JP2006105940A - Potential measuring apparatus, and image forming apparatus using same - Google Patents

Potential measuring apparatus, and image forming apparatus using same Download PDF

Info

Publication number
JP2006105940A
JP2006105940A JP2004297018A JP2004297018A JP2006105940A JP 2006105940 A JP2006105940 A JP 2006105940A JP 2004297018 A JP2004297018 A JP 2004297018A JP 2004297018 A JP2004297018 A JP 2004297018A JP 2006105940 A JP2006105940 A JP 2006105940A
Authority
JP
Japan
Prior art keywords
potential
detection electrode
magnetic force
vibration member
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004297018A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Ichimura
好克 市村
Takashi Ushijima
隆志 牛島
Atsushi Katori
篤史 香取
Yoshitaka Zaitsu
義貴 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004297018A priority Critical patent/JP2006105940A/en
Publication of JP2006105940A publication Critical patent/JP2006105940A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an effect onto a signal generated in a detection electrode affected by a noise resulting from a magnetic field, in a potential measuring instrument for modulating a coupling capacitance between a measuring object and the detection electrode by mechanical motion by a driving mechanism using magnetic force. <P>SOLUTION: This potential measuring apparatus has the detection electrodes 105, 106 for measuring a potential of the measuring object 201 based on a change of induced electric energy, capacitance modulating means 230, 204 for modulating the coupling capacitance between the measuring object 201 and the detection electrodes 105, 106 by the mechanical motion using the magnetic force, and a preventing/restraining means 202 for preventing or restraining the magnetic field resulting from the magnetic force from reaching to the detection electrodes 105, 106. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、検知電極に誘導される電気量によって、測定対象の電位を測定する非接触型の電位測定装置、及び複写機、プリンタ等に適用可能なその電位測定装置を有する画像形成装置に関する。 The present invention relates to a non-contact type potential measuring device that measures the potential of a measurement object by the amount of electricity induced by a detection electrode, and an image forming apparatus having the potential measuring device applicable to a copying machine, a printer, and the like.

従来、例えば、感光ドラムを有し電子写真方式によって画像形成を行う画像形成装置においては、常に安定した画質を得るために、どのような環境下でも感光ドラムの電位を適当に(典型的には、均一に)帯電しておく必要がある。このため、感光ドラムの帯電電位を電位測定装置(電位センサー)を用いて測定し、その結果を利用して感光ドラムの電位を均一に保つ様にフィードバック制御を行っている。 2. Description of the Related Art Conventionally, for example, in an image forming apparatus that has a photosensitive drum and forms an image by an electrophotographic method, in order to obtain a stable image quality at all times, the potential of the photosensitive drum is appropriately set (typically, typically). , Uniformly). For this reason, the charged potential of the photosensitive drum is measured using a potential measuring device (potential sensor), and feedback control is performed so as to keep the potential of the photosensitive drum uniform by using the result.

従来の電位センサーとしては、非接触式電位センサーがあり、ここでは機械式交流電界誘導型と呼ばれる方式がしばしば用いられる。この方式では、測定対象の表面の電位は、電位センサーに内蔵される検知電極から取り出される電流iの大きさの関数であり、
i=dQ/dt=d/dt[CV]・・・(1)
という式で与えられる。ここで、Qは検知電極上に現れる電荷量、Cは検知電極と測定対象間の結合容量、Vは測定対象の表面の電位である。また、この容量Cは、
C=AS/x・・・(2)
という式で与えられる。ここで、Aは物質の誘電率などに係る比例定数、Sは検知電極面積、xは検知電極と測定対象間の距離である。
As a conventional potential sensor, there is a non-contact type potential sensor, and a system called a mechanical AC electric field induction type is often used here. In this method, the potential of the surface to be measured is a function of the magnitude of the current i taken from the sensing electrode built in the potential sensor,
i = dQ / dt = d / dt [CV] (1)
It is given by the formula. Here, Q is the amount of charge appearing on the detection electrode, C is the coupling capacitance between the detection electrode and the measurement object, and V is the surface potential of the measurement object. Also, this capacity C is
C = AS / x (2)
It is given by the formula. Here, A is a proportional constant related to the dielectric constant of the substance, S is the detection electrode area, and x is the distance between the detection electrode and the measurement object.

これらの関係を用いて、測定対象の表面の電位Vを測定するのであるが、検知電極上に現れる電荷量Qを正確に測定するには、検知電極と測定対象間の容量Cの大きさを周期的に変調するのがよいことが、これまでに分かっている。すなわち、検知電極上に現れる電荷量Qは非常に小さな値で、周囲に存在する雑音の影響を受けやすい。このため、微小なQを正確に測定するために、適当な手段で検知電極と測定対象間の結合容量Cの大きさを周期的に変調し、測定された信号から同じ周波数成分を検波することによって必要な信号を得るという同期検波方式がしばしば用いられるのである。 Using these relationships, the potential V of the surface of the measurement target is measured, but in order to accurately measure the charge amount Q appearing on the detection electrode, the size of the capacitance C between the detection electrode and the measurement target is set. It has been found so far that it should be modulated periodically. That is, the amount of charge Q appearing on the detection electrode is a very small value and is easily affected by the noise existing around it. For this reason, in order to accurately measure minute Q, the magnitude of the coupling capacitance C between the sensing electrode and the measurement target is periodically modulated by an appropriate means, and the same frequency component is detected from the measured signal. In many cases, synchronous detection is used to obtain a necessary signal.

