JP4273049B2 - Potential measuring apparatus and image forming apparatus - Google Patents

Potential measuring apparatus and image forming apparatus Download PDF

Info

Publication number
JP4273049B2
JP4273049B2 JP2004204531A JP2004204531A JP4273049B2 JP 4273049 B2 JP4273049 B2 JP 4273049B2 JP 2004204531 A JP2004204531 A JP 2004204531A JP 2004204531 A JP2004204531 A JP 2004204531A JP 4273049 B2 JP4273049 B2 JP 4273049B2
Authority
JP
Japan
Prior art keywords
electrode
dielectric constant
potential measuring
measurement object
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004204531A
Other languages
Japanese (ja)
Other versions
JP2006029796A5 (en
JP2006029796A (en
Inventor
好克 市村
義貴 財津
隆志 牛島
篤史 香取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004204531A priority Critical patent/JP4273049B2/en
Priority to US11/178,649 priority patent/US7049804B2/en
Publication of JP2006029796A publication Critical patent/JP2006029796A/en
Priority to US11/385,392 priority patent/US7741850B2/en
Publication of JP2006029796A5 publication Critical patent/JP2006029796A5/ja
Application granted granted Critical
Publication of JP4273049B2 publication Critical patent/JP4273049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)

Description

本発明は、非接触型の電位測定装置、及びその電位測定装置を有する複写機、プリンタ等に適応可能な画像形成装置に関する。 The present invention relates to a non-contact type potential measuring device and an image forming apparatus applicable to a copying machine, a printer, and the like having the potential measuring device.

従来における画像形成装置として、例えば、感光ドラムを有し、電子写真式によって画像形成を行う装置においては、常に安定した画質を得るために、どのような環境下でも感光ドラムの電位を均一に帯電しておく必要がある。このため、感光ドラムの帯電電位を電位測定装置を用いて測定し、その結果を利用して感光ドラムの電位を均一に保つようなフィードバック制御を行っている。 As a conventional image forming apparatus, for example, in an apparatus that has a photosensitive drum and performs image formation by electrophotography, the potential of the photosensitive drum is charged uniformly in any environment in order to always obtain a stable image quality. It is necessary to keep it. For this reason, the charging potential of the photosensitive drum is measured using a potential measuring device, and feedback control is performed using the result to keep the photosensitive drum potential uniform.

以下、従来の電位測定装置の動作について説明する。非接触式電位測定装置の第1の方式として、機械式交流電界誘導型と呼ばれる方法が、しばしば用いられる。この方式では、測定対象の表面の電位は、電位測定装置に内蔵される検知電極から取り出される電流iの大きさの関数であり、
i=dQ/dt=d(C・V)/dt・・・・・・式(1)
という式で与えられる。ここで、Qは検知電極上に現れる電荷量、Cは検知電極と測定対象の間の結合容量、Vは測定対象の表面の電圧である。
The operation of the conventional potential measuring device will be described below. As a first method of the non-contact potential measuring device, a method called a mechanical AC electric field induction type is often used. In this method, the potential of the surface of the measurement object is a function of the magnitude of the current i taken from the detection electrode built in the potential measuring device,
i = dQ / dt = d (C · V) / dt (1)
It is given by the formula. Here, Q is the amount of charge appearing on the detection electrode, C is the coupling capacitance between the detection electrode and the measurement object, and V is the voltage on the surface of the measurement object.

また、この容量Cは
C=A・S/x・・・・・・式(2)
という式で与えられる。ここで、Aは比例定数、Sは検知電極の面積、xは検知電極と測定対象間の距離である。
The capacity C is C = A · S / x (2)
It is given by the formula. Here, A is a proportionality constant, S is the area of the detection electrode, and x is the distance between the detection electrode and the measurement object.

検知電極上に現れる電荷量Qは非常に小さな値で、周囲に存在する雑音の影響を受けやすい。このため、微小なQを正確に測定するために同期検波方式がしばしば用いられる。すなわち、こうした電位測定装置では、適当な手段で検知電極と測定対象間の容量Cの大きさを周期的に変調し、測定された信号から同じ周波数成分を検波することによって、必要な信号を得ている。 The amount of charge Q appearing on the detection electrode is a very small value, and is easily affected by noise existing around it. For this reason, a synchronous detection method is often used to accurately measure a minute Q. That is, in such a potential measuring apparatus, a necessary signal is obtained by periodically modulating the size of the capacitance C between the detection electrode and the measurement object by using an appropriate means, and detecting the same frequency component from the measured signal. ing.

上記第1の方法の代表的な例としては、測定対象と検知電極間にフォーク形状のシャッターを挿入し、このシャッターを測定対象の表面と平行な方向に周期的に動かすことで、検知電極上に到達する測定対象からの電気力線を周期的に変調する態様で遮り、実効的に検知電極の面積Sを変化させることで、測定対象と検知電極間の静電容量Cの変調を実現しているものや、測定対象と対向する位置に開口部を有した金属のシールド材を配置し、フォークの形状をした振動素子の先端に検知電極を設け、検知電極の位置を上記開口部直下で平行に変化させて検知電極に達する測定対象からの電気力線の数を変調することで、静電容量の変調を行うものなどがある。 As a typical example of the first method, a fork-shaped shutter is inserted between the measurement object and the detection electrode, and this shutter is periodically moved in a direction parallel to the surface of the measurement object, thereby The modulation of the capacitance C between the measurement target and the detection electrode is realized by blocking the electric field lines from the measurement target reaching the position in a manner that periodically modulates and effectively changing the area S of the detection electrode. Or a metal shield material having an opening at a position facing the object to be measured, a detection electrode is provided at the tip of the fork-shaped vibration element, and the position of the detection electrode is directly below the opening. There are some which modulate the capacitance by modulating the number of lines of electric force from the measurement object that reach the detection electrode by changing in parallel.

他方、近年、電子写真式画像形成装置を小型化するために、感光ドラムの小径化、ドラム周りの高密度化が必要とされ、電位測定装置も小型化、薄型化が求められている。しかしながら、前述の現状の機械式交流電界誘導型のセンサでは、センサ構造体の内部体積は、その殆どがフォーク状シャッター或いはフォーク状振動素子を振動させるための駆動機構等の組み立て部品によって占められている。従って、電位測定装置の小型化には、これら駆動機構の小型化が必須である。 On the other hand, in recent years, in order to reduce the size of an electrophotographic image forming apparatus, it is necessary to reduce the diameter of the photosensitive drum and increase the density around the drum, and the potential measuring apparatus is also required to be reduced in size and thickness. However, in the above-described current mechanical AC electric field induction type sensor, most of the internal volume of the sensor structure is occupied by assembly parts such as a fork-like shutter or a drive mechanism for vibrating the fork-like vibrating element. Yes. Therefore, miniaturization of these drive mechanisms is essential for miniaturization of the potential measuring device.

