JP2006003130A - Electric potential measuring apparatus and image forming apparatus - Google Patents

Electric potential measuring apparatus and image forming apparatus Download PDF

Info

Publication number
JP2006003130A
JP2006003130A JP2004177595A JP2004177595A JP2006003130A JP 2006003130 A JP2006003130 A JP 2006003130A JP 2004177595 A JP2004177595 A JP 2004177595A JP 2004177595 A JP2004177595 A JP 2004177595A JP 2006003130 A JP2006003130 A JP 2006003130A
Authority
JP
Japan
Prior art keywords
detection electrode
potential measuring
measuring device
detection
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004177595A
Other languages
Japanese (ja)
Inventor
Atsushi Katori
篤史 香取
Yoshitaka Zaitsu
義貴 財津
Yoshikatsu Ichimura
好克 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004177595A priority Critical patent/JP2006003130A/en
Publication of JP2006003130A publication Critical patent/JP2006003130A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric potential measuring apparatus capable of extracting detection signals by almost completely preventing or suppressing the occurrence of reductions in signals due to parasitic capacitance between a detecting electrode and a supporting substrate even in the case that the vibration frequency of a capacitance changing means is high. <P>SOLUTION: The potential measuring apparatus has both the capacitance changing means for changing electrostatic capacitance between a surface to be measured and the detecting electrode 101 and a detecting mean for detecting the amount of charge electrostatically induced to the detecting electrode 101 by the capacitance changing means. The detecting means includes the detecting electrode 101; an insulating film 102 for holding the detecting electrode 101; and a frame member 104 for holding the insulating film 102. In the insulating film 102, a region in contact with the detecting electrode 101 and a region in contact with the frame member 104 do not overlap each other at least at any part in a direction in parallel with the insulating film 102. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非接触型の電位測定装置、及びそれを用いた画像形成装置に関する。 The present invention relates to a non-contact type potential measuring device and an image forming apparatus using the same.

感光体を用いた電子写真式の画像形成装置において、高画質な画像を形成する場合には、非接触型電位測定装置により、感光体の電位を測定しながら画像形成装置を制御する必要がある。非接触型電位測定装置としては、帯電している感光体に検知電極を近接させ、機械的に感光体と検知電極間の容量を変化させ、静電誘導により検知電極に誘導される微小な電荷を測定する例がある。 When forming a high-quality image in an electrophotographic image forming apparatus using a photoreceptor, it is necessary to control the image forming apparatus while measuring the potential of the photoreceptor using a non-contact potential measuring device. . As a non-contact potential measuring device, a small charge is induced to the detection electrode by electrostatic induction by bringing the detection electrode close to the charged photoconductor and mechanically changing the capacitance between the photoconductor and the detection electrode. There is an example to measure.

図11に、非接触型電位測定装置の概念的な構成図を示す。図11において、501は測定対象、502は容量変化手段、503は電荷検出手段である。機械的に容量を変化させる容量変化手段502としては、測定対象501から検知電極101に入射する電気力線を周期的に変化させる方法を採用するものや、検知電極101を周期的に移動させる方法を採用するものがある。前者の例としては、測定対象(感光体)と検知電極間にフォーク形状のシャッタを挿入し、シャッタを測定対象の表面と平行な方向に周期的に動かすことで、測定対象から検知電極上に到達する電位力線を周期的に遮り、測定面から見た実効的な検知電極の面積を変化させて、測定対象と検知電極間の静電容量を変化させる構成がある(特許文献1参照)。 FIG. 11 shows a conceptual configuration diagram of a non-contact potential measuring apparatus. In FIG. 11, reference numeral 501 denotes an object to be measured, 502 denotes capacitance changing means, and 503 denotes charge detecting means. As the capacity changing means 502 that mechanically changes the capacity, a method of periodically changing the electric lines of force incident on the detection electrode 101 from the measurement object 501 or a method of periodically moving the detection electrode 101 is used. There is something that adopts. As an example of the former, a fork-shaped shutter is inserted between the measurement object (photosensitive member) and the detection electrode, and the shutter is periodically moved in a direction parallel to the surface of the measurement object, so that the measurement object is placed on the detection electrode. There is a configuration in which the capacitance between the measurement object and the detection electrode is changed by periodically blocking the reaching potential line and changing the effective area of the detection electrode viewed from the measurement surface (see Patent Document 1). .

また、測定対象と対向する位置に開口部を有した金属のシールド材を配置し、フォークの形状をした振動素子の先端に検知電極を設け、検知電極の位置が該開口部直下で平行に移動することで、検知電極に達する電位力線の数を変化させ、静電容量を変化させる構成もある(特許文献2参照)。 In addition, a metal shield material with an opening is placed at a position facing the measurement object, a detection electrode is provided at the tip of the fork-shaped vibration element, and the position of the detection electrode moves in parallel under the opening Thus, there is a configuration in which the number of potential force lines reaching the detection electrode is changed to change the capacitance (see Patent Document 2).

後者の例としては、検知電極を片持ち梁状の振動子の先端に配置し、片持ち梁を振動させることで、測定対象と検知電極間の距離を周期的に変化させ、静電容量を変化させる構成がある(特許文献3参照)。
米国特許第4,720,682号公報 米国特許第3,852,667号公報 米国特許第4,763,078号公報
As an example of the latter, the sensing electrode is arranged at the tip of a cantilever-shaped vibrator, and the cantilever is vibrated to periodically change the distance between the measurement target and the sensing electrode, thereby increasing the capacitance. There is a configuration to change (see Patent Document 3).
U.S. Pat.No. 4,720,682 U.S. Pat.No. 3,852,667 U.S. Pat.No. 4,763,078

非接触型の電位測定装置における検知電極に静電誘導される微小な電荷をQとすると、
Q=CV・・・式(1)
で表すことができる(C:測定対象と検知電極間の実効容量、V:測定対象の電位)。測定対象(感光体など)と検知電極が形成する静電容量は、機械振動などにより周期的に変化するため、
C=C・sin(ω・t)・・・式(2)
と表すことができる(C:静電容量の変化係数)。これらの式から、検知電極に誘導される微小な電荷Qが微小電流Iとして取り出されるとすると、
I=dQ/dt
=ω・C・V・cos(ω・t)=2π・f・C・V・cos(ω・t)・・・式(3)
と表すことができる(ここで、f:振動周波数)。式(3)から、電位測定装置からの検出信号は、静電容量の変化係数Cと振動周波数fにより決定されることが分かる。
If the minute charge electrostatically induced in the detection electrode in the non-contact type potential measuring device is Q,
Q = CV (1)
(C: effective capacity between measurement object and detection electrode, V: potential of measurement object). The capacitance formed by the measurement target (photoconductor, etc.) and the detection electrode changes periodically due to mechanical vibration, etc.
C = C O · sin (ω · t) (2)
(C O : capacitance change coefficient). From these equations, if a minute charge Q induced in the sensing electrode is taken out as a minute current I,
I = dQ / dt
= Ω · C O · V · cos (ω · t) = 2π · f · C O · V · cos (ω · t) (3)
(Where f is the vibration frequency). From the equation (3), it can be seen that the detection signal from the potential measuring device is determined by the capacitance change coefficient C0 and the vibration frequency f.

他方、半導体プロセスを応用したマイクロマシーニング技術と呼ばれる微細な機械加工技術を用いて、電位測定装置を作製することにより、電位測定装置の振動周波数を飛躍的に向上させる(例えば、数十kHz)ことができる。そのため、大きな出力信号の電位測定装置を実現できる可能性がある。しかし、マイクロマシーニング技術によく用いられる半導体基板や導体基板を検知電極の支持基板として用いた場合、検知電極と支持基板間の寄生容量が発生し、この寄生容量による出力信号減少が考えられる。 On the other hand, the vibration frequency of the potential measuring device is drastically improved (for example, several tens of kHz) by producing a potential measuring device using a micromachining technique called micromachining technology applying a semiconductor process. be able to. Therefore, there is a possibility that a device for measuring a potential of a large output signal can be realized. However, when a semiconductor substrate or conductor substrate often used in micromachining technology is used as a support substrate for the detection electrode, a parasitic capacitance is generated between the detection electrode and the support substrate, and the output signal can be reduced due to this parasitic capacitance.

図10に、検知電極−支持基板間に発生する寄生容量を説明する模式図を示す。図10(a)は平面を示す模式図、図10(b)は図10(a)の断面Aでの断面の模式図である。図10において、101は検知電極、102は絶縁膜、103は支持基板である。支持基板103の片面上に絶縁膜102が形成されており、検知電極101は絶縁膜102上に形成されて支持基板103から直流的には絶縁されている。 FIG. 10 is a schematic diagram illustrating parasitic capacitance generated between the detection electrode and the support substrate. FIG. 10A is a schematic diagram showing a plane, and FIG. 10B is a schematic diagram of a cross section taken along a cross section A in FIG. In FIG. 10, 101 is a detection electrode, 102 is an insulating film, and 103 is a support substrate. An insulating film 102 is formed on one surface of the support substrate 103, and the detection electrode 101 is formed on the insulating film 102 and is galvanically insulated from the support substrate 103.