この容量Cの変調方法として、検知電極の位置を周期的に変える方法が知られている。この方法の代表的な例では、検知電極を板状の振動子の先端に配置し、板を電磁石で振動させることで検知電極と測定対象間の位置を周期的に変化させ、容量Cの変調を行っている(特許文献1参照)。
米国特許第5,212,451号明細書
As a method of modulating the capacitance C, a method of periodically changing the position of the detection electrode is known. In a typical example of this method, a sensing electrode is arranged at the tip of a plate-like vibrator, and the position of the sensing electrode and the measurement object is periodically changed by vibrating the plate with an electromagnet, thereby modulating the capacitance C. (See Patent Document 1).
US Pat. No. 5,212,451

上記のような電位センサーにおいて、検知電極を振動させる駆動機構として電磁石はしばしば用いられる。しかし、電磁石によって発生する交流磁場による雑音が検知電極に影響を与え、精度の高い測定が難しくなることがある。そこで、上記特許文献1に示されるように電磁石は検知電極からできるだけ離れた位置に設けられたりする。 In the potential sensor as described above, an electromagnet is often used as a drive mechanism for vibrating the detection electrode. However, noise due to an alternating magnetic field generated by an electromagnet may affect the detection electrode, and it may be difficult to measure with high accuracy. Therefore, as shown in Patent Document 1, the electromagnet is provided as far as possible from the detection electrode.

一方、近年、感光ドラムの小径化、ドラム周りの高密度化により、電位センサーも小型化、薄型化が求められている。しかしながら、前述の電位センサーにおいて、小型化のためには、電磁石と検知電極の位置をできるだけ近接させる必要があって、測定精度と小型化の両立がなかなか難しい状況にある。 On the other hand, in recent years, as the diameter of the photosensitive drum is reduced and the density around the drum is increased, the potential sensor is also required to be reduced in size and thickness. However, in order to reduce the size of the potential sensor described above, it is necessary to bring the positions of the electromagnet and the detection electrode as close as possible, and it is difficult to achieve both measurement accuracy and size reduction.

上記課題に鑑み、本発明の電位測定装置は、誘起される電気量の変化によって測定対象の電位を測定するための検知電極と、磁力を用いる機械的運動により測定対象と検知電極間の結合容量を変調するための容量変調手段と、前記磁力に起因する磁場が検知電極に届くのを防止ないし抑制するための防止・抑制手段を有することを特徴とする。 In view of the above problems, the potential measuring device of the present invention includes a sensing electrode for measuring a potential of a measuring object by an induced change in electric quantity, and a coupling capacitance between the measuring object and the sensing electrode by mechanical movement using magnetic force. And a capacitance modulation means for modulating the magnetic field, and a prevention / suppression means for preventing or suppressing the magnetic field caused by the magnetic force from reaching the detection electrode.

また、上記課題に鑑み、本発明の電位測定方法は、磁力を用いる機械的運動により、検知電極と測定対象間の結合容量を変調し、この変調による検知電極に誘起される電気量の変化によって測定対象の電位を測定する際に、前記磁力に起因する磁場が検知電極に届くのを防止ないし抑制するための防止・抑制手段を設けることを特徴とする。 Further, in view of the above problems, the potential measurement method of the present invention modulates the coupling capacitance between the detection electrode and the object to be measured by mechanical movement using magnetic force, and changes the amount of electricity induced in the detection electrode by this modulation. When measuring the potential of the measurement object, there is provided a prevention / suppression means for preventing or suppressing the magnetic field caused by the magnetic force from reaching the detection electrode.

また、上記課題に鑑み、本発明の画像形成装置は、上記の電位測定装置と画像形成手段を備え、前記電位測定装置の検知電極の面が画像形成手段の電位測定の対象となる面と対向して配置され、画像形成手段が電位測定装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする。画像形成手段は、複写機能、印刷機能、或いはファクシミリ機能などを有し得る。 In view of the above problems, an image forming apparatus of the present invention includes the above-described potential measuring device and an image forming unit, and the surface of the detection electrode of the potential measuring device faces the surface of the image forming unit that is a potential measurement target. And the image forming means controls image formation using the signal detection result of the potential measuring device. The image forming unit may have a copying function, a printing function, a facsimile function, or the like.

本発明においては、磁力を用いる駆動機構による機械的運動で測定対象と検知電極間の結合容量を変調するための容量変調手段を採用した電位測定装置において、こうした磁力に起因する磁場を原因とする雑音が、検知電極で発生する信号に与える影響を低減することが前記防止・抑制手段の存在により可能となるため、電位測定装置の性能の向上が可能となる。 In the present invention, in a potential measuring device that employs capacitance modulation means for modulating the coupling capacitance between the measurement target and the sensing electrode by mechanical movement by a driving mechanism using magnetic force, the magnetic field caused by such magnetic force is the cause. Since it is possible to reduce the influence of noise on the signal generated at the detection electrode due to the presence of the preventing / suppressing means, the performance of the potential measuring device can be improved.

