JP2007078448A - Electric potential measuring apparatus and image formation apparatus - Google Patents

Electric potential measuring apparatus and image formation apparatus Download PDF

Info

Publication number
JP2007078448A
JP2007078448A JP2005265037A JP2005265037A JP2007078448A JP 2007078448 A JP2007078448 A JP 2007078448A JP 2005265037 A JP2005265037 A JP 2005265037A JP 2005265037 A JP2005265037 A JP 2005265037A JP 2007078448 A JP2007078448 A JP 2007078448A
Authority
JP
Japan
Prior art keywords
shield case
detection electrode
potential measuring
measuring device
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005265037A
Other languages
Japanese (ja)
Inventor
Yoshitaka Zaitsu
義貴 財津
Yoshikatsu Ichimura
好克 市村
Takashi Ushijima
隆志 牛島
Atsushi Katori
篤史 香取
Kaoru Noguchi
薫 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005265037A priority Critical patent/JP2007078448A/en
Publication of JP2007078448A publication Critical patent/JP2007078448A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a noise current which occurs due to changes in parasitic capacitance between a detection electrode and a shield case made of an electrically conductive material in an electric potential measuring apparatus to be oscillated by the sensing electrode. <P>SOLUTION: In the electric potential measuring apparatus, an oscillating member 4 capable of oscillation and provided with sensing electrodes 2a and 2b in surfaces opposed to an object to be measured 1 is housed in the shield case 7 made of an electrically conductive material except a part opposed to the object to be measured 1. The inner wall shape of the shield case 7 in the vicinity of a region including the range of oscillation of the oscillating member 4 has such a shape as to maintain an approximately constant minimum distance (d) between the sensing electrodes 2a and 2b and inner walls of the shield case 7 regardless of displacements of the sensing electrode 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電位測定装置、及び該電位測定装置を有する画像形成装置などに関するものである。 The present invention relates to a potential measuring device and an image forming apparatus having the potential measuring device.

従来、例えば、感光ドラムを有し電子写真方式によって画像形成を行う画像形成装置においては、常に安定した画質を得るために、どの様な環境下でも感光ドラム表面の電位分布が適当に(典型的には均一に)なる様に感光ドラム表面を帯電しておく必要がある。このため、感光ドラム表面の電位を電位測定装置を用いて測定し、その結果を利用して、感光ドラム表面の電位を均一に保つ様にフィードバック制御を行っている。 2. Description of the Related Art Conventionally, for example, in an image forming apparatus that has a photosensitive drum and forms an image by electrophotography, the potential distribution on the surface of the photosensitive drum is appropriately (typically) in any environment in order to obtain a stable image quality. It is necessary to charge the surface of the photosensitive drum so as to be uniform. Therefore, the potential on the surface of the photosensitive drum is measured using a potential measuring device, and feedback control is performed using the result to keep the potential on the surface of the photosensitive drum uniform.

この様な目的で用いられている電位測定装置に対して従来からしばしば要求されている機能の一つとして、測定対象(被測定物体)の表面電位を非接触で測定する機能が挙げられる。なぜならば、電位測定装置が感光ドラム表面に接触すると、感光ドラム表面の電位分布が均一でなくなり、形成される画像に乱れが生じる原因となるからである。 One of the functions that are often required for the potential measuring apparatus used for such a purpose is a function of measuring the surface potential of the measurement target (object to be measured) in a non-contact manner. This is because when the potential measuring device comes into contact with the surface of the photosensitive drum, the potential distribution on the surface of the photosensitive drum is not uniform, which causes a disorder in the formed image.

こうした方式の電位測定装置の原理を以下に説明する。測定対象の表面と電位測定装置に内蔵される検知電極との間に生じる電界によって、検知電極には測定対象の表面電位Vに比例した電気量Qの電荷が誘起される。QとVの関係は
Q=CV ・・・(1)
という式で表される。ここで、Cは検知電極と測定対象の表面との間の静電容量である。式(1)より、検知電極に誘起される電気量Qを測定することで測定対象の表面電位を得ることが可能となる。
The principle of such a potential measuring apparatus will be described below. Due to the electric field generated between the surface of the measurement object and the detection electrode built in the potential measuring device, an electric charge of an electric quantity Q proportional to the surface potential V of the measurement object is induced in the detection electrode. The relationship between Q and V is Q = CV (1)
It is expressed by the formula. Here, C is a capacitance between the detection electrode and the surface of the measurement target. From the equation (1), it is possible to obtain the surface potential of the measurement object by measuring the electric quantity Q induced in the detection electrode.

しかし、検知電極に誘起される電気量Qを高速かつ正確に直接測定することは困難である。そこで、実用的な方法として、検知電極と測定対象表面との間の静電容量Cの大きさを周期的に変化させ、検知電極で発生する交流電流を電位検出信号電流として測定することにより、測定対象の表面電位を得る方法を採用することが一般的である。 However, it is difficult to directly measure the amount of electricity Q induced in the detection electrode at high speed and accurately. Therefore, as a practical method, by periodically changing the magnitude of the capacitance C between the detection electrode and the surface to be measured, and measuring the alternating current generated at the detection electrode as a potential detection signal current, In general, a method of obtaining the surface potential of the measurement object is employed.

上記の方法によって測定対象の表面電位を得られることを以下に示す。静電容量Cが時間tの関数であるとすると、検知電極で発生する電位検出信号電流iは、検知電極に誘起される電気量の時間微分値であることと、式(1)から次の式で表される。
i(t)=dQ/dt=d(CV)/dt ・・・(2)
ここで、測定対象の表面電位Vの変化速度が静電容量Cの変化速度に対して十分遅い場合には、Vは微小時間dtにおいて一定であるとみなすことができるので式(2)は次の式で表される。
i(t)=dQ(t)/dt=V・dC(t)/dt ・・・(3)
It will be shown below that the surface potential of the measurement object can be obtained by the above method. Assuming that the capacitance C is a function of time t, the potential detection signal current i generated at the detection electrode is a time differential value of the quantity of electricity induced at the detection electrode. It is expressed by a formula.
i (t) = dQ / dt = d (CV) / dt (2)
Here, when the rate of change of the surface potential V of the measurement target is sufficiently slow with respect to the rate of change of the capacitance C, V can be regarded as being constant in the minute time dt, and therefore equation (2) is It is expressed by the following formula.
i (t) = dQ (t) / dt = V · dC (t) / dt (3)

式(3)より、検知電極で発生する電位検出信号電流iの大きさは測定対象の表面電位Vの1次の関数であるから、交流電流信号の振幅を測定することで測定対象の表面電位を得ることが可能である。また、式(3)より、静電容量Cの変化速度が同じならば、測定対象の表面電位に対する電位検出信号電流iの大きさ、すなわち電位測定装置の感度は、静電容量の変化量に比例することが分かる。 From the equation (3), the magnitude of the potential detection signal current i generated at the detection electrode is a linear function of the surface potential V of the measurement target. Therefore, the surface potential of the measurement target is measured by measuring the amplitude of the alternating current signal. It is possible to obtain Further, according to the equation (3), if the change rate of the capacitance C is the same, the magnitude of the potential detection signal current i with respect to the surface potential of the measurement object, that is, the sensitivity of the potential measuring device is the amount of change in the capacitance. You can see that they are proportional.

