JP2006337161A - Rotation vibration device and potential measuring device - Google Patents

Rotation vibration device and potential measuring device Download PDF

Info

Publication number
JP2006337161A
JP2006337161A JP2005161825A JP2005161825A JP2006337161A JP 2006337161 A JP2006337161 A JP 2006337161A JP 2005161825 A JP2005161825 A JP 2005161825A JP 2005161825 A JP2005161825 A JP 2005161825A JP 2006337161 A JP2006337161 A JP 2006337161A
Authority
JP
Japan
Prior art keywords
vibration
potential measuring
vibration member
diaphragm
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161825A
Other languages
Japanese (ja)
Inventor
Yoshitaka Zaitsu
義貴 財津
Yoshikatsu Ichimura
好克 市村
Takashi Ushijima
隆志 牛島
Atsushi Katori
篤史 香取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005161825A priority Critical patent/JP2006337161A/en
Publication of JP2006337161A publication Critical patent/JP2006337161A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotation vibration device setting approximately equally rotation angles of all parts of a vibration member excluding a part of a rotating shaft by setting sufficiently small the rigidity in the rotation vibration direction around the rotating shaft of at least a part of a part in contact with the rotating shaft, and a potential measuring device using the device. <P>SOLUTION: This rotation vibration device is equipped with the vibration member 5 having a linearly-shaped end, and the vibration member 5 is arranged swingably by rotating around the rotating shaft including the linearly-shaped end. The rigidity in the rotation vibration direction around the rotating shaft of at least the part 6, 7 of the part in contact with the rotating shaft is set smaller than other parts of the vibration member 5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自身の直線形状の端を含む回転軸の回りで回転して振動可能な振動部材を含む回転振動装置、この回転振動装置を有する電位測定装置などに関するものである。 The present invention relates to a rotary vibration device including a vibration member that can rotate and vibrate around a rotation axis including its linear end, a potential measurement device including the rotary vibration device, and the like.

従来、例えば、感光ドラムを有し電子写真方式によって画像形成を行う画像形成装置においては、常に安定した画質を得るために、どの様な環境下でも感光ドラム表面の電位分布が適当に(典型的には均一に)なる様に感光ドラム表面を帯電しておく必要がある。このため、感光ドラム表面の電位を電位測定装置を用いて測定し、その結果を利用して、感光ドラム表面の電位を均一に保つ様にフィードバック制御を行っている。 2. Description of the Related Art Conventionally, for example, in an image forming apparatus that has a photosensitive drum and forms an image by electrophotography, the potential distribution on the surface of the photosensitive drum is appropriately (typically) in any environment in order to obtain a stable image quality. It is necessary to charge the surface of the photosensitive drum so as to be uniform. Therefore, the potential on the surface of the photosensitive drum is measured using a potential measuring device, and feedback control is performed using the result to keep the potential on the surface of the photosensitive drum uniform.

この様な目的で用いられている電位測定装置に対して従来からしばしば要求されている機能の一つとして、測定対象(被測定物体)の表面電位を非接触で測定する機能が挙げられる。なぜならば、電位測定装置が感光ドラム表面に接触すると、感光ドラム表面の電位分布が均一でなくなり、形成される画像に乱れが生じる原因となるからである。 One of the functions that are often required for the potential measuring apparatus used for such a purpose is a function of measuring the surface potential of the measurement target (object to be measured) in a non-contact manner. This is because when the potential measuring device comes into contact with the surface of the photosensitive drum, the potential distribution on the surface of the photosensitive drum is not uniform, which causes a disorder in the formed image.

こうした方式の電位測定装置の原理を以下に説明する。測定対象の表面と電位測定装置に内蔵される検知電極との間に生じる電界によって、検知電極には測定対象の表面電位Vに比例した電気量Qの電荷が誘起される。QとVの関係は
Q=CV ・・・(1)
という式で表される。ここで、Cは検知電極と測定対象の表面との間の静電容量である。式(1)より、検知電極に誘起される電気量Qを測定することで測定対象の表面電位を得ることが可能となる。
The principle of such a potential measuring apparatus will be described below. Due to the electric field generated between the surface of the measurement object and the detection electrode built in the potential measuring device, an electric charge of an electric quantity Q proportional to the surface potential V of the measurement object is induced in the detection electrode. The relationship between Q and V is Q = CV (1)
It is expressed by the formula. Here, C is a capacitance between the detection electrode and the surface of the measurement object. From the equation (1), it is possible to obtain the surface potential of the measurement object by measuring the electric quantity Q induced in the detection electrode.

しかし、検知電極に誘起される電気量Qを高速かつ正確に直接測定することは困難である。そこで、実用的な方法として、検知電極と測定対象表面との間の静電容量Cの大きさを周期的に変化させ、検知電極で発生する交流電流を電位検出信号電流として測定することにより、測定対象の表面電位を得る方法が従来からしばしば用いられている。 However, it is difficult to directly measure the amount of electricity Q induced in the detection electrode at high speed and accurately. Therefore, as a practical method, by periodically changing the magnitude of the capacitance C between the detection electrode and the surface to be measured, and measuring the alternating current generated at the detection electrode as a potential detection signal current, Conventionally, a method for obtaining the surface potential of a measurement object is often used.

上記の方法によって測定対象の表面電位を得られることを以下に示す。静電容量Cが時間tの関数であるとすると、検知電極で発生する電位検出信号電流iは、検知電極に誘起される電気量の時間微分値であることと、式(1)から
i(t)=dQ/dt=d(CV)/dt ・・・(2)
という式で表される。ここで、測定対象の表面電位Vの変化速度が静電容量Cの変化速度に対して十分遅い場合には、Vは微小時間dtにおいて一定であるとみなすことができる。したがって、式(2)は
i(t)=dQ(t)/dt=V・dC(t)/dt ・・・(3)
という式で表される。
It will be shown below that the surface potential of the measurement object can be obtained by the above method. Assuming that the capacitance C is a function of time t, the potential detection signal current i generated at the detection electrode is a time differential value of the amount of electricity induced at the detection electrode.
i (t) = dQ / dt = d (CV) / dt (2)
It is expressed by the formula. Here, when the change rate of the surface potential V of the measurement target is sufficiently slow with respect to the change rate of the capacitance C, V can be regarded as being constant in the minute time dt. Therefore, equation (2) is
i (t) = dQ (t) / dt = V · dC (t) / dt (3)
It is expressed by the formula.

式(3)より、検知電極で発生する電位検出信号電流iの大きさは測定対象の表面電位Vの1次の関数であるから、交流電流信号の振幅を測定することで測定対象の表面電位を得ることが可能である。また、式(3)より、静電容量Cの変化速度が同じならば、測定対象の表面電位に対する電位検出信号電流iの大きさ、すなわち電位測定装置の感度は、静電容量の変化量に比例することが分かる。 From the equation (3), the magnitude of the potential detection signal current i generated at the detection electrode is a linear function of the surface potential V of the measurement target. Therefore, the surface potential of the measurement target is measured by measuring the amplitude of the alternating current signal. It is possible to obtain Further, according to the equation (3), if the change rate of the capacitance C is the same, the magnitude of the potential detection signal current i with respect to the surface potential of the measurement object, that is, the sensitivity of the potential measurement device is the amount of change in the capacitance. You can see that they are proportional.