以下、本発明の実施の形態を説明する。一実施形態では、前記容量変調手段は電磁石と永久磁石とで構成され、前記防止・抑制手段は磁性体からなる磁気シールド部材で構成される。そして、一方の表面に検知電極を有し他方の面に永久磁石を有する振動部材を備え、磁気シールド部材が永久磁石と振動部材の間に形成され、振動部材が、電磁石により振動部材の外部から与えられる磁場と振動部材に設けられた永久磁石の磁場との相互作用よって振動することで、測定対象の電位を測定するための検知電極で発生する電気信号が変調され、この電気信号が回路で演算処理される。 Embodiments of the present invention will be described below. In one embodiment, the capacity modulation means is composed of an electromagnet and a permanent magnet, and the prevention / suppression means is composed of a magnetic shield member made of a magnetic material. A vibration member having a detection electrode on one surface and a permanent magnet on the other surface is provided, a magnetic shield member is formed between the permanent magnet and the vibration member, and the vibration member is formed from the outside of the vibration member by an electromagnet. By oscillating due to the interaction between the applied magnetic field and the magnetic field of the permanent magnet provided on the vibrating member, the electrical signal generated at the sensing electrode for measuring the potential of the measurement target is modulated, and this electrical signal is Arithmetic processing is performed.

前記振動部材は、ねじりバネを中心に揺動可能に軸支される揺動体の形態や、片持ち梁状振動部材の形態をとり得る。上記永久磁石と電磁石の配置関係は逆転することができる。また、容量変調手段を、固定側と可動側に設けられる2つの電磁石で構成することもできる。 The vibration member can take the form of a rocking body that is pivotally supported around a torsion spring or a cantilever-like vibration member. The arrangement relationship between the permanent magnet and the electromagnet can be reversed. Further, the capacity modulation means can be constituted by two electromagnets provided on the fixed side and the movable side.

以下、図面を参照して、より具体的な本発明の実施例を詳細に説明する。
(実施例1)
まず、本発明の実施例1を図1、図2、図3に基づいて説明する。図1は、本実施例に係る電位測定装置の構成を示す。支持基板100の中央部には開口部101が形成され、開口部101の中央中空部分には、2本のねじりバネ102と103により、平板状の揺動体104が支持されている。揺動体104は、ねじりバネ102と103の長軸方向の中心線を結んだ中心線A−A’に対し、線対称の構造を有する。揺動体104の一方の表面には、2個の平板状の検知電極105と106が同じく中心線A−A’に対して線対称に配置されている。電極105と106は、ねじりバネ103の上に形成された電極配線107と108によって、支持基板100外部に設置された信号処理回路109に接続されている。
Hereinafter, more specific embodiments of the present invention will be described in detail with reference to the drawings.
Example 1
First, a first embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, and FIG. FIG. 1 shows a configuration of a potential measuring apparatus according to the present embodiment. An opening 101 is formed at the center of the support substrate 100, and a flat plate-like oscillator 104 is supported by two torsion springs 102 and 103 in the center hollow portion of the opening 101. The oscillating body 104 has a line-symmetric structure with respect to a center line AA ′ connecting the long-axis center lines of the torsion springs 102 and 103. On one surface of the oscillating body 104, two flat detection electrodes 105 and 106 are arranged symmetrically with respect to the center line AA ′. The electrodes 105 and 106 are connected to a signal processing circuit 109 installed outside the support substrate 100 by electrode wirings 107 and 108 formed on the torsion spring 103.

図1のB-B’断面図である図2は、図1で示した電位センサーを測定対象表面201に対して配置した状態を表している。測定対象表面201は、例えば、感光ドラムであり、図の左右方向に伸びる軸、或いは紙面垂直方向に伸びる軸の回りに回転する。揺動体104は、これと対向する測定対象表面201が実質的に平面的である場合には、中立の位置においてこれとほぼ平行になる様に配置されている。 FIG. 2, which is a B-B ′ sectional view of FIG. 1, shows a state in which the potential sensor shown in FIG. 1 is arranged with respect to the measurement target surface 201. The measurement target surface 201 is, for example, a photosensitive drum, and rotates around an axis extending in the left-right direction in the drawing or an axis extending in the direction perpendicular to the paper surface. When the surface 201 to be measured facing the oscillating body 104 is substantially planar, the oscillating body 104 is disposed so as to be substantially parallel to the neutral position.

揺動体104の、測定対象表面201と反対の側の面には、軟磁性体などの磁性体からなる磁気シールド層202が形成され、さらに磁気シールド層202の表面に、永久磁石203が設置されている。ここで、磁石203は、図2に示すごとく、揺動体104の回転中心軸と垂直な方向に磁化されている。 A magnetic shield layer 202 made of a magnetic material such as a soft magnetic material is formed on the surface of the oscillating body 104 opposite to the measurement target surface 201, and a permanent magnet 203 is installed on the surface of the magnetic shield layer 202. ing. Here, the magnet 203 is magnetized in a direction perpendicular to the rotation center axis of the oscillator 104 as shown in FIG.