検知電極と測定対象表面との間の静電容量Cを周期的に変化させる方法の一つとして、検知電極と測定対象表面との間の距離を変化させて静電容量Cを周期的に変化させる方法が挙げられる。検知電極と測定対象の表面との間の静電容量Cは近似的に
C=A・S/x ・・・(4)
の様な式で表される。ここで、Aは物質の誘電率などに係る比例定数、Sは検知電極の面積、xは検知電極と測定対象の表面との間の距離である。式(4)より、距離xが周期的に変化すると静電容量Cも周期的に変化することが分かる。
As one method of periodically changing the capacitance C between the detection electrode and the measurement target surface, the capacitance C is changed periodically by changing the distance between the detection electrode and the measurement target surface. The method of making it include. The capacitance C between the detection electrode and the surface of the measurement object is approximately C = A · S / x (4)
It is expressed by the following formula. Here, A is a proportional constant related to the dielectric constant of the substance, S is the area of the detection electrode, and x is the distance between the detection electrode and the surface of the measurement object. From equation (4), it can be seen that when the distance x changes periodically, the capacitance C also changes periodically.

検知電極と測定対象の表面との間の距離を周期的に変化させる手段の一つとして、検知電極を測定対象の表面にほぼ垂直な方向に振動させる手段が挙げられる。検知電極を振動させる手段としては、測定対象に対向する面に検知電極が配置された弾性体を、交番する静電気力や電磁力を用いて振動させる手法などが挙げられる。 One means for periodically changing the distance between the detection electrode and the surface of the measurement target is a means for vibrating the detection electrode in a direction substantially perpendicular to the surface of the measurement target. Examples of means for vibrating the detection electrode include a method of vibrating an elastic body having the detection electrode arranged on the surface facing the measurement object using alternating electrostatic force or electromagnetic force.

上記の様な方式の電位測定装置を使用する際には、測定対象の表面以外の外部物体が有する電位や外部からの電磁ノイズの影響を低減させるために、少なくとも検知電極を導電性材料からなる箱型のシールドケースの中に納めた状態で使用することが多い。シールドケースの測定対象に対向する面の一部には開口が設けられており、この開口付きシールドケースによって、外部の帯電物体や電磁ノイズの影響を低減させつつ測定対象の電位のみを測定することができる。 When using a potential measuring apparatus of the above-described type, at least the detection electrode is made of a conductive material in order to reduce the potential of external objects other than the surface to be measured and the influence of external electromagnetic noise. Often used in a box-shaped shield case. An opening is provided in a part of the surface of the shield case facing the object to be measured, and this shield case with an opening measures only the potential of the object to be measured while reducing the influence of external charged objects and electromagnetic noise. Can do.

上記の手法を用いた電位測定装置の具体例を図6に沿って説明する(特許文献1参照)。測定対象1に対向する面に検知電極2が配置された空芯の電磁コイル8が、弾性体からなる振動板4を介して支持部材10に固定されている。支持部材10はシールドケース11の底部に固定されている。また、シールドケース11の内壁には永久磁石13が固定されており、永久磁石13の一部が電磁コイル8の空芯部に挿入されている。シールドケース11の測定対象1に対向する面のうち検知電極2の直上にあたる部分には、測定対象1の張る電界を導入する開口12が設けられている。 A specific example of a potential measuring device using the above method will be described with reference to FIG. 6 (see Patent Document 1). An air-core electromagnetic coil 8 in which the detection electrode 2 is arranged on the surface facing the measurement object 1 is fixed to the support member 10 via a diaphragm 4 made of an elastic body. The support member 10 is fixed to the bottom of the shield case 11. A permanent magnet 13 is fixed to the inner wall of the shield case 11, and a part of the permanent magnet 13 is inserted into the air core portion of the electromagnetic coil 8. An opening 12 for introducing an electric field stretched by the measurement object 1 is provided in a portion of the surface of the shield case 11 facing the measurement object 1 that is directly above the detection electrode 2.

この構成において、電磁コイル8に駆動電流源(図6中では省略されている)から交番電流を印加することにより、電磁コイル8が永久磁石13から引力または斥力を受ける。これにより、測定対象1にほぼ垂直な方向に検知電極2が周期的に振動し、検知電極2と測定対象1との間の距離が周期的に変化する。こうして、検知電極2と測定対象1との間の静電容量が周期的に変化し、検知電極2から測定対象1の電位に比例した振幅を有する電位検出信号電流が得られる。この電位検出信号電流は、信号処理回路部14において電圧信号変換、フィルタリング、増幅、整流されて電位測定信号として出力される。
特開平8−110361号公報
In this configuration, the electromagnetic coil 8 receives an attractive force or a repulsive force from the permanent magnet 13 by applying an alternating current to the electromagnetic coil 8 from a drive current source (omitted in FIG. 6). Thereby, the detection electrode 2 periodically vibrates in a direction substantially perpendicular to the measurement target 1, and the distance between the detection electrode 2 and the measurement target 1 changes periodically. In this way, the capacitance between the detection electrode 2 and the measurement object 1 changes periodically, and a potential detection signal current having an amplitude proportional to the potential of the measurement object 1 is obtained from the detection electrode 2. This potential detection signal current is voltage signal converted, filtered, amplified, and rectified in the signal processing circuit unit 14 and output as a potential measurement signal.
JP-A-8-110361

近年、画像形成装置の小型化に伴い、感光ドラムの電位を測定する電位測定装置にも小型化が求められている。先に挙げた様な従来の電位測定装置を、検知電極の面積を変えずに小型化すると、振動する検知電極とシールドケース内壁との間の距離が縮まり、検知電極とシールドケースとの間の寄生容量が増大する。検知電極とシールドケースとの間の寄生容量は、主に検知電極とシールドケースとの間の距離に依存する。 In recent years, with the miniaturization of image forming apparatuses, miniaturization is also required for potential measuring apparatuses that measure the potential of a photosensitive drum. If the conventional potential measuring device as mentioned above is downsized without changing the area of the detection electrode, the distance between the vibrating detection electrode and the inner wall of the shield case is reduced, and the distance between the detection electrode and the shield case is reduced. Parasitic capacitance increases. The parasitic capacitance between the detection electrode and the shield case mainly depends on the distance between the detection electrode and the shield case.

従来の電位測定装置によく採用されている開口のある箱型のシールドケースでは、振動板4の振動角或いは振動変位がゼロの時(図1(a-2)及び図2(a-2)参照)に検知電極2とシールドケース11との間の最短距離がdであるとすると、次の様なことが起こる。振動板4の振動角或いは振動変位がシールドケース11の開口12に近づく方向に最大となる時(図1(b-2)及び図2(b-2)参照)には、検知電極2とシールドケース11との間の最短距離はdよりも短いd’に変化する。 In a box-shaped shield case with an opening, which is often used in conventional potential measuring devices, when the vibration angle or vibration displacement of the diaphragm 4 is zero (FIGS. 1A-2 and 2A-2) If the shortest distance between the detection electrode 2 and the shield case 11 is d, the following occurs. When the vibration angle or vibration displacement of the diaphragm 4 becomes maximum in the direction approaching the opening 12 of the shield case 11 (see FIGS. 1B-2 and 2B-2), the detection electrode 2 and the shield The shortest distance to the case 11 changes to d ′ shorter than d.

これにより、検知電極2とシールドケース11との間の寄生容量は振動板4の変位に応じて変化する。さらに、検知電極2とシールドケース11との間の最短距離は振動板4の振動と同一の周期で変化するので、検知電極2とシールドケース11との間の寄生容量は振動板4の振動と同一の周期で変化する。 Thereby, the parasitic capacitance between the detection electrode 2 and the shield case 11 changes according to the displacement of the diaphragm 4. Furthermore, since the shortest distance between the detection electrode 2 and the shield case 11 changes in the same cycle as the vibration of the diaphragm 4, the parasitic capacitance between the detection electrode 2 and the shield case 11 is the vibration of the diaphragm 4. It changes with the same period.