そこで、Micro Electro Mechanical System(MEMS)技術と呼ばれる半導体加工技術を利用して微細な機械構造を半導体基板上に形成する試みが報告されており、該技術を用いた機械式交流電界誘導型電位測定装置の報告もなされている。その典型的な例として、半導体加工技術で作製した微細な開口部を有するシャッター構造を検知電極の直上で振動させて、測定対象の電位の測定を試みるものがある(特許文献1参照)。 Therefore, attempts have been reported to form a fine mechanical structure on a semiconductor substrate using a semiconductor processing technology called Micro Electro Mechanical System (MEMS) technology, and mechanical AC electric field induction potential measurement using this technology is reported. Equipment reports have also been made. As a typical example, there is one that attempts to measure the potential of a measurement object by vibrating a shutter structure having a fine opening produced by a semiconductor processing technique directly above a detection electrode (see Patent Document 1).

MEMS技術を用いて電位測定装置を作製した場合、電位を検出するための電極は、金属薄膜を半導体基板上に薄い絶縁膜を介して形成したものを用いる。この場合、この検知電極と半導体基板は、金属−絶縁体−半導体(MIS)接合を形成し、検知電極の面積、絶縁体の厚さ、及び半導体中の担体(キャリア)密度に応じて、容量成分を有するようになる。一般に半導体基板は電気的にアースに接地されているため、検知電極とアースの間に寄生容量成分が生じることとなる。 When a potential measuring device is manufactured using the MEMS technology, an electrode for detecting a potential is a metal thin film formed on a semiconductor substrate via a thin insulating film. In this case, the detection electrode and the semiconductor substrate form a metal-insulator-semiconductor (MIS) junction, and the capacitance depends on the area of the detection electrode, the thickness of the insulator, and the density of carriers in the semiconductor. Comes with ingredients. In general, since the semiconductor substrate is electrically grounded, a parasitic capacitance component is generated between the detection electrode and the ground.

従来の機械式交流電界誘導型電位測定装置の概念的な概略図を、図8に示す。測定対象物505から放出される電気力線507は、チョッパー502の振動により変調を受けた後、検知電極501に到達する。この電気力線により、検知電極501上に誘導される電荷量が変調され、微小な交流電流が発生する。そして、この電流をアースに接地された高抵抗503で電圧に変換し、増幅器504で増幅した信号を測定に用いる。 FIG. 8 shows a conceptual schematic diagram of a conventional mechanical AC electric field induction type potential measuring device. The electric lines of force 507 emitted from the measurement object 505 reach the detection electrode 501 after being modulated by the vibration of the chopper 502. Due to the lines of electric force, the amount of charge induced on the detection electrode 501 is modulated, and a minute alternating current is generated. This current is converted into a voltage by a high resistance 503 grounded to the ground, and a signal amplified by an amplifier 504 is used for measurement.

また、後述する本発明の実施例の説明で用いる図1は、外観上、MEMS技術を用いて半導体基板上に作製された機械式交流電界誘導型電位測定装置の概略図でもある。図1において、平板状の半導体基板100の表面上には信号検知電極101が形成されている。信号検知電極101の上部には、測定対象物104が設置されているが、検知電極101と測定対象物104の間に、周期的に振動するチョッパー102とチョッパーを振動させるための駆動機構103が、基板100上に設置されている。そして、検知電極101からの信号は、電気配線105を通じて、回路106に送られる。 FIG. 1 used in the description of the embodiments of the present invention to be described later is also a schematic view of a mechanical AC electric field induction type potential measuring device manufactured on a semiconductor substrate by using MEMS technology. In FIG. 1, a signal detection electrode 101 is formed on the surface of a flat semiconductor substrate 100. A measurement object 104 is installed above the signal detection electrode 101, and a chopper 102 that periodically vibrates between the detection electrode 101 and the measurement object 104 and a drive mechanism 103 for vibrating the chopper. Are installed on the substrate 100. Then, a signal from the detection electrode 101 is sent to the circuit 106 through the electric wiring 105.

図2は、上で説明した図1の電位測定装置の検知電極101付近の断面詳細図である。半導体基板100と検知電極101の間には、絶縁膜層201が形成されている(これは、Siなどの半導体の表面に半ば自然に形成される酸化膜である場合もある)。検知電極101は、電気配線202を通じて、信号増幅器204に接続されているが、電気配線202には、アースに接地された高抵抗203も接続されており、さらに、増幅器204の出力は信号検出回路205に接続されている。また、一般的に半導体基板を用いた素子ないし装置においては、素子を装着するための容器等を介して接地されており、図2の206の配線は、この働きを表すものである。 FIG. 2 is a detailed cross-sectional view of the vicinity of the detection electrode 101 of the potential measuring device of FIG. 1 described above. An insulating film layer 201 is formed between the semiconductor substrate 100 and the detection electrode 101 (this may be an oxide film that is semi-naturally formed on the surface of a semiconductor such as Si). The detection electrode 101 is connected to the signal amplifier 204 through the electric wiring 202. The high resistance 203 connected to the ground is also connected to the electric wiring 202. Further, the output of the amplifier 204 is a signal detection circuit. 205 is connected. In general, in an element or apparatus using a semiconductor substrate, it is grounded via a container or the like for mounting the element, and the wiring 206 in FIG. 2 represents this function.

しかし、上述したように、検知電極101がアースとの間に寄生容量を有すると、検知電極101とアースの間には次式で表されるインピーダンスZが生じる。 However, as described above, when the detection electrode 101 has a parasitic capacitance between the detection electrode 101 and the ground, an impedance Z expressed by the following equation is generated between the detection electrode 101 and the ground.

Figure 0004273049
ここで、R’は検知電極101が形成されている半導体基板100を介して発生する、検知電極101とアース間の抵抗、C’は寄生容量、fはチョッパーの機械的な振動周波数などである容量変調手段による容量変調周波数である。
Figure 0004273049
Here, R ′ is a resistance between the detection electrode 101 and the ground generated through the semiconductor substrate 100 on which the detection electrode 101 is formed, C ′ is a parasitic capacitance, f is a mechanical vibration frequency of the chopper, and the like. It is a capacity modulation frequency by the capacity modulation means.

