutter member that has an opening at a portion corresponding to the detection electrode and vibrates by moving in parallel, and the shielding wall has a through-hole through which the shutter member passes. It arrange | positions in the position which hits between an opening part and a permanent magnet.

上記の永久磁石を有する電位測定装置を、電子写真式のプリンタなどの画像形成装置に搭載し、帯電器及び帯電器制御部と組み合わせることにより、感光ドラムの帯電量を制御する機構を構築することができる。 A mechanism for controlling the charge amount of the photosensitive drum is constructed by mounting the above-described potential measuring device having a permanent magnet on an image forming apparatus such as an electrophotographic printer and combining it with a charger and a charger controller. Can do.

以下に、図面に沿って、より具体的な本発明の実施例を説明する。 Hereinafter, more specific embodiments of the present invention will be described with reference to the drawings.

(実施例1)
本発明の実施例1の係る電位測定装置を説明する。本実施例における電位測定装置の構成を図1に示す。図1(a)はシールドケース2内に設けられた構造を上から見た上面図であり、図1(b)は図1(a)のA1‐A2断面図である。図1において、被測定物体(測定対象)1に対向する面に開口3を有するシールドケース2の内側の底部に、支持部材4が固定されており、支持部材4には、振動体である振動板7の片方の端部が固定されている。
Example 1
A potential measuring apparatus according to Example 1 of the present invention will be described. FIG. 1 shows the configuration of the potential measuring device in this example. FIG. 1 (a) is a top view of the structure provided in the shield case 2 as viewed from above, and FIG. 1 (b) is a cross-sectional view taken along line A1-A2 of FIG. 1 (a). In FIG. 1, a support member 4 is fixed to the inner bottom of a shield case 2 having an opening 3 on a surface facing an object to be measured (measurement target) 1. One end of the plate 7 is fixed.

駆動手段の一部である永久磁石8は振動板7上に配置されており、同じく駆動手段の一部である電磁コイル6は、シールドケース2の内側の底部のうち、永久磁石8の直下にあたる位置に配置されている。ここで、電磁コイル6と永久磁石8の配置位置は逆であってもよい。また、図1(b)中のN及びSの記号は永久磁石8の磁化方向を表しており、NとSの位置は逆であってもよい。 The permanent magnet 8 that is a part of the driving means is disposed on the diaphragm 7, and the electromagnetic coil 6 that is also a part of the driving means is directly below the permanent magnet 8 in the bottom part inside the shield case 2. Placed in position. Here, the arrangement positions of the electromagnetic coil 6 and the permanent magnet 8 may be reversed. Further, the symbols N and S in FIG. 1B represent the magnetization direction of the permanent magnet 8, and the positions of N and S may be reversed.

検知電極9は、振動板7の、シールドケース2の開口3に対向する面のうち、開口3の直下にあたる位置に配置されており、検知電極9には、電気信号を信号処理手段10に伝達させる配線11が接続されている。 The detection electrode 9 is arranged at a position directly below the opening 3 on the surface of the diaphragm 7 facing the opening 3 of the shield case 2, and an electric signal is transmitted to the signal processing means 10 to the detection electrode 9. Wiring 11 to be connected is connected.

以上に述べた構成においては、シールドケース2の開口3のある面に略垂直に検知電極9の存在する方向に開口3をシールドケース2の底部まで延在させて形成される空間の外の空間に、永久磁石8が配置されている。すなわち、永久磁石8は、シールドケース2内部であって、かつシールドケース2の開口3から該開口3をシールドケース2の底部まで略垂直に延在させて形成される空間の外に配置されている。従って、このままの構成でも、シールドケース2の開口3より電位測定装置内部に侵入する磁性を有するトナーなどの磁性を持つ粒子が、永久磁石8の近傍に到達して永久磁石8などに付着する可能性が低下する。よって、この構成のままでも本発明の実施例となる。 In the configuration described above, the space outside the space formed by extending the opening 3 to the bottom of the shield case 2 in the direction in which the detection electrode 9 exists substantially perpendicular to the surface of the shield case 2 where the opening 3 is located. In addition, a permanent magnet 8 is arranged. That is, the permanent magnet 8 is disposed inside the shield case 2 and outside the space formed by extending the opening 3 from the opening 3 of the shield case 2 to the bottom of the shield case 2 substantially vertically. Yes. Therefore, even in this configuration, magnetic particles such as magnetic toner that enter the potential measuring device from the opening 3 of the shield case 2 can reach the vicinity of the permanent magnet 8 and adhere to the permanent magnet 8 or the like. Sex is reduced. Therefore, even this configuration is an example of the present invention.

本実施例では、磁性を持つ粒子が永久磁石8の近傍に到達して永久磁石8などに付着する可能性を更に低下させるために、遮蔽壁12を設ける。遮蔽壁12は、シールドケース2の内部空間を、シールドケース2の開口3及び検知電極9が存在する空間と、永久磁石8が存在する空間とに分離する様に配置されている。その際、遮蔽壁12そのものが振動板7の振動を妨げない様にするために、図2に示す様に、振動板7が貫通する遮蔽壁12の位置に貫通口13が設けられている。貫通口13の大きさは、遮蔽壁12の位置における振動板7の最大変位よりも大きく設計されている。 In this embodiment, the shielding wall 12 is provided in order to further reduce the possibility that particles having magnetism will reach the vicinity of the permanent magnet 8 and adhere to the permanent magnet 8 or the like. The shielding wall 12 is arranged so as to separate the internal space of the shield case 2 into a space where the opening 3 and the detection electrode 9 of the shield case 2 are present and a space where the permanent magnet 8 is present. At that time, in order to prevent the shielding wall 12 itself from disturbing the vibration of the diaphragm 7, a through-hole 13 is provided at the position of the shielding wall 12 through which the diaphragm 7 penetrates as shown in FIG. The size of the through hole 13 is designed to be larger than the maximum displacement of the diaphragm 7 at the position of the shielding wall 12.