ここで、帯電物質の付着や接地電線への接続不良などによって検知電極2とシールドケース11との間に電位差が生じると、上記の様な検知電極2とシールドケース11との間の寄生容量の変化によって検知電極2からノイズ電流が出力される。さらに、このノイズ電流は電位検出信号電流と同一の周波数を有するので、信号処理手段を用いても電位検出信号電流からこのノイズ電流を除去することは困難である。 Here, if a potential difference is generated between the detection electrode 2 and the shield case 11 due to adhesion of a charged substance or poor connection to the ground wire, the parasitic capacitance between the detection electrode 2 and the shield case 11 as described above is reduced. A noise current is output from the detection electrode 2 due to the change. Furthermore, since this noise current has the same frequency as the potential detection signal current, it is difficult to remove this noise current from the potential detection signal current even if signal processing means is used.

上記課題に鑑み、本発明の電位測定装置は、検知電極を有する振動部材と、シールドケースと、を有する電位測定装置である。そして、前記振動部材は前記シールドケース内部に存在し、前記振動部材の振動に伴う前記検知電極の変位に関わらず、該検知電極と前記シールドケース内壁との最短距離が実質的に一定に保持されることを特徴とする。より具体的には、測定対象に対向する面に検知電極を備える振動可能な振動部材が、測定対象に対向する部分を除いて導電性材料からなるシールドケースの内部に格納されている。そして、少なくとも振動部材の振動範囲を含む領域の近傍のシールドケースの内壁形状が、検知電極とシールドケース内壁との最短距離を検知電極の変位に関わらずほぼ一定とする様な形状であることを特徴とする。本発明の電位測定装置において、検知電極の一定の面が、シールドケース内壁と最短距離を成して常にほぼ対向しているように構成されたものでは次の様になる。すなわち、前記シールドケースの内壁と、前記検知電極の前記一定の面の振動変位による軌跡面とが、前記振動部材の振動範囲内でほぼ平行である。 In view of the above problems, the potential measuring device of the present invention is a potential measuring device having a vibrating member having a detection electrode and a shield case. The vibration member exists inside the shield case, and the shortest distance between the detection electrode and the inner wall of the shield case is maintained substantially constant regardless of the displacement of the detection electrode due to the vibration of the vibration member. It is characterized by that. More specifically, an oscillating vibration member having a detection electrode on the surface facing the measurement target is stored inside a shield case made of a conductive material except for a portion facing the measurement target. The inner wall shape of the shield case in the vicinity of the region including at least the vibration range of the vibrating member is such that the shortest distance between the detection electrode and the inner wall of the shield case is substantially constant regardless of the displacement of the detection electrode. Features. In the electric potential measurement apparatus of the present invention, the following configuration is adopted in which the fixed surface of the detection electrode is configured to always face the shield case inner wall at the shortest distance. That is, the inner wall of the shield case and the locus surface due to the vibration displacement of the fixed surface of the detection electrode are substantially parallel within the vibration range of the vibration member.

また、上記課題に鑑み、本発明の電位測定装置は、電位測定装置と、電位測定装置より得られる出力信号を処理する信号処理装置と、画像形成手段を備える。そして、電位測定装置の検知電極の形成された部分が画像形成手段の電位測定の対象と対向して配置され、画像形成手段が信号処理装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする。 In view of the above problems, the potential measuring device of the present invention includes a potential measuring device, a signal processing device that processes an output signal obtained from the potential measuring device, and an image forming unit. The portion where the detection electrode of the potential measuring device is formed is arranged opposite to the potential measurement target of the image forming means, and the image forming means controls the image formation using the signal detection result of the signal processing device. It is characterized by.

本発明において、シールドケースの内壁形状を、検知電極とシールドケースの内壁との間の最短距離が振動部材の振動に対してほぼ一定となる様な形状にしている。これにより、検知電極とシールドケースとの間の寄生容量変化によって発生するノイズ電流を抑制し、電位測定の精度を向上させることができる。 In the present invention, the inner wall shape of the shield case is made such that the shortest distance between the detection electrode and the inner wall of the shield case is substantially constant with respect to the vibration of the vibration member. Thereby, the noise current generated by the parasitic capacitance change between the detection electrode and the shield case can be suppressed, and the accuracy of potential measurement can be improved.

以下に、本発明の動作原理を説明しつつ本発明の一実施形態を説明する。
図1(a-1)は本発明の一実施形態を示す断面図である。本実施形態の電位測定装置では、2つの検知電極2a、2bを有する振動板4が、自身を含む平面上に存在する直線を中心軸(紙面に垂直な方向に伸びる)として回転方向に振動(回転振動)する様に構成されている。そして、導電性材料からなるシールドケース7の内壁形状が、検知電極2a、2bの回転振動の中心軸に対してほぼ軸対称となる様に決定されている(図1(a-1)内では半径Rの円柱の側面となる様に決定されている)。2つの検知電極2a、2bは、シールドケース7の開口12を介して測定対象1と対向している。
Hereinafter, an embodiment of the present invention will be described while explaining the operation principle of the present invention.
FIG. 1 (a-1) is a sectional view showing an embodiment of the present invention. In the potential measuring device of this embodiment, the diaphragm 4 having the two detection electrodes 2a and 2b vibrates in the rotation direction with a straight line existing on a plane including itself as a central axis (extends in a direction perpendicular to the paper surface) ( (Rotational vibration). The inner wall shape of the shield case 7 made of a conductive material is determined so as to be substantially axisymmetric with respect to the central axis of the rotational vibration of the detection electrodes 2a and 2b (in FIG. 1 (a-1)). It is determined to be the side surface of a cylinder with a radius R). The two detection electrodes 2 a and 2 b are opposed to the measuring object 1 through the opening 12 of the shield case 7.

本発明において、振動部材の振動による検知電極とシールドケースとの間の寄生容量の変化を減少させる様な内壁形状とは、検知電極とシールドケース内壁との間の最短距離が常にほぼ一定となる様な形状である。以下にその理由を説明する。 In the present invention, the inner wall shape that reduces the change in parasitic capacitance between the detection electrode and the shield case due to the vibration of the vibration member is that the shortest distance between the detection electrode and the shield case inner wall is always substantially constant. The shape is different. The reason will be described below.

検知電極とシールドケースとの間の寄生容量を決定するパラメータとしては、検知電極とシールドケース内壁との間の距離(なかんずく最短距離)、対向面積、誘電率の3者が挙げられる(上記式(4)参照)。この3者のうち、検知電極とシールドケース内壁との間の対向面積(本実施形態では、検知電極2の側面の面積)及び誘電率(本実施形態では、検知電極2とシールドケース7内壁との間にある大気の誘電率)は検知電極の振動に対してほぼ一定である。逆に言えば、本発明では、検知電極の上記対向面積を成す一定の面が、検知電極の他の部分と比較して、シールドケース内壁と最も短い距離を成して常に対向しているような構成を主に対象とする。したがって、検知電極(これの上記対向面積を成す一定の面)とシールドケース内壁との間の最短距離が主に検知電極とシールドケースとの間の寄生容量を決定するパラメータとなり、この最短距離をほぼ一定にして寄生容量変化を抑制することが重要となる。 The parameters for determining the parasitic capacitance between the detection electrode and the shield case include the distance between the detection electrode and the inner wall of the shield case (in particular, the shortest distance), the facing area, and the dielectric constant (the above formula ( 4)). Of these three members, the facing area between the detection electrode and the inner wall of the shield case (in this embodiment, the area of the side surface of the detection electrode 2) and the dielectric constant (in this embodiment, the inner wall of the detection electrode 2 and the shield case 7) The dielectric constant of the atmosphere in between is substantially constant with respect to the vibration of the sensing electrode. In other words, in the present invention, the constant surface forming the above-mentioned facing area of the detection electrode seems to always face the shield case inner wall at the shortest distance as compared with other portions of the detection electrode. Mainly intended for the configuration. Therefore, the shortest distance between the detection electrode (a certain surface forming the above-mentioned facing area) and the inner wall of the shield case is a parameter that mainly determines the parasitic capacitance between the detection electrode and the shield case. It is important to suppress the parasitic capacitance change by making it almost constant.