図3は、図2の電気的な等価回路を表している。ここで、207、208はそれぞれ半導体基板100を介して発生する、検知電極101とアース間の抵抗R’と、寄生容量C’を表しており、式(3)で記述されているものと同じものである。 FIG. 3 shows the electrical equivalent circuit of FIG. Here, 207 and 208 represent the resistance R ′ between the detection electrode 101 and the ground and the parasitic capacitance C ′, which are generated through the semiconductor substrate 100, respectively, and are the same as those described in Expression (3). Is.

一般的な機械式交流電界誘導型電位測定装置においては、用いられているチョッパーなどの変調周波数は、数百ヘルツ程度である。一方、MEMS技術を用いた電位測定装置では、微細加工技術を用いてチョッパーを形成するために、チョッパーを小型化することが可能で、一般的な機械式交流電界誘導型電位測定装置に比べて、チョッパーの振動周波数が高く、数kヘルツから数百kヘルツ程度のものがしばしば用いられる。
米国特許第6,177,800号明細書
In a general mechanical AC electric field induction type potential measuring device, the modulation frequency of a chopper used is about several hundred hertz. On the other hand, in the potential measuring device using the MEMS technology, the chopper can be miniaturized in order to form the chopper using the microfabrication technology, and compared with a general mechanical AC electric field induction potential measuring device. A chopper having a high vibration frequency and a frequency of several khertz to several hundred khertz is often used.
US Pat. No. 6,177,800

この結果、式(3)中において、周波数fの値が一般的な従来のものと較べて数十倍から数百倍となり、その結果、検知電極−アース間のインピーダンスZが低下し、一般的にはZ<Rとなってしまう。図3で示されるように、このインピーダンスZは、増幅器204の前に設置された電流−電圧変換用の高抵抗Rとアースに対して並列の関係にある。このため、合成抵抗は、高抵抗Rの値のZ/(R+Z)倍(<1)となり、本来増幅器204に入力される検知信号電圧が減少してしまう。従って、検知電極を担う半導体基板及び測定対象物と検知電極間の結合容量を変調する容量変調手段を用いて電位測定装置を製造する際に、寄生容量C’を減らすことが重要となる。 As a result, in the expression (3), the value of the frequency f is several tens to several hundreds times that of a general conventional one, and as a result, the impedance Z between the detection electrode and the ground is lowered. Z <R. As shown in FIG. 3, the impedance Z is in parallel relation with the high resistance R for current-voltage conversion installed in front of the amplifier 204 and the ground. For this reason, the combined resistance is Z / (R + Z) times (<1) the value of the high resistance R, and the detection signal voltage originally input to the amplifier 204 is reduced. Accordingly, it is important to reduce the parasitic capacitance C ′ when manufacturing the potential measuring device using the semiconductor substrate serving as the detection electrode and the capacitance modulation means for modulating the coupling capacitance between the measurement object and the detection electrode.

上記課題に鑑み、本発明の電位測定装置は、測定対象物と対向する位置に設置される誘電率εである半導体を用いた基板上に、該半導体基板と絶縁状態で形成された検知電極と、測定対象物と該電極間の結合容量を変調する容量変調手段と、を有し、該半導体基板には、誘電率の平均値εがε未満の値を有する、前記半導体基板を構成する半導体材料の酸化物もしくは窒化物、又は有機化合物からなる領域が設けられ、該電極は、該領域の測定対象物に対向する面上に形成されていることを特徴とする。前記半導体基板には、誘電率の平均値ε がε 未満の値を有する、該半導体基板を構成する材料が多孔質状態になって形成された領域が設けられてもよい。容量変調手段としては、ねじりバネにより揺動可能に支持された揺動板を測定対象に対して揺動させて揺動板上に設けられた検知電極と測定対象との距離を変調する構成のものや、測定対象と固定基板上の検知電極の間で開口を持つシャッタを移動させて測定対象に対する検知電極の露出面積を変調する構成のものなどがある。 In view of the above problems, the potential measuring device of the present invention is a sensing electrode formed on a substrate using a semiconductor having a dielectric constant ε 1 that is installed at a position facing a measurement object, in an insulated state from the semiconductor substrate. When having a capacity modulation means for modulating the coupling capacitance between the measuring object and the electrode, to the semiconductor substrate, the average value epsilon 2 of the dielectric constant has a value of less than epsilon 1, the semiconductor substrate A region made of an oxide or nitride of a semiconductor material to be formed, or an organic compound is provided, and the electrode is formed on a surface of the region facing the object to be measured. The semiconductor substrate may be provided with a region in which a material constituting the semiconductor substrate is formed in a porous state and has an average dielectric constant ε 2 of less than ε 1 . The capacity modulation means is configured to modulate the distance between the detection electrode provided on the swing plate and the measurement target by swinging the swing plate supported by the torsion spring so as to be swingable with respect to the measurement target. And a configuration in which the exposure area of the detection electrode with respect to the measurement target is modulated by moving a shutter having an opening between the measurement target and the detection electrode on the fixed substrate.

また、上記課題に鑑み、本発明の画像形成装置は、上記の電位測定装置と画像形成手段を備え、電位測定装置の検知電極の面が画像形成手段の電位測定の対象となる面と対向して配置され、画像形成手段が電位測定装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする。画像形成手段は、複写機能、印刷機能、或いはファクシミリ機能などを有し得る。例えば、画像形成手段は、所定軸の回りに回転する感光ドラムを有し、該感光ドラム面上の帯電電位を電位測定装置を用いて測定する様に構成され得る。この画像形成装置でも、上記電位測定装置の特徴が生かされる。 In view of the above problems, an image forming apparatus according to the present invention includes the above-described potential measuring device and an image forming unit, and a surface of the detection electrode of the potential measuring device faces a surface of the image forming unit that is a potential measurement target. The image forming means controls image formation using the signal detection result of the potential measuring device. The image forming unit may have a copying function, a printing function, a facsimile function, or the like. For example, the image forming unit may be configured to have a photosensitive drum that rotates about a predetermined axis, and to measure a charged potential on the surface of the photosensitive drum using a potential measuring device. This image forming apparatus also makes use of the characteristics of the potential measuring apparatus.