本実施例における電位測定装置の動作原理を以下に説明する。
駆動信号源(図1では省略されている)から周期性を有する駆動電流を電磁コイル6に入力すると、電磁コイル6と永久磁石8との間に引力或いは斥力が周期的に働き、振動板7が曲げ方向に振動する(図1(b)中の矢印参照)。これにより、被測定物体1の表面と検知電極9との間の距離が周期的に変化するので、被測定物体1の表面と検知電極9との間の静電容量も周期的に変化する。よって、上記式(3)に従って、検知電極9に被測定物体1の表面電位に比例した交流電流信号が発生する。この交流電流信号は、配線11を介して信号処理手段10に入力され、信号処理手段10において電圧信号への変換及び増幅、整流処理を施された後に電位測定信号として出力される。ただし、フィードバック処理回路部を用いる方法などで被測定物体の表面電位を測定することもできる。この方法では、適当な部材(例えば、上記シールドケース2)に電圧を印加して、上記電圧出力信号がゼロとなるように調整し、その時の当該印加電圧を被測定物体の電位とするものである。
The operating principle of the potential measuring apparatus in this embodiment will be described below.
When a drive current having periodicity is input to the electromagnetic coil 6 from a drive signal source (not shown in FIG. 1), an attractive force or a repulsive force periodically acts between the electromagnetic coil 6 and the permanent magnet 8, and the diaphragm 7 Vibrates in the bending direction (see arrow in Fig. 1 (b)). As a result, the distance between the surface of the object to be measured 1 and the detection electrode 9 changes periodically, so that the capacitance between the surface of the object to be measured 1 and the detection electrode 9 also changes periodically. Therefore, an alternating current signal proportional to the surface potential of the object 1 to be measured is generated at the detection electrode 9 according to the above equation (3). This alternating current signal is input to the signal processing means 10 via the wiring 11, and is converted into a voltage signal, amplified and rectified by the signal processing means 10, and then output as a potential measurement signal. However, the surface potential of the object to be measured can also be measured by a method using a feedback processing circuit unit or the like. In this method, a voltage is applied to an appropriate member (for example, the shield case 2) so that the voltage output signal is adjusted to zero, and the applied voltage at that time is used as the potential of the object to be measured. is there.

実施例1の構成は、図3に示す様に変形することができる。図3(a)はシールドケース2内に設けられた構造を上から見た上面図であり、図3(b)は図3(a)のB1‐B2断面図である。図3において、振動体である振動板7の遮蔽壁12の貫通口13を貫通する部分37が、他部より剛性が低い材料で形成されている。これにより、検知電極9の配置された振動板7の部分の振動振幅をより大きくできて、センサ出力の増大、更には電位測定装置の感度の増大を図ることができる。その他の点は、上記実施例1と同じである。 The configuration of the first embodiment can be modified as shown in FIG. FIG. 3 (a) is a top view of the structure provided in the shield case 2 as viewed from above, and FIG. 3 (b) is a cross-sectional view along B1-B2 in FIG. 3 (a). In FIG. 3, a portion 37 that penetrates the through-hole 13 of the shielding wall 12 of the diaphragm 7 that is a vibrating body is formed of a material that is less rigid than the other portions. As a result, the vibration amplitude of the portion of the diaphragm 7 on which the detection electrode 9 is disposed can be further increased, so that the sensor output can be increased and the sensitivity of the potential measuring device can be increased. The other points are the same as in the first embodiment.

また、図4に示す様に変形することもできる。図4はシールドケース2内に設けられた構造を上から見た上面図である。図4において、振動体である振動板7の遮蔽壁12の貫通口13を貫通する部分7aの幅が、他部より小さくなっている。これによっても、検知電極9の配置された振動板7の部分の振動振幅をより大きくできて、センサ出力の増大、更には電位測定装置の感度の増大を図ることができる。この構成では、貫通口13のサイズを小さくできるので、遮蔽壁12の働きがより効果的になる。その他の点は、上記実施例1と同じである。 Further, it can be modified as shown in FIG. FIG. 4 is a top view of the structure provided in the shield case 2 as viewed from above. In FIG. 4, the width of the portion 7a that penetrates the through hole 13 of the shielding wall 12 of the diaphragm 7 that is a vibrating body is smaller than the other portion. This also makes it possible to increase the vibration amplitude of the portion of the diaphragm 7 on which the detection electrode 9 is arranged, thereby increasing the sensor output and further increasing the sensitivity of the potential measuring device. In this configuration, since the size of the through hole 13 can be reduced, the function of the shielding wall 12 becomes more effective. The other points are the same as in the first embodiment.

(実施例2)
本発明の実施例2の係る電位測定装置を説明する。本実施例における電位測定装置の第1の型の構成を図5に示す。図5(a)はシールドケース2内に設けられた構造を上から見た上面図であり、図5(b)は図5(a)のC1‐C2断面図である。図5において、被測定物体(測定対象)1に対向する面に開口3を有するシールドケース2の内側の底部に、支持部材4が固定されており、支持部材4には、振動体5の端部が固定されている。
(Example 2)
A potential measuring apparatus according to Example 2 of the present invention will be described. FIG. 5 shows the configuration of the first type of the potential measuring device according to this example. FIG. 5 (a) is a top view of the structure provided in the shield case 2 as seen from above, and FIG. 5 (b) is a cross-sectional view taken along line C1-C2 of FIG. 5 (a). In FIG. 5, a support member 4 is fixed to the inner bottom portion of the shield case 2 having an opening 3 on the surface facing the object to be measured (measurement target) 1, and the end of the vibrating body 5 is attached to the support member 4. The part is fixed.