ここにおいて、検知電極101と支持基板103間には、寄生容量が存在する。一般的に平行平板コンデンサの容量Cは、
=ε/d・・・式(4)
で表すことができる(ε:誘電率、S:コンデンサの面積、d:コンデンサの距離)。検知電極101と支持基板103間の寄生容量は、平行平板コンデンサと同じと見なすことができるとすると、寄生容量は絶縁膜102の誘電率、検知電極101の面積、検知電極101−支持基板103間の距離で決まる。
Here, parasitic capacitance exists between the detection electrode 101 and the support substrate 103. The capacity C P of generally parallel plate capacitors,
C P = ε P S P / d P (4)
P : dielectric constant, S P : capacitor area, d P : capacitor distance). Assuming that the parasitic capacitance between the detection electrode 101 and the support substrate 103 can be regarded as the same as that of the parallel plate capacitor, the parasitic capacitance is the dielectric constant of the insulating film 102, the area of the detection electrode 101, and between the detection electrode 101 and the support substrate 103. Determined by the distance.

絶縁膜102の誘電率は成膜する条件によって少し変化するが、絶縁膜102に用いる材料によってほぼ一意に決まる。一例として、シリコン窒化膜で比誘電率が7程度、シリコン酸化膜で3.9程度である。検知電極101の面積は、式(2)の静電容量の変化係数Cに比例するため、出力信号の観点から一意に設定される。また、検知電極101−支持基板103間の距離は、半導体プロセス(マイクロマシーニング技術)を用いて成膜する絶縁膜102の厚さにより決まる。絶縁膜102の厚さは、絶縁膜の成膜法や成膜時間で変化させることができるが、半導体プロセスを用いるため、生産の現実性を考えると、非常に薄い厚さしか実現することができない。 The dielectric constant of the insulating film 102 varies slightly depending on the film formation conditions, but is almost uniquely determined by the material used for the insulating film 102. As an example, the relative dielectric constant is about 7 for a silicon nitride film and about 3.9 for a silicon oxide film. Area of the detection electrode 101 is proportional to the change coefficient C O of the capacitance of the formula (2), it is uniquely set in terms of the output signal. In addition, the distance between the detection electrode 101 and the support substrate 103 is determined by the thickness of the insulating film 102 formed using a semiconductor process (micromachining technology). The thickness of the insulating film 102 can be changed by the film forming method and the film forming time of the insulating film. However, since a semiconductor process is used, only a very thin thickness can be realized in consideration of the production reality. Can not.

そのため、マイクロマシーニング技術を利用して作製した電位測定装置では、絶縁膜が薄いために検知電極−支持基板間の寄生容量が大きくなる。この寄生容量によって、出力信号が低下するのである。この出力信号の低下は、振動周波数が高くなると共に大きくなる。そのため、マイクロマシーニング技術を利用して作製した、振動周波数を向上させた電位測定装置などにおいては、式(3)での振動周波数fによる出力信号の増加分を打ち消してしまい、そのままでは高性能な電位測定装置を実現することができない。 For this reason, in the potential measurement device manufactured using the micromachining technology, the parasitic capacitance between the detection electrode and the support substrate increases because the insulating film is thin. This parasitic capacitance reduces the output signal. This decrease in the output signal increases as the vibration frequency increases. For this reason, in an electric potential measurement device with improved vibration frequency produced using micromachining technology, the increase in the output signal due to the vibration frequency f in equation (3) is canceled out, and the high performance is maintained as it is. Cannot be realized.

上記課題に鑑み、本発明の電位測定装置は、測定対象の面と検知電極間の静電容量を変化させるための容量変化手段と、容量変化手段によって前記検知電極に静電誘導される電荷量を検出するための検出手段とを有し、前記検出手段は、前記検知電極と、前記検知電極を保持する絶縁膜と、前記絶縁膜を保持する部材を含み、前記絶縁膜は、前記検知電極と接触している領域と、前記部材と接触している領域とが、絶縁膜に平行な方向において、少なくとも一部において重複していないことを特徴とする。ここにおいて、重複するか否かは、絶縁膜の厚さ分を無視した場合で考える。 In view of the above problems, the potential measuring device of the present invention includes a capacitance changing means for changing the capacitance between the surface to be measured and the detection electrode, and an amount of charge electrostatically induced in the detection electrode by the capacitance changing means. Detecting means, and the detecting means includes the detection electrode, an insulating film holding the detection electrode, and a member holding the insulating film, and the insulating film includes the detection electrode The region in contact with the member and the region in contact with the member do not overlap at least partially in the direction parallel to the insulating film. Here, whether or not they overlap is considered when the thickness of the insulating film is ignored.

また、上記課題に鑑み、本発明の電位測定装置は、測定対象の面と検知電極間の静電容量を変化させるための容量変化手段と、前記容量変化手段によって前記検知電極に静電誘導される電荷を検出するための電荷検出手段とを備え、前記検出手段は、前記検知電極と前記検知電極と接した状態で支持する支持部材とを備え、前記支持部材の前記検知電極と接触する面が、絶縁体であり、前記接触する面の反対側に凹部を備え、且つ前記凹部内の空間に前記絶縁体が露出していることを特徴とする。 In view of the above problems, the potential measuring device of the present invention is electrostatically induced to the detection electrode by the capacitance changing means for changing the capacitance between the surface to be measured and the detection electrode, and the capacitance changing means. Charge detecting means for detecting the charge to be detected, the detecting means comprising the detection electrode and a support member that supports the detection electrode in contact with the detection electrode, and a surface of the support member that contacts the detection electrode Is an insulator, comprising a recess on the opposite side of the contacting surface, and the insulator being exposed in the space in the recess.

この構成において、容量変化手段としては、上記背景技術のところで説明した様な機械的な振動を利用する構造のものの他に、ヒータなどを用いて検知電極周辺の空気や誘電体の温度を周期的に変化させて、測定対象表面と検知電極との間の誘電率を周期的に変化させる構成のものなどがあるので、測定対象面と検知電極間の静電容量が変化する態様を表現する言葉としては、例えば、振動周波数ないし変化周波数とでも言うべきであるが、本明細書では簡単の為に単に振動周波数と言う。 In this configuration, as the capacity changing means, in addition to the structure using mechanical vibration as described in the above background art, the temperature of the air around the detection electrode and the temperature of the dielectric are periodically changed using a heater or the like. This is a term that expresses how the capacitance between the measurement target surface and the detection electrode changes because the dielectric constant between the measurement target surface and the detection electrode is periodically changed. For example, it should be called a vibration frequency or a change frequency, but in this specification, it is simply called a vibration frequency for the sake of simplicity.

また、上記課題に鑑み、本発明の画像形成装置は、上記電位測定装置と画像形成手段を備え、電位測定装置の検知電極を形成された面が画像形成手段の電位測定の対象となる面と対向して配置され、画像形成手段が電位測定装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする。 In view of the above problems, an image forming apparatus according to the present invention includes the above-described potential measuring device and an image forming unit, and the surface on which the detection electrode of the potential measuring device is formed is a surface on which the potential of the image forming unit is to be measured. The image forming units are arranged to face each other, and image formation is controlled using a signal detection result of the potential measuring device.

本発明の電位測定装置では、たとえ容量変化手段の振動周波数が高い場合においても、検知電極と支持基板間の寄生容量による出力信号減少をほとんど発生させることなく或いは抑制して、検知信号を取り出すことができる。 In the potential measurement device of the present invention, even when the vibration frequency of the capacitance changing means is high, the detection signal is extracted with little or no reduction in output signal due to parasitic capacitance between the detection electrode and the support substrate. Can do.

以下、図面を用いて本発明の実施の形態を詳細に説明する。
(第1の実施の形態)
本発明では、検知電極と支持基板間での寄生容量による出力信号の減少がほとんどないか抑制された電位測定装置を実現するために、検知電極とそれを保持する基板の構造に着目する。具体的には、検知電極と、検知電極を保持する絶縁膜と、絶縁膜を保持する枠部材を有する構造として、上記の如く、絶縁膜が検知電極に接触する領域と、絶縁膜が枠部材に接触する領域が、絶縁膜に平行な方向において、少なくとも一部において重複していないことを特徴としている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
In the present invention, attention is paid to the structure of the detection electrode and the substrate holding the detection electrode in order to realize a potential measuring device in which the decrease in the output signal due to the parasitic capacitance between the detection electrode and the support substrate is hardly suppressed. Specifically, as a structure having a detection electrode, an insulating film for holding the detection electrode, and a frame member for holding the insulating film, as described above, the region where the insulating film is in contact with the detection electrode, and the insulating film is the frame member The region in contact with is not overlapped at least partially in the direction parallel to the insulating film.