本発明により、半導体を用いた基板上に、該基板と絶縁状態で形成された検知電極と、測定対象物と電極間の結合容量を変調する容量変調手段を有する電位測定装置において、検知電極の有する寄生容量を低減することが可能となる。 According to the present invention, there is provided a potential measuring apparatus including a sensing electrode formed in an insulating state on a substrate using a semiconductor, and capacitance modulation means for modulating a coupling capacitance between the measurement object and the electrode. It becomes possible to reduce the parasitic capacitance.

本発明の実施の形態を説明する前に、本発明の原理を説明する。一般に、半導体基板上に絶縁されて設けられた検知電極が有する寄生容量C’は、次の式で与えられる。 Before describing the embodiment of the present invention, the principle of the present invention will be described. In general, a parasitic capacitance C ′ included in a detection electrode insulated and provided on a semiconductor substrate is given by the following equation.

Figure 0004273049
ここで、Sは検知電極の面積、d、ε、ε は、それぞれ検知電極と半導体基板との間に形成される薄い絶縁膜層の厚さ、薄い絶縁膜層の誘電率、検知電極直下の半導体部の誘電率、デバイ長を、それぞれ表す。デバイ長Lは、半導体の分野では良く知られた数値であり、次式で与えられる。
Figure 0004273049
Here, S is the area of the detection electrode, d i , ε i , ε s , and L D are the thickness of the thin insulating film layer formed between the detection electrode and the semiconductor substrate, and the dielectric of the thin insulating film layer, respectively. , And the dielectric constant and Debye length of the semiconductor portion immediately below the detection electrode, respectively. Debye length L D is a numerical value well known in the field of semiconductor, given by the following equation.

Figure 0004273049
ここで、k、T,Bはそれぞれ、ボルツマン定数、絶対温度、比例定数である。従って、寄生容量C’は、次式のように表すことができる。
Figure 0004273049
Here, k, T, and B are Boltzmann constant, absolute temperature, and proportionality constant, respectively. Therefore, the parasitic capacitance C ′ can be expressed as follows:

Figure 0004273049
Figure 0004273049

本発明では寄生容量C’を小さくするのであるが、その為の方法としての検知電極直下の部分の誘電率の平均値を小さくする方法は次の2通りがある。
(a)半導体部分の誘電率を小さくする。
(b)半導体部の一部を、半導体より小さな誘電率を有する絶縁体で置き換える。
In the present invention, the parasitic capacitance C ′ is reduced, but there are the following two methods for reducing the average value of the dielectric constant immediately below the detection electrode as a method for that purpose.
(a) Decrease the dielectric constant of the semiconductor portion.
(b) A part of the semiconductor portion is replaced with an insulator having a dielectric constant smaller than that of the semiconductor.

(a)の場合は、式(6)より、検知電極直下の半導体部の誘電率εの値を、ε1(半導体基板のもともとの誘電率)からε2(ただし、ε2<ε1)にすることにより、寄生容量C’の値は小さくなる。具体的な手法としては、基板を構成する半導体を、誘電率ε2を有する異なる半導体材料で置き換える方法か、後述するように、もとの半導体を多孔質構造にすることで実効的に誘電率を下げる方法がある。 In the case of (a), from equation (6), the value of the dielectric constant ε S of the semiconductor portion immediately below the sensing electrode is changed from ε 1 (original dielectric constant of the semiconductor substrate) to ε 2 (where ε 21 ), The value of the parasitic capacitance C ′ is reduced. As a concrete method, the dielectric constant can be effectively obtained by replacing the semiconductor constituting the substrate with a different semiconductor material having a dielectric constant ε 2 or by making the original semiconductor porous structure as described later. There is a way to lower.

一方、(b)の方法による場合は、検知電極直下の厚さdの領域が誘電率ε2を有する絶縁体材料で置き換えられることになり、式(6)を次式のように変形することで説明できる。

Figure 0004273049
ここで、d’=d+d・ε1/εであるため、d’はdよりも大きな値をとり、この場合でも、寄生容量C’を小さくすることが可能である。 On the other hand, in the case of the method (b), the region of the thickness d 2 immediately below the detection electrode is replaced with an insulator material having a dielectric constant ε 2 , and the equation (6) is transformed into the following equation: Can be explained.
Figure 0004273049
Here, since d i ′ = d i + d 2 · ε 1 / ε 2 , d i ′ takes a larger value than d i , and even in this case, the parasitic capacitance C ′ can be reduced. .

以上の原理で検知電極の有する寄生容量を低減した本発明の一実施形態では、測定対象物と対向する位置に設置される半導体を用いた基板上に形成された電極と、測定対象物と該電極間の結合容量を変調する変調手段を備える電位測定装置において、例えば、単位体積あたりの誘電率の平均値εの値を有する領域を、該半導体基板を構成する半導体材料の酸化物、窒化物、もしくは有機化合物で形成する。さらには、前記半導体基板において、単位体積あたりの誘電率の平均値εの値を有する領域を、多孔質構造にすることで形成することも可能である。 In one embodiment of the present invention in which the parasitic capacitance of the detection electrode is reduced by the above principle, an electrode formed on a substrate using a semiconductor placed at a position facing the measurement object, the measurement object, and the measurement object In an electric potential measurement apparatus including a modulation unit that modulates a coupling capacitance between electrodes, for example, a region having a value of an average value ε 2 of a dielectric constant per unit volume is formed by an oxide or nitridation of a semiconductor material constituting the semiconductor substrate. Or an organic compound. Furthermore, in the semiconductor substrate, it is possible to form a region having a value of the average value ε 2 of the dielectric constant per unit volume by forming a porous structure.

酸化物、窒化物を用いる方法、有機化合物を用いる方法、或いは、多孔質構造を導入する方法により、検知電極下の誘電率を下げることができ、検知電極の有する寄生容量を小さくすることが可能となる。この検知電極からの信号は、検出回路にて、前記容量変調手段の変調周波数にて同期検波することになる。したがって、例えば、電位測定装置を小型化して機械的なチョッパー、揺動体などの振動周波数を上昇させたとしても、検知電極―アース間のインピーダンスの低下を抑制することができ、小型で性能の良い電位測定装置及び画像形成装置を実現することが可能となる。 The dielectric constant under the sensing electrode can be lowered and the parasitic capacitance of the sensing electrode can be reduced by a method using an oxide or nitride, a method using an organic compound, or a method of introducing a porous structure. It becomes. The signal from the detection electrode is synchronously detected by the detection circuit at the modulation frequency of the capacitance modulation means. Therefore, for example, even if the potential measuring device is downsized to increase the vibration frequency of a mechanical chopper, rocking body, etc., it is possible to suppress a decrease in impedance between the sensing electrode and the ground, and the size is small and the performance is good. An electric potential measuring device and an image forming apparatus can be realized.