前記振動部材の振動に伴う前記検知電極の変位に関わらず、該検知電極と前記シールドケース内壁との最短距離が実質的に一定に保持される形態は、振動部材の振動形態により、以下の様にして決定することができる。ここで「実質的に一定」とは、完全に一定の場合だけでなく、測定精度に悪影響が出ない範囲で異なる(寸法誤差が生じている等)場合も含むものである。 Regardless of the displacement of the detection electrode due to the vibration of the vibration member, the form in which the shortest distance between the detection electrode and the inner wall of the shield case is maintained substantially constant depends on the vibration form of the vibration member as follows. Can be determined. Here, “substantially constant” includes not only the case where it is completely constant, but also the case where it differs within a range that does not adversely affect the measurement accuracy (such as a dimensional error).

本実施形態の様に振動板4が自身を含む平面上に存在する直線を中心軸として回転方向に振動する場合、図1(a-1)の様にシールドケース7の内壁形状を検知電極2の回転振動の中心軸に対して軸対称となる様に決定すればよい。これにより、シールドケース7と検知電極2との最短距離は常に次のものとなる。すなわち、「検知電極2の外周及び内部のうち振動板4の回転振動の中心軸から最も距離の離れた点」と「検知電極2上の点を通り振動板2の回転振動の中心軸に直交する直線がシールドケース7の内壁面と交わる点」との間の距離となる。この距離が振動板4の回転角によらず一定となることは、図1(a-1)と図1(b-1)から明らかである。 When the diaphragm 4 vibrates in the rotational direction about a straight line existing on a plane including itself as in the present embodiment, the inner wall shape of the shield case 7 is changed to the detection electrode 2 as shown in FIG. What is necessary is just to determine so that it may become axisymmetric with respect to the center axis | shaft of this rotational vibration. Thereby, the shortest distance between the shield case 7 and the detection electrode 2 is always as follows. That is, “the point farthest from the central axis of the rotational vibration of the diaphragm 4 in the outer periphery and inside of the detection electrode 2” and “the point that passes through the point on the detection electrode 2 and is orthogonal to the central axis of the rotational vibration of the diaphragm 2. The distance between the straight line to intersect with the point where the inner wall surface of the shield case 7 intersects. It is clear from FIGS. 1 (a-1) and 1 (b-1) that this distance is constant regardless of the rotation angle of the diaphragm 4.

ここで、シールドケース7の内壁の全ての部分を振動板4の回転振動の中心軸に対して軸対称に形成してしまうと、測定対象1の張る電界を導入することが不可能となるので、シールドケース7の測定対象1に対向する面の一部に開口12を設ける必要がある。しかし、振動板4の回転振動の中心軸を含みかつ測定対象1の表面に平行な平面上から見たシールドケース7の開口12の端の仰角ψを次の様にする。すなわち、仰角ψを振動板4の最大回転角θ(図1(b-1)参照)よりも大きくなる様に、シールドケース7の開口12の大きさを決定すれば上記の目的は達成される。図1(a-1)と図1(b-1)の実施形態において、検知電極2で発生した電位検出信号電流を処理して電位測定信号を出力する方法は、後記の実施例1で説明されるものと同じである。 Here, if all the portions of the inner wall of the shield case 7 are formed symmetrically with respect to the central axis of the rotational vibration of the diaphragm 4, it becomes impossible to introduce the electric field stretched by the measuring object 1. It is necessary to provide the opening 12 in a part of the surface of the shield case 7 that faces the measurement object 1. However, the elevation angle ψ at the end of the opening 12 of the shield case 7 as viewed from a plane including the central axis of the rotational vibration of the diaphragm 4 and parallel to the surface of the measurement object 1 is as follows. That is, if the size of the opening 12 of the shield case 7 is determined so that the elevation angle ψ becomes larger than the maximum rotation angle θ of the diaphragm 4 (see FIG. 1 (b-1)), the above object is achieved. . In the embodiment shown in FIGS. 1 (a-1) and 1 (b-1), a method of processing a potential detection signal current generated at the sensing electrode 2 and outputting a potential measurement signal will be described in Example 1 described later. Is the same as

図2に他の実施形態を示す。ここでは、振動板4が測定対象1にほぼ垂直な方向に直線的に振動する。この場合、シールドケース7の内壁面のうち少なくとも振動板4の近傍と測定対象1との間の部分について、図2(a-1)の様に、振動板4の振動方向に垂直な平面で切断したシールドケース7の内壁面の断面が合同となる様に決定すればよい。これにより、シールドケース7と検知電極2との最短距離は常に「検知電極2を含む平面上において検知電極2上の点とシールドケース7の内壁面上の点の2点間の距離が最小となる様に選んだ2点間の距離」となる。この距離が振動板4の変位によらず一定であることは、図2(a-1)と図2(b-1)から明らかである。図2(a-1)と図2(b-1)の実施形態において、検知電極2で発生した電位検出信号電流を処理して電位測定信号を出力する方法は、後記の実施例2で説明されるものと同じである。 FIG. 2 shows another embodiment. Here, the diaphragm 4 vibrates linearly in a direction substantially perpendicular to the measurement object 1. In this case, at least a portion of the inner wall surface of the shield case 7 between the vicinity of the diaphragm 4 and the measurement target 1 is a plane perpendicular to the vibration direction of the diaphragm 4 as shown in FIG. What is necessary is just to determine so that the cross section of the inner wall surface of the cut | disconnected shield case 7 may become congruent. Thus, the shortest distance between the shield case 7 and the detection electrode 2 is always “the distance between the two points on the plane including the detection electrode 2 and the point on the inner wall surface of the shield case 7 is minimum. The distance between the two points you choose. It is clear from FIGS. 2A-1 and 2B-1 that this distance is constant regardless of the displacement of the diaphragm 4. FIG. In the embodiment of FIGS. 2 (a-1) and 2 (b-1), a method of processing the potential detection signal current generated at the detection electrode 2 and outputting the potential measurement signal will be described in Example 2 described later. Is the same as

検知電極の上記一定の面が、シールドケース内壁と最短距離を成して常に対向しているような構成を対象とする構成について、以上のことをまとめて言えば、次のようになる。振動部材の振動範囲を含む近傍でのシールドケースの内壁形状が、検知電極の上記一定の面の振動変位による軌跡面にほぼ平行であれば、振動部材の振動による検知電極とシールドケースとの間の寄生容量の変化を抑制できることになる。 The above can be summarized as follows for a configuration in which the above-described certain surface of the detection electrode is always opposed to the inner wall of the shield case at the shortest distance. If the inner wall shape of the shield case in the vicinity including the vibration range of the vibration member is substantially parallel to the locus plane due to vibration displacement of the fixed surface of the detection electrode, the space between the detection electrode and the shield case due to vibration of the vibration member It is possible to suppress a change in parasitic capacitance.

以下に、図面に沿って、より具体的な本発明の実施例を説明する。 Hereinafter, more specific embodiments of the present invention will be described with reference to the drawings.