振動体5は、検知振動板14、駆動振動板15、検知振動板14と駆動振動板15を連結するねじりバネ16、駆動振動板15と支持部材4とを連結するねじりバネ17を有する。ここで、検知振動板14と駆動振動板15が配置される位置が入れ替わっていてもよく、この場合、ねじりバネ17は検知振動板14と支持部材4とを連結することになる。いずれの場合も、検知振動板15は、シールドケース2の開口3の直下に位置する様に配置される。 The vibrating body 5 includes a detection diaphragm 14, a drive diaphragm 15, a torsion spring 16 that couples the detection diaphragm 14 and the drive diaphragm 15, and a torsion spring 17 that couples the drive diaphragm 15 and the support member 4. Here, the positions where the detection diaphragm 14 and the drive diaphragm 15 are arranged may be switched. In this case, the torsion spring 17 connects the detection diaphragm 14 and the support member 4. In either case, the detection diaphragm 15 is disposed so as to be located immediately below the opening 3 of the shield case 2.

駆動手段の一部を構成する永久磁石8は駆動振動板15上に配置されており、駆動手段の他部を構成する電磁コイル6はシールドケース2の内側の底部のうち、永久磁石8の直下にあたる位置に配置されている。ここでも、電磁コイル6と永久磁石8の配置位置は逆であってもよい。また、図5中のN及びSの記号は永久磁石8の磁化方向を表しており、NとSの位置は逆であってもよい。 The permanent magnet 8 constituting a part of the driving means is disposed on the driving diaphragm 15, and the electromagnetic coil 6 constituting the other part of the driving means is located directly below the permanent magnet 8 in the bottom part inside the shield case 2. It is arranged at the position corresponding to. Again, the arrangement positions of the electromagnetic coil 6 and the permanent magnet 8 may be reversed. Further, the symbols N and S in FIG. 5 represent the magnetization direction of the permanent magnet 8, and the positions of N and S may be reversed.

一対の検知電極18、19は、検知振動板14上に、ねじりバネ16を通る直線を挟んで互いに反対側に位置する様に配置されている。検知電極18、19には、夫々、電気信号を信号処理手段22に伝達させる配線20、21が接続されている。 The pair of detection electrodes 18 and 19 are arranged on the detection diaphragm 14 so as to be located on opposite sides of a straight line passing through the torsion spring 16. The detection electrodes 18 and 19 are connected to wirings 20 and 21 for transmitting electric signals to the signal processing means 22, respectively.

以上に述べた本実施例の構成においても、シールドケース2の開口3のある面に略垂直に検知電極18、19の存在する方向に開口3をシールドケース2の底部まで延在させて形成される空間の外の空間に、永久磁石8が配置される。すなわち、永久磁石8は、シールドケース2内部であって、かつシールドケース2の開口3から該開口3をシールドケース2の底部まで略垂直に延在させて形成される空間の外に配置されている。従って、このままの構成でも、シールドケース2の開口3より電位測定装置内部に侵入する磁性を有するトナーなどの磁性を持つ粒子が、永久磁石8の近傍に到達して永久磁石8などに付着する可能性が低下する。よって、この構成のままでも本発明の実施例となる。 The configuration of the present embodiment described above is also formed by extending the opening 3 to the bottom of the shield case 2 in the direction in which the detection electrodes 18 and 19 exist substantially perpendicularly to the surface of the shield case 2 where the opening 3 is provided. The permanent magnet 8 is disposed in a space outside the space to be stored. That is, the permanent magnet 8 is disposed inside the shield case 2 and outside the space formed by extending the opening 3 from the opening 3 of the shield case 2 to the bottom of the shield case 2 substantially vertically. Yes. Therefore, even in this configuration, magnetic particles such as magnetic toner that enter the potential measuring device from the opening 3 of the shield case 2 can reach the vicinity of the permanent magnet 8 and adhere to the permanent magnet 8 or the like. Sex is reduced. Therefore, even this configuration is an example of the present invention.

本実施例でも、磁性を持つ粒子が永久磁石8の近傍に到達して永久磁石8などに付着する可能性を更に低下させるために、遮蔽壁12を設けることができる。遮蔽壁12は、シールドケース2の内部空間を、シールドケース2の開口3及び検知電極18、19が存在する空間と、永久磁石8が存在する空間とに分離する様に、検知振動板14と駆動振動板15の間にあたる位置に配置される。その際、遮蔽壁12そのものが振動体5の振動を妨げない様にするために、ねじりバネ16が貫通する遮蔽壁12の位置に貫通口13が設けられている。貫通口13の大きさは、ねじりバネ16の断面形状よりも大きく設計されている。 Also in this embodiment, the shielding wall 12 can be provided in order to further reduce the possibility that particles having magnetism will reach the vicinity of the permanent magnet 8 and adhere to the permanent magnet 8 or the like. The shielding wall 12 is separated from the detection diaphragm 14 so that the internal space of the shield case 2 is separated into a space where the opening 3 and the detection electrodes 18 and 19 of the shield case 2 are present and a space where the permanent magnet 8 is present. It is arranged at a position between the drive diaphragms 15. At this time, a through-hole 13 is provided at the position of the shielding wall 12 through which the torsion spring 16 penetrates so that the shielding wall 12 itself does not disturb the vibration of the vibrating body 5. The size of the through hole 13 is designed to be larger than the cross-sectional shape of the torsion spring 16.