図1は、本実施の形態に係る電位測定装置の、検知電極とそれを保持する構造を説明する模式図である。図1(a)は平面を示す模式図、図1(b)は図1(a)の断面Bでの模式図である。図1において、101は検知電極、102は絶縁膜、104は空洞部104aを持つ枠部材である。 FIG. 1 is a schematic diagram for explaining a detection electrode and a structure for holding the detection electrode of the potential measuring device according to the present embodiment. FIG. 1A is a schematic diagram showing a plane, and FIG. 1B is a schematic diagram in a cross section B of FIG. In FIG. 1, 101 is a detection electrode, 102 is an insulating film, and 104 is a frame member having a cavity 104a.

検知電極101には、検知電極に静電誘導される電荷量を検知する検出手段として、電流−電圧変換を行う初段増幅部(不図示)が接続されている。また、検知電極101には、機械的な振動などにより測定対象の面と検知電極間の静電容量を変化させる容量変化手段(不図示)により、測定対象の電位に対応した電荷が静電誘導される。この際に誘導される電荷は、上記初段増幅部の内部抵抗等を介して供給される。 The detection electrode 101 is connected to a first-stage amplifier (not shown) that performs current-voltage conversion as detection means for detecting the amount of charge that is electrostatically induced in the detection electrode. In addition, a charge corresponding to the potential of the measurement target is electrostatically induced on the detection electrode 101 by a capacitance changing unit (not shown) that changes the capacitance between the surface of the measurement target and the detection electrode by mechanical vibration or the like. Is done. The charge induced at this time is supplied through the internal resistance of the first stage amplifier.

検知電極101は、絶縁膜102により保持されている。そして、この絶縁膜102は、枠部材104によって保持されている。本実施形態では、絶縁膜102に平行な方向において、検知電極101が絶縁膜102と接触している領域には枠部材104の材料部は存在しない構造となっており、検知電極101下方向(絶縁膜102に垂直な方向)では枠部材104は空洞部104aとなっている。 The detection electrode 101 is held by an insulating film 102. The insulating film 102 is held by the frame member 104. In the present embodiment, the material portion of the frame member 104 does not exist in the region in which the detection electrode 101 is in contact with the insulating film 102 in the direction parallel to the insulating film 102, and the lower direction of the detection electrode 101 ( In the direction perpendicular to the insulating film 102, the frame member 104 is a hollow portion 104a.

この構造では、検知電極101と枠部材104は、比誘電率が1の空気により絶縁されており、且つこれらの間の距離は薄膜の絶縁膜102に比べて桁違いに大きくすることができる。そのため、寄生する容量は、図10の構造に比べて極端に小さいものとなる。この構造はマイクロマシーニング技術を利用して、図10の構造の下面をエッチング等することにより容易に実現できる。 In this structure, the detection electrode 101 and the frame member 104 are insulated by air having a relative dielectric constant of 1, and the distance between them can be made orders of magnitude greater than that of the thin insulating film 102. Therefore, the parasitic capacitance is extremely small compared to the structure of FIG. This structure can be easily realized by etching the lower surface of the structure shown in FIG. 10 using micromachining technology.

本実施形態において、検知電極101は薄膜状のため、絶縁膜102で保持することができる。また、枠部材104が検知電極101を取り囲むように存在しているため、強い物理的強度を得ることができる。 In this embodiment, since the detection electrode 101 is thin, it can be held by the insulating film 102. In addition, since the frame member 104 exists so as to surround the detection electrode 101, a strong physical strength can be obtained.

このように本実施形態によると、検知電極と支持基板(枠部材)間に寄生する容量を、空洞部を持つ枠部材という簡単な構造を用いるだけで減少させることができる。なお、図2と図3に示すように、枠部材104は、絶縁膜102が検知電極101に接触する領域と、絶縁膜102が枠部材104に接触する領域が、絶縁膜102に平行な方向において、一部において重複している様な形態としたり、空洞部104aの下に少なくとも一部において底部104bがある様な形態としたりしてもよい。前者では、多少寄生容量は増えるが図10の構造よりは小さくできる。後者では、多少作製が面倒となるが物理的強度は大きくできる。 As described above, according to the present embodiment, the parasitic capacitance between the detection electrode and the support substrate (frame member) can be reduced only by using a simple structure called a frame member having a hollow portion. 2 and 3, the frame member 104 has a direction in which the region where the insulating film 102 contacts the detection electrode 101 and the region where the insulating film 102 contacts the frame member 104 are parallel to the insulating film 102. However, it may be configured such that a part thereof overlaps or a form such that the bottom part 104b is present at least partially under the cavity part 104a. In the former, the parasitic capacitance increases somewhat, but it can be made smaller than the structure of FIG. In the latter case, production is somewhat troublesome, but physical strength can be increased.

電位測定装置は、数mm以上という或る距離を持った測定対象(感光体など)と検知電極間の容量の変化により出力信号を得るので、検知電極に静電誘導される電荷は微小なものとなる。したがって、検出される微小電流の変化を電圧信号に変換する必要がある。そのために、検知電極101に接続された電流−電圧変換を行う初段増幅部は、Meg以上の高ゲインの電流−電圧変換(A/V)を行う必要がある。 Since the potential measuring device obtains an output signal by changing the capacitance between a measurement object (photosensitive member, etc.) having a certain distance of several millimeters or more and the detection electrode, the electrostatic charge induced on the detection electrode is very small. It becomes. Therefore, it is necessary to convert the detected change in the minute current into a voltage signal. For this purpose, the first-stage amplifying unit that performs current-voltage conversion connected to the detection electrode 101 needs to perform current-voltage conversion (A / V) with a high gain equal to or higher than Meg.

図4は、電流−電圧変換を行う初段増幅部の回路例について説明する図である。図4(a)に、高抵抗を用いたFETソースフォロワ回路を示す。ここで、VCCは電源電圧を示す。図4(a)の回路は、高抵抗RINに流れる微小電流により発生した抵抗RIN両端での電圧を、高入力インピーダンスとなっているFETソースフォロワ回路で、インピーダンス変換して電圧出力VOUTとしている。 FIG. 4 is a diagram illustrating a circuit example of a first stage amplifier that performs current-voltage conversion. FIG. 4A shows an FET source follower circuit using a high resistance. Here, VCC indicates a power supply voltage. The circuit of FIG. 4A is an FET source follower circuit having a high input impedance that converts the voltage at both ends of the resistor R IN generated by a minute current flowing through the high resistor R IN into a voltage output VOUT. Yes.

一般に、支持基板をGNDに接地している場合、検知電極101と枠部材104間に大きな寄生容量が存在すると、高抵抗RINに並列に容量成分が存在することになる。高抵抗RINと寄生容量部の振動周波数でのインピーダンスは、電位測定装置の振動周波数fが高くなると低下し、抵抗RIN両端に発生する電圧が減少することになる。 In general, when the support substrate is grounded to GND, if a large parasitic capacitance exists between the detection electrode 101 and the frame member 104, a capacitance component exists in parallel with the high resistance RIN . The impedance at the vibration frequency of the high resistance R IN and the parasitic capacitance portion decreases as the vibration frequency f of the potential measuring device increases, and the voltage generated across the resistor R IN decreases.

また、支持基板をフローティング状態にしている場合でも、寄生容量が大きく振動周波数が高ければ、支持基板と検知電極101が交流的に結合してしまい、また半導体ないし導体の支持基板が検知電極と同等の効果を有するため、信号同士が打ち消し合い出力信号を減少させることになる。加えて、出力信号の位相が異なる複数の検知電極101がある場合、寄生容量が大きく振動周波数が高ければ、検知電極間の信号の漏洩により信号同士が打ち消し合い出力信号が小さくなる。 Even when the support substrate is in a floating state, if the parasitic capacitance is large and the vibration frequency is high, the support substrate and the detection electrode 101 are coupled in an AC manner, and the semiconductor or conductor support substrate is equivalent to the detection electrode. Therefore, the signals cancel each other and the output signal is reduced. In addition, when there are a plurality of detection electrodes 101 having different output signal phases, if the parasitic capacitance is large and the vibration frequency is high, the signals cancel each other due to signal leakage between the detection electrodes, and the output signal becomes small.