検知電極と測定対象表面との間の静電容量Cを周期的に変化させる方法の一つとして、検知電極と測定対象表面との間の距離を変化させて静電容量Cを周期的に変化させる方法が挙げられる。検知電極と測定対象の表面との間の静電容量Cは近似的に
C=A・S/x ・・・(4)
の様な式で表される。ここで、Aは物質の誘電率などに係る比例定数、Sは検知電極の面積、xは検知電極と測定対象の表面との間の距離である。式(4)より、距離xが周期的に変化すると静電容量Cも周期的に変化することが分かる。
As one method for periodically changing the capacitance C between the detection electrode and the measurement target surface, the capacitance C is periodically changed by changing the distance between the detection electrode and the measurement target surface. The method of letting it be mentioned. The capacitance C between the detection electrode and the surface of the measurement object is approximately C = A · S / x (4)
It is expressed by the following formula. Here, A is a proportional constant related to the dielectric constant of the substance, S is the area of the detection electrode, and x is the distance between the detection electrode and the surface of the measurement object. From equation (4), it can be seen that when the distance x changes periodically, the capacitance C also changes periodically.

検知電極と測定対象の表面との間の距離を周期的に変化させる手段の一つとして、振動体の先端に検知電極を配置し、振動体を測定対象の表面に垂直な方向に振動させる手段が挙げられる。 As a means for periodically changing the distance between the detection electrode and the surface of the measurement object, the detection electrode is arranged at the tip of the vibration body, and the vibration body is vibrated in a direction perpendicular to the surface of the measurement object. Is mentioned.

上記手段にしばしば用いられる振動体の例として、図6に示す弾性体からなる振動板3の一方の端を支持部材2に固定したカンチレバーがある(特許文献1参照)。また、図7に示すU字型に折り曲げた弾性体からなる振動板4のU字の底部を支持部材2に固定した音叉(特許文献2に記載された従来例を参照)などが挙げられる。振動体3あるいは振動体4の先端部に検知電極1を配置し、振動板3あるいは振動体4を測定対象12の表面に垂直な方向に振動させることにより、検知電極1から測定対象12の表面電位に比例した振幅を有する電流信号が得られる。
米国特許No.4763078 特開昭62−90564号公報
As an example of a vibrating body often used for the above means, there is a cantilever in which one end of a diaphragm 3 made of an elastic body shown in FIG. 6 is fixed to a support member 2 (see Patent Document 1). Moreover, a tuning fork (see the conventional example described in Patent Document 2) in which the U-shaped bottom portion of the diaphragm 4 made of an elastic body bent into a U-shape shown in FIG. The detection electrode 1 is disposed at the tip of the vibrating body 3 or the vibrating body 4, and the vibrating plate 3 or the vibrating body 4 is vibrated in a direction perpendicular to the surface of the measuring object 12. A current signal having an amplitude proportional to the potential is obtained.
U.S. Pat. 4763078 JP-A 62-90564

距離を変調させる方式の電位測定装置の振動体として従来から用いられているカンチレバーの振動態様を図6(b)に、同じく音叉の振動態様を図7(b)に示す。いずれの振動体においても、振動板のうち固定端に近い部分の回転角は先端部分の回転角に比べて非常に小さく、固定端に近い部分の振動振幅は先端部分の振動振幅に比べて非常に小さい。このことは、電位測定装置の高感度化の妨げとなる。 FIG. 6B shows a vibration mode of a cantilever conventionally used as a vibrating body of a potential measuring device that modulates the distance, and FIG. 7B shows a vibration mode of a tuning fork. In any of the vibrating bodies, the rotation angle of the portion near the fixed end of the diaphragm is very small compared to the rotation angle of the tip portion, and the vibration amplitude of the portion close to the fixed end is much smaller than the vibration amplitude of the tip portion. Small. This hinders high sensitivity of the potential measuring device.

その理由は次の通りである。式(4)より、振動板の振動周波数や振動振幅を変えずに電位測定装置の感度を上げるためには検知電極の面積Sを大きくすればよい。しかし、振動板の測定対象に対向する面の全域に検知電極を配置したとしても、検知電極の固定端に近い部分は振動振幅が非常に小さいので電位測定装置の感度上昇に殆ど寄与しない。 The reason is as follows. From equation (4), the area S of the detection electrode may be increased in order to increase the sensitivity of the potential measuring device without changing the vibration frequency and vibration amplitude of the diaphragm. However, even if the detection electrode is arranged over the entire surface of the diaphragm facing the measurement target, the vibration amplitude is very small in the portion near the fixed end of the detection electrode, so that it hardly contributes to an increase in sensitivity of the potential measuring device.

上記課題に鑑み、本発明の回転振動装置は、直線形状の端を有する振動部材を備え、該直線形状の端を含む回転軸の回りで振動部材が回転して振動可能に配され、該回転軸にあたる部分の少なくとも一部の前記回転軸の回りの回転振動方向の剛性が、振動部材の他の部分より小さく設定されていることを特徴とする。 In view of the above problems, the rotational vibration device of the present invention includes a vibration member having a linear end, and the vibration member is arranged to be able to vibrate by rotating around a rotation axis including the linear end. The rigidity in the rotational vibration direction around the rotation shaft of at least a part of the portion corresponding to the shaft is set to be smaller than that of other portions of the vibration member.

また、上記課題に鑑み、本発明の電位測定装置は、上記の回転振動装置と上記振動部材を回転して振動させるための駆動手段を含み、振動部材が測定対象に対向する面上に検知電極を備えることを特徴とする。 Further, in view of the above problems, the potential measuring device of the present invention includes a driving means for rotating and vibrating the rotary vibration device and the vibration member, and the detection electrode is provided on a surface where the vibration member faces the measurement target. It is characterized by providing.

また、上記課題に鑑み、本発明の画像形成装置は、上記の電位測定装置と、電位測定装置より得られる出力信号を処理する信号処理装置と、画像形成手段を備え、電位測定装置の検知電極を備える部分が画像形成手段の電位測定の対象となる面と対向して配置され、画像形成手段が信号処理装置の信号検出結果を用いて画像形成の制御を行う。 In view of the above problems, an image forming apparatus of the present invention includes the above-described potential measuring device, a signal processing device that processes an output signal obtained from the potential measuring device, and an image forming unit, and includes a detection electrode of the potential measuring device. The image forming means controls the image formation using the signal detection result of the signal processing device.