図2において、揺動体104の下方、すなわち測定対象表面201と反対の側の面の下方には、電磁石204が設置されている。この電磁石204に交流電流を流すことで交流磁場が発生し、この交流磁場と揺動体104に設置された磁石203の相互作用により、揺動体104をねじりバネ102と103の長軸の回りに揺動することができる。この揺動により、揺動体104の表面に設置された検知電極105と106と、測定対象面201の距離が逆位相で変化し、検知電極105と106と測定対象面201の結合容量が周期的に逆位相で変化するので、式(1)より測定対象物の電位を測定できる。この場合は、検知電極105と106からの電気信号を差動処理することになる。勿論、一方の検知電極からの電気信号に基づいて、式(1)より測定対象物の電位を測定することもできる。 In FIG. 2, an electromagnet 204 is installed below the rocking body 104, that is, below the surface opposite to the measurement target surface 201. An alternating magnetic field is generated by passing an alternating current through the electromagnet 204, and the rocking body 104 is swung around the long axes of the torsion springs 102 and 103 by the interaction between the alternating magnetic field and the magnet 203 installed on the rocking body 104. Can move. Due to this swing, the distance between the detection electrodes 105 and 106 installed on the surface of the swing body 104 and the measurement target surface 201 changes in an opposite phase, and the coupling capacitance between the detection electrodes 105 and 106 and the measurement target surface 201 is periodically changed. Therefore, the potential of the measurement object can be measured from the equation (1). In this case, the electrical signals from the detection electrodes 105 and 106 are subjected to differential processing. Of course, based on the electrical signal from one of the detection electrodes, the potential of the object to be measured can also be measured from Equation (1).

次に、図3を用いて本実施例の磁気シールド層202の効果を説明する。図3の(1)は、磁気シールド層を設けない電位センサーの場合の模式図である。ここでは、簡単のために、磁石203は図示していない。この場合は、電磁石204のコイルから発生した磁力線301は、磁石203からの磁力線と相互作用しつつ、揺動体104及び検知電極105と106を突き抜けるように分布する。このとき、電磁石204のコイルから発生する磁場301は揺動体104を揺動させるために交流磁場であり、さらに揺動体104が磁場301の中を揺動することで検知電極105と106も磁場301の中を運動する。したがって、検知電極105と106には誘導電流が発生し、これは、電位を持つ測定対象面201との間の周期的に変化する結合容量により検知電極に発生する電気信号に対して、雑音となる。 Next, the effect of the magnetic shield layer 202 of this embodiment will be described with reference to FIG. (1) of FIG. 3 is a schematic diagram in the case of a potential sensor not provided with a magnetic shield layer. Here, for simplicity, the magnet 203 is not shown. In this case, the lines of magnetic force 301 generated from the coils of the electromagnet 204 are distributed so as to penetrate the oscillator 104 and the detection electrodes 105 and 106 while interacting with the lines of magnetic force from the magnet 203. At this time, the magnetic field 301 generated from the coil of the electromagnet 204 is an alternating magnetic field for oscillating the oscillating body 104, and when the oscillating body 104 oscillates in the magnetic field 301, the detection electrodes 105 and 106 also have the magnetic field 301. Exercise inside. Therefore, an induced current is generated in the detection electrodes 105 and 106, which is a noise and an electric signal generated in the detection electrode due to a periodically changing coupling capacitance between the measurement target surface 201 having a potential. Become.

一方、本実施例の場合を示す図3の(2)では、揺動体104の電磁石204側の表面に、磁気シールド層202が設けられている(ここでも、簡単のために、磁気シールド層202上の磁石203は図示していない)。典型的には軟磁性体で形成される磁気シールド層202は磁力線を内部に導く効果があるので、図3の(2)においては、磁力線302は、磁気シールド層202上に設けられた磁石203からの磁力線と相互作用はするが、磁気シールド層203の内部を通過して、図中の左右に導かれて逃がされる。この結果、図3の(1)の場合と比較すると、検知電極105と106を突き抜ける磁力線の数を減らすことができ、検知電極の検出信号に対して、雑音となる誘導電流の発生量を減少させられる。 On the other hand, in (2) of FIG. 3 showing the case of this embodiment, a magnetic shield layer 202 is provided on the surface of the oscillator 104 on the electromagnet 204 side (again, for simplicity, the magnetic shield layer 202 is provided). The upper magnet 203 is not shown). Since the magnetic shield layer 202 typically formed of a soft magnetic material has an effect of guiding the magnetic lines of force to the inside, in FIG. 3B, the magnetic lines of force 302 are the magnets 203 provided on the magnetic shield layer 202. Although it interacts with the magnetic field lines from the magnetic field, it passes through the inside of the magnetic shield layer 203 and is guided to the left and right in the figure to escape. As a result, as compared with the case of (1) in FIG. 3, the number of magnetic lines penetrating the detection electrodes 105 and 106 can be reduced, and the amount of induced current that becomes noise is reduced with respect to the detection signal of the detection electrode. Be made.

したがって、高性能な電位センサーの実現が可能となる。さらに、従来よりも電磁石と検知電極の間の距離を小さくすることができ、センサー内の部品の配置の自由度が高まり、電位センサーの小型化が可能となる。こうして、電磁石を駆動装置として用いる電位センサーの小型化、高感度化、高信頼性化が可能となる。 Therefore, a high-performance potential sensor can be realized. Furthermore, the distance between the electromagnet and the detection electrode can be made smaller than before, the degree of freedom of arrangement of components in the sensor is increased, and the potential sensor can be miniaturized. In this way, it is possible to reduce the size, increase the sensitivity, and increase the reliability of the potential sensor that uses the electromagnet as the driving device.