本実施の形態によると、検知電極101と支持基板(枠部材104)間の寄生容量を大幅に減少させることができるので、図4(a)で示すような高抵抗を用いたFETソースフォロワの電流−電圧変換回路を用いた電位測定装置において、振動周波数が高い場合でも高ゲインの電流−電圧変換を実現できる。 According to the present embodiment, since the parasitic capacitance between the detection electrode 101 and the support substrate (frame member 104) can be greatly reduced, the FET source follower using a high resistance as shown in FIG. In a potential measuring device using a current-voltage conversion circuit, high-gain current-voltage conversion can be realized even when the vibration frequency is high.

以上のように、本実施形態によると、検知電極と支持基板(枠部材)間に寄生する容量を、簡単な構造を用いることで減少させられる。そのため、高い振動周波数を持つ電位測定装置において、寄生容量による初段増幅部での出力信号の低下を抑えられ、大きな出力が得られる高性能な電位測定装置を提供することができる。 As described above, according to the present embodiment, the parasitic capacitance between the detection electrode and the support substrate (frame member) can be reduced by using a simple structure. Therefore, in a potential measurement device having a high vibration frequency, it is possible to provide a high-performance potential measurement device that can suppress a decrease in the output signal at the first stage amplification unit due to parasitic capacitance and obtain a large output.

また、支持基板(枠部材)に半導体基板や導電性基板を用いることができ、設計や作製プロセスの自由度が高くなり、高性能化や低コスト化が可能な電位測定装置を提供できる。さらに、支持基板(枠部材)を機械的に振動させる形態においては、枠部材が軽量化できるので高い振動周波数を実現することができる。 In addition, a semiconductor substrate or a conductive substrate can be used for the support substrate (frame member), so that the degree of freedom in design and manufacturing processes is increased, and a potential measuring device that can achieve high performance and low cost can be provided. Furthermore, in the form in which the support substrate (frame member) is mechanically vibrated, the frame member can be reduced in weight, so that a high vibration frequency can be realized.

なお、本実施形態では、図1に示すように絶縁膜102が枠部材104の一部に接触するような構造にしたが、絶縁膜102が枠部材104の一面全体を覆うような構造にしてもよい。それにより、製造工程を簡略にすることができ、比較的低コストな電位測定装置を提供できる。 In the present embodiment, as shown in FIG. 1, the insulating film 102 is in contact with a part of the frame member 104. However, the insulating film 102 covers the entire surface of the frame member 104. Also good. Thereby, the manufacturing process can be simplified, and a relatively low-cost potential measuring device can be provided.

また、図1に示すように、検知電極101と枠部材104がそれぞれ絶縁膜102と接触する面を、それぞれ、絶縁膜102の異なる側の面としたが、同じ側の面で接触するようにしてもよい。また実際には、絶縁膜102上には、検知電極101から初段増幅部へ信号を取り出すための配線が形成され、枠部材104との間で寄生容量が発生するが、配線面積は小さいため大きな影響は与えない。 Further, as shown in FIG. 1, the surfaces on which the detection electrode 101 and the frame member 104 are in contact with the insulating film 102 are different surfaces on the insulating film 102. May be. In practice, a wiring for taking out a signal from the detection electrode 101 to the first stage amplifier is formed on the insulating film 102, and a parasitic capacitance is generated between the frame member 104, but the wiring area is small and large. There is no impact.

(第2の実施の形態)
本実施の形態に係る電位測定装置は、初段増幅部の回路構成が第1の実施の形態と異なる形態である。その他は第1の実施の形態と同じである。第1の実施の形態での図4(a)の回路構成は、振動周波数が高くなった場合、FET自体のゲート部の容量によって、電流−電圧変換部でのゲインの減少が考えられる。図4(b)に、第2の実施形態のオペアンプを用いたトランスインピーダンス変換回路を示す。図4(b)の回路は、広帯域オペアンプを用いることにより、高速且つ高ゲインな電流−電圧変換を実現できる回路である。
(Second Embodiment)
The potential measuring device according to the present embodiment is different from the first embodiment in the circuit configuration of the first stage amplifier. Others are the same as in the first embodiment. In the circuit configuration of FIG. 4A in the first embodiment, when the vibration frequency becomes high, the gain in the current-voltage conversion unit may be reduced due to the capacitance of the gate portion of the FET itself. FIG. 4B shows a transimpedance conversion circuit using the operational amplifier according to the second embodiment. The circuit in FIG. 4B is a circuit that can realize high-speed and high-gain current-voltage conversion by using a wide-band operational amplifier.

一般に、トランスインピーダンス回路は、入力端子部に入力容量Cが存在すると、周波数特性が劣化する。そのため、位相補償コンデンサCを帰還抵抗Rに並列に挿入して、負帰還回路の安定化を図る必要がある。しかし、挿入した位相補償コンデンサCにより高周波数域で帰還量が減少し、出力信号の低下が発生する。このように、入力容量が存在する(ここでは検知電極−支持基板間の寄生容量)と、トランスインピーダンスで実現できる電流−電圧変換のゲインが減少することが考えられる。 In general, in a transimpedance circuit, if an input capacitance CP exists in an input terminal portion, the frequency characteristics are deteriorated. Therefore, by inserting the parallel phase compensation capacitor C f to the feedback resistor R f, it is necessary to stabilize the negative feedback circuit. However, the amount of feedback decreases in the high frequency range due to the inserted phase compensation capacitor Cf , and the output signal decreases. As described above, when the input capacitance exists (here, the parasitic capacitance between the detection electrode and the support substrate), the current-voltage conversion gain that can be realized by the transimpedance may be reduced.

第2の実施の形態に係る電位測定装置を用いることによって、寄生容量Cを小さくできるため、回路が安定に動作する為に必要な位相補償コンデンサCも小さくできて上記ゲインの低下は起こらない。つまり、第1の実施の形態において、初段増幅部をトランスインピーダンス回路とすることによって、更に高い振動周波数においても、高いゲインの電流−電圧変換を行うことができる電位測定装置を実現できる。 By using the potential measuring apparatus according to the second embodiment, it is possible to reduce the parasitic capacitance C P, the lowering of the gain is also possible to reduce the phase compensation capacitor C f required for the circuit to operate stably occur Absent. That is, in the first embodiment, by using the first-stage amplifying unit as a transimpedance circuit, it is possible to realize a potential measuring device that can perform high-gain current-voltage conversion even at a higher vibration frequency.

なお、本実施形態でも、図4(b)に示すように支持基板(枠部材)をGNDに接地する構成としたが、本実施形態もこれに限ったものではなく、さまざまな構成を用いることができる。 In the present embodiment, the support substrate (frame member) is grounded to GND as shown in FIG. 4B. However, the present embodiment is not limited to this, and various configurations are used. Can do.

(第3の実施の形態)
本実施の形態に係る電位測定装置は、平行な機械的振動により静電容量を変化させる容量変化手段を用いる形態に関する。その他は、上記実施形態の何れかと同じである。
(Third embodiment)
The potential measuring apparatus according to the present embodiment relates to a form using capacitance changing means for changing capacitance by parallel mechanical vibration. Others are the same as in any of the above embodiments.

図5に、本実施の形態に係る電位測定装置を説明する模式図を示す。図5において、201はシールド部、202は開口部、203は梁、204は移動側の櫛歯電極、205は固定側の櫛歯電極、206は絶縁膜102上の配線、207は配線206に繋がったパッドである。シールド部201は、導電性の部材で構成されており、電界を空間的に成形する目的を持ち、或る電位に固定されている。シールド部201に開けられた開口部202を通して測定対象物から来る電気力線により、検知電極101上に電荷が誘導される。検知電極101へ誘導された電荷は、絶縁膜102上の配線206を経由して、パッド207から取り出され、電荷検出手段(初段増幅部)に接続されている(不図示)。 FIG. 5 is a schematic diagram for explaining the potential measuring apparatus according to this embodiment. In FIG. 5, 201 is a shield part, 202 is an opening, 203 is a beam, 204 is a comb electrode on the moving side, 205 is a comb electrode on the fixed side, 206 is a wiring on the insulating film 102, 207 is a wiring 206 It is a connected pad. The shield part 201 is made of a conductive member, has the purpose of forming an electric field spatially, and is fixed at a certain potential. Electric charges are induced on the detection electrode 101 by electric lines of force coming from the measurement object through the opening 202 opened in the shield part 201. The charge induced to the detection electrode 101 is taken out from the pad 207 via the wiring 206 on the insulating film 102 and connected to the charge detection means (first stage amplification unit) (not shown).

移動側櫛歯電極204と固定側櫛歯電極205間に交流の高電圧を印加することにより、電極の櫛歯部の間に引力を発生させ、方向Cの向きにシールド部201が往復運動を行う。その往復運動により、検知電極101に電荷が誘導される。 By applying an alternating high voltage between the moving comb electrode 204 and the fixed comb electrode 205, an attractive force is generated between the comb teeth of the electrode, and the shield unit 201 reciprocates in the direction C. Do. Due to the reciprocating motion, charges are induced in the detection electrode 101.