(実施例1)
本発明の第1の実施例を図3(a)及び(b)に示す((a)は一部破断した模式斜視図、(b)は破線A−A’における断面図である)。本実施例の電位測定装置では、振動板4において、測定対象1の表面に対向する面に検知電極2a、2bが配置され、反対側の面に図3(b)に示す方向に磁化された磁性体3(磁化の極性は図と逆でもよい)が配置されている。振動板4は、2本のねじりバネ5a、5bによって支持板6a、6bに軸支されている。支持板6a、6bは、導電性材料からなるシールドケース7の内壁の突起部9a、9bに取り付けられており、シールドケース7の底部のうち磁性体3の直下にあたる部分には電磁コイル8が配置されている。
Example 1
A first embodiment of the present invention is shown in FIGS. 3 (a) and 3 (b) ((a) is a partially broken schematic perspective view, and (b) is a sectional view taken along a broken line AA ′). In the potential measuring apparatus of the present embodiment, detection electrodes 2a and 2b are arranged on the diaphragm 4 on the surface facing the surface of the measuring object 1, and magnetized in the direction shown in FIG. A magnetic body 3 (the polarity of magnetization may be opposite to that shown in the figure) is arranged. The diaphragm 4 is pivotally supported on the support plates 6a and 6b by two torsion springs 5a and 5b. The support plates 6a and 6b are attached to the protrusions 9a and 9b on the inner wall of the shield case 7 made of a conductive material, and the electromagnetic coil 8 is disposed on the bottom portion of the shield case 7 immediately below the magnetic body 3. Has been.

シールドケース7の内壁のうち、振動板4の振動範囲の近傍の領域は半径R(Rは定数)の円柱側面となる様に作製されている。シールドケース7の内壁の円柱側面の中心軸は振動板4の回転振動の中心軸(図3(b)の紙面に垂直)にほぼ一致している。すなわち、シールドケース7の内壁のうち、上記領域の近傍のシールドケースの内壁形状は、振動板4の回転振動の中心軸に対して略軸対称な形状になっている。そして、振動板4の回転振動の中心軸から見たシールドケース7の内壁の円柱側面形状が途切れる点の仰角ψは、振動板4の最大回転角よりも大きくなる様に設計されている。 Of the inner wall of the shield case 7, the region in the vicinity of the vibration range of the diaphragm 4 is made to be a cylindrical side surface having a radius R (R is a constant). The central axis of the cylindrical side surface of the inner wall of the shield case 7 substantially coincides with the central axis of rotational vibration of the diaphragm 4 (perpendicular to the paper surface of FIG. 3B). That is, of the inner wall of the shield case 7, the inner wall shape of the shield case in the vicinity of the region is substantially axisymmetric with respect to the central axis of the rotational vibration of the diaphragm 4. The elevation angle ψ at the point where the cylindrical side surface shape of the inner wall of the shield case 7 is interrupted as viewed from the central axis of the rotational vibration of the diaphragm 4 is designed to be larger than the maximum rotation angle of the diaphragm 4.

また、本実施例においては、検知電極2a、2bの一定の面(シールドケース内壁に対向する側面)が振動板4の回転振動により変位するとともに、シールドケース内壁と最短距離dを成して常にほぼ対向しているように構成されている。こうした構成を前提にして、より一般的に表現すれば、上記領域の近傍のシールドケースの内壁形状は、検知電極2a、2bの前記一定の面の振動変位による軌跡面にほぼ平行である様な形状になっている。さらには、本実施例では、前記領域の近傍のシールドケース7の内壁形状が、検知電極2a、2bの各部からシールドケース内壁への最短距離を検知電極の変位に関わらず、各部において、ほぼ一定とする様な形状にもなっている。この構成は、検知電極2とシールドケース7との間の寄生容量の変化量を極めて小さくするのに資する構成である。 In the present embodiment, the fixed surfaces (side surfaces facing the inner wall of the shield case) of the detection electrodes 2a and 2b are displaced by the rotational vibration of the diaphragm 4, and always form the shortest distance d with the inner wall of the shield case. It is comprised so that it may oppose substantially. Based on such a configuration, in more general terms, the shape of the inner wall of the shield case in the vicinity of the region seems to be substantially parallel to the trajectory plane due to the vibration displacement of the fixed surface of the detection electrodes 2a and 2b. It has a shape. Furthermore, in the present embodiment, the inner wall shape of the shield case 7 in the vicinity of the region has a substantially constant shortest distance from each part of the detection electrodes 2a and 2b to the inner wall of the shield case regardless of the displacement of the detection electrode. It also has a shape like This configuration is a configuration that contributes to extremely reducing the amount of change in parasitic capacitance between the detection electrode 2 and the shield case 7.

動作は次の様に行われる。電磁コイル8に外部の駆動電流源(図3中では省略されている)から交番電流を印加することにより、磁性体3が電磁コイル8の張る磁場から引力または斥力を受け、振動板4が、ねじりバネ5a、5bを中心軸とした回転方向に振動する。ことき、検知電極2で発生した電位検出信号電流は信号処理回路(図3中では省略されている)において電圧信号変換、フィルタリング、増幅(2つの検知電極2a、2bからの信号を差動増幅する)、整流されて電位測定信号として出力される。 The operation is performed as follows. When an alternating current is applied to the electromagnetic coil 8 from an external drive current source (omitted in FIG. 3), the magnetic body 3 receives an attractive force or a repulsive force from the magnetic field stretched by the electromagnetic coil 8, and the diaphragm 4 It vibrates in the rotational direction about the torsion springs 5a and 5b. The potential detection signal current generated at the detection electrode 2 is converted into a voltage signal, filtered and amplified in a signal processing circuit (omitted in FIG. 3) (signals from the two detection electrodes 2a and 2b are differentially amplified). Rectified and output as a potential measurement signal.

上記の様なシールドケース7の内壁形状により、検知電極2とシールドケース7の内壁との間の最短距離dは振動板4の回転角によらず常にほぼ一定となる。よって、検知電極2とシールドケース7との間の寄生容量の変化量は従来のシールドケースを用いた場合に比べ減少し、検知電極2とシールドケース7との間に電位差が発生した場合にも検知電極2で発生するノイズ電流が減少する。 Due to the inner wall shape of the shield case 7 as described above, the shortest distance d between the detection electrode 2 and the inner wall of the shield case 7 is always substantially constant regardless of the rotation angle of the diaphragm 4. Therefore, the amount of change in the parasitic capacitance between the detection electrode 2 and the shield case 7 is reduced as compared with the case where the conventional shield case is used, and even when a potential difference is generated between the detection electrode 2 and the shield case 7. The noise current generated at the detection electrode 2 is reduced.

以上により、本実施例においてシールドケース7を用いることで、検知電極2とシールドケース7との間の寄生容量変化によって発生するノイズ電流を減少させ、電位測定の精度を向上させることが可能となる。 As described above, by using the shield case 7 in this embodiment, it is possible to reduce the noise current generated due to the parasitic capacitance change between the detection electrode 2 and the shield case 7 and improve the accuracy of the potential measurement. .

変形例を説明する。本実施例において、図3(c)及び(d)((c)は変形例の破線A−A’における断面図、(d)は変形例の破線B−B’における断面図である)のように振動板4の近傍のシールドケース7の内壁形状を球面にすることによってもほぼ同様の効果が得られる。シールドケース7の内壁の球面の中心は、検知電極2a、2bの各中心から振動板4の回転軸に対して引いた垂線が振動板4の回転軸と交わる点にほぼ一致する。すなわち、球面の中心は、ほぼ振動板4の回転軸上にある。そして、シールドケース7の内壁の球面の中心から見たシールドケース7の内壁の球面形状が途切れる点の仰角ψの最小値が、振動板4の最大回転角よりも大きくなる様に設計されている。なお、この変形例でも、前記領域の近傍のシールドケース7の内壁形状が上記条件をほぼ満たすように、球面の半径Rは、振動板4の寸法に対して一定程度以上大きく設定される。 A modification will be described. In the present embodiment, FIGS. 3C and 3D ((c) is a cross-sectional view taken along a broken line AA ′ in a modified example, and (d) is a cross-sectional view taken along a broken line BB ′ in the modified example). Thus, substantially the same effect can be obtained by making the inner wall shape of the shield case 7 in the vicinity of the diaphragm 4 spherical. The center of the spherical surface of the inner wall of the shield case 7 substantially coincides with a point where a perpendicular drawn from the center of each of the detection electrodes 2 a and 2 b with respect to the rotation axis of the diaphragm 4 intersects with the rotation axis of the diaphragm 4. That is, the center of the spherical surface is substantially on the rotation axis of the diaphragm 4. The minimum value of the elevation angle ψ at the point where the spherical shape of the inner wall of the shield case 7 is interrupted as viewed from the center of the spherical surface of the inner wall of the shield case 7 is designed to be larger than the maximum rotation angle of the diaphragm 4. . In this modification as well, the radius R of the spherical surface is set larger than a certain amount with respect to the dimensions of the diaphragm 4 so that the inner wall shape of the shield case 7 in the vicinity of the region substantially satisfies the above condition.