(実施例2)
次に図4および図5で、第2の実施例を説明する。本実施例では、図4に示すように、基板400上に、支持部材401で支持された片持ち梁状振動部材402が備えられ、振動部材402上には、その上面に検知電極403が設けられていると共に、その下部すなわちコイル状電磁石404側の面に、磁気シールド層405と永久磁石406が設けられている。また、磁気シールド層405と永久磁石406の下方部にコイル状電磁石404が設けられている。
(Example 2)
Next, a second embodiment will be described with reference to FIGS. In this embodiment, as shown in FIG. 4, a cantilever-like vibrating member 402 supported by a supporting member 401 is provided on a substrate 400, and a detection electrode 403 is provided on the upper surface of the vibrating member 402. In addition, a magnetic shield layer 405 and a permanent magnet 406 are provided in a lower portion thereof, that is, a surface on the coiled electromagnet 404 side. A coiled electromagnet 404 is provided below the magnetic shield layer 405 and the permanent magnet 406.

本実施例においても、コイル状電磁石404で発生する交流磁場が、振動部材402に装着されている磁石406と相互作用して、片持ち梁式の態様で振動部材402は上下に振動させられる。こうして、測定対象407と検知電極403間の距離が変調させられる。ここでは、磁石406は図4の上下方向に磁化されていて、その下面には同じ磁極が現れている。また、検知電極403は1つでも、複数でもよいが、複数の場合でも、測定対象407との結合容量が周期的に同相で変化するので、式(1)より測定対象物407の電位を1つの検知電極の場合と同じ方法で測定することになる。 Also in the present embodiment, the alternating magnetic field generated by the coiled electromagnet 404 interacts with the magnet 406 attached to the vibrating member 402, and the vibrating member 402 is vibrated up and down in a cantilever manner. In this way, the distance between the measurement object 407 and the detection electrode 403 is modulated. Here, the magnet 406 is magnetized in the vertical direction of FIG. 4, and the same magnetic pole appears on the lower surface thereof. The number of detection electrodes 403 may be one or a plurality, but even in the case of a plurality of detection electrodes 403, the coupling capacitance with the measurement object 407 periodically changes in phase. Measurements will be made in the same way as for the two sensing electrodes.

本実施例でも、磁気シールド層405が、電磁石404から発生する磁力線408を内部に導いて、図4中の左右に逃がす作用をするので、検知電極403を貫通する磁力線408の量が減少させられる。したがって、磁力線408によって検知電極403に発生する雑音を減少させることができる。 Also in this embodiment, the magnetic shield layer 405 acts to guide the magnetic lines of force 408 generated from the electromagnet 404 to the left and right in FIG. 4, so that the amount of the magnetic lines 408 penetrating the detection electrode 403 can be reduced. . Therefore, noise generated in the detection electrode 403 by the magnetic force lines 408 can be reduced.

図5は、実施例2で説明した電位センサーの上方斜視図である。このような形状の電位センサーは、従来から存在するが、検知電極部を振動させるための駆動の方法には、圧電素子がしばしば使用される。しかし、一般的に圧電素子は高価である。一方、コイル状電磁石は非常に安価であるが、発生する磁場に起因する雑音の影響により、検知電極403のそばにコイルを設置することができず、片持ち梁状振動部材402を効率的に振動させることは困難であった。本実施例では、こうした問題点が解決されている。 FIG. 5 is an upper perspective view of the potential sensor described in the second embodiment. A potential sensor having such a shape has conventionally existed, but a piezoelectric element is often used as a driving method for vibrating the detection electrode unit. However, in general, the piezoelectric element is expensive. On the other hand, although the coiled electromagnet is very inexpensive, the coil cannot be installed near the detection electrode 403 due to the influence of noise caused by the generated magnetic field, and the cantilevered vibrating member 402 can be efficiently used. It was difficult to vibrate. In this embodiment, these problems are solved.

図6は、こうしたコイル型の磁石604を用いた従来技術による電位センサーの概念図である。基板600上には、部材601で支持された釣り合い梁状振動部材602が設けられている。そして、その一端部の上面には検知電極603が設けられ、また、基板600上で、支持部材601を挟んで検知電極603の側と反対側の箇所にコイル状電磁石604が設けられ、さらに電磁石604の上方で梁状振動部材602の他端部の下面に、磁石605が設けられている。 FIG. 6 is a conceptual diagram of a conventional potential sensor using such a coil-type magnet 604. On the substrate 600, a balanced beam-like vibrating member 602 supported by the member 601 is provided. A detection electrode 603 is provided on the upper surface of the one end, and a coiled electromagnet 604 is provided on the substrate 600 at a position opposite to the detection electrode 603 with the support member 601 interposed therebetween. A magnet 605 is provided on the lower surface of the other end portion of the beam-like vibrating member 602 above 604.

ここでは、コイル状電磁石604で発生する交流磁場が、振動部材602に装着されている磁石605と相互作用して、振動の中心部606を中心として、振動部材602は天秤式に上下に振動し測定対象607と検知電極603の間の距離を変調する。 Here, the alternating magnetic field generated by the coiled electromagnet 604 interacts with the magnet 605 mounted on the vibrating member 602, and the vibrating member 602 vibrates up and down in a balance manner around the vibration center portion 606. The distance between the measurement object 607 and the detection electrode 603 is modulated.