本実施例における電位測定装置の動作原理を以下に説明する。
駆動信号源(図5では省略されている)から周期性を有する駆動電流を電磁コイル6に入力すると、電磁コイル6と永久磁石8の端部との間に引力または斥力が周期的に働き、駆動振動板15はねじりバネ16を中心軸とした回転方向に振動する。駆動振動板15の振動はねじりバネ16の弾性力を介して検知振動板14に伝わり、検知振動板14もねじりバネ16を中心軸とした回転方向に振動する。これにより、被測定物体1の表面と検知電極18、19との間の距離が互いに逆相となる様に変化し、被測定物体1の表面と検知電極18、19との間の静電容量も互いに逆相となる様に変化する。この結果、上記式(3)に従って、検知電極18、19に被測定物体1の表面電位に比例した互いに逆相である交流電流信号が発生する。これらの電流信号は、配線20、21を介して信号処理手段22に入力される。信号処理手段22は、入力された各々の電流信号を電圧信号に変換した後に互いの差を演算し、その結果を増幅、整流することにより得られる電位測定信号を出力する。ここでも、上記フィードバック処理回路部を用いる方法などで被測定物体の表面電位を測定することができる。
The operating principle of the potential measuring apparatus in this embodiment will be described below.
When a periodic drive current is input to the electromagnetic coil 6 from a drive signal source (not shown in FIG. 5), an attractive force or a repulsive force periodically acts between the electromagnetic coil 6 and the end of the permanent magnet 8, The drive diaphragm 15 vibrates in the rotational direction with the torsion spring 16 as the central axis. The vibration of the drive diaphragm 15 is transmitted to the detection diaphragm 14 via the elastic force of the torsion spring 16, and the detection diaphragm 14 also vibrates in the rotation direction with the torsion spring 16 as the central axis. As a result, the distance between the surface of the object to be measured 1 and the detection electrodes 18 and 19 changes so as to be in opposite phases, and the capacitance between the surface of the object to be measured 1 and the detection electrodes 18 and 19 Also change to be in opposite phase to each other. As a result, according to the above equation (3), alternating current signals having opposite phases proportional to the surface potential of the object 1 to be measured are generated on the detection electrodes 18 and 19. These current signals are input to the signal processing means 22 via the wirings 20 and 21. The signal processing means 22 converts each input current signal into a voltage signal, calculates the difference between them, and outputs a potential measurement signal obtained by amplifying and rectifying the result. Again, the surface potential of the object to be measured can be measured by a method using the feedback processing circuit unit or the like.

実施例2の上記第1の型の構成は、図6に示す様に変更することができる。本実施例におけるこの第2の型の構成を図6に示す。図6(a)はシールドケース2内に設けられた構造を上から見た上面図であり、図6(b)は図6(a)のD1‐D2断面図である。ここでは、被測定物体1に対向する面に開口3を有するシールドケース2の内側の底部に第1と第2の支持部材23、24が固定されており、支持部材23、24には振動体5の端部が夫々固定されている。 The configuration of the first type of the second embodiment can be changed as shown in FIG. FIG. 6 shows the configuration of the second mold in this example. FIG. 6 (a) is a top view of the structure provided in the shield case 2 as viewed from above, and FIG. 6 (b) is a cross-sectional view taken along the line D1-D2 of FIG. 6 (a). Here, the first and second support members 23 and 24 are fixed to the bottom inside the shield case 2 having the opening 3 on the surface facing the object 1 to be measured. The ends of 5 are fixed respectively.

振動体5は、検知振動板14、駆動振動板15、検知振動板14と駆動振動板15を連結するねじりバネ16、駆動振動板15と第2の支持部材24とを連結するねじりバネ17、検知振動板14と第1の支持部材23とを連結するねじりバネ25を有する。ここでも、検知振動板15は、シールドケース2の開口3の直下に位置する様に配置されている。その他の構成部品の配置は上記第1の型の構成と同様である。また、動作についても、上記第1の型の構成と同様である。 The vibrating body 5 includes a detection diaphragm 14, a drive diaphragm 15, a torsion spring 16 that couples the detection diaphragm 14 and the drive diaphragm 15, a torsion spring 17 that couples the drive diaphragm 15 and the second support member 24, A torsion spring 25 that connects the detection diaphragm 14 and the first support member 23 is provided. Also here, the detection diaphragm 15 is arranged so as to be located immediately below the opening 3 of the shield case 2. The arrangement of other components is the same as that of the first mold. The operation is also the same as that of the first type configuration.

上記2つの型の構成の特徴を以下に述べる。
第1の型の構成は、振動体5のバネ定数を小さく設計することが比較的容易であるので、電位測定装置の更なる低消費電力化を図るのに適した構成である。第2の型の構成は、振動体5が第1と第2の支持部材23、24の両側で支えられており、振動体5の回転方向の振動が比較的安定している。従って、遮蔽壁12の貫通口13の更なる小型化や電位測定装置の電位測定信号の更なる安定化を図るのに適した構成である。
The features of the two types of configurations are described below.
The configuration of the first type is a configuration suitable for further reducing the power consumption of the potential measuring device because it is relatively easy to design the spring constant of the vibrator 5 to be small. In the configuration of the second type, the vibrating body 5 is supported on both sides of the first and second support members 23 and 24, and the vibration in the rotational direction of the vibrating body 5 is relatively stable. Therefore, the configuration is suitable for further downsizing the through-hole 13 of the shielding wall 12 and further stabilizing the potential measurement signal of the potential measuring device.