図6は、本実施の形態に係る電位測定装置の、検知電極101とそれを保持する構造を説明する断面の模式図である。図6(a)は、図5の断面Dでの断面図である。 FIG. 6 is a schematic cross-sectional view illustrating the detection electrode 101 and a structure for holding the detection electrode 101 of the potential measurement device according to the present embodiment. FIG. 6A is a sectional view taken along a section D in FIG.

図6(a)のように、複数の空洞部104aを持つ枠部材104により支持された絶縁膜102上に、各空洞部104aに対応して検知電極101がライン状ないし長尺な短冊状に構成されている。ライン状の検知電極101の下方向は、空洞部104aとなって枠部材104の材料部が存在しない構成となっている。枠部材104の複数の材料部を検知電極101と対応させてライン状に配置することによって、検知電極101のトータルの電極面積が大きい場合においても、検知電極101を支持する絶縁膜102のたわみを減らしたり、使用可能な強度範囲を広げることができる。また、ライン状に配置した検知電極101の数を多数配置することによって、誘導される電荷量を増やすことができる。 As shown in FIG. 6A, on the insulating film 102 supported by the frame member 104 having a plurality of cavities 104a, the detection electrodes 101 are formed in a line shape or a long strip shape corresponding to each of the cavities 104a. It is configured. The downward direction of the line-shaped detection electrode 101 is a cavity portion 104a so that the material portion of the frame member 104 does not exist. By arranging the plurality of material portions of the frame member 104 in a line corresponding to the detection electrode 101, even when the total electrode area of the detection electrode 101 is large, the deflection of the insulating film 102 supporting the detection electrode 101 can be reduced. It can be reduced or the usable strength range can be expanded. Further, by arranging a large number of detection electrodes 101 arranged in a line, the amount of induced charge can be increased.

これらの特徴を持つ本実施の形態により、トータルの電極面積の大きい電位測定装置においても、出力信号を減少させること無く、寄生容量の少ない構造を構成でき、高精度な電位測定装置を実現できる。 According to the present embodiment having these characteristics, even in a potential measuring device having a large total electrode area, a structure with less parasitic capacitance can be configured without reducing the output signal, and a highly accurate potential measuring device can be realized.

また、上記のライン状の検知電極101を持つ電位測定装置の構成においては、検知電極101の幅が小さいのでシールド部201に必要とされる移動量を少なくできるため、振動の高速化が可能となる。この構成は、高速な振動における寄生容量の出力信号への影響を効果的に低減することができるため特に望ましい。 Further, in the configuration of the potential measuring device having the above-described line-shaped detection electrode 101, since the width of the detection electrode 101 is small, the amount of movement required for the shield part 201 can be reduced, so that the speed of vibration can be increased. Become. This configuration is particularly desirable because it can effectively reduce the influence of parasitic capacitance on the output signal during high-speed vibration.

図6(b)は、本実施形態の別の構成を示す断面の模式図である。図6(b)では、シールド部201の1つの開口部202と枠部材104の1つの空洞部104aに対して、複数の検知電極101A、101Bを配置している。本実施形態を用いることで、空洞部104aの存在により複数の検知電極101A、101Bの信号間でのクロストークが発生しにくいため、複数の検知電極101A、101Bから異なる出力信号を精度良く分離して取り出すことができる。この様に、差動処理できる所望の信号が出力できるように、シールド部201の1つの開口部202に対して、複数の検知電極101A、101Bを任意に配置することが可能になるため、高性能な電位測定装置を実現できる。 FIG. 6B is a schematic cross-sectional view showing another configuration of the present embodiment. In FIG. 6B, a plurality of detection electrodes 101 </ b> A and 101 </ b> B are arranged for one opening 202 of the shield part 201 and one cavity 104 a of the frame member 104. By using this embodiment, crosstalk between the signals of the plurality of detection electrodes 101A and 101B is unlikely to occur due to the presence of the cavity 104a, so that different output signals are accurately separated from the plurality of detection electrodes 101A and 101B. Can be taken out. In this way, a plurality of detection electrodes 101A and 101B can be arbitrarily arranged in one opening 202 of the shield part 201 so that a desired signal that can be differentially processed can be output. A high-performance potential measuring device can be realized.

また、シールド部201の1つの開口部202と枠部材104の1つの空洞部104aに対して、複数の検知電極101A、101Bを配置するため、配置が容易であり小型な構成とでき、高速な振動周波数の電位測定装置を提供することができる。なお、本実施の形態では、静電駆動方式の電位測定装置としたが、この駆動方式に限るものではなく、検知電極101に対してシールド部201を平行に駆動できるものであれば、如何なる方式のものでも用いることができる。 In addition, since the plurality of detection electrodes 101A and 101B are arranged in one opening 202 of the shield part 201 and one hollow part 104a of the frame member 104, the arrangement can be easily made and a small configuration can be achieved. An apparatus for measuring a vibration frequency potential can be provided. In this embodiment, the electrostatic drive type potential measuring device is used. However, the invention is not limited to this drive method, and any method can be used as long as the shield unit 201 can be driven in parallel to the detection electrode 101. Can also be used.

(第4の実施の形態)
本実施の形態に係る電位測定装置は、揺動中心軸の回りの機械的な振動により静電容量を変化させる容量変化手段を有する形態に関する。その他は、第1の実施の形態ないしは第2実施の形態と同じである。
(Fourth embodiment)
The potential measuring apparatus according to the present embodiment relates to a form having capacitance changing means for changing the capacitance by mechanical vibration around the oscillation central axis. Others are the same as the first embodiment or the second embodiment.

図7に、本実施の形態に係る電位測定装置を説明する模式図を示す。図7において、301はシールド部、302は開口部、303は支持基板、304はねじりばね、305は配線、306はパッド、307はコイル基板、308はコイル、309はパッドである。シールド部301は、導電性の部材で構成されており、測定対象物からの電界を空間的に成形する目的を持ち、或る電位に固定されている。シールド部301に開けられた開口部302を通して、振動する枠部材104上に絶縁膜102を介して設けられた検知電極101に電荷が誘導される。 FIG. 7 is a schematic diagram for explaining the potential measuring apparatus according to this embodiment. In FIG. 7, reference numeral 301 denotes a shield portion, 302 denotes an opening, 303 denotes a support substrate, 304 denotes a torsion spring, 305 denotes a wiring, 306 denotes a pad, 307 denotes a coil substrate, 308 denotes a coil, and 309 denotes a pad. The shield part 301 is composed of a conductive member, and has the purpose of spatially shaping the electric field from the measurement object, and is fixed at a certain potential. Electric charges are induced to the detection electrode 101 provided on the vibrating frame member 104 via the insulating film 102 through the opening 302 opened in the shield part 301.

本実施形態では、2つの空洞部104aを有する枠部材104が一体となって形成されており、枠部材104は一対のねじりばね304により支持基板303に揺動振動可能に支持されている。絶縁膜102上には、配線305とパッド306も形成されており、電荷検出手段(初段増幅部)に接続されている(不図示)。一体となった枠部材104を揺動させるために、コイル基板307上にコイル308、パッド309が形成されている。 In the present embodiment, a frame member 104 having two hollow portions 104a is integrally formed, and the frame member 104 is supported on a support substrate 303 by a pair of torsion springs 304 so as to be able to oscillate. A wiring 305 and a pad 306 are also formed on the insulating film 102 and connected to charge detection means (first stage amplifier) (not shown). A coil 308 and a pad 309 are formed on the coil substrate 307 to swing the integrated frame member 104.

図8は、本実施の形態に係る電位測定装置の検知電極101A、101Bとそれを保持する構造を説明する模式図である。図8(a)は平面を示す模式図、図8(b)は図8(a)の断面Eでの模式図である。図示するように、検知電極101A、101Bはそれぞれ枠部材104の2つの空洞部104aに対応して配置されている。 FIG. 8 is a schematic diagram for explaining the detection electrodes 101A and 101B and the structure for holding the detection electrodes 101A and 101B of the potential measuring device according to the present embodiment. FIG. 8A is a schematic diagram showing a plane, and FIG. 8B is a schematic diagram in a section E of FIG. 8A. As shown in the figure, the detection electrodes 101A and 101B are arranged corresponding to the two cavities 104a of the frame member 104, respectively.