この従来技術に基づく例では、電磁石604から発生する交流磁場が検知電極603に影響を与えないようにするために、電磁石604の配置は、検知電極603からできるだけ離れた位置にセットされている。したがって、従来技術に基づく図6の例を図4で示した本発明の実施例2と比較して明らに分かるように、本発明の技術を使うことで、雑音の影響を低減させながらコイル状電磁石を検知電極の直下に配置することが可能となる。こうして、本発明による電位測定装置は、性能を維持しつつ小型化が可能となる。 In the example based on this prior art, the arrangement of the electromagnet 604 is set as far as possible from the detection electrode 603 so that the alternating magnetic field generated from the electromagnet 604 does not affect the detection electrode 603. Therefore, as clearly seen in comparison with the second embodiment of the present invention shown in FIG. 4 based on the example of FIG. 6 based on the prior art, by using the technique of the present invention, the coil is reduced while reducing the influence of noise. It becomes possible to dispose the electromagnet directly under the detection electrode. Thus, the potential measuring device according to the present invention can be miniaturized while maintaining the performance.

ところで、本発明は、磁力を用いる駆動手段により開口部を有するシャッター構造(容量変調手段を構成する)を検知電極の直上で平行に振動させ、これにより測定対象に対する検知電極の実効的な露出面積を周期的に変化させて測定対象の電位を測定する電位測定装置にも適用できる。この場合にも、磁力を用いる駆動手段と検知電極の間の適当な位置に磁気シールド部材を設けて、磁力を用いる駆動手段から検知電極に届く磁場を防止ないし抑制することができる。この様に、本発明は、誘起される電気量の変化によって測定対象の電位を測定するための検知電極、及び磁力を用いる機械的運動により測定対象と検知電極間の結合容量を変調するための容量変調手段を備える如何なるタイプの電位測定装置にも適用できて、磁力に起因する磁場が検知電極に届くのを防止ないし抑制するための防止・抑制手段を設けてこの磁場が検知電極に与える悪影響を防止ないし抑制している。 By the way, the present invention vibrates a shutter structure (which constitutes a capacity modulation means) having an opening in parallel with a driving means using magnetic force in parallel directly above the detection electrode, and thereby an effective exposure area of the detection electrode with respect to the measurement object. The present invention can also be applied to a potential measuring device that measures the potential of a measurement object by periodically changing the voltage. Also in this case, a magnetic shield member can be provided at an appropriate position between the driving means using magnetic force and the detection electrode, so that the magnetic field reaching the detection electrode from the driving means using magnetic force can be prevented or suppressed. As described above, the present invention provides a sensing electrode for measuring the potential of a measurement object by an induced change in the amount of electricity, and for modulating a coupling capacitance between the measurement object and the detection electrode by a mechanical motion using magnetic force. It can be applied to any type of potential measuring device equipped with a capacity modulation means, and has an adverse effect on the detection electrode by providing a prevention / suppression means for preventing or suppressing the magnetic field caused by the magnetic force from reaching the detection electrode. Is prevented or suppressed.

(実施例3)
図7は実施例3の画像形成装置を説明する図である。図7は、本発明による電位測定装置を用いた電子写真現像装置の感光ドラム周辺の模式図である。感光ドラム2108の周辺に、帯電器2102、電位測定装置2101、露光機2105、トナー供給機2106が設置されている。帯電器2102で、ドラム2108の表面を帯電し、露光機2105を用いて感光ドラム2108表面を露光することで潜像が得られる。この潜像にトナー供給機2106によりトナーを付着させ、トナー像を得る。そして、このトナー像を転写物送りローラー2107と感光ドラム2108で挟まれた転写物2109に転写し、転写物上のトナーを固着させる。これらの工程を経て画像形成が達成される。
(Example 3)
FIG. 7 illustrates an image forming apparatus according to the third exemplary embodiment. FIG. 7 is a schematic view around the photosensitive drum of the electrophotographic developing apparatus using the potential measuring apparatus according to the present invention. Around the photosensitive drum 2108, a charger 2102, a potential measuring device 2101, an exposure unit 2105, and a toner supply unit 2106 are installed. A latent image is obtained by charging the surface of the drum 2108 with the charger 2102 and exposing the surface of the photosensitive drum 2108 with the exposure device 2105. Toner is attached to the latent image by a toner supplier 2106 to obtain a toner image. The toner image is transferred to a transfer material 2109 sandwiched between the transfer material feed roller 2107 and the photosensitive drum 2108, and the toner on the transfer material is fixed. Image formation is achieved through these steps.