(実施例2)
本発明の第2の実施例を図4(a)及び(b)に示す((a)は模式断面図、(b)は破線C−C’における断面図である)。第2の実施例では、測定対象1の表面に対向する面に検知電極2が配置され、その反対側の面に磁性体3が配置された振動板4が、その一端でシールドケース7の底部に配置された支持部材10に固定されている。振動板4は2箇所で折り曲げられており、これにより検知電極2は、支持部材10よりも測定対象1に近い位置に振動可能に支持されている。振動板4は、片持ち梁式に支持部材10に支持されていて、その他端部において検知電極2が担持されている。電磁コイル8は、導電性材料からなるシールドケース7の底部のうち磁性体3の直下に当たる部分に配置されている。
(Example 2)
A second embodiment of the present invention is shown in FIGS. 4A and 4B ((a) is a schematic cross-sectional view, and (b) is a cross-sectional view taken along a broken line CC ′). In the second embodiment, the diaphragm 4 in which the detection electrode 2 is arranged on the surface facing the surface of the measuring object 1 and the magnetic body 3 is arranged on the opposite surface is provided at the bottom of the shield case 7 at one end thereof. It is being fixed to the support member 10 arrange | positioned. The diaphragm 4 is bent at two locations, whereby the detection electrode 2 is supported so as to be able to vibrate at a position closer to the measurement object 1 than the support member 10. The diaphragm 4 is supported by the support member 10 in a cantilever manner, and the detection electrode 2 is supported at the other end. The electromagnetic coil 8 is disposed in a portion of the bottom portion of the shield case 7 made of a conductive material that is directly below the magnetic body 3.

シールドケース7の内壁のうち、検知電極2を含む平面と測定対象1の表面を含む平面の間に存在する部分の形状は円柱の側面となっており、その円柱の中心軸は振動板4の振動方向にほぼ平行である。別の見方をすれば、シールドケース7の内壁形状のうち少なくとも検知電極2を含む平面と測定対象表面を含む平面との間に存在する部分について、検知電極2の振動方向に垂直な平面による断面の形状がほぼ同じになっている。支持部材10に固定された部分からの振動板4の長さは十分長くなっているので、振動板4に支持された検知電極2の振動方向はほぼ直線状である。また、シールドケース7の上記の部分のうち測定対象1に対向する部分には、シールドケース7の部分がせり出しておらず、測定対象1に対向する面の全てが磁性材料のない開口となっている。この開口の形状、シールドケース7の断面形状、検知電極2の形状、振動板4の先端部の形状は、図4(b)の様になっている。 Of the inner wall of the shield case 7, the shape of the portion existing between the plane including the detection electrode 2 and the plane including the surface of the measuring object 1 is a side surface of the cylinder, and the central axis of the cylinder is the diaphragm 4. It is almost parallel to the vibration direction. From another point of view, a cross section of the inner wall shape of the shield case 7 between the plane including at least the detection electrode 2 and the plane including the surface to be measured is a plane perpendicular to the vibration direction of the detection electrode 2. The shape of is almost the same. Since the length of the diaphragm 4 from the portion fixed to the support member 10 is sufficiently long, the vibration direction of the detection electrode 2 supported by the diaphragm 4 is substantially linear. Further, the portion of the shield case 7 that faces the measurement object 1 is not protruding from the portion of the shield case 7 that faces the measurement object 1, and the entire surface that faces the measurement object 1 is an opening without a magnetic material. Yes. The shape of the opening, the cross-sectional shape of the shield case 7, the shape of the detection electrode 2, and the shape of the tip of the diaphragm 4 are as shown in FIG.

上記構成において、電磁コイル8に駆動電圧源(図4中では省略されている)から交番電圧を印加することにより磁性体3が電磁コイル8の張る磁場から周期的に引力を受け、振動板4の先端部が測定対象1に対してほぼ垂直な方向に振動する。検知電極2で発生した電位検出信号電流は、信号処理回路(図4中では省略されている)において電圧信号変換、フィルタリング、増幅、整流されて電位測定信号として出力される。 In the above configuration, when an alternating voltage is applied to the electromagnetic coil 8 from a drive voltage source (omitted in FIG. 4), the magnetic body 3 periodically receives an attractive force from the magnetic field stretched by the electromagnetic coil 8, and the diaphragm 4 Oscillates in a direction substantially perpendicular to the measuring object 1. The potential detection signal current generated at the detection electrode 2 is converted into a voltage signal, filtered, amplified, and rectified in a signal processing circuit (omitted in FIG. 4) and output as a potential measurement signal.

本実施例においても、検知電極2の一定の面(シールドケース内壁に対向する側面)が振動板4の直線的振動により変位するとともに、シールドケース内壁と最短距離dを成して常にほぼ対向するように構成されている。そして、より一般的に表現すれば、シールドケース7の内壁形状は、検知電極2の前記一定の面の振動変位による軌跡面にほぼ平行である様な形状になっている。さらには、本実施例でも、シールドケース7の内壁形状が、検知電極2の各部からシールドケース内壁への最短距離を検知電極の変位に関わらず、各部において、ほぼ一定とする様な形状にもなっている。 Also in this embodiment, a certain surface (side surface facing the inner wall of the shield case) of the detection electrode 2 is displaced by the linear vibration of the diaphragm 4 and is always substantially opposed to the inner wall of the shield case with a shortest distance d. It is configured as follows. In more general terms, the shape of the inner wall of the shield case 7 is such that it is substantially parallel to the trajectory plane due to the vibration displacement of the fixed surface of the detection electrode 2. Furthermore, in this embodiment, the inner wall shape of the shield case 7 is also shaped so that the shortest distance from each part of the detection electrode 2 to the inner wall of the shield case is substantially constant in each part regardless of the displacement of the detection electrode. It has become.

上記の様なシールドケース7の内壁形状により、検知電極2とシールドケース7との間の最短距離は検知電極2の位置によらずほぼ常に一定となる。よって、検知電極2とシールドケース7との間の寄生容量の変化量は、従来のシールドケースを用いた場合に比べ減少し、検知電極とシールドケースとの間に電位差が発生した場合にも検知電極2で発生するノイズ電流が減少する。 Due to the inner wall shape of the shield case 7 as described above, the shortest distance between the detection electrode 2 and the shield case 7 is almost always constant regardless of the position of the detection electrode 2. Therefore, the amount of change in the parasitic capacitance between the detection electrode 2 and the shield case 7 is reduced as compared with the case where the conventional shield case is used, and even when a potential difference is generated between the detection electrode and the shield case. The noise current generated at the electrode 2 is reduced.

以上により、本実施例においてもシールドケース7を用いることで、検知電極2とシールドケース7との間の寄生容量変化によって発生するノイズ電流を抑制することが可能となる。 As described above, also in the present embodiment, by using the shield case 7, it is possible to suppress the noise current generated due to the parasitic capacitance change between the detection electrode 2 and the shield case 7.