本発明の回転振動装置においては、回転軸にあたる部分の少なくとも一部の回転軸の回りの回転振動方向の剛性が、振動部材の他の部分より十分小さく設定されているので、回転軸の部分を除く振動部材の全ての部分の回転角をほぼ等しくでき、回転軸に近い部分の変位を従来よりも大きくできる。したがって、この回転振動装置を電位測定装置に用いる場合、振動部材の測定対象に対向する面の全域或いは多くの領域に検知電極を配置した際に、検知電極の回転軸に近い部分の感度上昇への寄与が従来よりも大きくなり、電位測定装置の更なる高感度化、高精度化を図ることが可能となる。 In the rotational vibration device of the present invention, the rigidity in the rotational vibration direction around the rotation shaft of at least a part of the portion corresponding to the rotation shaft is set sufficiently smaller than the other portions of the vibration member. The rotational angles of all the parts of the vibration member except the same can be made substantially equal, and the displacement of the part close to the rotational axis can be made larger than before. Therefore, when this rotary vibration device is used in a potential measurement device, when the detection electrode is arranged over the entire area or many areas of the surface of the vibration member facing the measurement target, the sensitivity of the portion near the rotation axis of the detection electrode increases. Therefore, the potential measurement device can be further enhanced in sensitivity and accuracy.

以下に、本発明の作用・効果の原理を説明しつつ本発明の一実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described while explaining the principle of operation and effect of the present invention.

本発明の回転振動装置を含む電位測定装置の一実施形態では、図1(a)のような振動板5の直線形状の一端をねじりバネ6、7で支持する振動体を用いることで上記の課題を解決する。本実施形態における振動体の振動の様子は図1(b)のようになっており、振動板5のほぼ全ての部分の回転角がほぼ等しく、回転軸に近い部分の変位が従来よりも大きいことが分かる。 In one embodiment of the potential measuring device including the rotary vibration device of the present invention, the above-described vibration body is used by supporting one end of the linear shape of the vibration plate 5 with torsion springs 6 and 7 as shown in FIG. Solve the problem. The state of vibration of the vibrating body in the present embodiment is as shown in FIG. 1B. The rotation angles of almost all parts of the diaphragm 5 are substantially equal, and the displacement of the part close to the rotation axis is larger than the conventional one. I understand that.

この実施形態では、直線形状の端を有する振動部材である平板状の矩形の振動板5を備え、直線形状の端と一定の長さのねじりバネ6、7(例えば、矩形の断面形状を有する)を含む回転軸の回りで振動板5が回転して振動可能に配されている。そして、回転軸にあたる部分の少なくとも一部(ここではねじりバネ6、7)の前記回転軸の回りの回転振動方向の剛性(変形のし難さ)が、振動板5の他の部分より小さく設定されている。これに対して、振動板5の他の部分は、ほぼ同一形状を保って前記回転軸の回りで回転して振動できるような剛性を有する。逆に言えば、回転軸にあたる部分の少なくとも一部(ねじりバネ6、7)の回転軸の回りの回転振動方向の剛性及び振動板5の他の部分の剛性は、振動板5のこうした回転振動を実現できる様な大きさにそれぞれ設定されている。こうした設定は、振動板やねじりバネの各部の材料や形態(厚さなど)等を選択することで実行される。振動板5やねじりバネ6、7はシリコンなどで一体的に形成することができる。 In this embodiment, a flat rectangular diaphragm 5 which is a vibrating member having a linear end is provided, and the linear end and torsion springs 6 and 7 having a certain length (for example, having a rectangular cross-sectional shape). The diaphragm 5 is arranged to be able to vibrate by rotating around a rotation axis including Then, at least a part (here, torsion springs 6, 7) of the portion corresponding to the rotation shaft is set to have a smaller rigidity (difficult to deform) around the rotation shaft than the other portions of the diaphragm 5. Has been. On the other hand, the other part of the diaphragm 5 has such a rigidity that it can vibrate by rotating around the rotation axis while maintaining substantially the same shape. In other words, at least a part of the portion corresponding to the rotation shaft (torsion springs 6, 7) in the rotational vibration direction around the rotation shaft and the rigidity of the other portion of the vibration plate 5 are the rotational vibrations of the vibration plate 5. Each size is set so that can be realized. Such setting is executed by selecting the material and form (thickness, etc.) of each part of the diaphragm and torsion spring. The diaphragm 5 and the torsion springs 6 and 7 can be integrally formed of silicon or the like.

振動板5の測定対象12に対向する表面上には検知電極1が配置されており、検知電極1で発生する電流信号は、ねじりバネ7上に配置された信号線と支持板9上に配置されたパッド、信号線を介して信号処理手段(図1ではこれらは不図示)に入力される。信号処理手段は検知電極1で発生する電流信号をインピーダンス変換、検波、増幅、整流することにより測定信号に変換する。 The detection electrode 1 is disposed on the surface of the diaphragm 5 that faces the measurement object 12, and the current signal generated by the detection electrode 1 is disposed on the signal line disposed on the torsion spring 7 and the support plate 9. The signal is input to signal processing means (not shown in FIG. 1) via the pad and signal line. The signal processing means converts the current signal generated at the detection electrode 1 into a measurement signal by impedance conversion, detection, amplification, and rectification.

図1の回転振動装置を含む電位測定装置は、振動板5に片方の端が固定され支持部材8、9にもう片方の端が固定されたねじりバネ6、7を有し、振動板5の直線形状の端とねじりバネ6、7とが同一直線上に位置するように配置されて前記回転軸を構成している。ねじりバネ6、7は、振動板5の直線形状の端を挟んで一対配置されている。また、振動板5は、測定対象12に対向する面の十分広い領域上に検知電極1を備えていて、振動板5は磁力、静電力、圧電素子による駆動力などで回転振動させられる。 The potential measuring device including the rotary vibration device of FIG. 1 has torsion springs 6 and 7 having one end fixed to the diaphragm 5 and the other end fixed to the support members 8 and 9. The linear shaft ends and the torsion springs 6 and 7 are arranged so as to be positioned on the same straight line to constitute the rotating shaft. A pair of torsion springs 6 and 7 are arranged across the linear end of the diaphragm 5. The diaphragm 5 includes the detection electrode 1 on a sufficiently wide area facing the measurement object 12, and the diaphragm 5 is rotated and vibrated by a magnetic force, an electrostatic force, a driving force by a piezoelectric element, and the like.

本実施形態においては、回転軸にあたる部分の少なくとも一部の回転軸の回りの回転振動方向の剛性が、振動板5の他の部分より十分小さく設定されているので、回転軸の部分を除く振動板5の全ての部分の回転角がほぼ等しく、回転軸に近い部分の変位を従来よりも大きくできる。したがって、振動板5の測定対象に対向する面の全域或いは多くの領域に配置した検知電極1の回転軸に近い部分の感度上昇への寄与が従来よりも大きくなり、電位測定装置の更なる高感度化、高精度化を図ることが可能となる。 In the present embodiment, the rigidity in the rotational vibration direction around at least a part of the rotational axis of the portion corresponding to the rotational shaft is set to be sufficiently smaller than the other portions of the diaphragm 5. The rotation angles of all the parts of the plate 5 are substantially equal, and the displacement of the part close to the rotation axis can be made larger than before. Therefore, the contribution to the sensitivity increase in the portion near the rotation axis of the detection electrode 1 arranged in the whole area or many areas of the surface of the diaphragm 5 facing the measurement object becomes larger than before, and the potential measuring device is further increased. It becomes possible to achieve higher sensitivity and higher accuracy.