(実施例3)
本発明の実施例3の係る電位測定装置を説明する。本実施例における電位測定装置の構成を図7に示す。図7(a)はシールドケース2内に設けられた構造を上から見た上面図であり、図7(b)は図7(a)のE1‐E2断面図である。本実施例では、永久磁石38を含む電磁櫛歯タイプの駆動手段39でシャッタ部33を駆動して、被測定物体(測定対象)1に対する検知電極36の露出面積を変化させ、検知電極36と被測定物体1の表面との間の静電容量を周期的に変化させる。
(Example 3)
A potential measuring apparatus according to Example 3 of the present invention will be described. FIG. 7 shows the configuration of the potential measuring apparatus in this example. FIG. 7 (a) is a top view of the structure provided in the shield case 2 as viewed from above, and FIG. 7 (b) is a cross-sectional view taken along line E1-E2 of FIG. 7 (a). In this embodiment, the electromagnetic comb tooth type driving means 39 including the permanent magnet 38 is used to drive the shutter portion 33 to change the exposed area of the detection electrode 36 with respect to the object to be measured (measurement target) 1. The capacitance between the surface of the object to be measured 1 is periodically changed.

図7において、被測定物体(測定対象)1に対向する面に開口3を有するシールドケース2の内側の底部に、支持部材37が固定されており、支持部材37には、永久磁石38を含む電磁櫛歯タイプの駆動手段39が配置されている。永久磁石38はシャッタ支持部材35の一端に連結され、シャッタ支持部材35には、一対の梁31の内端が取り付けられている。各梁31の外端は、梁固定子32により、支持部材37に固定的に支持されている。シャッタ支持部材35の他端には、複数(図示例では3つ)の開口34を持つシャッタ部33が一体的に設けられている。シャッタ部33とシャッタ支持部材35によりシャッタないしシャッタ部材を構成している。従って、永久磁石38に駆動力が働くと、梁31が撓んでシャッタ支持部材35とシャッタ部33が一体的に図7(b)の矢印方向に平行移動して振動する。なお、図7において、永久磁石38を含む電磁櫛歯タイプの駆動手段39の形状そのものは重要ではないので簡略化して描いてある。また、図1などでは描いてある信号処理手段や配線は省略してある。 In FIG. 7, a support member 37 is fixed to the bottom inside the shield case 2 having an opening 3 on the surface facing the object to be measured (measurement target) 1, and the support member 37 includes a permanent magnet 38. An electromagnetic comb type drive means 39 is arranged. The permanent magnet 38 is connected to one end of the shutter support member 35, and the inner ends of the pair of beams 31 are attached to the shutter support member 35. The outer end of each beam 31 is fixedly supported by a support member 37 by a beam stator 32. The other end of the shutter support member 35 is integrally provided with a shutter portion 33 having a plurality of (three in the illustrated example) openings 34. The shutter unit 33 and the shutter support member 35 constitute a shutter or shutter member. Therefore, when a driving force is applied to the permanent magnet 38, the beam 31 is bent, and the shutter support member 35 and the shutter portion 33 are integrally translated in the direction of the arrow in FIG. In FIG. 7, the shape of the electromagnetic comb-type drive means 39 including the permanent magnet 38 is not important and is therefore simplified. In FIG. 1 and the like, the signal processing means and wiring illustrated are omitted.

更に、シールドケース2の内側の底部上の支持部材には、シャッタ部33に対向してその開口34と同数の検知電極36が設けられている。従って、シャッタ部33が上記平行移動振動をするとき、対応する開口34と検知電極36の位置関係が変化して、被測定物体1に対する各検知電極36の露出面積が変化する。こうして、検知電極36と被測定物体1の表面との間の静電容量が周期的に変化して、上記測定原理で被測定物体1の電位が測定される。本実施例では、複数の検知電極36の露出面積は同相で変化するので、検知電極36からの信号は全て加算して処理される。しかし、例えば、被測定物体1に対向する2つの検知電極の露出面積をシャッタ部により逆相で変化させる構成などにもできて、この場合には、検知電極からの信号は上記実施例2で述べた様な差動増幅処理することになる。 Further, the same number of detection electrodes 36 as the openings 34 are provided on the support member on the bottom inside the shield case 2 so as to face the shutter portion 33. Therefore, when the shutter portion 33 vibrates in parallel, the positional relationship between the corresponding opening 34 and the detection electrode 36 changes, and the exposed area of each detection electrode 36 with respect to the object 1 to be measured changes. In this way, the electrostatic capacitance between the detection electrode 36 and the surface of the object 1 to be measured changes periodically, and the potential of the object 1 to be measured is measured according to the measurement principle. In the present embodiment, since the exposed areas of the plurality of detection electrodes 36 change in phase, all signals from the detection electrodes 36 are added and processed. However, for example, it is possible to adopt a configuration in which the exposed areas of the two detection electrodes facing the object to be measured 1 are changed in reverse phase by the shutter unit. The differential amplification process as described above is performed.

本実施例においても、磁性を持つ粒子が永久磁石38の近傍に到達して永久磁石38などに付着する可能性を低下させるために、遮蔽壁12を設けている。遮蔽壁12は、シールドケース2の内部空間を、シールドケース2の開口3及び検知電極36が存在する空間と、永久磁石38が存在する空間とに分離する様に、シャッタ支持部材35の位置に配置される。その際、遮蔽壁12そのものがシャッタ支持部材35の平行移動振動を妨げない様にするために、シャッタ支持部材35が貫通する遮蔽壁12の位置に貫通口13が設けられている。貫通口13の大きさは、シャッタ支持部材35の断面形状よりも大きく設計されている。このシャッタを用いるタイプは、従来例でも永久磁石は開口に対向する部分から離れて配置される場合が多い。しかし、本実施例では、更に上記の如き遮蔽壁を設けて、磁性を持つ粒子などが永久磁石の近傍に到達して永久磁石などに付着する可能性を更に低下させて電位測定精度の劣化を防止している。 Also in the present embodiment, the shielding wall 12 is provided in order to reduce the possibility that magnetic particles reach the vicinity of the permanent magnet 38 and adhere to the permanent magnet 38 or the like. The shielding wall 12 is located at the position of the shutter support member 35 so as to separate the internal space of the shield case 2 into a space where the opening 3 and the detection electrode 36 of the shield case 2 are present and a space where the permanent magnet 38 is present. Be placed. At this time, a through-hole 13 is provided at the position of the shielding wall 12 through which the shutter support member 35 penetrates so that the shielding wall 12 itself does not hinder translational vibration of the shutter support member 35. The size of the through hole 13 is designed to be larger than the cross-sectional shape of the shutter support member 35. In the type using the shutter, the permanent magnet is often arranged away from the portion facing the opening even in the conventional example. However, in this embodiment, a shielding wall as described above is further provided to further reduce the possibility that particles having magnetism will reach the vicinity of the permanent magnet and adhere to the permanent magnet, thereby reducing the potential measurement accuracy. It is preventing.