以下、図面を参照して、本発明の具体的な実施例を詳細に説明する。
(実施例1)
本発明の第1の実施例を図1と図4に基づいて説明する。本実施例に係る電位測定装置の外観構成は、図1と同様である。また、図4において、図1乃至図3の符号と同じ符号は同様な部分ないし要素を示す。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
(Example 1)
A first embodiment of the present invention will be described with reference to FIGS. The external configuration of the potential measuring apparatus according to this embodiment is the same as that shown in FIG. In FIG. 4, the same reference numerals as those in FIGS. 1 to 3 denote the same parts or elements.

図4は、第1の実施例の電位測定装置の基板100の詳細な構造を示す。基板100と検知電極101の間には、絶縁膜層201が形成されており(これは、前述したようにSiなどの半導体の表面に半ば自然に形成される酸化膜であってもよい)、さらに絶縁膜層201の直下には、一定の深さまで有機化合物が充填された領域301が形成されている。検知電極101からの接続は前述した通りであり、増幅器204の出力が、信号検出回路205にてチョッパー102の駆動振動数を用いて同期検波される。この信号検出回路205は、基板の主材料として、集積回路を形成することが可能な半導体基板を用いる場合には、基板100上に構成することができる。 FIG. 4 shows a detailed structure of the substrate 100 of the potential measuring apparatus according to the first embodiment. An insulating film layer 201 is formed between the substrate 100 and the detection electrode 101 (this may be an oxide film that is semi-naturally formed on the surface of a semiconductor such as Si as described above). Further, a region 301 filled with an organic compound to a certain depth is formed immediately below the insulating film layer 201. The connection from the detection electrode 101 is as described above, and the output of the amplifier 204 is synchronously detected by the signal detection circuit 205 using the driving frequency of the chopper 102. The signal detection circuit 205 can be formed on the substrate 100 when a semiconductor substrate capable of forming an integrated circuit is used as the main material of the substrate.

領域301中の有機化合物の誘電率ε(厳密には単位体積あたりの誘電率の平均値)は、半導体基板100の誘電率εよりも小さい値を有する為、検知電極101の有する寄生容量C’は、領域301が半導体基板のままである場合よりも、小さくすることができる。この結果、アースと検知電極101間のインピーダンスの減少を抑制することが可能となる。 Since the dielectric constant ε 2 of the organic compound in the region 301 (strictly speaking, the average value of the dielectric constant per unit volume) has a value smaller than the dielectric constant ε 1 of the semiconductor substrate 100, the parasitic capacitance of the detection electrode 101 C ′ can be made smaller than when the region 301 remains a semiconductor substrate. As a result, it is possible to suppress a decrease in impedance between the ground and the detection electrode 101.

実施例1を構成するのに好適な材料及び製造方法について説明する。半導体基板としては、シリコンを用いることが一般的である。この基板に、検知電極101の直下に相当する領域、すなわち301の領域を、ウェットエッチもしくはドライエッチといわれる方法で、孔を明け、その部分に、有機材料としてポリイミドを充填し、硬化させ、さらにその表面に、絶縁膜201及び検知電極101を成膜することで、所望の構成が得られる。 A material and a manufacturing method suitable for constituting the first embodiment will be described. As a semiconductor substrate, silicon is generally used. In this substrate, a region corresponding to the region immediately below the detection electrode 101, that is, a region 301 is formed by a method called wet etching or dry etching, polyimide is filled as an organic material in that portion, and cured, A desired configuration can be obtained by forming the insulating film 201 and the detection electrode 101 on the surface.

シリコンの誘電率は11.9程度であるが、ポリイミドは3.2程度の誘電率を持つ。この結果、検知電極101に生じる寄生容量を低減することが可能である。シリコン基板を部分的に酸化させる方法を用いて、領域201にSiOを形成することも可能である。動作については、前述した図1乃至図3を用いて説明した動作と本質的に同じである。 Silicon has a dielectric constant of about 11.9, while polyimide has a dielectric constant of about 3.2. As a result, the parasitic capacitance generated in the detection electrode 101 can be reduced. It is also possible to form SiO 2 in the region 201 by using a method of partially oxidizing the silicon substrate. The operation is essentially the same as the operation described with reference to FIGS.

(実施例2)
本発明の第2の実施の形態を図5に基づいて説明する。第2の実施例では、半導体基板100において、検知電極101及び絶縁膜201の直下の部分401を多孔質構造にすることを特徴としている。この場合、領域401の部分の誘電率の体積平均値ε’は、次の式で表すことができる。
ε’=ε1・P・・・・・(式5)
ここで、εは半導体基板の誘電率、Pは領域401の充填率である。ただし、充填率Pとは、領域401全体の体積に対する、多孔質構造における空隙の部分を除いた材料の存在する部分の体積の割合を示している。
(Example 2)
A second embodiment of the present invention will be described with reference to FIG. The second embodiment is characterized in that a part 401 immediately below the detection electrode 101 and the insulating film 201 in the semiconductor substrate 100 has a porous structure. In this case, the volume average value ε 2 ′ of the dielectric constant of the region 401 can be expressed by the following equation.
ε 2 ′ = ε 1 · P (Formula 5)
Here, ε 1 is the dielectric constant of the semiconductor substrate, and P is the filling factor of the region 401. However, the filling rate P indicates the ratio of the volume of the portion where the material is present excluding the void portion in the porous structure to the entire volume of the region 401.

この場合、Pは1よりも小さい値を有するので、ε’の値はεよりも小さくなり、検知電極101の寄生容量の値の低減に効果がある。 In this case, since P has a value smaller than 1 , the value of ε 2 ′ is smaller than ε 1 , which is effective in reducing the parasitic capacitance value of the detection electrode 101.

実施例2を構成する材料としては、陽極酸化法を用いたシリコン基板が好適である。この場合、シリコン基板の所望の部分を陽極酸化法を用いて多孔質構造に加工し、その領域の上部に絶縁層薄膜201と検知電極101を形成すればよい。 As a material constituting the second embodiment, a silicon substrate using an anodic oxidation method is suitable. In this case, a desired portion of the silicon substrate may be processed into a porous structure using an anodic oxidation method, and the insulating layer thin film 201 and the detection electrode 101 may be formed on the upper portion of the region.