上記実施例において、シールドケース7の内壁のうち、検知電極2を含む平面と測定対象1の表面を含む平面の間に存在する部分の形状は柱筒の側面状になっていればよく、円柱の側面以外にも、検知電極の形状に対応して種々の側面形状が可能である。図4(c)の様に、四角形の検知電極4に対応した四角柱の側面など、様々な柱筒の側面形状が適用可能である。 In the said Example, the shape of the part which exists between the plane containing the detection electrode 2 and the plane containing the surface of the measuring object 1 among the inner walls of the shield case 7 should just be the side surface shape of a column, In addition to the side surfaces, various side surface shapes are possible corresponding to the shape of the detection electrode. As shown in FIG. 4C, various side surface shapes of column cylinders such as a side surface of a quadrangular column corresponding to the quadrangular detection electrode 4 can be applied.

(実施例3)
本発明の第3の実施例として、本発明の電位測定装置を用いた画像形成装置の構成例を説明する。
(Example 3)
As a third embodiment of the present invention, a configuration example of an image forming apparatus using the potential measuring device of the present invention will be described.

本実施例の画像形成装置を図5に示す。感光ドラム21の周辺に、帯電器制御部17により制御可能な帯電器16、露光器18、本発明の電位測定装置15、トナー供給器19が設置されている。帯電器16で感光ドラム21の表面を帯電し、露光器18を用いて感光ドラム21の表面を露光することにより潜像が得られる。この潜像にトナー供給器19によりトナーを付着させることにより、潜像が現像されたトナー像を得る。このトナー像を送りローラー20と感光ドラム21で挟まれた被印刷物体22に転写し、被印刷物体22上のトナーを固着させる。これらの工程を経て画像形成が達成される。帯電器制御部17が信号処理装置を構成し、帯電器16、露光器18、感光ドラム21などが画像形成手段を構成する。 An image forming apparatus of this embodiment is shown in FIG. Around the photosensitive drum 21, a charger 16 that can be controlled by the charger controller 17, an exposure device 18, the potential measuring device 15 of the present invention, and a toner supplier 19 are installed. A latent image is obtained by charging the surface of the photosensitive drum 21 with the charger 16 and exposing the surface of the photosensitive drum 21 with the exposure device 18. Toner is attached to the latent image by the toner supplier 19 to obtain a toner image in which the latent image is developed. This toner image is transferred to a printing object 22 sandwiched between the feed roller 20 and the photosensitive drum 21, and the toner on the printing object 22 is fixed. Image formation is achieved through these steps. The charger controller 17 constitutes a signal processing device, and the charger 16, the exposure device 18, the photosensitive drum 21, and the like constitute image forming means.

この構成において、感光ドラム21の帯電状態を本発明の電位測定装置15で測定し、感光ドラム21の表面電位の測定信号を帯電器制御部17に出力する。この測定信号に基づき、帯電器制御部17は、帯電後の感光ドラム21の表面電位が所望の値になる様に帯電器16の帯電電圧をフィードバック制御する(本発明の電位測定装置15の測定信号は、露光器18にフィードバックされてこれを制御することもできる)。これにより、感光ドラム21の安定した帯電が実現され、安定した画像形成が実現される。 In this configuration, the charged state of the photosensitive drum 21 is measured by the potential measuring device 15 of the present invention, and a measurement signal of the surface potential of the photosensitive drum 21 is output to the charger controller 17. Based on this measurement signal, the charger controller 17 feedback-controls the charging voltage of the charger 16 so that the surface potential of the photosensitive drum 21 after charging becomes a desired value (measurement by the potential measuring device 15 of the present invention). The signal can also be fed back to the exposure unit 18 to control it). Thereby, stable charging of the photosensitive drum 21 is realized, and stable image formation is realized.

振動板が回転方向に振動する電位測定装置において、(a-1)本発明のシールドケースを適用した一実施形態の振動板の回転角が0のときの断面図、(b-1)本発明のシールドケースを適用した一実施形態の振動板の回転角が最大のときの断面図、(a-2)従来のシールドケースを適用した例の振動板の回転角が0のときの断面図、(b-2)従来のシールドケースを適用した例の振動板の回転角が最大のときの断面図、である。In the potential measuring device in which the diaphragm vibrates in the rotation direction, (a-1) a cross-sectional view when the rotation angle of the diaphragm of one embodiment to which the shield case of the present invention is applied is 0, (b-1) the present invention. Sectional drawing when the rotation angle of the diaphragm of the embodiment to which the shield case of the embodiment is applied is the maximum, (a-2) Sectional view when the rotation angle of the diaphragm of the example of applying the conventional shielding case is 0, (B-2) It is sectional drawing when the rotation angle of the diaphragm of the example which applied the conventional shield case is the maximum. 振動板が直線的に振動する電位測定装置において、(a-1)本発明のシールドケースを適用した他の実施形態の振動板の変位が0のときの断面図、(b-1)本発明のシールドケースを適用した他の実施形態の振動板の変位が最大のときの断面図、(a-2)従来のシールドケースを適用した他の例の振動板の変位が0のときの断面図、(b-2)従来のシールドケースを適用した他の例の振動板の変位が最大のときの断面図、である。In the potential measuring device in which the diaphragm vibrates linearly, (a-1) a cross-sectional view when the displacement of the diaphragm of another embodiment to which the shield case of the present invention is applied is 0, (b-1) the present invention. Sectional drawing when the displacement of the diaphragm of another embodiment to which the shield case of the present embodiment is applied is the maximum, (a-2) Sectional view when the displacement of the diaphragm of another example to which the conventional shielding case is applied is zero (B-2) It is sectional drawing when the displacement of the diaphragm of the other example to which the conventional shield case is applied is the maximum. 本発明の第1の実施例における電位測定装置の、(a)一部破断した模式斜視図、(b)破線A−A’における断面図、(c)変形例の破線A−A’における断面図、(d)変形例の破線B−B’における断面図である。1A is a partially broken schematic perspective view, FIG. 1B is a sectional view taken along a broken line AA ′, and FIG. 1C is a sectional view taken along a broken line AA ′ in a modification. (D) It is sectional drawing in broken line BB 'of a modification. 本発明の第2の実施例における電位測定装置の、(a)模式断面図、(b)破線C−C’における断面図、(c)変形例の破線C−C’における断面図である。4A is a schematic cross-sectional view of a potential measuring apparatus according to a second embodiment of the present invention, FIG. 4B is a cross-sectional view taken along a broken line C-C ′, and FIG. 本発明の第3の実施例における画像形成装置を示す概略図である。It is the schematic which shows the image forming apparatus in the 3rd Example of this invention. 従来の電位測定装置の模式断面図である。It is a schematic cross section of a conventional potential measuring device.