上記設定の仕方の他の例として図4に示す形態も可能である。振動板5の直線形状の端の厚さが、直線状に伸びたU字溝5aにより薄くされ、ここを境として、検知電極1が配置された側と反対側で振動板5はスペーサ10を介してベース11に固定されている。この様に、振動部材の直線形状の端の部分の厚さを小さくすることで、弾性支持部となる直線形状の端の部分の回りの回転振動方向の剛性を振動部材の他の部分より小さく設定して、振動部材をカンチレバー式に回転振動させてもよい。振動板5の測定対象12と反対方向を向いている面には、磁性体13が配置されている。また、ベース11上のうち振動板5の下方に当たる部分には電磁コイル14が配置されており、駆動信号源によって駆動される。 As another example of the above setting method, the form shown in FIG. 4 is also possible. The thickness of the end of the linear shape of the diaphragm 5 is reduced by a U-shaped groove 5a that extends linearly, and the diaphragm 5 has a spacer 10 on the side opposite to the side where the detection electrode 1 is disposed. Via the base 11. Thus, by reducing the thickness of the linear end portion of the vibration member, the rigidity in the rotational vibration direction around the linear end portion serving as the elastic support portion is made smaller than that of the other portions of the vibration member. It is possible to set and vibrate the vibrating member in a cantilever manner. A magnetic body 13 is disposed on the surface of the diaphragm 5 facing the direction opposite to the measurement target 12. An electromagnetic coil 14 is disposed on the base 11 below the diaphragm 5 and is driven by a drive signal source.

上記実施形態において、振動部材に片方の端が固定され支持部材にもう片方の端が固定されるねじりバネは、振動部材の直線形状の端と同一直線上に位置するように1つ配置されるだけでもよい。また、上記実施形態や変形例において、振動部材の形状、ねじりバネの断面形状や長さ、材料などは、上述したものに限られず、場合に応じて種々に設計することができる。 In the above-described embodiment, one torsion spring in which one end is fixed to the vibration member and the other end is fixed to the support member is disposed so as to be positioned on the same straight line as the linear end of the vibration member. Just be fine. Moreover, in the said embodiment and modification, the shape of a vibration member, the cross-sectional shape and length of a torsion spring, material, etc. are not restricted to what was mentioned above, It can design variously according to the case.

以下に、本発明の具体的な実施例を図面に沿って説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

(実施例1)
本発明の第1の実施例における電位測定装置の構造を図2(a)に示す。振動板5の一端の延長線上に2本のねじりバネ6、7が配置されており、さらにねじりバネ6、7の一方の端は振動板5に固定されている。ねじりバネ6、7のもう一方の端は支持板8、9に固定されており、振動板5はねじりバネ6、7を中心軸とした回転方向にのみ振動可能な状態になっている。支持板8、9はスペーサ10を介してベース11に固定されている。振動板5の測定対象12と反対方向を向いている面には、磁性体13が配置されている。また、ベース11上のうち振動板5の下方に当たる部分には電磁コイル14が配置されており、駆動信号源15によって駆動される(図2(b)参照)。
Example 1
FIG. 2A shows the structure of the potential measuring device according to the first embodiment of the present invention. Two torsion springs 6 and 7 are arranged on an extension line of one end of the diaphragm 5, and one end of the torsion springs 6 and 7 is fixed to the diaphragm 5. The other ends of the torsion springs 6 and 7 are fixed to the support plates 8 and 9, and the vibration plate 5 can vibrate only in the rotation direction with the torsion springs 6 and 7 as the central axis. The support plates 8 and 9 are fixed to the base 11 via spacers 10. A magnetic body 13 is disposed on the surface of the diaphragm 5 facing the direction opposite to the measurement target 12. An electromagnetic coil 14 is disposed on the base 11 below the diaphragm 5 and is driven by the drive signal source 15 (see FIG. 2B).

振動板5の測定対象12に対向する表面上には検知電極1が配置されており、検知電極1で発生する電流信号は、ねじりバネ7上に配置された信号線18と支持板9上に配置されたパッド16、信号線19を介して信号処理手段22に入力される。信号処理手段22は検知電極1で発生する電流信号をインピーダンス変換、検波、増幅、整流することにより測定信号に変換する。 The detection electrode 1 is disposed on the surface of the vibration plate 5 facing the measurement target 12, and a current signal generated at the detection electrode 1 is applied to the signal line 18 disposed on the torsion spring 7 and the support plate 9. The signal is input to the signal processing means 22 through the arranged pad 16 and signal line 19. The signal processing means 22 converts the current signal generated at the detection electrode 1 into a measurement signal by impedance conversion, detection, amplification, and rectification.

上記の構造はシールドケース24に収められている(図2(b)参照)。シールドケース24は導電性材料からなり、検知電極1の上方に当たる部分には測定対象12によって張られる電界を誘導する窓25が形成されている。 The above structure is housed in the shield case 24 (see FIG. 2B). The shield case 24 is made of a conductive material, and a window 25 for inducing an electric field stretched by the measurement object 12 is formed in a portion of the shield case 24 that is above the detection electrode 1.

本実施例における電位測定装置の動作原理を図2(b)から(d)に示す。初期状態(図2(b)の状態)においては駆動信号源15から駆動電流が出力されておらず、振動板5はベース11に対して平行である。駆動信号源15から駆動電流が出力されている状態では、電磁コイル14の張る磁場により振動板5に固定された磁性体13(この磁場に応じて磁化される)に電磁コイル14方向への引力が発生し、図2(c)のように振動板5がねじりバネ6、7を中心軸として下方に回転する。この状態で駆動電流を0にすると、電磁コイル14の張る磁場が消滅して磁性体13に働いていた引力が消滅し、振動板5はねじりバネ6、7の弾性力により図2(d)のように初期状態を超えて上方に回転運動する。 2 (b) to 2 (d) show the operating principle of the potential measuring device in this embodiment. In the initial state (the state shown in FIG. 2B), no drive current is output from the drive signal source 15, and the diaphragm 5 is parallel to the base 11. In a state where a drive current is output from the drive signal source 15, an attractive force in the direction of the electromagnetic coil 14 is applied to the magnetic body 13 (magnetized in accordance with this magnetic field) fixed to the diaphragm 5 by the magnetic field stretched by the electromagnetic coil 14. As shown in FIG. 2C, the diaphragm 5 rotates downward about the torsion springs 6 and 7 as the center axis. When the drive current is set to 0 in this state, the magnetic field stretched by the electromagnetic coil 14 disappears and the attractive force acting on the magnetic body 13 disappears, and the diaphragm 5 is deformed by the elastic force of the torsion springs 6 and 7 as shown in FIG. As shown above, it rotates upward beyond the initial state.