(実施例4)
本発明の実施例4として、本発明の電位測定装置を用いた画像形成装置の構成例を説明する。本実施例の画像形成装置を図8に示す。感光ドラム40の周辺に、帯電器制御装置41により制御可能な帯電器42、本発明の電位測定装置43、露光器44、トナー供給器45が設置されている。
(Example 4)
As Example 4 of the present invention, a configuration example of an image forming apparatus using the potential measuring device of the present invention will be described. An image forming apparatus of this embodiment is shown in FIG. Around the photosensitive drum 40, a charger 42 that can be controlled by a charger controller 41, a potential measuring device 43 of the present invention, an exposure device 44, and a toner supplier 45 are installed.

感光ドラム40の帯電量を制御する機構は、帯電器制御装置41、帯電器42、本発明の電位測定装置43で構成されており、帯電器42には帯電器制御装置41が接続されており、更に帯電器制御装置41には本発明の電位測定装置43が接続されている。 The mechanism for controlling the charge amount of the photosensitive drum 40 includes a charger control device 41, a charger 42, and a potential measuring device 43 of the present invention. The charger 42 is connected to the charger 42. Further, a potential measuring device 43 of the present invention is connected to the charger control device 41.

本実施例における画像形成装置の基本的な動作原理を以下に説明する。
帯電器42で感光ドラム40の表面を帯電し、露光器44を用いて感光ドラム40の表面を露光することにより潜像が得られる。この潜像にトナー供給器45によりトナーを付着させることにより、潜像が現像されたトナー像を得る。このトナー像を被印刷物体送り装置である送りローラー46と感光ドラム40で挟まれた被印刷物体47に転写し、被印刷物体47上のトナーを固着させる。これらの工程を経て画像形成が達成される。帯電器制御部41が信号処理装置を構成し、帯電器42、露光器44、感光ドラム40などが画像形成手段を構成する。
The basic operation principle of the image forming apparatus in this embodiment will be described below.
A latent image is obtained by charging the surface of the photosensitive drum 40 with the charger 42 and exposing the surface of the photosensitive drum 40 with the exposure device 44. By attaching toner to the latent image by the toner supplier 45, a toner image in which the latent image is developed is obtained. This toner image is transferred to a printing object 47 sandwiched between a feeding roller 46 as a printing object feeding device and the photosensitive drum 40, and the toner on the printing object 47 is fixed. Image formation is achieved through these steps. The charger controller 41 constitutes a signal processing device, and the charger 42, the exposure device 44, the photosensitive drum 40, and the like constitute image forming means.

本実施例における画像形成装置の、感光ドラム40の帯電量を制御する機構の動作原理は次の通りである。本発明の電位測定装置43は、帯電後の感光ドラム40の表面電位を測定し、感光ドラム40の表面電位の測定信号を帯電器制御装置41に出力する。帯電器制御装置41は、感光ドラム40の表面電位の測定信号を受けて、帯電後の感光ドラム40の表面電位が所望の値になる様に帯電器42の帯電電圧をフィードバック制御する。これにより、感光ドラム40の安定した帯電が実現され、安定した画像形成を達成することができる。なお、この際、本発明の電位測定装置43の測定信号は、例えば、露光器44にフィードバックされてこれを制御する様に使用することもできる。 The operation principle of the mechanism for controlling the charge amount of the photosensitive drum 40 of the image forming apparatus in this embodiment is as follows. The potential measuring device 43 of the present invention measures the surface potential of the photosensitive drum 40 after charging, and outputs a measurement signal of the surface potential of the photosensitive drum 40 to the charger control device 41. The charger controller 41 receives the measurement signal of the surface potential of the photosensitive drum 40, and feedback-controls the charging voltage of the charger 42 so that the surface potential of the photosensitive drum 40 after charging becomes a desired value. Thereby, stable charging of the photosensitive drum 40 is realized, and stable image formation can be achieved. At this time, the measurement signal of the potential measuring device 43 of the present invention can also be used so as to be fed back to the exposure unit 44 and controlled, for example.