符号の説明Explanation of symbols

1、21・・・測定対象(感光ドラム)
2、2a、2b・・・検知電極
4・・・振動部材(振動板)
7・・・本発明のシールドケース
12・・・シールドケースの開口
15・・・本発明の電位測定装置
16、18、21・・・画像形成手段(帯電器、露光器、感光ドラム)
17・・・信号処理装置(帯電器制御部)
1,21 ... Measurement target (photosensitive drum)
2, 2a, 2b ... detection electrode 4 ... vibrating member (vibrating plate)
7 ... Shield case 12 of the present invention ... Opening 15 of the shield case ... Potential measuring device 16, 18, 21 of the present invention ... Image forming means (charger, exposure device, photosensitive drum)
17 ... Signal processing device (charger controller)

Claims (9)

検知電極を有する振動部材と、シールドケースと、を有する電位測定装置であって、
前記振動部材は前記シールドケース内部に存在し、
前記振動部材の振動に伴う前記検知電極の変位に関わらず、該検知電極と前記シールドケース内壁との最短距離が実質的に一定に保持されることを特徴とする電位測定装置。
A potential measuring device having a vibrating member having a detection electrode and a shield case,
The vibration member exists inside the shield case,
The potential measuring device, wherein the shortest distance between the detection electrode and the inner wall of the shield case is maintained substantially constant regardless of the displacement of the detection electrode caused by the vibration of the vibration member.
請求項1に記載の電位測定装置において、前記検知電極の一定の面が、シールドケース内壁と最短距離を成して常にほぼ対向しているように構成され、
前記シールドケースの内壁と、前記検知電極の前記一定の面の振動変位による軌跡面とが、前記振動部材の振動範囲内でほぼ平行であることを特徴とする電位測定装置。
In the electric potential measurement device according to claim 1, the fixed surface of the detection electrode is configured to always face substantially the shortest distance from the inner wall of the shield case,
An electric potential measuring apparatus, wherein an inner wall of the shield case and a locus plane due to vibration displacement of the fixed surface of the detection electrode are substantially parallel within a vibration range of the vibration member.
請求項1または2に記載の電位測定装置において、前記検知電極の変位に関わらず、前記領域の近傍のシールドケースの内壁と前記検知電極の各部との最短距離が実質的に一定に保持されることを特徴とする電位測定装置。 3. The potential measuring apparatus according to claim 1, wherein the shortest distance between the inner wall of the shield case in the vicinity of the region and each part of the detection electrode is maintained substantially constant regardless of the displacement of the detection electrode. A potential measuring device characterized by that. 請求項1乃至3のいずれかに記載の電位測定装置において、前記振動部材がねじりバネを中心軸とした回転方向に振動し、
前記シールドケースの内壁と、振動部材の回転振動の中心軸との距離とが、前記振動部材の振動範囲内で実質的に一定であることを特徴とする電位測定装置。
The potential measuring device according to any one of claims 1 to 3, wherein the vibrating member vibrates in a rotation direction with a torsion spring as a central axis,
A potential measuring device, wherein a distance between an inner wall of the shield case and a central axis of rotational vibration of the vibration member is substantially constant within a vibration range of the vibration member.
請求項4に記載の電位測定装置において、前記領域の近傍のシールドケースの内壁形状が円柱側面であり、
かつ該円柱側面の中心軸が振動部材の回転振動の中心軸と略一致することを特徴とする電位測定装置。
In the potential measuring device according to claim 4, the inner wall shape of the shield case in the vicinity of the region is a cylindrical side surface,
A potential measuring device characterized in that the central axis of the cylindrical side surface substantially coincides with the central axis of rotational vibration of the vibrating member.
請求項4に記載の電位測定装置において、前記領域の近傍のシールドケースの内壁形状が球面であり、
かつ該球面の中心がほぼ振動部材の回転振動の中心軸上にあることを特徴とする電位測定装置。
In the potential measuring device according to claim 4, the inner wall shape of the shield case in the vicinity of the region is a spherical surface,
The potential measuring device is characterized in that the center of the spherical surface is substantially on the central axis of rotational vibration of the vibrating member.
請求項1乃至3のいずれかに記載の電位測定装置において、前記振動部材が、測定対象表面に対しほぼ直交する方向に振動し、
前記シールドケースの内壁形状のうち少なくとも前記検知電極を含む平面と測定対象表面を含む平面との間に存在する部分について、検知電極の振動方向に垂直な平面による断面の形状がほぼ同じであることを特徴とする電位測定装置。
The potential measuring device according to any one of claims 1 to 3, wherein the vibrating member vibrates in a direction substantially perpendicular to the surface to be measured.
Of the inner wall shape of the shield case, at least a portion existing between a plane including the detection electrode and a plane including the measurement target surface has substantially the same cross-sectional shape by a plane perpendicular to the vibration direction of the detection electrode. A potential measuring device characterized by the above.
請求項7に記載の電位測定装置において、前記領域の近傍のシールドケースの内壁形状が柱筒の側面であり、
かつ該柱筒の中心軸が振動部材の振動方向とほぼ平行であることを特徴とする電位測定装置。
In the potential measuring device according to claim 7, the inner wall shape of the shield case in the vicinity of the region is a side surface of the columnar cylinder,
A potential measuring device characterized in that the central axis of the cylinder is substantially parallel to the vibration direction of the vibrating member.
請求項1乃至8のいずれかに記載の電位測定装置と、電位測定装置より得られる出力信号を処理する信号処理装置と、画像形成手段を備え、
電位測定装置の検知電極の形成された部分が画像形成手段の電位測定の対象と対向して配置され、画像形成手段が信号処理装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする画像形成装置。
A potential measuring device according to any one of claims 1 to 8, a signal processing device for processing an output signal obtained from the potential measuring device, and an image forming means,
The portion where the detection electrode of the potential measuring device is formed is arranged opposite to the potential measurement target of the image forming means, and the image forming means controls the image formation using the signal detection result of the signal processing device. An image forming apparatus.
JP2005265037A 2005-09-13 2005-09-13 Electric potential measuring apparatus and image formation apparatus Pending JP2007078448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265037A JP2007078448A (en) 2005-09-13 2005-09-13 Electric potential measuring apparatus and image formation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265037A JP2007078448A (en) 2005-09-13 2005-09-13 Electric potential measuring apparatus and image formation apparatus

Publications (1)

Publication Number Publication Date
JP2007078448A true JP2007078448A (en) 2007-03-29

Family

ID=37938935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265037A Pending JP2007078448A (en) 2005-09-13 2005-09-13 Electric potential measuring apparatus and image formation apparatus

Country Status (1)

Country Link
JP (1) JP2007078448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161585A (en) * 2016-03-07 2017-09-14 キヤノン株式会社 Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161585A (en) * 2016-03-07 2017-09-14 キヤノン株式会社 Image forming apparatus

Similar Documents

Publication Publication Date Title
TWI252319B (en) Electric potential measuring device using oscillating device, image forming apparatus, and electric potential measuring method
JP2006162457A (en) Electric potential measuring device and image forming apparatus
JP4886495B2 (en) Potential measuring apparatus and image forming apparatus
JP2006317358A (en) Electric potential measuring device and image forming apparatus using it
CA2361136A1 (en) Vibrating gyroscope
JP2007078448A (en) Electric potential measuring apparatus and image formation apparatus
JP4794828B2 (en) Potential measuring apparatus and image forming apparatus
JP6613599B2 (en) Permeability / dielectric constant sensor and permeability / dielectric constant detection method
JP2006105941A (en) Oscillating body apparatus, potential measuring apparatus using same, and image forming apparatus
JP4440065B2 (en) Potential measuring apparatus and image forming apparatus
JP2007298450A (en) Electric potential measuring apparatus and image forming apparatus
JP2006003130A (en) Electric potential measuring apparatus and image forming apparatus
JP2008116377A (en) Potential measuring instrument and image forming device
JP2007078447A (en) Electric potential measuring apparatus and image formation apparatus
JP2006105940A (en) Potential measuring apparatus, and image forming apparatus using same
JPH09281167A (en) Apparatus for measuring surface potential
JP2009074948A (en) Oscillating body apparatus, potential measurement apparatus using same and image forming apparatus
JP2007127420A (en) Potential detection sensor and image forming device equipped therewith
JP4273049B2 (en) Potential measuring apparatus and image forming apparatus
JP2007163326A (en) Potential measuring device and method for manufacturing potential measuring device
JP2008145372A (en) Potential measuring device and image forming device
JP2007298452A (en) Electric potential measuring apparatus and image forming apparatus
JPH08110361A (en) Surface potential measuring instrument
JPH07104019A (en) Method and device for measuring surface potential
JP2008128916A (en) Potential sensor, and image forming device equipped with the potential sensor