駆動信号源15から周期的な駆動電流を出力することにより、振動板5はねじりバネ6、7を中心軸とする回転方向に振動し、図2(c)の状態と図2(d)の状態を交互にとる。これにより検知電極1と測定対象12の表面との間の距離が周期的に変化し、検知電極1から測定対象12の表面電位に比例した振幅を持つ電流信号が得られる。得られた電流信号を、信号処理手段22を用いてインピーダンス変換、検波、増幅、整流することにより測定対象12の表面電位の測定信号が得られる。 By outputting a periodic drive current from the drive signal source 15, the diaphragm 5 vibrates in the rotation direction with the torsion springs 6 and 7 as the central axis, and the state of FIG. 2C and the state of FIG. Take alternate states. As a result, the distance between the detection electrode 1 and the surface of the measurement object 12 changes periodically, and a current signal having an amplitude proportional to the surface potential of the measurement object 12 is obtained from the detection electrode 1. The obtained current signal is subjected to impedance conversion, detection, amplification, and rectification using the signal processing means 22 to obtain a measurement signal of the surface potential of the measurement object 12.

駆動信号の波形としては、振動板5の駆動に必要な信号振幅を有する周期信号であれば適用可能であり、正弦波や三角波、矩形波、パルス波などが適用可能である。また、磁性体13として磁化された磁性体を用い、かつ駆動信号としてバイアスのない正弦波や矩形波などを用いることによって、振動板5に引力と斥力とを交互に加えることも可能である。これにより、振動板5の振動振幅が増大するので電位測定装置の測定精度をさらに向上させることが可能となる。 As a waveform of the drive signal, any periodic signal having a signal amplitude necessary for driving the diaphragm 5 can be applied, and a sine wave, a triangular wave, a rectangular wave, a pulse wave, or the like can be applied. Further, by using a magnetized magnetic material as the magnetic material 13 and using a sine wave or a rectangular wave with no bias as a driving signal, it is possible to alternately apply an attractive force and a repulsive force to the diaphragm 5. Thereby, since the vibration amplitude of the diaphragm 5 increases, the measurement accuracy of the potential measuring device can be further improved.

本実施例における振動板5の駆動方法として、駆動信号の周波数を振動板の共振周波数に合わせることにより振動板5を共振振動させる駆動方法を用いることも可能である。特に駆動信号の波形がパルス波である場合は、振動板5の共振周波数fcの1/n(nは自然数)に合わせることによっても振動板5を周波数fcで共振させることが可能である。また、共振による駆動方法を用いる場合、駆動手段として圧電素子などの振動素子を用いて振動板5を共振振動させることも可能である。その一例として、圧電素子26を支持板8とベース11の間に配置し、支持板8とねじりバネ6を介して振動板5を共振させる電位測定装置を図2(e)に示す。 As a driving method of the diaphragm 5 in the present embodiment, it is possible to use a driving method that causes the diaphragm 5 to resonate and vibrate by matching the frequency of the drive signal with the resonance frequency of the diaphragm. In particular, when the waveform of the drive signal is a pulse wave, the diaphragm 5 can be resonated at the frequency fc by adjusting to 1 / n (n is a natural number) of the resonance frequency fc of the diaphragm 5. Further, when a resonance driving method is used, the diaphragm 5 can be resonantly vibrated using a vibration element such as a piezoelectric element as a driving means. As an example, FIG. 2E shows a potential measuring device in which the piezoelectric element 26 is disposed between the support plate 8 and the base 11 and the diaphragm 5 is resonated via the support plate 8 and the torsion spring 6.

本実施例では駆動手段として電磁コイルあるいは圧電素子を用いた例を説明したが、この他にも静電気力を用いた駆動方法などが適用可能であることは明らかである。また、本実施例において、勿論、磁性体13と電磁コイル14の位置を入れ替えても同様の効果が得られる。 In the present embodiment, an example in which an electromagnetic coil or a piezoelectric element is used as the driving means has been described, but it is obvious that a driving method using electrostatic force can be applied. In the present embodiment, of course, the same effect can be obtained even if the positions of the magnetic body 13 and the electromagnetic coil 14 are interchanged.

振動板5の一端にねじりバネ6、7を固定した構造体を振動体として用いることにより、従来のカンチレバーや音叉を振動体として用いた電位測定装置と比べて、検知電極1の回転軸に近い部分の感度上昇への寄与を増大させることが可能となる。したがって、従来の電位測定装置に比べて、測定対象の表面電位の測定精度を向上させることが可能となる。また、振動板5の寸法を小さくできるので装置の小型化も可能となる。 By using a structure in which torsion springs 6 and 7 are fixed to one end of the diaphragm 5 as a vibrating body, it is closer to the rotational axis of the detection electrode 1 than a potential measuring device using a conventional cantilever or tuning fork as a vibrating body. It is possible to increase the contribution to the sensitivity increase of the part. Therefore, it is possible to improve the measurement accuracy of the surface potential of the measurement object as compared with the conventional potential measurement device. Further, since the size of the diaphragm 5 can be reduced, the apparatus can be reduced in size.

(実施例2)
本発明の第2の実施例として、実施例1における振動板を2枚有しており、1個の電磁コイルによって各々の振動板を互いに同じ振幅かつ逆相で振動させることを特徴とする電位測定装置を説明する。
(Example 2)
As a second embodiment of the present invention, there are two diaphragms according to the first embodiment, and each diaphragm is vibrated with the same amplitude and opposite phase by one electromagnetic coil. A measuring apparatus will be described.

本実施例における電位測定装置の構造を図3(a-1)に示す。実施例1と同様の振動板とねじりバネが互いに平行に2組配置されており(振動板29、30、ねじりバネ31、32、33、34)、各々のねじりバネの端は振動板と支持板に固定されている。支持板8、9はスペーサ10を介してベース11に固定さている。振動板29、30の配置方法としては、図3(a-1)のように互いの振動板の先端が向かい合うように配置する方法の他に次の方法も可能である。すなわち、図3(a-2)のように振動板の先端が同じ方向を向くように配置する方法や、図3(a-3)のように振動板のねじりバネに固定されている端が向かい合うように配置する方法を用いることも可能である。 The structure of the potential measuring device in this example is shown in FIG. Two sets of vibration plates and torsion springs similar to those in the first embodiment are arranged in parallel to each other (vibration plates 29 and 30, torsion springs 31, 32, 33, and 34), and the ends of each torsion spring support the vibration plate and It is fixed to the board. The support plates 8 and 9 are fixed to the base 11 via spacers 10. As a method of arranging the diaphragms 29 and 30, the following method is also possible in addition to the method of arranging the diaphragms so that the tips of the diaphragms face each other as shown in FIG. That is, as shown in FIG. 3 (a-2), the end of the diaphragm is arranged in the same direction, or the end fixed to the torsion spring of the diaphragm is fixed as shown in FIG. 3 (a-3). It is also possible to use a method of arranging them so as to face each other.