この構成において、ドラム2108の帯電状態を本発明の小型で高性能の電位測定装置2101で測定し、信号処理装置2103で信号を処理し、例えば、高電圧発生器2104にフィードバックをかけて帯電器2102を制御することで、安定したドラム帯電が実現され、安定した画像形成が実現される。この際、感光ドラム2108の回転に同期して電位測定装置2101の出力をモニタすることで、感光ドラム上の電位分布を計測でき、この計測された電位分布に基づき、感光ドラム2108に露光する光の量を制御するか、帯電器2102を制御することで、画像のムラを少なくできる。 In this configuration, the charged state of the drum 2108 is measured by the small and high-performance potential measuring device 2101 of the present invention, the signal is processed by the signal processing device 2103, and the high voltage generator 2104 is fed back, for example. By controlling 2102, stable drum charging is realized, and stable image formation is realized. At this time, the potential distribution on the photosensitive drum can be measured by monitoring the output of the potential measuring device 2101 in synchronization with the rotation of the photosensitive drum 2108, and the light to be exposed on the photosensitive drum 2108 based on the measured potential distribution. By controlling the amount of light or controlling the charger 2102, image unevenness can be reduced.

また、本発明の電位測定装置は、複数の機器(たとえば、ホストコンピューター、インターフェース機器、リーダ、プリンタなど)から構成されるシステムに適用しても、1つの機器(例えば、複写機、ファクシミリ装置)からなる装置に適用してもよい。 Further, even if the potential measuring device of the present invention is applied to a system composed of a plurality of devices (for example, a host computer, an interface device, a reader, a printer, etc.), one device (for example, a copying machine, a facsimile device). You may apply to the apparatus which consists of.

本発明の第1の実施例を示す図である。It is a figure which shows the 1st Example of this invention. 本発明の第1の実施例の電位測定装置と測定対象との位置関係、及び検知電極と磁気シールド層と磁石との配置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the electric potential measuring apparatus of 1st Example of this invention, and a measuring object, and the arrangement | positioning relationship between a detection electrode, a magnetic shield layer, and a magnet. 磁力線の分布を示して、本発明の第1の実施例において磁気シールド層を導入した効果を説明する図である。It is a figure which shows distribution of a magnetic force line, and demonstrates the effect which introduced the magnetic shielding layer in the 1st Example of this invention. 本発明の第2の実施例の電位測定装置の構造、及びそれと測定対象との位置関係を示す断面図である。It is sectional drawing which shows the structure of the electrical potential measuring apparatus of the 2nd Example of this invention, and the positional relationship between it and a measuring object. 本発明の第2の実施例の電位測定装置の概観上面図である。It is a general | schematic top view of the electric potential measuring apparatus of the 2nd Example of this invention. 第2の実施例と比較するために従来の技術を用いた電位測定装置を示した断面図である。It is sectional drawing which showed the electric potential measuring apparatus using the prior art for comparing with a 2nd Example. 本発明の電位測定装置が組み込まれた画像形成装置の一例の模式的な構成図である。It is a typical block diagram of an example of the image forming apparatus incorporating the electric potential measuring apparatus of this invention.

符号の説明Explanation of symbols

104、402・・・振動部材(揺動体、片持ち梁状振動部材)
105、106、403・・・検知電極
201、407、2108・・・電位測定対象(感光ドラム)
202、405・・・防止・抑制手段(磁気シールド層)
203、204、404、406・・・容量変調手段(磁石、コイル状電磁石)
301、302、408・・・磁力線
2101・・・電位測定装置
104, 402 ... Vibration member (oscillator, cantilever-like vibration member)
105, 106, 403 ... detection electrodes 201, 407, 2108 ... potential measurement object (photosensitive drum)
202, 405 ... Prevention / suppression means (magnetic shield layer)
203, 204, 404, 406 ... Capacity modulation means (magnet, coiled electromagnet)
301, 302, 408 ... Magnetic field lines 2101 ... Potential measuring device

Claims (8)