図8において、310は磁石である。図8(b)のように、一体となった枠部材104の下部には、S極とN極を図示のように配置した磁石310が配置されている。コイル308に交流電流を流すことにより磁界を発生させ、磁石310との間に引っ張り力や反発力を発生させる。それにより、一対のねじりばね304で規定される軸Fを中心として方向Gの向きに、枠部材104を揺動(ねじり運動)させる。測定対象と検知電極101A、101Bとの距離が変化するため、検知電極101A、101B上に電荷が誘導される。ここでは、2枚の検知電極101A、101Bを図8のように配置しているため、それぞれの検知電極101A、101Bが測定対象に対して上下逆の方向に揺動される。したがって、それぞれの検知電極101A、101Bからは、位相の180度反転した出力信号が出力される。こうして、本実施の形態では、位相が180度反転した出力信号を分離して得て差動処理するので、同相ノイズの除去比が高い電位測定装置を提供することができる。 In FIG. 8, 310 is a magnet. As shown in FIG. 8B, a magnet 310 having an S pole and an N pole arranged as shown in the drawing is arranged at the lower part of the frame member 104 integrated. By applying an alternating current to the coil 308, a magnetic field is generated, and a tensile force or a repulsive force is generated between the coil 308 and the magnet 310. Thereby, the frame member 104 is swung (twisted) in the direction G around the axis F defined by the pair of torsion springs 304. Since the distance between the measurement object and the detection electrodes 101A and 101B changes, an electric charge is induced on the detection electrodes 101A and 101B. Here, since the two detection electrodes 101A and 101B are arranged as shown in FIG. 8, the respective detection electrodes 101A and 101B are swung in the upside down direction with respect to the measurement target. Therefore, an output signal whose phase is inverted by 180 degrees is output from each of the detection electrodes 101A and 101B. Thus, in this embodiment, since the output signal whose phase is inverted by 180 degrees is obtained separately and differentially processed, it is possible to provide a potential measuring device having a high common-mode noise rejection ratio.

この構成は、枠部材104全体を小さくすることにより、ねじれの振動周波数を高くすることが容易である。本実施の形態の構成も、高速な振動における寄生容量の出力信号への影響を効果的に低減することができるため特に望ましい。 In this configuration, it is easy to increase the torsional vibration frequency by reducing the entire frame member 104. The configuration of this embodiment is also particularly desirable because it can effectively reduce the influence of parasitic capacitance on the output signal due to high-speed vibration.

また、図8(b)のように、検知電極101A、101Bの下方向は、絶縁膜102のみで枠部材104の材料部は存在しない構造となっている。そのため、上記実施の形態と同様に、検知電極101と枠部材(支持基板)104間の寄生容量が小さい構造となっている。 Further, as shown in FIG. 8B, the lower direction of the detection electrodes 101A and 101B has a structure in which only the insulating film 102 is present and the material portion of the frame member 104 does not exist. Therefore, as in the above embodiment, the parasitic capacitance between the detection electrode 101 and the frame member (support substrate) 104 is small.

また、一体となった枠部材104の中央部の材料部に揺動の軸Fを一致させているため、揺動時の軸のたわみを軽減することができる。よって、ねじれの周波数の設計が容易となり、また安定したねじれの往復運動を行うことができるため、安定した出力を得られる。したがって、出力が短期間に安定するため、高精度且つ高速な電位測定装置を提供することができる。 Further, since the swinging shaft F is made to coincide with the material part at the center of the frame member 104 integrated, the shaft deflection at the time of swinging can be reduced. Therefore, it becomes easy to design the frequency of torsion, and stable reciprocating motion of torsion can be performed, so that a stable output can be obtained. Therefore, since the output is stabilized in a short time, a highly accurate and high-speed potential measuring device can be provided.

但し、剛性が必要十分であれば、枠部材104の材料部に揺動の軸Fを一致させる必要は無く、外周部のみが材料部となった枠部材104によって構成してもよい。また、枠部材104の空洞部104aの数は2つに限定するものではなく、2つ以上の空洞部104aを持つ枠部材104の構成としてもよい。 However, if the rigidity is necessary and sufficient, it is not necessary to make the swing axis F coincide with the material portion of the frame member 104, and the frame member 104 may be constituted by only the outer peripheral portion as the material portion. Further, the number of the hollow portions 104a of the frame member 104 is not limited to two, and the frame member 104 having two or more hollow portions 104a may be used.

また、枠部材104の下部に、複数の空洞部104aに渡って磁石310を配置しているため、枠部材104全体の剛性を高めることができる。つまり、検知電極との間の寄生容量を低減するために枠部材104の材料部を細くしても、枠部材104自体の剛性を保つことができる。こうして、寄生容量の影響を更に低減することができ、高精度な電位測定装置を提供することができる。 In addition, since the magnet 310 is disposed under the frame member 104 over the plurality of cavities 104a, the rigidity of the entire frame member 104 can be increased. That is, the rigidity of the frame member 104 itself can be maintained even if the material portion of the frame member 104 is thinned in order to reduce the parasitic capacitance with the detection electrode. Thus, the influence of the parasitic capacitance can be further reduced, and a highly accurate potential measuring device can be provided.

なお、本実施の形態では、図8のように2枚の検知電極101A、101Bを配置したが、本実施形態はこれに限るものではなく、任意の位置・形状の検知電極101を複数配置したものであってもよい。なお、本実施の形態でも、電磁駆動方式の電位測定装置を用いたが、本実施形態はこれに限るものではなく、枠部材104を揺動するように駆動できる方式であれば、如何なるものも用いることができる。 In this embodiment, the two detection electrodes 101A and 101B are arranged as shown in FIG. 8, but the present embodiment is not limited to this, and a plurality of detection electrodes 101 having arbitrary positions and shapes are arranged. It may be a thing. In the present embodiment, an electromagnetic drive type potential measuring device is used. However, the present embodiment is not limited to this, and any method can be used as long as the frame member 104 can be driven to swing. Can be used.

ここで、本発明の電位測定装置を用いた画像形成装置の実施例を、図9を用いて説明する。図9は、感光ドラム401の回転軸Hと垂直な平面上での配置を示した図である。図9において、401は感光ドラム、402は紙、403はクリーナ部、404は帯電手段、405は露光手段、406は本発明の電位測定装置、407は現像手段である。 Here, an embodiment of an image forming apparatus using the potential measuring apparatus of the present invention will be described with reference to FIG. FIG. 9 is a view showing the arrangement of the photosensitive drum 401 on a plane perpendicular to the rotation axis H. FIG. In FIG. 9, 401 is a photosensitive drum, 402 is paper, 403 is a cleaner, 404 is charging means, 405 is exposure means, 406 is a potential measuring device of the present invention, and 407 is development means.

感光ドラム401は、軸Hを中心に方向Iの向きに回転する。感光ドラム401は、帯電手段404により帯電され、露光手段405により露光されて帯電パターンが形成される。電位測定装置406は、感光ドラム401上での帯電パターンの電位を測定する。現像手段407においては、帯電パターン部のみ(または、帯電パターン部以外のみ)にトナー等を吸着させて現像し、方向Jに走査されている紙402上に画像が転写される。その後、感光ドラム401は、クリーナ部403により清掃される。電位測定装置406での測定結果を用いて、帯電手段404や露光手段405などの制御を行い、画像の調整を行う。 The photosensitive drum 401 rotates about the axis H in the direction I. The photosensitive drum 401 is charged by the charging unit 404 and is exposed by the exposure unit 405 to form a charged pattern. The potential measuring device 406 measures the potential of the charging pattern on the photosensitive drum 401. In the developing unit 407, only the charged pattern portion (or only other than the charged pattern portion) is developed by adsorbing toner or the like, and the image is transferred onto the paper 402 scanned in the direction J. Thereafter, the photosensitive drum 401 is cleaned by the cleaner unit 403. Using the measurement result of the potential measuring device 406, the charging unit 404 and the exposure unit 405 are controlled to adjust the image.

本実施例では、電位測定装置406として、第3の実施の形態(図5、図6(a))に記載した電位測定装置を用いる。枠部材104はシリコン基板を用いており、絶縁膜102はシリコン酸化膜(厚さ200nm)である。検知電極101には金を用いている。シールド部201、梁203、櫛歯電極204、205は、Niにより構成されている。また、シールド部201、梁203、櫛歯電極204は、GNDに接地されている。 In this example, the potential measuring device described in the third embodiment (FIGS. 5 and 6A) is used as the potential measuring device 406. The frame member 104 uses a silicon substrate, and the insulating film 102 is a silicon oxide film (thickness: 200 nm). Gold is used for the detection electrode 101. The shield part 201, the beam 203, and the comb-tooth electrodes 204 and 205 are made of Ni. Further, the shield part 201, the beam 203, and the comb electrode 204 are grounded to GND.