振動板29、30の測定対象に対向する面と反対側の面には永久磁石35、36が固定されている(図3(b-1)参照)。永久磁石35、36の磁化方向については、各々の永久磁石の電磁コイル14に近い方の端の極性が互いに逆となるように磁化されていればよい。したがって、図3(b)のように振動板に平行かつねじりバネに垂直な方向に磁化する他に、図3(b-2)のように振動板に垂直な方向に磁化してもよい。ベース11上には振動板29及び30の下方に当たる部分に電磁コイル14が配置されており、駆動信号源15によって駆動される。 Permanent magnets 35 and 36 are fixed to the surface of the vibration plates 29 and 30 opposite to the surface facing the object to be measured (see FIG. 3B-1). The magnetization directions of the permanent magnets 35 and 36 may be magnetized so that the polarities of the ends of the permanent magnets close to the electromagnetic coil 14 are opposite to each other. Therefore, in addition to being magnetized in the direction parallel to the diaphragm and perpendicular to the torsion spring as shown in FIG. 3B, it may be magnetized in the direction perpendicular to the diaphragm as shown in FIG. 3B-2. On the base 11, the electromagnetic coil 14 is disposed in a portion corresponding to the lower side of the vibration plates 29 and 30, and is driven by the drive signal source 15.

振動板29、30の測定対象12に対向する面上には検知電極27、28が配置されている。そして、検知電極27、28で発生する電流信号はねじりバネ32、34上に配置された信号線18、20と支持部材9上に配置されたパッド16、17、信号線19、21を介して差動演算手段23に入力される。差動演算手段23は検知電極27、28で発生する電流信号をそれらの差に比例する電圧信号に変換する。信号処理手段22は差動演算手段23から出力される電圧信号を検波、増幅、整流することにより測定信号に変換する。 Detection electrodes 27 and 28 are arranged on the surfaces of the diaphragms 29 and 30 facing the measurement object 12. Current signals generated by the detection electrodes 27 and 28 are transmitted via signal lines 18 and 20 disposed on the torsion springs 32 and 34, pads 16 and 17 disposed on the support member 9, and signal lines 19 and 21. Input to the differential operation means 23. The differential operation means 23 converts the current signal generated at the detection electrodes 27 and 28 into a voltage signal proportional to the difference between them. The signal processing means 22 converts the voltage signal output from the differential operation means 23 into a measurement signal by detecting, amplifying and rectifying.

上記の構造はシールドケース24に収められている。シールドケース24は導電性材料からなり、検知電極27、28の上方に当たる部分には測定対象12によって張られる電界を誘導する窓25が形成されている。 The above structure is housed in the shield case 24. The shield case 24 is made of a conductive material, and a window 25 for inducing an electric field stretched by the measurement object 12 is formed in a portion corresponding to the upper side of the detection electrodes 27 and 28.

本実施例における電位測定装置の動作原理を図3(c)及び(d)に示す。電磁コイル14の振動板29、30に対向する面がN極となるように駆動信号源15から大きさIの駆動電流を出力すると、振動板29には斥力が、振動板30には引力が加わる。したがって、その結果、図3(c)のように振動板29がねじりバネ31、32を中心軸として上方に、振動板30がねじりバネ33、34を中心軸として下方にそれぞれ同じ角度だけ回転する。逆に電磁コイル14の振動板29、30に対向する面がS極となるように大きさIの駆動電流を出力すると、振動板29、30は図3(d)のように先程と逆の方向に同じ角度だけ回転する。よって、駆動信号源15から電磁コイル14にバイアスのない正弦波のような正負の方向の振幅が等しい駆動電流を出力することにより、振動板29、30を同じ振幅かつ互いに逆相となるように振動させることが可能である。このとき、検知電極27、28からは、測定対象12の表面電位に比例した互いに同じ大きさの振幅かつ互いに逆相である電流信号が得られる。差動演算手段23を用いてこれらの電流信号をこれらの差に比例する電圧信号に変換し、さらに信号処理手段22を用いて検波、増幅、整流することで、測定対象12の表面電位の測定信号が得られる。 The operation principle of the potential measuring apparatus in this embodiment is shown in FIGS. When a drive current of magnitude I is output from the drive signal source 15 so that the surfaces of the electromagnetic coil 14 facing the diaphragms 29 and 30 are N poles, repulsive force is applied to the diaphragm 29 and attractive force is applied to the diaphragm 30. Join. Therefore, as a result, as shown in FIG. 3C, the diaphragm 29 rotates upward by the same angle around the torsion springs 31 and 32, and the diaphragm 30 rotates downward by the same angle around the torsion springs 33 and 34, respectively. . Conversely, when a drive current having a magnitude I is output so that the surfaces of the electromagnetic coil 14 facing the diaphragms 29 and 30 are S poles, the diaphragms 29 and 30 are opposite to the previous ones as shown in FIG. Rotate the same angle in the direction. Therefore, by outputting a drive current having the same positive and negative amplitude, such as a sine wave without bias, from the drive signal source 15 to the electromagnetic coil 14, the diaphragms 29 and 30 have the same amplitude and opposite phases. It can be vibrated. At this time, from the detection electrodes 27 and 28, current signals having the same amplitude and opposite phases are obtained in proportion to the surface potential of the measurement object 12. Measurement of the surface potential of the measurement object 12 is performed by converting these current signals into voltage signals proportional to these differences using the differential operation means 23, and further detecting, amplifying and rectifying using the signal processing means 22. A signal is obtained.

実施例1と同様に本実施例においても、駆動信号の周波数を振動板の共振周波数に合わせて振動板29、30を共振振動させる駆動方法を用いることが可能である。この駆動方法においては駆動信号の波形としてパルス波のような正負のどちらか一方のみに振幅を持つ信号を用いることも可能である。 Similarly to the first embodiment, in this embodiment, it is possible to use a driving method in which the vibration plates 29 and 30 are resonantly oscillated by adjusting the frequency of the drive signal to the resonance frequency of the vibration plate. In this driving method, it is also possible to use a signal having an amplitude only in one of positive and negative, such as a pulse wave, as the waveform of the driving signal.

本実施例のような構造と駆動方法により、実施例1における効果に加えて、次の様な効果が得られる。すなわち、駆動手段(本実施例における電磁コイル)の個数を増加させることなく2個の振動板を互いに同じ振幅かつ互いに逆相で振動させ、差動演算手段を用いて信号雑音比が高い測定信号を得ることが可能となる。よって、従来の電位測定装置に比べて、測定対象の表面電位の測定精度を更に向上させることが可能である。 In addition to the effects in the first embodiment, the following effects can be obtained by the structure and the driving method as in the present embodiment. That is, two diaphragms are vibrated in the same amplitude and in opposite phases without increasing the number of driving means (electromagnetic coils in the present embodiment), and a measurement signal having a high signal-to-noise ratio using differential arithmetic means. Can be obtained. Therefore, it is possible to further improve the measurement accuracy of the surface potential of the measurement object as compared with the conventional potential measurement device.

振動部材と電磁コイルと磁性体は同じ構成のものを複数組設けて振動部材を同相で駆動し、各検知電極からの電流信号を加算して処理することも可能である。こうしても電位測定装置の感度を向上できる。各組の構成を小型にできるので、こうした構成も可能となる。 A plurality of vibration members, electromagnetic coils, and magnetic bodies having the same configuration may be provided, the vibration members may be driven in the same phase, and current signals from the respective detection electrodes may be added and processed. This also improves the sensitivity of the potential measuring device. Since the configuration of each set can be reduced in size, such a configuration is also possible.