誘起される電気量の変化によって測定対象の電位を測定するための検知電極と、磁力を用いる機械的運動により測定対象と検知電極間の結合容量を変調するための容量変調手段と、前記磁力に起因する磁場が検知電極に届くのを防止ないし抑制するための防止・抑制手段を有することを特徴とする電位測定装置。 A sensing electrode for measuring the potential of the object to be measured by an induced change in the amount of electricity; a capacity modulating means for modulating the coupling capacity between the object to be measured and the sensing electrode by a mechanical movement using magnetic force; An electric potential measuring device having a prevention / suppression means for preventing or suppressing the magnetic field caused by the magnetic field from reaching the detection electrode. 一方の表面に前記検知電極を有し他方の面に前記容量変調手段を構成する磁力発生部を有する振動部材を備え、前記防止・抑制手段を構成する磁気シールド層が磁力発生部と振動部材の間に形成され、振動部材が、前記容量変調手段を構成する他の磁力発生部により振動部材の外部から与えられる磁場と振動部材に設けられた磁力発生部からの磁場との相互作用によって振動することで、検知電極で発生する電気信号が変調され、該電気信号が回路で処理される様に構成された請求項1記載の電位測定装置。 A vibration member having the detection electrode on one surface and a magnetic force generation part constituting the capacity modulation means on the other surface is provided, and a magnetic shield layer constituting the prevention / suppression means is provided between the magnetic force generation part and the vibration member. The vibration member formed between them vibrates due to the interaction between the magnetic field applied from the outside of the vibration member by another magnetic force generation unit constituting the capacity modulation means and the magnetic field from the magnetic force generation unit provided in the vibration member. The electric potential measuring device according to claim 1, wherein the electric signal generated by the detection electrode is modulated and the electric signal is processed by a circuit. 前記振動部材がねじりバネを中心に揺動可能に軸支され、振動部材の表面に設置された少なくとも1つの検知電極の空間的な位置が前記容量変調手段により変化させられることで発生する電気信号を検出する請求項2記載の電位測定装置。 An electric signal generated when the vibration member is pivotally supported around a torsion spring and the spatial position of at least one detection electrode installed on the surface of the vibration member is changed by the capacitance modulation means. The potential measurement device according to claim 2, wherein the potential is detected. 前記振動部材が片持ち梁状振動部材であり、振動部材の表面に設置された少なくとも1つの検知電極の空間的な位置が前記容量変調手段により変化させられることで発生する電気信号を検出する請求項2記載の電位測定装置。 The vibration member is a cantilever-like vibration member, and detects an electric signal generated when the spatial position of at least one detection electrode installed on the surface of the vibration member is changed by the capacitance modulation means. Item 3. The potential measuring device according to Item 2. 前記振動部材に設けられた磁力発生部と前記他の磁力発生部の少なくとも一方が電磁石である請求項2乃至4のいずれかに記載の電位測定装置。 5. The potential measuring device according to claim 2, wherein at least one of the magnetic force generation unit and the other magnetic force generation unit provided in the vibration member is an electromagnet. 前記防止・抑制手段は、前記容量変調手段と前記検知電極の間の位置に設けられた磁性体からなる磁気シールド部材である請求項1記載の電位測定装置。 The potential measuring apparatus according to claim 1, wherein the prevention / suppression means is a magnetic shield member made of a magnetic material provided at a position between the capacitance modulation means and the detection electrode. 磁力を用いる機械的運動により、検知電極と測定対象間の結合容量を変調し、この変調による検知電極に誘起される電気量の変化によって測定対象の電位を測定する際に、前記磁力に起因する磁場が検知電極に届くのを防止ないし抑制するための防止・抑制手段を設けることを特徴とする電位測定方法。 Due to the magnetic force, the coupling capacitance between the sensing electrode and the object to be measured is modulated by a mechanical motion using magnetic force, and the potential of the object to be measured is measured by the change in the amount of electricity induced in the sensing electrode due to this modulation. A potential measurement method comprising a prevention / suppression means for preventing or suppressing a magnetic field from reaching a detection electrode. 請求項1乃至6のいずれかに記載の電位測定装置と画像形成手段を備え、前記電位測定装置の検知電極の面が画像形成手段の電位測定の対象となる面と対向して配置され、画像形成手段が電位測定装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする画像形成装置。 An electric potential measuring apparatus according to claim 1 and an image forming means, wherein the surface of the detection electrode of the electric potential measuring apparatus is arranged to face the surface of the image forming means that is the object of electric potential measurement. An image forming apparatus, wherein the forming unit controls image formation using a signal detection result of the potential measuring device.
JP2004297018A 2004-10-08 2004-10-08 Potential measuring apparatus, and image forming apparatus using same Pending JP2006105940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297018A JP2006105940A (en) 2004-10-08 2004-10-08 Potential measuring apparatus, and image forming apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297018A JP2006105940A (en) 2004-10-08 2004-10-08 Potential measuring apparatus, and image forming apparatus using same

Publications (1)

Publication Number Publication Date
JP2006105940A true JP2006105940A (en) 2006-04-20

Family

ID=36375842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297018A Pending JP2006105940A (en) 2004-10-08 2004-10-08 Potential measuring apparatus, and image forming apparatus using same

Country Status (1)

Country Link
JP (1) JP2006105940A (en)

Similar Documents

Publication Publication Date Title
TWI252319B (en) Electric potential measuring device using oscillating device, image forming apparatus, and electric potential measuring method
US7554331B2 (en) Electric potential measuring device and image forming apparatus
JP4993349B2 (en) Potential measuring apparatus and image forming apparatus
JP2006317358A (en) Electric potential measuring device and image forming apparatus using it
US7372278B2 (en) Electric potential measuring apparatus electrostatic capacitance measuring apparatus, electric potential measuring method, electrostatic capacitance measuring method, and image forming apparatus
JP4794828B2 (en) Potential measuring apparatus and image forming apparatus
JP2006105940A (en) Potential measuring apparatus, and image forming apparatus using same
JP2006105941A (en) Oscillating body apparatus, potential measuring apparatus using same, and image forming apparatus
JP4440065B2 (en) Potential measuring apparatus and image forming apparatus
JP2007298450A (en) Electric potential measuring apparatus and image forming apparatus
JP4950574B2 (en) Potential measuring apparatus and potential measuring method
JP4273049B2 (en) Potential measuring apparatus and image forming apparatus
JP2007078448A (en) Electric potential measuring apparatus and image formation apparatus
JP2008116377A (en) Potential measuring instrument and image forming device
JP2006214764A (en) Potential measurement apparatus and image forming apparatus
JP2007127420A (en) Potential detection sensor and image forming device equipped therewith
JP2007078447A (en) Electric potential measuring apparatus and image formation apparatus
JPS6289081A (en) Developing device
JP2008107211A (en) Electric potential measuring device and image forming device
JP2006337161A (en) Rotation vibration device and potential measuring device
JP2007292896A (en) Electric potential measuring device and image forming apparatus
JPS60111269A (en) Method and device for development of copying machine
JP2002228951A (en) Galvano mirror, and optical scanner and image forming device equipped with galvano mirror