シールド部201には、10μm×100μmの開口部202が、20μm間隔でライン状(長尺な短冊状)に50個配置されている。開口部202直下には、20μm×100μmの検知電極101が各開口部202に対応してライン状に配置されている。ライン状に並んだ検知電極101は配線206によって接続され、初段増幅部に接続されている(不図示)。初段増幅部では、50MegΩの高抵抗とオペアンプ(ユニティーゲイン周波数:500MHz)を用いたトランスインピーダンス回路を用いて電流(電荷)−電圧変換を行う。 In the shield portion 201, 50 openings 202 of 10 μm × 100 μm are arranged in a line shape (long strip shape) at intervals of 20 μm. A detection electrode 101 of 20 μm × 100 μm is arranged in a line corresponding to each opening 202 immediately below the opening 202. The detection electrodes 101 arranged in a line are connected by a wiring 206 and are connected to the first stage amplification unit (not shown). In the first-stage amplifier, current (charge) -voltage conversion is performed using a transimpedance circuit using a high resistance of 50 MegΩ and an operational amplifier (unity gain frequency: 500 MHz).

この電位測定装置は、マイクロマシーニング技術を用いて、成膜やエッチング、メッキ等を行うことによって容易に形成できる。櫛歯電極204、205間に、共振周波数(10kHz前後)の交流の電圧を印加することにより、シールド部201は±10μm程度移動する。この振動にともなって、検知電極101に接続された初段増幅部から、感光ドラム401の電位と対応する信号を出力することができる。 This potential measuring device can be easily formed by performing film formation, etching, plating, or the like using micromachining technology. By applying an alternating voltage having a resonance frequency (around 10 kHz) between the comb electrodes 204 and 205, the shield part 201 moves by about ± 10 μm. Along with this vibration, a signal corresponding to the potential of the photosensitive drum 401 can be output from the first-stage amplifier connected to the detection electrode 101.

本実施例に係る画像形成装置における電位測定装置406は、高い振動周波数において、検知電極101の合計面積が大きい場合においても、信号を減衰無しに取り出すことができるため、高速且つ高出力(高精度)な信号出力を得ることができる。したがって、本実施例の画像形成装置は、感光ドラム401の電位分布を高速且つ正確に把握し、画像制御を行うことができるため、高画質な画像を形成できる。 Since the potential measuring device 406 in the image forming apparatus according to the present embodiment can extract a signal without attenuation even when the total area of the detection electrodes 101 is large at a high vibration frequency, the potential measuring device 406 can perform high speed and high output (high accuracy). ) Signal output can be obtained. Therefore, the image forming apparatus of the present embodiment can grasp the potential distribution of the photosensitive drum 401 accurately at high speed and perform image control, so that a high-quality image can be formed.

本実施例は、電位測定装置406に第4の実施形態の電位測定装置(図7、図8)を用いたことが実施例1と異なる。その他は、実施例1と同様である。 This example differs from Example 1 in that the potential measuring device (FIG. 7, FIG. 8) of the fourth embodiment is used as the potential measuring device 406. Others are the same as in the first embodiment.

本実施例の電位測定装置406において、シールド301は鉄であり、1mm×1mmの開口部302が形成されている。支持基板303はシリコンであり、検知電極101、配線305、パッド306は金で構成される。コイル基板307はシリコンであり、コイル308、パッド309は銅により構成されている。シリコン窒化膜である絶縁膜102(厚さ200nm)上に配置される2枚の検知電極101A、101Bは、400μm×900μmの大きさである。シールド301の開口部302の直下に配置される枠部材104は、1mm×1mmの大きさである。この電位測定装置は、マイクロマシーニング技術を用いて、成膜やエッチング等を行うことにより容易に形成することができる。 In the potential measuring device 406 of the present embodiment, the shield 301 is iron, and an opening 302 of 1 mm × 1 mm is formed. The support substrate 303 is silicon, and the detection electrode 101, the wiring 305, and the pad 306 are made of gold. The coil substrate 307 is made of silicon, and the coil 308 and the pad 309 are made of copper. The two detection electrodes 101A and 101B disposed on the insulating film 102 (thickness 200 nm), which is a silicon nitride film, have a size of 400 μm × 900 μm. The frame member 104 disposed immediately below the opening 302 of the shield 301 has a size of 1 mm × 1 mm. This potential measuring device can be easily formed by performing film formation, etching, or the like using micromachining technology.

コイル308に、枠部材104の共振周波数(30kHz)の交流電流を流すことによって、枠部材104はねじりばね304を中心に、機械的に±3度の揺動を行う。それにより、2枚の検知電極101A、101Bにそれぞれ接続された初段増幅部(不図示)からのそれぞれの出力は、180度位相がズレた(正負極が反転した)波形となる。ここで、初段増幅部では、100MegΩの高抵抗とオペアンプ(ユニティーゲイン周波数:2GHz)を用いたトランスインピーダンス回路を用いて電流(電荷)−電圧変換を行っている。 By passing an alternating current having a resonance frequency (30 kHz) of the frame member 104 through the coil 308, the frame member 104 mechanically swings about ± 3 degrees around the torsion spring 304. Thereby, each output from the first stage amplifier (not shown) connected to each of the two detection electrodes 101A and 101B has a waveform in which the phase is shifted by 180 degrees (positive and negative electrodes are inverted). Here, in the first-stage amplifier, current (charge) -voltage conversion is performed using a transimpedance circuit using a high resistance of 100 MegΩ and an operational amplifier (unity gain frequency: 2 GHz).

本実施例に係る画像形成装置における電位測定装置は、高速な差動信号出力を簡単な構成で容易に取り出すことができるため、ノイズ耐性に優れた信号出力を得られる。したがって、本実施例の画像形成装置は、ノイズの影響を大きく受けることなく、感光ドラムの電位分布を高速且つ正確に把握し、画像制御を行うことができるため、高画質な画像を形成できる。 Since the potential measuring device in the image forming apparatus according to the present embodiment can easily extract a high-speed differential signal output with a simple configuration, a signal output excellent in noise resistance can be obtained. Therefore, the image forming apparatus according to the present embodiment can quickly and accurately grasp the potential distribution of the photosensitive drum and perform image control without being greatly affected by noise, so that a high-quality image can be formed.

第1の実施の形態に係る電位測定装置の検知電極とそれを保持する構造を説明する模式図である。It is a schematic diagram explaining the detection electrode of the electric potential measuring device which concerns on 1st Embodiment, and the structure holding it. 変形例に係る電位測定装置の検知電極とそれを保持する構造を説明する断面図である。It is sectional drawing explaining the detection electrode of the electric potential measuring device which concerns on a modification, and the structure holding it. 他の変形例に係る電位測定装置の検知電極とそれを保持する構造を説明する断面図である。It is sectional drawing explaining the detection electrode of the electric potential measuring device which concerns on another modification, and the structure holding it. 本発明に係る電位測定装置の電流−電圧変換を行う初段増幅部の回路例について説明する図であるIt is a figure explaining the circuit example of the first stage amplifier part which performs current-voltage conversion of the electric potential measuring device which concerns on this invention. 第3の実施の形態に係る電位測定装置を説明する模式図である。It is a schematic diagram explaining the electric potential measurement apparatus which concerns on 3rd Embodiment. 第3の実施の形態に係る電位測定装置の検知電極とそれを保持する構造を説明する断面の模式図である。It is a cross-sectional schematic diagram explaining the detection electrode of the electric potential measuring device which concerns on 3rd Embodiment, and the structure holding it. 第4の実施の形態に係る電位測定装置を説明する模式図である。It is a schematic diagram explaining the electric potential measurement apparatus which concerns on 4th Embodiment. 第4の実施の形態に係る電位測定装置の検知電極とそれを保持する構造を説明する模式図である。It is a schematic diagram explaining the detection electrode of the electric potential measuring device which concerns on 4th Embodiment, and the structure holding it. 本発明の電位測定装置を用いた画像形成装置の、感光ドラムの回転軸と垂直な平面上での配置を示した図である。FIG. 3 is a diagram showing an arrangement of an image forming apparatus using the potential measuring device of the present invention on a plane perpendicular to a rotation axis of a photosensitive drum. 検知電極−支持基板間に発生する寄生容量を説明する模式図である。It is a schematic diagram explaining the parasitic capacitance which generate | occur | produces between a detection electrode and a support substrate. 非接触型電位測定装置の概念的な構成図である。It is a notional block diagram of a non-contact potential measuring device.