(実施例3)
本発明の第3の実施例として、本発明の電位測定装置を用いた画像形成装置の構成例を説明する。
(Example 3)
As a third embodiment of the present invention, a configuration example of an image forming apparatus using the potential measuring device of the present invention will be described.

本実施例の画像形成装置を図5に示す。感光ドラム129の周辺に本発明の電位測定装置123、帯電器制御部125により制御可能な帯電器124、露光器126、トナー供給器127が設置されている。帯電器124で感光ドラム129の表面を帯電し、露光器126を用いて感光ドラム129の表面を露光することにより潜像が得られる。この潜像にトナー供給器127によりトナーを付着させることにより、潜像が現像されたトナー像を得る。このトナー像を送りローラー128と感光ドラム129で挟まれた被印刷物体130に転写し、被印刷物体130上のトナーを固着させる。これらの工程を経て画像形成が達成される。帯電器制御部125が信号処理装置を構成し、帯電器124、露光器126、感光ドラム129などが画像形成手段を構成する。 An image forming apparatus of this embodiment is shown in FIG. Around the photosensitive drum 129, a potential measuring device 123 of the present invention, a charger 124 that can be controlled by the charger controller 125, an exposure device 126, and a toner supplier 127 are installed. A latent image is obtained by charging the surface of the photosensitive drum 129 with the charger 124 and exposing the surface of the photosensitive drum 129 with the exposure device 126. By attaching toner to the latent image by the toner supplier 127, a toner image in which the latent image is developed is obtained. This toner image is transferred to the printing object 130 sandwiched between the feed roller 128 and the photosensitive drum 129, and the toner on the printing object 130 is fixed. Image formation is achieved through these steps. The charger controller 125 constitutes a signal processing device, and the charger 124, the exposure device 126, the photosensitive drum 129, and the like constitute image forming means.

この構成において、感光ドラム129の帯電状態を本発明の電位測定装置123で測定し、感光ドラム129の表面電位の測定信号を帯電器制御部125に出力する。この測定信号に基づいて、帯電器制御部125は、帯電後の感光ドラム129の表面電位が所望の値になるように帯電器124の帯電電圧をフィードバック制御する(本発明の電位測定装置123の測定信号は、露光器126にフィードバックされてこれを制御することもできる)。これにより、感光ドラム129の安定した帯電が実現され、安定した画像形成が実現される。 In this configuration, the charged state of the photosensitive drum 129 is measured by the potential measuring device 123 of the present invention, and the measurement signal of the surface potential of the photosensitive drum 129 is output to the charger controller 125. Based on this measurement signal, the charger controller 125 feedback-controls the charging voltage of the charger 124 so that the surface potential of the photosensitive drum 129 after charging becomes a desired value (of the potential measuring device 123 of the present invention). The measurement signal can be fed back to the exposure device 126 to control it). Thereby, stable charging of the photosensitive drum 129 is realized, and stable image formation is realized.

本発明の一実施形態における電位測定装置の主要部を示し、(a)構造図(上面図及び破線C−C´における断面図)、(b)振動部材の振動の様子を示す断面図。The principal part of the electric potential measurement apparatus in one Embodiment of this invention is shown, (a) Structural drawing (top view and sectional drawing in broken line CC '), (b) Sectional drawing which shows the mode of a vibration of a vibration member. 本発明の第1の実施例を示し、(a)構造を示す斜視図、(b)初期状態を示す破線D−D´における断面図、(c)駆動電流が出力されている状態を示す破線D−D´における断面図、(d)(c)の状態から駆動電流を0にした後の状態を示す破線D−D´における断面図、(e)圧電素子を駆動手段として用いた変形例を示す斜視図。1A is a perspective view showing a structure, FIG. 2B is a sectional view taken along a broken line DD ′ showing an initial state, and FIG. 1C is a broken line showing a state in which a drive current is output. Cross-sectional view at DD ′, (d) Cross-sectional view at broken line DD ′ showing a state after the drive current is reduced to 0 from the state of (c), (e) Modification using piezoelectric element as drive means FIG. 本発明の第2の実施例を示し、(a-1)構造を示す斜視図、(a-2)別例1の構造を示す斜視図、(a-3)別例2の構造を示す斜視図、(b-1)(a-1)の破線E−E´における断面図、(b-2)(a-1)の破線E−E´における別例の断面図、(c)電磁コイルの振動板に対向する面がN極となるように電流が流れているときの様子を示す断面図、(d)電磁コイルの振動板に対向する面がS極となるように電流が流れているときの様子を示す断面図。FIG. 2 shows a second embodiment of the present invention, (a-1) a perspective view showing a structure, (a-2) a perspective view showing a structure of another example 1, (a-3) a perspective view showing a structure of another example 2. (B-1) Cross-sectional view taken along broken line EE 'in (b-1) (a-1), (b-2) Cross-sectional view taken along broken line EE' in (a-1), (c) Electromagnetic coil Sectional drawing which shows a mode when an electric current is flowing so that the surface facing the diaphragm may be an N pole. (D) An electric current flows so that the surface facing the diaphragm of the electromagnetic coil is an S pole. Sectional drawing which shows a mode when there is. カンチレバー式に振動部材が回転振動する例を示す断面図。Sectional drawing which shows the example which a vibration member rotationally vibrates in a cantilever type. 本発明の電位測定装置を用いた画像形成装置であるの第3の実施例を示す概略図。Schematic which shows the 3rd Example which is an image forming apparatus using the electric potential measuring apparatus of this invention. カンチレバーに検知電極を配置した電位測定装置の従来例の主要部を示し、(a)構造図(上面図及び破線A−A´における断面図)、(b)カンチレバーの振動の様子を示す断面図。The principal part of the prior art example of the electric potential measuring device which has arranged the detection electrode on the cantilever is shown, (a) Structural view (cross-sectional view along the top view and broken line AA ′), (b) Cross-sectional view showing how the cantilever vibrates . 音叉に検知電極を配置した電位測定装置の従来例の主要部を示し、(a)構造図(上面図及び破線B−B´における断面図)、(b)音叉の振動の様子を示す断面図。The main part of the conventional example of the electric potential measuring device which has arrange | positioned the detection electrode to a tuning fork is shown, (a) Structural drawing (top view and sectional drawing in broken line BB '), (b) Sectional drawing which shows the mode of the vibration of a tuning fork .