(a)本発明の実施例1における電位測定装置の上面図、及び(b)破線A1-A2における側面断面図である。1A is a top view of a potential measuring device according to Embodiment 1 of the present invention, and FIG. 2B is a side sectional view taken along a broken line A1-A2. 実施例1における電位測定装置の遮蔽壁と振動板を示す斜視図である。FIG. 2 is a perspective view showing a shielding wall and a diaphragm of the potential measuring device in Example 1. (a)本発明の実施例1の変形例における電位測定装置の上面図、及び(b)破線B1-B2における側面断面図である。5A is a top view of a potential measuring device according to a modification of Embodiment 1 of the present invention, and FIG. 5B is a side sectional view taken along a broken line B1-B2. 本発明の実施例1の他の変形例における電位測定装置の上面図である。FIG. 6 is a top view of a potential measuring device according to another modification of Example 1 of the present invention. (a)本発明の実施例2における電位測定装置の上面図、及び(b)破線C1-C2における側面断面図である。(a) A top view of a potential measuring device according to a second embodiment of the present invention, and (b) a side sectional view taken along a broken line C1-C2. (a)本発明の実施例2における電位測定装置の他の構成の上面図、及び(b)破線D1-D2における側面断面図である。(a) A top view of another configuration of the potential measuring device according to the second embodiment of the present invention, and (b) a side sectional view taken along a broken line D1-D2. (a)本発明の実施例3における電位測定装置の上面図、及び(b)破線E1-E2における側面断面図である。(a) A top view of a potential measuring device according to a third embodiment of the present invention, and (b) a side sectional view taken along a broken line E1-E2. 本発明の実施例4における画像形成装置の構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of an image forming apparatus according to Embodiment 4 of the present invention. 従来の永久磁石を有する電位測定装置の例を示す側面断面図である。It is side surface sectional drawing which shows the example of the electric potential measuring apparatus which has the conventional permanent magnet.

符号の説明Explanation of symbols

1、40・・・測定対象(被測定物体、感光ドラム)
2・・・シールドケース
3・・・シールドケースの開口
5、7・・・振動体(振動板)
6・・・電磁コイル
6、8、38、39・・・駆動手段
8、38・・・永久磁石
9、18、19、36・・・検知電極
10、22・・・信号処理手段
12・・・遮蔽壁
13・・・遮蔽壁の貫通口
14・・・検知振動板
15・・・駆動振動板
16、17、25・・・ねじりバネ
33、35・・・シャッタ(シャッタ部、シャッタ支持部材)
40、42、44・・・画像形成手段(帯電器、露光器、感光ドラム)
41・・・信号処理装置(帯電器制御部)
43・・・本発明の電位測定装置
1, 40 ... Measurement target (object to be measured, photosensitive drum)
2 ... Shield case
3 ... Opening of shield case
5, 7 ... Vibrating body (diaphragm)
6 ... Electromagnetic coil
6, 8, 38, 39 ... Driving means
8, 38 ... Permanent magnet
9, 18, 19, 36 ... detection electrode
10, 22 ... Signal processing means
12 ... Shielding wall
13 ... Through hole in the shielding wall
14 ... Detection diaphragm
15 ... Drive diaphragm
16, 17, 25 ... Torsion spring
33, 35 ... Shutter (shutter part, shutter support member)
40, 42, 44 ... Image forming means (charger, exposure device, photosensitive drum)
41 ... Signal processing device (charger controller)
43 ... Potential measuring device of the present invention

Claims (9)