(実施例3)
上記実施例ではチョッパーを用いて検知電極に到達する電気力線の数を変調していたが(上記式(2)でSを変化させるのにあたる)、測定対象物と検知電極間の距離xを変調させても、上記式(2)から分かるように、結合容量を変化させられる。本発明の第3の実施例は、こうした方式を採用する実施例である。図6は、本実施例に係る電位測定装置の構成を示す。
(Example 3)
In the above embodiment, the number of lines of electric force reaching the detection electrode is modulated using a chopper (corresponding to changing S in the above equation (2)), but the distance x between the measurement object and the detection electrode is set as follows. Even if it is modulated, the coupling capacitance can be changed as can be seen from the above equation (2). The third embodiment of the present invention is an embodiment that adopts such a system. FIG. 6 shows a configuration of the potential measuring apparatus according to the present embodiment.

図6は、電位センサを測定対象表面1201に対して配置した状態を表している。図6において、1202は電位測定装置を収めるケースであり、検知電極部分を除いて揺動体1104の上部を覆っている。これは導電性の材料で形成され、アースに接地されている。揺動体1104を支える支持基板1100は、適切な装着冶具1203と1204によって、ケース1202に固定されている。この設置されたケース1202の存在により、揺動体1104とほぼ真正面で対向する測定対象表面1201の部分からのみ電気力線が検知電極1111と1112に達することになり、雑音成分を抑制できて精度良く電位測定ができる。また、支持基板1100の中央部には開口部が形成され、開口部の中央中空部分には、平板状の揺動体1104の紙面垂直方向の手前と向こう側にある2本のねじりバネにより、揺動体1104が中心軸線Cの回りで揺動可能に支持されている。揺動体1104及び支持基板1100は、半導体からなっている。 FIG. 6 shows a state in which the potential sensor is arranged with respect to the measurement target surface 1201. In FIG. 6, reference numeral 1202 denotes a case for accommodating the potential measuring device, which covers the upper portion of the oscillator 1104 except for the detection electrode portion. It is made of a conductive material and is grounded to ground. The support substrate 1100 that supports the oscillator 1104 is fixed to the case 1202 by appropriate mounting jigs 1203 and 1204. Due to the presence of the installed case 1202, the lines of electric force reach the detection electrodes 1111 and 1112 only from the portion of the measurement target surface 1201 that faces the oscillating body 1104 almost directly in front, and the noise component can be suppressed with high accuracy. Potential measurement is possible. In addition, an opening is formed in the central portion of the support substrate 1100, and the central hollow portion of the opening is rocked by two torsion springs on the front side and the other side of the flat plate-like rocking body 1104 in the direction perpendicular to the paper surface. A moving body 1104 is supported so as to be swingable about a central axis C. The oscillator 1104 and the support substrate 1100 are made of semiconductor.

さらに、揺動体1104の上面には、絶縁膜(不図示)を介して、2個の同一形状の平板状の検知電極1111、1112が中心軸線Cに対して線対称に配置されていて、各検知電極の紙面垂直方向の手前と向こう側には電極用配線(これらも不図示)がそれぞれ設けられている。こうした検知電極の下に誘電率の小さくなった領域1211、1212が形成されており、この部分の構成は上記実施例で説明した通りである。揺動体1104が中心軸線Cの回りで揺動するとき、この上の検知電極1111、1112は逆相で測定対象表面1201に周期的に近づいたり遠ざかることになり、これにより後述の検知電極からの変調電流の差動増幅が可能となる。各検知電極は、ねじりバネの上に形成された電極用配線によって、支持基板1100上に形成された取り出し電極とそれぞれ接続されており、例えば、支持基板1100外部に設置された差動増幅器の反転入力接点と非反転入力接点に接続されている。これにより、検知電極からの変調電流が差動増幅されて、検出回路で上記実施例と同様に同期検波される。勿論、1つの検知電極のみを揺動体1104の上面に設けて(すなわち図6においてどちらかの検知電極を取り除く)、検知電極からの変調電流を差動増幅しないで上記実施例と同様に検知する構成にしてもよい。 Furthermore, two flat detection electrodes 1111 and 1112 having the same shape are arranged symmetrically with respect to the central axis C via an insulating film (not shown) on the upper surface of the oscillator 1104. Electrode wirings (not shown) are respectively provided on the front side and the other side of the detection electrode in the direction perpendicular to the paper surface. Regions 1211 and 1212 having a reduced dielectric constant are formed under such detection electrodes, and the configuration of these portions is as described in the above embodiment. When the oscillating body 1104 oscillates about the central axis C, the upper detection electrodes 1111 and 1112 periodically approach or move away from the surface 1201 to be measured in reverse phase. The differential amplification of the modulation current becomes possible. Each detection electrode is connected to an extraction electrode formed on the support substrate 1100 by an electrode wiring formed on the torsion spring, for example, inversion of a differential amplifier installed outside the support substrate 1100 Connected to input contact and non-inverting input contact. As a result, the modulation current from the detection electrode is differentially amplified and synchronously detected by the detection circuit in the same manner as in the above embodiment. Of course, only one detection electrode is provided on the upper surface of the oscillating body 1104 (that is, one of the detection electrodes is removed in FIG. 6), and the modulation current from the detection electrode is detected in the same manner as in the above embodiment without differential amplification. It may be configured.

この電位測定装置に、適切な揺動体駆動機構を加え、揺動体1104とねじりバネの形状、材料などを適切に選ぶことで、揺動体1104をねじりバネの中心軸線Cを回転中心として周期的に揺動させ、揺動体1104上の検知電極と測定対象表面1201の距離を周期的に変化させる。こうして、検知電極からの電流を変調させて、この電流を検出回路にて揺動体1104の揺動周波数にて同期検波することで、上記実施例と同様に、測定対象物1201の電位を検出することができる。揺動体1104を揺動させる揺動体駆動機構は、例えば、揺動体裏面に設けられる磁石と、交流電流を流すことで磁界を発生する外部のコイルである。 By adding an appropriate oscillating body drive mechanism to this potential measuring device and appropriately selecting the shape and material of the oscillating body 1104 and the torsion spring, the oscillating body 1104 is periodically rotated about the central axis C of the torsion spring. The distance between the detection electrode on the oscillating body 1104 and the measurement target surface 1201 is periodically changed. Thus, by modulating the current from the detection electrode and synchronously detecting this current at the oscillation frequency of the oscillator 1104 by the detection circuit, the potential of the measurement object 1201 is detected as in the above embodiment. be able to. The oscillating body drive mechanism that oscillates the oscillating body 1104 is, for example, a magnet provided on the back surface of the oscillating body and an external coil that generates a magnetic field by flowing an alternating current.