符号の説明Explanation of symbols

1、27、28・・・検知電極
5、29、30・・・振動部材(振動板)
5a、6、7、31、32、33、34・・・回転軸にあたる部分(U字溝、ねじりバネ)
12・・・測定対象
13、14、26、35、36・・・駆動手段(磁性体、電磁コイル、圧電素子、永久磁石)
123・・・本発明の電位測定装置
1, 27, 28 ... detection electrodes 5, 29, 30 ... vibrating members (vibrating plates)
5a, 6, 7, 31, 32, 33, 34 ... Parts corresponding to the rotation axis (U-shaped groove, torsion spring)
12 ... Measuring object 13, 14, 26, 35, 36 ... Driving means (magnetic material, electromagnetic coil, piezoelectric element, permanent magnet)
123: Potential measuring device of the present invention

Claims (8)

直線形状の端を有する振動部材を備え、該直線形状の端を含む回転軸の回りで振動部材が回転して振動可能に配され、該回転軸にあたる部分の少なくとも一部の前記回転軸の回りの回転振動方向の剛性が、振動部材の他の部分より小さく設定されていることを特徴とする回転振動装置。 A vibration member having a linear shape end, wherein the vibration member is arranged to be able to vibrate by rotating around a rotation axis including the linear shape end, and at least a part of the portion corresponding to the rotation axis around the rotation axis The rotational vibration device is characterized in that the rigidity in the rotational vibration direction is set to be smaller than that of other portions of the vibration member. 請求項1に記載の回転振動装置において、前記振動部材の他の部分は、ほぼ同一形状を保って前記回転軸の回りで回転して振動できるような剛性を有することを特徴とする回転振動装置。 2. The rotary vibration device according to claim 1, wherein the other part of the vibration member has rigidity so as to be able to rotate and vibrate around the rotation shaft while maintaining substantially the same shape. . 請求項1または2に記載の回転振動装置において、振動部材に片方の端が固定され支持部材にもう片方の端が固定されたねじりバネを有し、前記振動部材の直線形状の端と前記ねじりバネとが同一直線上に位置するように配置されて前記回転軸を構成することを特徴とする回転振動装置。 3. The rotary vibration device according to claim 1, further comprising a torsion spring having one end fixed to the vibration member and the other end fixed to the support member, and the linear end of the vibration member and the torsion A rotary vibration device, wherein the rotary shaft is configured by being arranged so that a spring is positioned on the same straight line. 請求項3に記載の回転振動装置において、前記ねじりバネが、前記振動部材の直線形状の端を挟んで一対配置されていることを特徴とする回転振動装置。 4. The rotational vibration device according to claim 3, wherein a pair of the torsion springs are arranged across a linear end of the vibration member. 請求項1または2に記載の回転振動装置において、前記振動部材の直線形状の端の部分の厚さが小さくされることで前記回転軸の回りの回転振動方向の剛性が振動部材の他の部分より小さく設定されていることを特徴とする回転振動装置。 3. The rotational vibration device according to claim 1, wherein the thickness of the end portion of the linear shape of the vibration member is reduced so that the rigidity in the rotational vibration direction around the rotation shaft is the other portion of the vibration member. A rotational vibration device characterized by being set smaller. 請求項1乃至5のいずれかに記載の回転振動装置と前記振動部材を回転して振動させるための駆動手段を含み、前記振動部材が測定対象に対向する面上に検知電極を備えることを特徴とする電位測定装置。 6. The rotary vibration device according to claim 1 and driving means for rotating and vibrating the vibration member, wherein the vibration member includes a detection electrode on a surface facing a measurement object. A potential measuring device. 請求項6に記載の電位測定装置において、前記駆動手段が永久磁石と電磁コイルを含み、前記振動部材が複数設けられ、前記振動部材の各々に1個ずつ永久磁石が配置され、前記永久磁石に対して固定して配置された1個の電磁コイルにより、振動部材の各々をほぼ同じ振幅かつ互いに逆相で振動させることを特徴とする電位測定装置。 The potential measuring apparatus according to claim 6, wherein the driving unit includes a permanent magnet and an electromagnetic coil, a plurality of the vibration members are provided, one permanent magnet is disposed on each of the vibration members, and the permanent magnet is disposed on the permanent magnet. An electric potential measuring apparatus that vibrates each of vibration members with substantially the same amplitude and in opposite phases by one electromagnetic coil fixedly arranged on the opposite side. 請求項6または7に記載の電位測定装置と、電位測定装置より得られる出力信号を処理する信号処理装置と、画像形成手段を備え、電位測定装置の検知電極を備える部分が画像形成手段の電位測定の対象となる面と対向して配置され、画像形成手段が信号処理装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする画像形成装置。 8. The potential measuring device according to claim 6 or 7, a signal processing device for processing an output signal obtained from the potential measuring device, and an image forming means, wherein a portion of the potential measuring device having a detection electrode is a potential of the image forming means. An image forming apparatus, wherein the image forming apparatus is arranged to face a surface to be measured, and the image forming unit controls image formation using a signal detection result of the signal processing apparatus.
JP2005161825A 2005-06-01 2005-06-01 Rotation vibration device and potential measuring device Pending JP2006337161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161825A JP2006337161A (en) 2005-06-01 2005-06-01 Rotation vibration device and potential measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161825A JP2006337161A (en) 2005-06-01 2005-06-01 Rotation vibration device and potential measuring device

Publications (1)

Publication Number Publication Date
JP2006337161A true JP2006337161A (en) 2006-12-14

Family

ID=37557848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161825A Pending JP2006337161A (en) 2005-06-01 2005-06-01 Rotation vibration device and potential measuring device

Country Status (1)

Country Link
JP (1) JP2006337161A (en)

Similar Documents

Publication Publication Date Title
JP5027984B2 (en) Potential measuring apparatus using oscillator, potential measuring method, and image forming apparatus
JP4993349B2 (en) Potential measuring apparatus and image forming apparatus
US7612569B2 (en) Oscillating device, electric potential measuring device, light deflecting device, and image forming apparatus
US7372278B2 (en) Electric potential measuring apparatus electrostatic capacitance measuring apparatus, electric potential measuring method, electrostatic capacitance measuring method, and image forming apparatus
JPH08271562A (en) Surface potential measuring apparatus
US7710129B2 (en) Potential measurement apparatus and image forming apparatus
JP2006317358A (en) Electric potential measuring device and image forming apparatus using it
JP2006337161A (en) Rotation vibration device and potential measuring device
JP2009098038A (en) Electric potential measuring device and image forming apparatus using it
JP2006003130A (en) Electric potential measuring apparatus and image forming apparatus
JP4950574B2 (en) Potential measuring apparatus and potential measuring method
JP2006105941A (en) Oscillating body apparatus, potential measuring apparatus using same, and image forming apparatus
JP2009074948A (en) Oscillating body apparatus, potential measurement apparatus using same and image forming apparatus
JP4440065B2 (en) Potential measuring apparatus and image forming apparatus
JP2008145372A (en) Potential measuring device and image forming device
JPH08110361A (en) Surface potential measuring instrument
JP2007298450A (en) Electric potential measuring apparatus and image forming apparatus
JP2006105940A (en) Potential measuring apparatus, and image forming apparatus using same
JPH08193835A (en) Vibration-type gyroscope
JP2007078447A (en) Electric potential measuring apparatus and image formation apparatus
JP2009074860A (en) Angular velocity sensor element and detection apparatus
JP2010164398A (en) Angular velocity sensor
JP2007078448A (en) Electric potential measuring apparatus and image formation apparatus
JP2008107211A (en) Electric potential measuring device and image forming device
WO2005078390A1 (en) Electromagnetically driven angular speed sensor