測定対象に対向する部分に開口を有するシールドケースと、
前記シールドケース内に振動可能に配置された振動体と、
前記振動体上において、前記シールドケースの開口に対応する位置に配置された検知電極と、
前記振動体を駆動する駆動手段と、
前記検知電極で発生する電気信号を処理する信号処理手段と、
を有し、
前記駆動手段は永久磁石と電磁コイルとを含み、該永久磁石は前記シールドケース内部であって、かつ前記シールドケースの開口から該開口を前記シールドケースの底部まで垂直に延在させて形成される空間の外に配置されることを特徴とする電位測定装置。
A shield case having an opening in a portion facing the object to be measured;
A vibrating body disposed in the shield case so as to vibrate;
On the vibrating body, a detection electrode disposed at a position corresponding to the opening of the shield case;
Drive means for driving the vibrator;
Signal processing means for processing an electrical signal generated at the detection electrode;
Have
The driving means includes a permanent magnet and an electromagnetic coil, and the permanent magnet is formed inside the shield case and extending vertically from the opening of the shield case to the bottom of the shield case. An electric potential measuring device arranged outside a space.
前記シールドケース内部に、前記シールドケースの開口及び前記検知電極が存在する空間と前記永久磁石が存在する空間とを分離するための遮蔽壁が配置されることを特徴とする請求項1に記載の電位測定装置。 2. The shielding wall according to claim 1, wherein a shielding wall for separating a space in which the opening of the shielding case and the detection electrode are present and a space in which the permanent magnet is present is disposed inside the shielding case. Potential measurement device. 前記振動体が、前記シールドケース内に配置された支持部材に、端部を固定された振動板であり、且つ、
前記遮蔽壁が、前記振動板を貫通せしめる貫通口を有して前記検知電極と前記永久磁石との間にあたる位置に配置されていることを特徴とする請求項2に記載の電位測定装置。
The vibrating body is a diaphragm whose end is fixed to a support member disposed in the shield case, and
3. The potential measuring device according to claim 2, wherein the shielding wall has a through-hole through which the diaphragm is passed, and is disposed at a position between the detection electrode and the permanent magnet.
前記振動体の前記貫通口を貫通する部分が、前記検知電極の配置された部分の振動振幅を増大する様に、他部より剛性が低い材料で形成されていることを特徴とする請求項3に記載の電位測定装置。 4. The portion of the vibrating body that penetrates the through hole is formed of a material that is less rigid than the other portion so as to increase the vibration amplitude of the portion where the detection electrode is disposed. The potential measuring device according to 1. 前記振動体の前記貫通口を貫通する部分の幅が、他部より小さいことを特徴とする請求項3に記載の電位測定装置。 4. The potential measuring device according to claim 3, wherein a width of a portion of the vibrating body that penetrates the through hole is smaller than another portion. 前記振動体が、
前記検知電極が配置された検知振動板と、
前記駆動手段が配置された駆動振動板と、を有し、
前記検知振動板と、前記駆動振動板とがねじりバネによって連結され、
且つ、
前記遮蔽壁が前記ねじりバネを貫通せしめる貫通口を有することを特徴とする請求項2に記載の電位測定装置。
The vibrator is
A detection diaphragm in which the detection electrode is disposed;
A driving diaphragm on which the driving means is disposed,
The detection diaphragm and the drive diaphragm are connected by a torsion spring,
and,
3. The potential measuring device according to claim 2, wherein the shielding wall has a through-hole through which the torsion spring is passed.
測定対象に対向する部分に開口を有するシールドケースと、
前記シールドケース内の前記開口に対向する位置に固定配置された検知電極と、
シャッタと、
前記シャッタを駆動する駆動手段と、
前記検知電極で発生する電気信号を処理する信号処理手段と、を有し、
前記駆動手段は永久磁石と電磁コイルとを含み、該永久磁石は前記シールドケース内部であって、かつ前記シールドケースの開口から該開口を前記シールドケースの底部まで垂直に延在させて形成される空間の外に配置され、前記シールドケースの開口及び前記検知電極が存在する空間と、前記永久磁石が存在する空間とを分離するための遮蔽壁が配置されることを特徴とする電位測定装置。
A shield case having an opening in a portion facing the object to be measured;
A detection electrode fixedly arranged at a position facing the opening in the shield case;
A shutter;
Driving means for driving the shutter;
Signal processing means for processing an electrical signal generated at the detection electrode,
The driving means includes a permanent magnet and an electromagnetic coil, and the permanent magnet is formed inside the shield case and extending vertically from the opening of the shield case to the bottom of the shield case. An electric potential measuring apparatus, characterized in that a shielding wall is arranged outside the space and for separating a space where the opening of the shield case and the detection electrode are present and a space where the permanent magnet is present.
前記シャッタが、平行移動して振動するシャッタ部材であり、且つ、
前記遮蔽壁が、前記シャッタ部材を貫通せしめる貫通口を有して前記開口部と前記永久磁石との間にあたる位置に配置されていることを特徴とする請求項7に記載の電位測定装置。
The shutter is a shutter member that translates and vibrates; and
8. The potential measuring device according to claim 7, wherein the shielding wall has a through-hole through which the shutter member passes, and is disposed at a position between the opening and the permanent magnet.
請求項1乃至8のいずれかに記載の電位測定装置と、前記電位測定装置より得られる出力信号を処理する信号処理装置と、画像形成手段を備え、
前記電位測定装置の検知電極の形成された部分が前記画像形成手段の電位測定の対象と対向して配置され、前記画像形成手段が前記信号処理装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする画像形成装置。
The potential measuring device according to any one of claims 1 to 8, a signal processing device that processes an output signal obtained from the potential measuring device, and an image forming unit,
The portion where the detection electrode of the potential measuring device is formed is arranged opposite to the potential measurement target of the image forming means, and the image forming means controls image formation using the signal detection result of the signal processing device. An image forming apparatus.
JP2006127826A 2006-05-01 2006-05-01 Electric potential measuring apparatus and image forming apparatus Pending JP2007298450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006127826A JP2007298450A (en) 2006-05-01 2006-05-01 Electric potential measuring apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127826A JP2007298450A (en) 2006-05-01 2006-05-01 Electric potential measuring apparatus and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2007298450A true JP2007298450A (en) 2007-11-15

Family

ID=38768056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127826A Pending JP2007298450A (en) 2006-05-01 2006-05-01 Electric potential measuring apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2007298450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562321B (en) * 2013-09-27 2016-12-11 Intel Corp Magnetic field shielding for packaging build-up architectures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562321B (en) * 2013-09-27 2016-12-11 Intel Corp Magnetic field shielding for packaging build-up architectures

Similar Documents

Publication Publication Date Title
JP4993349B2 (en) Potential measuring apparatus and image forming apparatus
US7212007B2 (en) Electric potential sensor, and image forming apparatus
EP0560513B1 (en) Single balanced beam electrostatic voltmeter modulator
KR20050111788A (en) Electric potential measuring device using oscillating device, image forming apparatus, and electric potential measuring method
JP2006317358A (en) Electric potential measuring device and image forming apparatus using it
JP2005526227A (en) Sensor for non-contact electrostatic detector
US7372278B2 (en) Electric potential measuring apparatus electrostatic capacitance measuring apparatus, electric potential measuring method, electrostatic capacitance measuring method, and image forming apparatus
EP1756598B1 (en) Electric potential measuring instrument and image forming apparatus
US7612569B2 (en) Oscillating device, electric potential measuring device, light deflecting device, and image forming apparatus
JP2004301554A (en) Electric potential measuring device and image forming device
JP2006162457A (en) Electric potential measuring device and image forming apparatus
JP2007298450A (en) Electric potential measuring apparatus and image forming apparatus
JP2008116377A (en) Potential measuring instrument and image forming device
JP4440065B2 (en) Potential measuring apparatus and image forming apparatus
JP2006003130A (en) Electric potential measuring apparatus and image forming apparatus
JP4950574B2 (en) Potential measuring apparatus and potential measuring method
JP2006105941A (en) Oscillating body apparatus, potential measuring apparatus using same, and image forming apparatus
JP2006105940A (en) Potential measuring apparatus, and image forming apparatus using same
JP2007078448A (en) Electric potential measuring apparatus and image formation apparatus
JP4273049B2 (en) Potential measuring apparatus and image forming apparatus
JP2006214764A (en) Potential measurement apparatus and image forming apparatus
US7639020B2 (en) Potential sensor and image forming apparatus having potential sensor
JP2007078447A (en) Electric potential measuring apparatus and image formation apparatus
JP2006337161A (en) Rotation vibration device and potential measuring device
JP2002062326A (en) Surface potential sensor and electrophotography-type image-forming apparatus