(実施例4)
図7は実施例4の画像形成装置を説明する図である。図7は、本発明による電位測定装置を用いた電子写真現像装置の感光ドラム周辺の模式図である。感光ドラム2108の周辺に、帯電器2102、電位センサ2101、露光機2105、トナー供給機2106が設置されている。帯電器2102で、ドラム2108の表面を帯電し、露光機2105を用いて感光ドラム2108表面を露光することで潜像が得られる。この潜像にトナー供給機2106によりトナーを付着させ、トナー像を得る。そして、このトナー像を転写物送りローラー2107と感光ドラム2108で挟まれた転写物2109に転写し、転写物上のトナーを固着させる。これらの工程を経て画像形成が達成される。
(Example 4)
FIG. 7 illustrates an image forming apparatus according to the fourth exemplary embodiment. FIG. 7 is a schematic view around the photosensitive drum of the electrophotographic developing apparatus using the potential measuring apparatus according to the present invention. A charger 2102, a potential sensor 2101, an exposure device 2105, and a toner supply device 2106 are installed around the photosensitive drum 2108. A latent image is obtained by charging the surface of the drum 2108 with the charger 2102 and exposing the surface of the photosensitive drum 2108 with the exposure device 2105. Toner is attached to the latent image by a toner supplier 2106 to obtain a toner image. The toner image is transferred to a transfer material 2109 sandwiched between the transfer material feed roller 2107 and the photosensitive drum 2108, and the toner on the transfer material is fixed. Image formation is achieved through these steps.

この構成において、ドラム2108の帯電状態を本発明の小型で高性能の電位センサ2101で測定し、信号処理装置2103で信号を処理し、例えば、高電圧発生器2104にフィードバックをかけて帯電器2102を制御することで、安定したドラム帯電が実現され、安定した画像形成が実現される。この際、感光ドラム2108の回転に同期して電位センサ2101の出力をモニタすることで、感光ドラム上の電位分布を計測でき、この計測された電位分布に基づき、感光ドラム2108に露光する光の量を制御するか、帯電器2102を制御することで、画像のムラを少なくできる。 In this configuration, the charged state of the drum 2108 is measured by the small and high-performance potential sensor 2101 of the present invention, the signal is processed by the signal processing device 2103, and the high voltage generator 2104 is fed back to the charger 2102. By controlling the above, stable drum charging is realized, and stable image formation is realized. At this time, by monitoring the output of the potential sensor 2101 in synchronization with the rotation of the photosensitive drum 2108, the potential distribution on the photosensitive drum can be measured. Based on the measured potential distribution, the light to be exposed on the photosensitive drum 2108 can be measured. By controlling the amount or controlling the charger 2102, image unevenness can be reduced.

本発明の第1の実施例等における電位測定装置と測定対象との位置関係を示す斜視図である。It is a perspective view which shows the positional relationship of the electric potential measuring apparatus and measurement object in 1st Example of this invention. 本発明を適用しない場合の、電位測定装置を構成する半導体基板上の検知電極の詳細を示した図である。It is the figure which showed the detail of the detection electrode on the semiconductor substrate which comprises an electric potential measurement apparatus when not applying this invention. 本発明を適用しない場合の、電位測定装置を構成する半導体基板上の検知電極の周りの等価回路図である。FIG. 3 is an equivalent circuit diagram around a detection electrode on a semiconductor substrate constituting the potential measurement device when the present invention is not applied. 本発明の第1の実施例において電位測定装置を構成する半導体基板上の検知電極の詳細を示した図である。It is the figure which showed the detail of the detection electrode on the semiconductor substrate which comprises an electric potential measurement apparatus in the 1st Example of this invention. 本発明の第2の実施例において電位測定装置を構成する半導体基板上の検知電極の詳細を示した図である。It is the figure which showed the detail of the detection electrode on the semiconductor substrate which comprises an electric potential measurement apparatus in the 2nd Example of this invention. 本発明の第3の実施例における電位測定装置と測定対象との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the electric potential measuring apparatus and measurement object in 3rd Example of this invention. 本発明の第4の実施例の画像形成装置を説明する図である。It is a figure explaining the image forming apparatus of the 4th Example of this invention. 従来用いられている機械式交流電界誘導型電位測定装置の概念的な概略図である。It is a conceptual schematic diagram of a mechanical AC electric field induction type potential measuring device used conventionally.

符号の説明Explanation of symbols

100、1104・・・・・・・・・半導体基板
101、1111、1112・・・・・・・・・検知電極
102、103・・・・・・・・・・容量変調手段(チョッパー、チョッパー駆動機構)
104、1201・・・・・・・・・・測定対象物
201・・・・・・・・・・絶縁膜
301、401、1211、1212・・・・・・・・・・誘電率を下げた領域
100, 1104... Semiconductor substrate 101, 1111, 1112, ... Detection electrodes 102, 103 ... Capacitance modulation means (chopper, chopper Drive mechanism)
104, 1201 ... Measurement object 201 ... Insulating films 301, 401, 1211, 1212 ... Lower dielectric constant Area

Claims (6)