符号の説明Explanation of symbols

101、101A、101B 検知電極
102 絶縁膜(絶縁体)
104 絶縁膜を保持する部材(枠部材、支持部材)
104a 凹部(枠部材の空洞部)
201−205、308、310 容量変化手段
101, 101A, 101B Detection electrode 102 Insulating film (insulator)
104 Member for holding an insulating film (frame member, support member)
104a Concavity (cavity of frame member)
201-205, 308, 310 Capacity changing means

Claims (10)

測定対象の面と検知電極間の静電容量を変化させるための容量変化手段と、容量変化手段によって前記検知電極に静電誘導される電荷量を検出するための検出手段とを有し、前記検出手段は、前記検知電極と、前記検知電極を保持する絶縁膜と、前記絶縁膜を保持する部材を含み、前記絶縁膜は、前記検知電極と接触している領域と、前記部材と接触している領域とが、絶縁膜に平行な方向において、少なくとも一部において重複していないことを特徴とする電位測定装置。 Capacitance changing means for changing the capacitance between the surface to be measured and the detection electrode, and detection means for detecting the amount of charge electrostatically induced in the detection electrode by the capacitance changing means, The detection means includes the detection electrode, an insulating film that holds the detection electrode, and a member that holds the insulating film. The insulating film is in contact with the region that is in contact with the detection electrode and the member. The potential measuring device is characterized in that at least a part of the region does not overlap in a direction parallel to the insulating film. 前記検出手段は、単一の枠部材に対して、複数の検知電極を有している請求項1に記載の電位測定装置。 The potential measuring apparatus according to claim 1, wherein the detection unit includes a plurality of detection electrodes with respect to a single frame member. 前記検出手段は、高抵抗を用いて電流−電圧変化し、FETソースフォロワ回路によりインピーダンス変化して電圧出力する回路構成を有している請求項1または2に記載の電位測定装置。 The potential measuring device according to claim 1, wherein the detection unit has a circuit configuration in which current-voltage changes using a high resistance and impedance is changed by an FET source follower circuit to output a voltage. 前記検出手段は、高抵抗とオペアンプによるトランスインピーダンス回路により電圧出力する回路構成を有している請求項1または2に記載の電位測定装置。 The potential measuring apparatus according to claim 1, wherein the detection unit has a circuit configuration that outputs a voltage by a transimpedance circuit including a high resistance and an operational amplifier. 前記容量変化手段は、機械的な振動により測定対象の面と検知電極間の静電容量を変化させる請求項1に記載の電位測定装置。 The potential measuring device according to claim 1, wherein the capacitance changing unit changes a capacitance between a surface to be measured and the detection electrode by mechanical vibration. 前記容量変化手段は、開口部を有するシールドを前記検知電極と平行な方向に振動させることにより容量を変化させる請求項1乃至5の何れかに記載の電位測定装置。 The potential measuring device according to claim 1, wherein the capacitance changing unit changes the capacitance by vibrating a shield having an opening in a direction parallel to the detection electrode. 前記検出手段は、枠部材を揺動させるねじりばねを有しており、前記容量変化手段は、枠部材をねじりばねの回りにねじり往復運動させることにより容量変化を行う請求項1乃至5の何れかに記載の電位測定装置。 The detection means includes a torsion spring for swinging the frame member, and the capacity changing means changes the capacity by torsionally reciprocating the frame member around the torsion spring. A potential measuring device according to claim 1. 前記容量変化手段と検出手段は、マイクロマシーニング技術により形成されている請求項1乃至7の何れかに記載の電位測定装置。 The potential measuring device according to claim 1, wherein the capacitance changing unit and the detecting unit are formed by a micromachining technique. 請求項1乃至8の何れかに記載の電位測定装置と画像形成手段を備え、前記電位測定装置の検知電極を形成された面が前記画像形成手段の電位測定の対象となる面と対向して配置され、前記画像形成手段が電位測定装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする画像形成装置。 9. The electric potential measuring device according to claim 1 and an image forming unit, wherein a surface on which the detection electrode of the electric potential measuring device is formed is opposed to a surface of the image forming unit which is a target of potential measurement. An image forming apparatus, wherein the image forming unit controls image formation using a signal detection result of a potential measuring device. 測定対象の面と検知電極間の静電容量を変化させるための容量変化手段と、前記容量変化手段によって前記検知電極に静電誘導される電荷を検出するための電荷検出手段とを備え、
前記検出手段は、前記検知電極と前記検知電極と接した状態で支持する支持部材とを備え、
前記支持部材の前記検知電極と接触する面が、絶縁体であり、
前記接触する面の反対側に凹部を備え、且つ前記凹部内の空間に前記絶縁体が露出していることを特徴とする電位測定装置。
A capacitance changing means for changing the capacitance between the surface to be measured and the detection electrode; and a charge detection means for detecting a charge electrostatically induced in the detection electrode by the capacitance changing means,
The detection means includes a support member that supports the detection electrode and the detection electrode in contact with the detection electrode,
The surface of the support member that contacts the detection electrode is an insulator,
A potential measuring device comprising a concave portion on the opposite side of the contacting surface and exposing the insulator in a space in the concave portion.
JP2004177595A 2004-06-15 2004-06-15 Electric potential measuring apparatus and image forming apparatus Pending JP2006003130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177595A JP2006003130A (en) 2004-06-15 2004-06-15 Electric potential measuring apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177595A JP2006003130A (en) 2004-06-15 2004-06-15 Electric potential measuring apparatus and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2006003130A true JP2006003130A (en) 2006-01-05

Family

ID=35771649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177595A Pending JP2006003130A (en) 2004-06-15 2004-06-15 Electric potential measuring apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2006003130A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212262A (en) * 2006-02-09 2007-08-23 Canon Inc Rocking body device, potential measuring device, and optical deflection device
CN101666990B (en) * 2008-09-03 2012-07-11 佳能株式会社 Potential sensor, electrophotographic image forming apparatus including the potential sensor, and manufacturing method of potential sensor
KR101430739B1 (en) * 2012-09-28 2014-08-18 세메스 주식회사 Jig and Charge determining method
US10801858B2 (en) 2016-03-31 2020-10-13 Baidu Online Network Technology (Beijing) Co., Ltd. Map based navigation method, apparatus and storage medium
WO2023053756A1 (en) * 2021-09-28 2023-04-06 株式会社村田製作所 Moisture measurement device
CN117517803A (en) * 2023-11-13 2024-02-06 北京信息科技大学 Vertical modulation resonant electric field sensor and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212262A (en) * 2006-02-09 2007-08-23 Canon Inc Rocking body device, potential measuring device, and optical deflection device
CN101666990B (en) * 2008-09-03 2012-07-11 佳能株式会社 Potential sensor, electrophotographic image forming apparatus including the potential sensor, and manufacturing method of potential sensor
KR101430739B1 (en) * 2012-09-28 2014-08-18 세메스 주식회사 Jig and Charge determining method
US10801858B2 (en) 2016-03-31 2020-10-13 Baidu Online Network Technology (Beijing) Co., Ltd. Map based navigation method, apparatus and storage medium
WO2023053756A1 (en) * 2021-09-28 2023-04-06 株式会社村田製作所 Moisture measurement device
CN117517803A (en) * 2023-11-13 2024-02-06 北京信息科技大学 Vertical modulation resonant electric field sensor and preparation method thereof
CN117517803B (en) * 2023-11-13 2024-05-07 北京信息科技大学 Vertical modulation resonant electric field sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5027984B2 (en) Potential measuring apparatus using oscillator, potential measuring method, and image forming apparatus
US7548066B2 (en) Potential measuring device and image forming apparatus using the same
US7741850B2 (en) Electric potential measuring apparatus, and image forming apparatus
JP5188024B2 (en) Oscillator device, potential measuring device, and optical deflection device
JP2006162457A (en) Electric potential measuring device and image forming apparatus
US7372278B2 (en) Electric potential measuring apparatus electrostatic capacitance measuring apparatus, electric potential measuring method, electrostatic capacitance measuring method, and image forming apparatus
JP2006003130A (en) Electric potential measuring apparatus and image forming apparatus
JP2004294351A (en) Electric potential sensor and image forming apparatus
JP4794828B2 (en) Potential measuring apparatus and image forming apparatus
JP2007046981A (en) Electric potential measuring apparatus and image forming apparatus
JP2007163326A (en) Potential measuring device and method for manufacturing potential measuring device
JPH07190784A (en) Angular velocity detecting device
JP4273049B2 (en) Potential measuring apparatus and image forming apparatus
US7639020B2 (en) Potential sensor and image forming apparatus having potential sensor
JP4440065B2 (en) Potential measuring apparatus and image forming apparatus
JP5193541B2 (en) Angular velocity detector
JP4950574B2 (en) Potential measuring apparatus and potential measuring method
JP2007298451A (en) Potential measuring instrument, and image forming device equipped with potential measuring instrument
JP2006214764A (en) Potential measurement apparatus and image forming apparatus
JP2007298450A (en) Electric potential measuring apparatus and image forming apparatus
JP2006337161A (en) Rotation vibration device and potential measuring device
JPH11271354A (en) Capacitive sensor