測定対象物と対向する位置に設置される誘電率εである半導体を用いた基板上に絶縁状態で形成された検知電極と、測定対象物と該電極間の結合容量を変調する容量変調手段と、を有し、該半導体基板には、誘電率の平均値εがε未満の値を有する、前記半導体基板を構成する半導体材料の酸化物もしくは窒化物、又は有機化合物からなる領域が設けられ、該電極は、該領域の測定対象物に対向する面上に形成されていることを特徴とする電位測定装置。 A detection electrode formed in an insulating state on a substrate using a semiconductor having a dielectric constant ε 1 placed at a position facing the measurement object, and a capacitance modulation means for modulating the coupling capacitance between the measurement object and the electrode The semiconductor substrate has a region made of an oxide or nitride of a semiconductor material constituting the semiconductor substrate, or an organic compound, having an average value of dielectric constant ε 2 of less than ε 1. An electric potential measuring device provided, wherein the electrode is formed on a surface of the region facing the measurement object. 前記半導体基板において、誘電率の平均値εの領域が絶縁性を有することを特徴とする請求項1記載の電位測定装置。 In the above semiconductor substrate, the potential measuring apparatus according to claim 1, wherein the average value epsilon 2 regions of dielectric constant and wherein Rukoto to have a insulating. 測定対象物と対向する位置に設置される誘電率ε である半導体を用いた基板上に絶縁状態で形成された検知電極と、測定対象物と該電極間の結合容量を変調する容量変調手段と、を有し、該半導体基板には、誘電率の平均値ε がε 未満の値を有する、該半導体基板を構成する材料が多孔質状態になって形成された領域が設けられ、該電極は、該領域の測定対象物に対向する面上に形成されていることを特徴とする電位測定装置。 A detection electrode formed in an insulating state on a substrate using a semiconductor having a dielectric constant ε 1 placed at a position facing the measurement object, and a capacitance modulation means for modulating the coupling capacitance between the measurement object and the electrode The semiconductor substrate is provided with a region in which the material constituting the semiconductor substrate is formed in a porous state, and the average value ε 2 of the dielectric constant is less than ε 1 . The potential measuring device , wherein the electrode is formed on a surface of the region facing the object to be measured. 測定対象物と対向する位置に設置される誘電率εDielectric constant ε installed at the position facing the measurement object 1 である半導体を用いた揺動体上に絶縁状態で形成された検知電極と、測定対象物と該電極間の結合容量を前記揺動体を揺動することで変調する容量変調手段と、を有し、前記揺動体には、誘電率の平均値εA sensing electrode formed in an insulating state on a rocking body using a semiconductor, and a capacitance modulation means for modulating the coupling capacity between the measurement object and the electrode by rocking the rocking body. The oscillator has an average dielectric constant ε 2 がεIs ε 1 未満の値を有する、前記揺動体を構成する半導体材料の酸化物もしくは窒化物、又は有機化合物からなる領域が設けられ、該電極は、該領域の測定対象物に対向する面上に形成されていることを特徴とする電位測定装置。A region made of an oxide or nitride of a semiconductor material constituting the oscillator and an organic compound having a value of less than is provided, and the electrode is formed on a surface of the region facing the object to be measured. An electric potential measuring device. 測定対象物と対向する位置に設置される誘電率εDielectric constant ε installed at the position facing the measurement object 1 である半導体を用いた揺動体上に絶縁状態で形成された検知電極と、測定対象物と該電極間の結合容量を前記揺動体を揺動することで変調する容量変調手段と、を有し、前記揺動体には、誘電率の平均値εA sensing electrode formed in an insulating state on a rocking body using a semiconductor, and a capacitance modulation means for modulating the coupling capacity between the measurement object and the electrode by rocking the rocking body. The oscillator has an average dielectric constant ε 2 がεIs ε 1 未満の値を有する、前記揺動体を構成する材料が多孔質状態になって形成された領域が設けられ、該電極は、該領域の測定対象物に対向する面上に形成されていることを特徴とする電位測定装置。A region having a value less than that is formed in a porous state of the material constituting the oscillator, and the electrode is formed on a surface of the region facing the object to be measured. A potential measuring device. 請求項1乃至のいずれかに記載の電位測定装置と画像形成手段を備え、前記電位測定装置の検知電極を形成された面が前記画像形成手段の電位測定の対象となる面と対向して配置され、前記画像形成手段が電位測定装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする画像形成装置。 Comprising a potential measuring device and image forming means according to any one of claims 1 to 5, by detecting electrode formed surface of the potential measuring apparatus is opposed to subject to surface potential measurements of said image forming means An image forming apparatus, wherein the image forming unit controls image formation using a signal detection result of a potential measuring device.
JP2004204531A 2004-07-12 2004-07-12 Potential measuring apparatus and image forming apparatus Expired - Fee Related JP4273049B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004204531A JP4273049B2 (en) 2004-07-12 2004-07-12 Potential measuring apparatus and image forming apparatus
US11/178,649 US7049804B2 (en) 2004-07-12 2005-07-11 Electric potential measuring apparatus, and image forming apparatus
US11/385,392 US7741850B2 (en) 2004-07-12 2006-03-21 Electric potential measuring apparatus, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204531A JP4273049B2 (en) 2004-07-12 2004-07-12 Potential measuring apparatus and image forming apparatus

Publications (3)

Publication Number Publication Date
JP2006029796A JP2006029796A (en) 2006-02-02
JP2006029796A5 JP2006029796A5 (en) 2007-03-08
JP4273049B2 true JP4273049B2 (en) 2009-06-03

Family

ID=35896366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204531A Expired - Fee Related JP4273049B2 (en) 2004-07-12 2004-07-12 Potential measuring apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4273049B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913467B2 (en) * 2006-04-12 2012-04-11 Hst株式会社 Potential sensor

Also Published As

Publication number Publication date
JP2006029796A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US7741850B2 (en) Electric potential measuring apparatus, and image forming apparatus
JP5027984B2 (en) Potential measuring apparatus using oscillator, potential measuring method, and image forming apparatus
US7576546B2 (en) Electric potential measuring device and image forming apparatus
US7372278B2 (en) Electric potential measuring apparatus electrostatic capacitance measuring apparatus, electric potential measuring method, electrostatic capacitance measuring method, and image forming apparatus
JP2006317358A (en) Electric potential measuring device and image forming apparatus using it
JP4794828B2 (en) Potential measuring apparatus and image forming apparatus
JP4273049B2 (en) Potential measuring apparatus and image forming apparatus
JP4873689B2 (en) Surface potential meter and surface potential measurement method
JP2009192497A (en) Surface potential measuring method and surface electrometer
JP2006003130A (en) Electric potential measuring apparatus and image forming apparatus
JP4440065B2 (en) Potential measuring apparatus and image forming apparatus
JP2007163326A (en) Potential measuring device and method for manufacturing potential measuring device
JP2007046981A (en) Electric potential measuring apparatus and image forming apparatus
JP2006105941A (en) Oscillating body apparatus, potential measuring apparatus using same, and image forming apparatus
JPH06313782A (en) Measuring device of potential
JP2006214764A (en) Potential measurement apparatus and image forming apparatus
JPH05149988A (en) Surface electrometer
JP2007298450A (en) Electric potential measuring apparatus and image forming apparatus
JP2006337168A (en) Potential measuring device
JP2006105940A (en) Potential measuring apparatus, and image forming apparatus using same
JP2007298451A (en) Potential measuring instrument, and image forming device equipped with potential measuring instrument

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees