JP2007298102A - Gas spring type vibration resistant device and control method for the device - Google Patents

Gas spring type vibration resistant device and control method for the device Download PDF

Info

Publication number
JP2007298102A
JP2007298102A JP2006126082A JP2006126082A JP2007298102A JP 2007298102 A JP2007298102 A JP 2007298102A JP 2006126082 A JP2006126082 A JP 2006126082A JP 2006126082 A JP2006126082 A JP 2006126082A JP 2007298102 A JP2007298102 A JP 2007298102A
Authority
JP
Japan
Prior art keywords
control
vibration isolation
flow rate
valve
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006126082A
Other languages
Japanese (ja)
Other versions
JP4113960B2 (en
Inventor
Kenji Kawashima
健嗣 川嶋
Toshiharu Kagawa
利春 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2006126082A priority Critical patent/JP4113960B2/en
Priority to PCT/JP2007/052300 priority patent/WO2007125663A1/en
Publication of JP2007298102A publication Critical patent/JP2007298102A/en
Application granted granted Critical
Publication of JP4113960B2 publication Critical patent/JP4113960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • F16F15/027Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means comprising control arrangements
    • F16F15/0275Control of stiffness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Feedback Control In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas spring type vibration resistant device capable of conducting precision control of which response is higher than a conventional one while maintaining a strong point to restrict an exhaust flow rate by using a flow control type valve and a control method for the device. <P>SOLUTION: In the vibration resistant device with a spool valve and a pressure differential meter, nonlinearity of the spool valve is compensated by conducting control so that a feedback value of the pressure differentiation value follows a normative model Gref in which relation of an input voltage and an output flow rate has linearity including a zero point in order to improve dynamic characteristics of the spool valve in its dead zone. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、気体バネ式の除振装置及び該除振装置を用いた除振方法及び該装置の制御方法に関する。   The present invention relates to a gas spring type vibration isolation device, a vibration isolation method using the vibration isolation device, and a control method of the device.

気体バネ式除振装置は、半導体製造装置や半導体の線幅を測定する検査装置等の振動制御に利用される。従来の気体バネ式除振装置は、空気バネのような気体バネの内部圧力を制御するために圧力制御型弁例えばノズルフラッパ型空気圧サーボ弁を有し、空気バネの変位及び加速度をフィードバックして制御される。あるいは、空気バネ内の圧力をフィードバックする方法も提案されている。例えば特許文献1には、圧力制御分解能を改善することを目的とした除振マウント装置が開示されている。   The gas spring vibration isolator is used for vibration control of a semiconductor manufacturing apparatus or an inspection apparatus that measures the line width of a semiconductor. A conventional gas spring type vibration isolator has a pressure control type valve such as a nozzle flapper type pneumatic servo valve to control the internal pressure of a gas spring such as an air spring, and controls the displacement and acceleration of the air spring by feedback. Is done. Or the method of feeding back the pressure in an air spring is also proposed. For example, Patent Document 1 discloses an anti-vibration mount device intended to improve pressure control resolution.

ノズルフラッパ弁のような圧力制御型弁は入力電圧に対するバルブ開度の線形性が高く、除振装置に使用した場合は入力に対して空気バネ内の圧力が1次遅れの関係となる1次遅れ系を構築することができる。従って圧力制御型弁は、除振装置の空気バネ内の圧力制御に適するとされているが、排気流量が多いことからランニングコストがかかるという問題があった。   A pressure control type valve such as a nozzle flapper valve has a high linearity of the valve opening with respect to the input voltage, and when used in a vibration isolator, the pressure in the air spring is in a first order lag relationship with respect to the input. A system can be constructed. Therefore, although the pressure control type valve is said to be suitable for pressure control in the air spring of the vibration isolator, there is a problem that a running cost is required due to a large exhaust flow rate.

除振装置の排気流量を抑制して省エネルギ化を実現するためには、圧力制御型弁の代わりに、スプール弁のような排気流量の少ない流量制御型弁を用いて空気の消費流量を抑制することが考えられる。しかしながら、除振装置の空気バネ内は微圧制御が必要であり、従来の圧力センサ及び流量制御型弁を用いて微圧制御系を構築することは、圧力センサの分解能不足や、除振装置への外乱による平衡圧力の変化等の問題から大変困難であった。   In order to save energy by suppressing the exhaust flow rate of the vibration isolator, use a flow control type valve with a low exhaust flow rate, such as a spool valve, instead of a pressure control type valve to reduce the air consumption flow rate. It is possible to do. However, fine pressure control is required in the air spring of the vibration isolator, and the construction of the micro pressure control system using the conventional pressure sensor and the flow control type valve is not sufficient for the resolution of the pressure sensor or the vibration isolator. It was very difficult because of problems such as changes in equilibrium pressure due to disturbance to

そこで本願出願人は、自らが開発し公知となっている圧力微分計(特許文献2参照)を用いてカスケード制御系を構築することを提案している。これにより、スプール型サーボ弁のような流量制御型弁を使用しても除振装置の除振台を浮上させ、かつ排気流量を抑制することができる。このような構成及び制御方法は、本願と同一出願人による特願2004−333638号明細書にも記載されている。
特開2005−282696号公報 特開2005−98991号公報
Therefore, the applicant of the present application has proposed to construct a cascade control system using a pressure differential meter (see Patent Document 2) that has been developed and is publicly known. Thereby, even if a flow rate control type valve such as a spool type servo valve is used, the vibration isolation table of the vibration isolation device can be lifted and the exhaust flow rate can be suppressed. Such a configuration and a control method are also described in Japanese Patent Application No. 2004-333638 by the same applicant as the present application.
JP 2005-282696 A JP 2005-98991 A

特許文献2に記載の圧力微分計は、測定対象である容器内の圧力変化を低ノイズかつ高い分解能で測定することができるため、スプール弁を使用してもノズルフラッパ弁を用いた除振装置と同等の除振性能を得ることができ、かつ排気流量を抑制して省エネルギ化を図ることができる。しかしながら、スプール弁のような流量制御型弁においては一般に、図9に複数の黒点プロットで示すように、入力電圧に対する出力(流量)が線形(図9に示す線形グラフ)とはならず、具体的には、原点(入力及び出力がゼロ)前後において入力変化に対する出力変化がゼロ又は小さい、いわゆる「不感帯」とよばれる領域Zが存在する。この不感帯は、入力を大きく変化させても出力があまり変化せず、故に制御が困難な領域となっている。また除振装置に使用されているときのスプール弁の出力流量は通常はこの不感帯に含まれ、故にスプール弁を使用した場合、圧力微分計を用いたカスケード制御では不感帯を十分に補償できず、その除振性能は圧力制御型弁を使用した場合と同等程度に止まっており、さらなる除振性能の向上が望まれていた。   Since the pressure differential meter described in Patent Document 2 can measure a pressure change in a container to be measured with low noise and high resolution, a vibration isolator using a nozzle flapper valve even when a spool valve is used. Equivalent vibration isolation performance can be obtained, and energy saving can be achieved by suppressing the exhaust flow rate. However, in a flow control type valve such as a spool valve, in general, as shown by a plurality of black dot plots in FIG. 9, the output (flow rate) with respect to the input voltage is not linear (linear graph shown in FIG. 9). Specifically, there is a region Z called a “dead zone” in which the output change with respect to the input change is zero or small before and after the origin (input and output are zero). This dead zone is an area that is difficult to control because the output does not change much even if the input is greatly changed. In addition, the output flow rate of the spool valve when used in a vibration isolator is usually included in this dead zone, so when using a spool valve, cascade control using a pressure differential meter cannot sufficiently compensate the dead zone, The anti-vibration performance is almost the same as when using a pressure control type valve, and further improvement of the anti-vibration performance has been desired.

また、除振装置の環境変化等による負荷変動が激しい場合、具体的には除振台の速度が無視できない場合には、変位及び加速度をフィードバックするカスケード制御だけでは不十分な場合がある。従ってこの点からも、流量制御型弁を使用するとともに従来よりも除振性能の高い除振装置が望まれる。   Further, when the load fluctuation due to the environmental change of the vibration isolator is severe, specifically, when the speed of the vibration isolation table cannot be ignored, the cascade control that feeds back the displacement and acceleration may not be sufficient. Therefore, from this point, a vibration isolator that uses a flow control valve and has a higher vibration isolation performance than the conventional one is desired.

そこで本発明は、流量制御型弁を用いて排気流量を抑制するという長所を維持しつつ、従来よりも応答性の高い高精度な制御が可能な気体バネ式除振装置及びその制御方法を提供することを目的とする。   Accordingly, the present invention provides a gas spring type vibration isolator capable of highly accurate control with higher response than the conventional one and a control method thereof while maintaining the advantage of suppressing the exhaust flow rate using a flow control type valve. The purpose is to do.

上記目的を達成するために、請求項1に記載の発明は、除振台と、前記除振台を支持する気体バネと、前記気体バネへの給気及び排気を行う流量制御型弁と、前記除振台の位置を検出する位置検出手段と、前記除振台の加速度を検出する加速度検出手段と、前記位置検出手段及び前記加速度検出手段の出力に基づいて前記流量制御型弁を制御する制御装置と、を有する除振装置であって、前記制御装置は、前記位置検出手段の出力を用いる位置フィードバックループ、及び前記加速度検出手段の出力を用いる加速度フィードバックループを含むカスケード制御を行うとともに、前記流量制御型弁の非線形性を補償する規範モデルに追従するモデル追従制御を行うことを特徴とする、除振装置を提供する。   In order to achieve the above object, the invention according to claim 1 includes a vibration isolation table, a gas spring that supports the vibration isolation table, a flow control valve that supplies and exhausts air to and from the gas spring, Position detection means for detecting the position of the vibration isolation table, acceleration detection means for detecting the acceleration of the vibration isolation table, and the flow control valve based on the output of the position detection means and the acceleration detection means. A vibration isolator having a control device, wherein the control device performs cascade control including a position feedback loop that uses the output of the position detection means, and an acceleration feedback loop that uses the output of the acceleration detection means, Provided is a vibration isolation device that performs model following control that follows a reference model that compensates for nonlinearity of the flow control valve.

請求項2に記載の発明は、請求項1に記載の除振装置において、前記規範モデルにおいて、前記流量制御型弁の出力流量は入力電圧に対して線形関係を有する、除振装置を提供する。   The invention according to claim 2 provides the vibration isolator according to claim 1, wherein the output flow rate of the flow control type valve has a linear relationship with the input voltage in the reference model. .

請求項3に記載の発明は、請求項2に記載の除振装置において、前記気体バネ内の圧力変化を検出する圧力微分計をさらに有し、前記制御装置は、前記モデル追従制御において、前記圧力微分計により測定された圧力微分値を、前記規範モデルの出力流量に所定の係数を掛けた圧力微分値に追従させる制御を行う、除振装置を提供する。   A third aspect of the present invention is the vibration isolator according to the second aspect, further comprising a pressure differential meter that detects a pressure change in the gas spring, and the control device includes the model following control, There is provided a vibration isolator that performs control to cause a pressure differential value measured by a pressure differential meter to follow a pressure differential value obtained by multiplying an output flow rate of the reference model by a predetermined coefficient.

請求項4に記載の発明は、請求項2に記載の除振装置において、前記流量制御型弁の出力流量を検出する流量検出手段をさらに有し、前記制御装置は、前記モデル追従制御において、前記流量検出手段により測定された出力流量を前記規範モデルの出力流量に追従させる制御を行う、除振装置を提供する。   According to a fourth aspect of the present invention, the vibration isolator according to the second aspect further includes flow rate detection means for detecting an output flow rate of the flow rate control type valve, and the control device is configured to perform the model following control, An anti-vibration device is provided that performs control to cause the output flow rate measured by the flow rate detection means to follow the output flow rate of the reference model.

請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の除振装置において、前記追従制御は、前記除振台の速度をフィードバックする速度フィードバック制御を含む、除振装置を提供する。   According to a fifth aspect of the present invention, in the vibration isolation device according to any one of the first to fourth aspects, the follow-up control includes a speed feedback control that feeds back a speed of the vibration isolation table. I will provide a.

請求項6に記載の発明は、請求項1〜5のいずれか1項に記載の除振装置において、前記流量制御型弁はスプール弁である、除振装置を提供する。   A sixth aspect of the present invention provides the vibration isolation device according to any one of the first to fifth aspects, wherein the flow control valve is a spool valve.

請求項7に記載の発明は、除振台と、前記除振台を支持する気体バネと、前記気体バネへの給気及び排気を行う流量制御型弁と、前記除振台の位置を検出する位置検出手段と、前記除振台の加速度を検出する加速度検出手段と、前記位置検出手段及び前記加速度検出手段の出力に基づいて前記流量制御型弁を制御する制御装置と、を有する除振装置の制御方法であって、前記位置検出手段の出力を用いる位置フィードバックループ、及び前記加速度検出手段の出力を用いる加速度フィードバックループを含むカスケード制御を行うとともに、前記流量制御型弁の非線形性を補償する規範モデルに追従するモデル追従制御を行うことを特徴とする、除振装置の制御方法を提供する。   The invention according to claim 7 detects the position of the vibration isolation table, the gas spring that supports the vibration isolation table, the flow control valve that supplies and exhausts the gas spring, and the position of the vibration isolation table And a control device that controls the flow control valve based on the output of the position detection means and the acceleration detection means. A control method for an apparatus, wherein cascade control including a position feedback loop using an output of the position detection means and an acceleration feedback loop using an output of the acceleration detection means is performed, and nonlinearity of the flow control type valve is compensated Provided is a method for controlling a vibration isolation device, wherein model follow-up control is performed to follow a reference model.

本発明に係る除振装置又はその制御方法によれば、流量制御型弁を用いて従来よりも排気流量を顕著に低減させることができるとともに、規範モデルに追従する制御系を適用することにより、流量制御型弁が有する非線形性を補償することができる。従ってランニングコストが低くかつ除振性能が高い除振装置を得ることができる。   According to the vibration isolation device or the control method thereof according to the present invention, the exhaust flow rate can be significantly reduced by using a flow rate control type valve, and by applying a control system that follows the reference model, The non-linearity of the flow control type valve can be compensated. Therefore, it is possible to obtain a vibration isolator having a low running cost and a high vibration isolation performance.

上記追従制御は、高分解能の測定が可能な圧力微分計を用いて検出された空気バネ内の圧力微分値について行われることが有利である。あるいは、追従制御を流量制御型弁の出力流量について行うこともできる。   The follow-up control is advantageously performed on the pressure differential value in the air spring detected using a pressure differential meter capable of high resolution measurement. Alternatively, the follow-up control can be performed on the output flow rate of the flow control type valve.

また除振台の速度フィードバックを追従制御に組み込むことにより、除振台の速度が無視できないような場合でも高精度の制御を行うことが可能になる。   In addition, by incorporating the speed feedback of the vibration isolation table into the follow-up control, it becomes possible to perform highly accurate control even when the speed of the vibration isolation table cannot be ignored.

以下、図面を参照しながら本発明を詳細に説明する。
図1は、本発明の第1の実施形態に係る気体バネ式除振装置10の概略構成を模式的に示す図である。除振装置10は、典型的な気体バネである、バッファタンク12a及びベローズ部12bを備えた空気バネ12、空気バネ12の上に配置される除振台14、除振台14の変位及び加速度をそれぞれ検出する位置検出手段すなわち位置センサ16及び加速度検出手段すなわち加速度センサ18を有する。また除振装置10は、空気バネ12に空気を供給する空気供給源20と、空気供給源20からの空気を流量制御して空気バネ12に送るための流量制御型弁22とを有する。好適な流量制御型弁としてはスプール弁が挙げられる。さらに除振装置10は、空気バネ12のバッファタンク部分12a内の圧力を測定するために、本願と同一出願人が開発した圧力微分計24を有する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram schematically showing a schematic configuration of a gas spring vibration isolator 10 according to a first embodiment of the present invention. The vibration isolator 10 is a typical gas spring, an air spring 12 having a buffer tank 12a and a bellows portion 12b, a vibration isolator 14 disposed on the air spring 12, and displacement and acceleration of the vibration isolator 14. Position detecting means, ie, position sensor 16 and acceleration detecting means, ie, acceleration sensor 18. Further, the vibration isolator 10 includes an air supply source 20 that supplies air to the air spring 12 and a flow rate control type valve 22 that controls the flow rate of air from the air supply source 20 and sends it to the air spring 12. A suitable flow control valve includes a spool valve. Further, the vibration isolator 10 has a pressure differential meter 24 developed by the same applicant as the present application in order to measure the pressure in the buffer tank portion 12 a of the air spring 12.

また除振装置10は、後述するフィードバック制御を行う制御装置26を有し、制御装置26は、適当な増幅度及び時定数を有するフィルタ28a、28b及び28c、比較器30、PI補償器32並びにI補償器34を有する。図示するように、加速度センサ18の出力はフィルタ28bを通ってスプール弁22の弁開度の調節に使用される。また位置センサ16の出力はフィルタ28aを通って比較器30にて設定変位と比較され、その結果すなわち偏差信号がPI補償器32を通ってスプール弁の弁開度調節に使用される。さらに圧力微分計24の出力はフィルタ28c及びI補償器34を通ってスプール弁の弁開度調節に使用されるが、これについては後述する。   The vibration isolator 10 includes a control device 26 that performs feedback control, which will be described later. The control device 26 includes filters 28a, 28b, and 28c having appropriate amplification degrees and time constants, a comparator 30, a PI compensator 32, and I compensator 34 is provided. As shown in the figure, the output of the acceleration sensor 18 is used to adjust the valve opening degree of the spool valve 22 through the filter 28b. The output of the position sensor 16 is compared with the set displacement by the comparator 30 through the filter 28a, and the result, that is, the deviation signal is passed through the PI compensator 32 and used for adjusting the valve opening of the spool valve. Further, the output of the pressure differential meter 24 is used for adjusting the valve opening degree of the spool valve through the filter 28c and the I compensator 34, which will be described later.

圧力微分計24は、その基本構成は特許文献2に記載されるものと同じであり、例えば図2に示すように、等温化圧力容器24a、計測対象である空気バネ12のバッファタンク部分12aと等温化圧力容器24aとを連通する導通路(図示例では複数のスリット)24b、及び等温化圧力容器24a内とバッファタンク12a内との圧力差を検出する差圧計(図示例ではダイヤフラム式差圧計)24cとを有する。圧力微分計24を使用することにより、バッファタンク12a内の圧力微分値を低ノイズかつ高い分解能で求めることができる。なお空気バネ式除振装置に圧力微分計を適用した例は、本願と同一出願人による特願2004−333638号明細書にも記載されている。   The basic structure of the pressure differential meter 24 is the same as that described in Patent Document 2. For example, as shown in FIG. 2, an isothermal pressure vessel 24a, a buffer tank portion 12a of the air spring 12 to be measured, A conduction path (a plurality of slits in the illustrated example) 24b communicating with the isothermal pressure vessel 24a, and a differential pressure gauge (a diaphragm type differential pressure meter in the illustrated example) for detecting a pressure difference between the isothermal pressure vessel 24a and the buffer tank 12a. ) 24c. By using the pressure differential meter 24, the pressure differential value in the buffer tank 12a can be obtained with low noise and high resolution. An example in which a pressure differential meter is applied to an air spring type vibration isolator is also described in Japanese Patent Application No. 2004-333638 by the same applicant as the present application.

次に、除振装置10の制御方法について説明するが、先ず比較のために従来のノズルフラッパ型サーボ弁を用いた空気バネ式除振装置の制御ブロック線図を図3に示す。ノズルフラッパ弁のような圧力制御型弁では空気バネ内の圧力Pが入力電圧uに対して1次遅れの関係になり、また圧力Pと除振台の変位xとは図3に示すような関係を有する。図3からわかるように、変位計及び加速度計を用いて除振台の変位x及び加速度d2x/dt2をそれぞれ測定し、変位xについては目標値に対するPI制御、加速度d2x/dt2については加速度フィードバックゲインKaを掛けた信号によるフィードバック制御を行う。なお、K及びTはそれぞれノズルフラッパ出力ゲイン及び時定数であり、またm、A、k及びbはそれぞれ空気バネ上の負荷の質量、該負荷を支持する空気バネ内の部分の断面積、空気バネのバネ定数及び粘性係数である。 Next, a control method of the vibration isolator 10 will be described. First, for comparison, a control block diagram of an air spring vibration isolator using a conventional nozzle flapper type servo valve is shown in FIG. In a pressure control type valve such as a nozzle flapper valve, the pressure P in the air spring has a first-order lag relationship with respect to the input voltage u, and the relationship between the pressure P and the vibration isolation table displacement x is as shown in FIG. Have As can be seen from FIG. 3, the displacement x and acceleration d 2 x / dt 2 of the vibration isolation table are measured using a displacement meter and an accelerometer, respectively, and for the displacement x, PI control with respect to the target value, acceleration d 2 x / dt For 2 , feedback control is performed using a signal multiplied by the acceleration feedback gain Ka. K and T are the nozzle flapper output gain and time constant, respectively, and m, A, k, and b are the mass of the load on the air spring, the cross-sectional area of the portion in the air spring that supports the load, and the air spring, respectively. Spring constant and viscosity coefficient.

次に図4は、特願2004−333638号明細書において本願出願人が提案した、スプール弁及び圧力微分計を使用した空気バネ式除振装置の制御ブロック線図である。図4が図3と異なる点は破線で囲まれた部分であり、他の部分については従来すなわち図3と同様でよい。なおR、θ及びVはそれぞれ気体定数、気体の絶対温度及び空気バネの容積である。図4の特徴は、従来の加速度及び位置のフィードバックループに加えて圧力微分値のフィードバックループを有することにある。但しこの制御では、入力電圧uに対する出力流量Gを線形近似(比例ゲインKvを掛ける)しており、上述のスプール弁の「不感帯」を考慮していない。従って圧力微分計の使用によってノズルフラッパ弁を用いた除振装置と同等の除振装置は得られるものの、除振台の速度が無視できない場合等において、十分に速い動特性を得ることは困難である。   Next, FIG. 4 is a control block diagram of an air spring type vibration isolator using a spool valve and a pressure differential meter proposed by the present applicant in Japanese Patent Application No. 2004-333638. 4 differs from FIG. 3 in the portion surrounded by a broken line, and the other portions may be the same as those in FIG. R, θ, and V are a gas constant, an absolute gas temperature, and an air spring volume, respectively. The feature of FIG. 4 is that it has a pressure differential feedback loop in addition to the conventional acceleration and position feedback loop. However, in this control, the output flow rate G with respect to the input voltage u is linearly approximated (multiplied by the proportional gain Kv), and the above-described “dead zone” of the spool valve is not taken into consideration. Therefore, although the vibration isolator equivalent to the vibration isolator using the nozzle flapper valve can be obtained by using the pressure differential meter, it is difficult to obtain sufficiently fast dynamic characteristics when the speed of the vibration isolator cannot be ignored. .

図5は、スプール弁及び圧力微分計を使用した本発明の第1の実施形態の除振装置10の制御ブロックを示す図である。図5が図3又は図4と異なる点は一点鎖線で囲まれた部分であり、他の部分については図3又は図4と同様でよい。第1の実施形態の特徴は、図4と同様に圧力微分値のフィードバックループを有することに加え、その圧力微分値のフィードバックにおいて規範モデル追従制御を行うことにある。   FIG. 5 is a diagram showing a control block of the vibration isolator 10 according to the first embodiment of the present invention using a spool valve and a pressure differential meter. 5 is different from FIG. 3 or FIG. 4 in a portion surrounded by an alternate long and short dash line, and other portions may be the same as those in FIG. 3 or FIG. A feature of the first embodiment is that, in addition to having a pressure differential value feedback loop as in FIG. 4, reference model following control is performed in feedback of the pressure differential value.

図5の破線部内にて示すように、スプール弁22の入力電圧uに対する出力流量Gは非線形性を呈し、換言すれば入力変化に対する出力変化が実質ない又は鈍い「不感帯」が存在する。そこで本発明では、スプール弁のこの不感帯での動特性を向上させるために、圧力微分値のフィードバック値(信号)が、入力電圧と出力流量との関係がゼロ点を通る線形性を備えた(比例ゲインKvを掛けた)規範モデルGrefに所定の係数を掛けた値に追従するような制御を行い、スプール弁の非線形性を補償する。好適な規範モデルGrefは、例えば図9に示す線形グラフのようにG=Kv・uを満足するモデルである。このように、空気バネ12のバッファタンク12a内の微圧変動を高分解能の圧力微分計で検出し、得られた値(信号)に対して追従制御系のフィードバック処理を行うことにより、高精度かつ高応答の圧力制御が実現でき、結果として排気流量を抑制しつつ除振性能の高い除振装置を得ることができる。なおKad、Kadl及びTadはそれぞれ追従制御の比例ゲイン、積分ゲイン及びフィルタの時定数である。 As shown in the broken line portion of FIG. 5, the output flow rate G with respect to the input voltage u of the spool valve 22 exhibits non-linearity. In other words, there is a “dead zone” in which the output change with respect to the input change is substantially or blunt. Therefore, in the present invention, in order to improve the dynamic characteristics of the spool valve in this dead zone, the feedback value (signal) of the pressure differential value has a linearity in which the relationship between the input voltage and the output flow rate passes through the zero point ( Control is performed so as to follow a value obtained by multiplying the reference model Gref (multiplied by the proportional gain Kv) by a predetermined coefficient to compensate for the non-linearity of the spool valve. A suitable reference model Gref is a model that satisfies G = Kv · u, for example, as a linear graph shown in FIG. As described above, the fine pressure fluctuation in the buffer tank 12a of the air spring 12 is detected by a high-resolution pressure differential meter, and the obtained value (signal) is subjected to feedback processing of the tracking control system, thereby achieving high accuracy. In addition, highly responsive pressure control can be realized, and as a result, a vibration isolator having high vibration isolation performance can be obtained while suppressing the exhaust gas flow rate. Note that K ad , K adl, and T ad are the proportional gain, integral gain, and filter time constant of follow-up control, respectively.

また図5に示すように、第1の実施形態では、除振台の速度dx/dtに係数を掛けた値(信号)を圧力微分値のフィードバックループ内に組み入れることができる。このようにすれば、速度変動を含んだ結果に基づいてフィードバック制御ができるので、除振台の速度が無視できない場合であっても高い除振性能を得ることができる。なお速度信号は加速度信号の積分、変位信号の微分又は別途設けた速度センサ(図示せず)から得ることができる。   Further, as shown in FIG. 5, in the first embodiment, a value (signal) obtained by multiplying the vibration dampening table speed dx / dt by a coefficient can be incorporated into the feedback loop of the pressure differential value. In this way, since feedback control can be performed based on the result including the speed fluctuation, high vibration isolation performance can be obtained even when the speed of the vibration isolation table cannot be ignored. The speed signal can be obtained from integration of an acceleration signal, differentiation of a displacement signal, or a speed sensor (not shown) provided separately.

次に、本発明に係る除振装置の第2の実施形態について説明する。上述の第1の実施形態では圧力微分計を用いて空気バネ内の圧力の微分値を測定してその圧力微分値のフィードバックを行ったが、以下に説明する第2の実施形態では圧力微分計を使用せず、圧力微分値の代わりにスプール弁の出力流量をフィードバックに使用する。図6に示す第2の実施形態に係る気体バネ式除振装置10′は、第1の実施形態に係る除振装置10の圧力微分計24の代わりにスプール弁22の流量を測定する流量計36を有する。図6に表記される除振装置10′の他の構成要素は第1の除振装置10と同様であってよく、故に説明は省略する。   Next, a second embodiment of the vibration isolator according to the present invention will be described. In the first embodiment described above, the differential value of the pressure in the air spring is measured using a pressure differential meter and the pressure differential value is fed back. In the second embodiment described below, the pressure differential meter is used. The output flow rate of the spool valve is used for feedback instead of the pressure differential value. A gas spring vibration isolator 10 ′ according to the second embodiment shown in FIG. 6 is a flow meter that measures the flow rate of the spool valve 22 instead of the pressure differential meter 24 of the vibration isolator 10 according to the first embodiment. 36. The other components of the vibration isolator 10 ′ shown in FIG. 6 may be the same as those of the first vibration isolator 10, and thus the description thereof is omitted.

図7は、第2の除振装置10′の制御ブロック図である。ここでは、流量計36により測定された流量Gと、上述した規範モデルとして理想的な線形性を有する流量モデルGrefとが比較される。比較される値が圧力微分値から流量に置換されていることを除けば、他の考え方は図5を用いて説明したものと同様でよい。従って第2の実施形態では、流量Gを制御して除振台14の変位及び加速度の変化を最小限に抑制するような制御が行われる。なお流量計36としては、例えば特開2004−77327号公報に記載されるような、非定常流の流体の流量を測定可能な応答性の高い流量計が好ましい。   FIG. 7 is a control block diagram of the second vibration isolator 10 ′. Here, the flow rate G measured by the flow meter 36 is compared with the flow rate model Gref having ideal linearity as the reference model described above. Except that the value to be compared is replaced with the flow rate from the pressure differential value, the other concept may be the same as that described with reference to FIG. Therefore, in the second embodiment, control is performed so that the flow rate G is controlled to minimize the displacement of the vibration isolation table 14 and the change in acceleration. Note that the flow meter 36 is preferably a highly responsive flow meter capable of measuring the flow rate of an unsteady flow fluid as described in, for example, Japanese Patent Application Laid-Open No. 2004-77327.

またこの場合も、除振台14の速度フィードバックを行うことができる。   Also in this case, speed feedback of the vibration isolation table 14 can be performed.

次に、本発明の実施例について説明する。なおこの実施例は、上述の第1の実施形態に相当するスプール弁及び圧力微分計を用いた除振装置についてのものである。なお除振装置の主仕様は以下の通りであった。
空気バネ内の部分の有効受圧面積(A): 72.4×10-4 [m2
負荷重量(m): 87[kg]
空気バネ容積(V): 1.7×10-3 [m3
Next, examples of the present invention will be described. This example relates to a vibration isolator using a spool valve and a pressure differential meter corresponding to the first embodiment described above. The main specifications of the vibration isolator were as follows.
Effective pressure receiving area (A) of the portion in the air spring: 72.4 × 10 −4 [m 2 ]
Load weight (m): 87 [kg]
Air spring volume (V): 1.7 × 10 −3 [m 3 ]

実験は、ストロークが約2mmの空気バネを用い、除振台を所定の変位(ここでは1.4mm)で定位浮上させ、除振台の加速度信号の安定性を従来のノズルフラッパ弁を用いた除振装置と比較した。また、スプール弁及びノズルフラッパ弁の定常排気流量の比較も併せて行った。なお実験中の空気バネ内の圧力は約270kPa(abs)であった。   In the experiment, an air spring with a stroke of about 2 mm was used, the vibration isolator was floated at a predetermined displacement (here, 1.4 mm), and the stability of the acceleration signal of the vibration isolator was removed using a conventional nozzle flapper valve. Compared with shaker. A comparison of the steady exhaust flow rates of the spool valve and the nozzle flapper valve was also performed. The pressure in the air spring during the experiment was about 270 kPa (abs).

上記条件での実験を行った結果、第1の実施形態に係る除振装置では定常排気流量が0.75Nl/分であった。比較として同じ空気バネについてノズルフラッパ弁を用いた除振装置の場合は定常排気流量が16.7Nl/分であったことから、消費流量は約1/22と大幅に削減できていることがわかる。   As a result of the experiment under the above conditions, the steady exhaust flow rate was 0.75 Nl / min in the vibration isolator according to the first embodiment. As a comparison, in the case of the vibration isolator using the nozzle flapper valve for the same air spring, the steady exhaust flow rate was 16.7 Nl / min, so it can be seen that the consumption flow rate can be greatly reduced to about 1/22.

また図8は、本発明の第1の実施形態に係るスプール弁を用いた除振装置とノズルフラッパ弁を用いた除振装置とで定常運転時の除振台の加速度波形を比較したグラフである。なお実線L1が前者の加速度波形を示し、破線L2が後者の加速度波形を示す。図8からわかるように、第1の実施形態に係る除振装置では加速度の変動幅が従来のノズルフラッパ弁を用いたものより全般的に小さくなっており、優れた除振性能を発揮していることがわかる。   FIG. 8 is a graph comparing acceleration waveforms of the vibration isolation table during steady operation between the vibration isolation device using the spool valve and the vibration isolation device using the nozzle flapper valve according to the first embodiment of the present invention. . A solid line L1 indicates the former acceleration waveform, and a broken line L2 indicates the latter acceleration waveform. As can be seen from FIG. 8, in the vibration isolator according to the first embodiment, the fluctuation range of the acceleration is generally smaller than that using the conventional nozzle flapper valve, and exhibits excellent vibration isolation performance. I understand that.

本発明に係る第1の実施形態の除振装置の好適な構成例を示す図である。It is a figure which shows the suitable structural example of the vibration isolator of 1st Embodiment which concerns on this invention. 図1に示す圧力微分計の詳細構造を示す図である。It is a figure which shows the detailed structure of the pressure differential meter shown in FIG. ノズルフラッパ弁を用いた従来の除振装置の制御ブロック線図である。It is a control block diagram of the conventional vibration isolator using a nozzle flapper valve. 第1の実施形態の除振装置の制御ブロック線図であるが、追従制御は含まない図である。It is a control block diagram of the vibration isolator of the first embodiment, but does not include follow-up control. 第1の実施形態の除振装置の制御ブロック線図であり、追従制御を含む図である。It is a control block diagram of the vibration isolator of 1st Embodiment, and is a figure including follow-up control. 本発明に係る第1の実施形態の除振装置の好適な構成例を示す図である。It is a figure which shows the suitable structural example of the vibration isolator of 1st Embodiment which concerns on this invention. 第2の実施形態の除振装置の制御ブロック線図である。It is a control block diagram of the vibration isolator of 2nd Embodiment. 定常運転時の除振台の加速度波形を、第1の実施形態の除振装置と従来の除振装置とで比較するグラフである。It is a graph which compares the acceleration waveform of the vibration isolator at the time of steady operation with the vibration isolator of 1st Embodiment, and the conventional vibration isolator. 通常のスプール弁における、入力電圧に対する出力流量の関係を示すグラフである。It is a graph which shows the relationship of the output flow volume with respect to input voltage in the normal spool valve.

符号の説明Explanation of symbols

10 除振装置
12 空気バネ
14 除振台
16 位置センサ
18 加速度センサ
20 空気供給源
22 スプール弁
24 圧力微分計
26 制御装置
36 流量計
DESCRIPTION OF SYMBOLS 10 Vibration isolator 12 Air spring 14 Vibration isolator 16 Position sensor 18 Acceleration sensor 20 Air supply source 22 Spool valve 24 Pressure differential meter 26 Controller 36 Flow meter

Claims (7)

除振台と、前記除振台を支持する気体バネと、前記気体バネへの給気及び排気を行う流量制御型弁と、前記除振台の位置を検出する位置検出手段と、前記除振台の加速度を検出する加速度検出手段と、前記位置検出手段及び前記加速度検出手段の出力に基づいて前記流量制御型弁を制御する制御装置と、を有する除振装置であって、
前記制御装置は、前記位置検出手段の出力を用いる位置フィードバックループ、及び前記加速度検出手段の出力を用いる加速度フィードバックループを含むカスケード制御を行うとともに、前記流量制御型弁の非線形性を補償する規範モデルに追従するモデル追従制御を行うことを特徴とする、除振装置。
A vibration isolation table, a gas spring that supports the vibration isolation table, a flow control valve that supplies and exhausts air to the gas spring, a position detection unit that detects the position of the vibration isolation table, and the vibration isolation table An anti-vibration device comprising: an acceleration detection means for detecting the acceleration of the table; and a control device for controlling the flow control valve based on the output of the position detection means and the acceleration detection means,
The control device performs cascade control including a position feedback loop using the output of the position detection unit and an acceleration feedback loop using the output of the acceleration detection unit, and compensates for nonlinearity of the flow control type valve A vibration isolator that performs model follow-up control to follow the vibration.
前記規範モデルにおいて、前記流量制御型弁の出力流量は入力電圧に対して線形関係を有する、請求項1に記載の除振装置。   The vibration isolation device according to claim 1, wherein in the reference model, an output flow rate of the flow control type valve has a linear relationship with an input voltage. 前記気体バネ内の圧力変化を検出する圧力微分計をさらに有し、前記制御装置は、前記モデル追従制御において、前記圧力微分計により測定された圧力微分値を、前記規範モデルの出力流量に所定の係数を掛けた圧力微分値に追従させる制御を行う、請求項2に記載の除振装置。   A pressure differential meter that detects a pressure change in the gas spring; and the control device is configured to set a pressure differential value measured by the pressure differential meter to an output flow rate of the reference model in the model following control. The vibration isolation device according to claim 2, wherein control is performed to follow a pressure differential value multiplied by a coefficient of. 前記流量制御型弁の出力流量を検出する流量検出手段をさらに有し、前記制御装置は、前記モデル追従制御において、前記流量検出手段により測定された出力流量を前記規範モデルの出力流量に追従させる制御を行う、請求項2に記載の除振装置。   The flow control type valve further includes a flow rate detection unit that detects an output flow rate of the flow rate control type valve, and the control device causes the output flow rate measured by the flow rate detection unit to follow the output flow rate of the reference model in the model following control. The vibration isolator according to claim 2, which performs control. 前記追従制御は、前記除振台の速度をフィードバックする速度フィードバック制御を含む、請求項1〜4のいずれか1項に記載の除振装置。   5. The vibration isolation device according to claim 1, wherein the follow-up control includes speed feedback control that feeds back a speed of the vibration isolation table. 前記流量制御型弁はスプール弁である、請求項1〜5のいずれか1項に記載の制御方法。   The control method according to claim 1, wherein the flow control valve is a spool valve. 除振台と、前記除振台を支持する気体バネと、前記気体バネへの給気及び排気を行う流量制御型弁と、前記除振台の位置を検出する位置検出手段と、前記除振台の加速度を検出する加速度検出手段と、前記位置検出手段及び前記加速度検出手段の出力に基づいて前記流量制御型弁を制御する制御装置と、を有する除振装置の制御方法であって、
前記位置検出手段の出力を用いる位置フィードバックループ、及び前記加速度検出手段の出力を用いる加速度フィードバックループを含むカスケード制御を行うとともに、前記流量制御型弁の非線形性を補償する規範モデルに追従するモデル追従制御を行うことを特徴とする、除振装置の制御方法。
A vibration isolation table, a gas spring that supports the vibration isolation table, a flow control valve that supplies and exhausts air to the gas spring, a position detection unit that detects the position of the vibration isolation table, and the vibration isolation table A control method for a vibration isolator comprising: an acceleration detection means for detecting an acceleration of a table; and a control device for controlling the flow control valve based on outputs of the position detection means and the acceleration detection means,
Model following that performs cascade control including a position feedback loop that uses the output of the position detection means and an acceleration feedback loop that uses the output of the acceleration detection means, and follows a reference model that compensates for the nonlinearity of the flow control valve A method for controlling a vibration isolator, comprising performing control.
JP2006126082A 2006-04-28 2006-04-28 Gas spring type vibration isolator and control method thereof Active JP4113960B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006126082A JP4113960B2 (en) 2006-04-28 2006-04-28 Gas spring type vibration isolator and control method thereof
PCT/JP2007/052300 WO2007125663A1 (en) 2006-04-28 2007-02-02 Gas spring type vibration isolator and method of controlling the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126082A JP4113960B2 (en) 2006-04-28 2006-04-28 Gas spring type vibration isolator and control method thereof

Publications (2)

Publication Number Publication Date
JP2007298102A true JP2007298102A (en) 2007-11-15
JP4113960B2 JP4113960B2 (en) 2008-07-09

Family

ID=38655203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126082A Active JP4113960B2 (en) 2006-04-28 2006-04-28 Gas spring type vibration isolator and control method thereof

Country Status (2)

Country Link
JP (1) JP4113960B2 (en)
WO (1) WO2007125663A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138775A (en) * 2007-12-03 2009-06-25 Tokkyokiki Corp Air pressure type vibration isolation device
JP2010014159A (en) * 2008-07-01 2010-01-21 Tokkyokiki Corp Vibration resistant device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461946B (en) * 2011-09-07 2014-11-21 Wistron Corp Method of designing a vibration isolating system and a related elecronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4165844B2 (en) * 1998-11-18 2008-10-15 キヤノン株式会社 Vibration isolator
JP2000284832A (en) * 1999-03-31 2000-10-13 Komatsu Ltd Temperature controller and valve control part of the same
JP2002364702A (en) * 2001-06-12 2002-12-18 Canon Inc Vibration removing device and semiconductor manufacturing device having the same
JP4365191B2 (en) * 2003-11-18 2009-11-18 特許機器株式会社 Active vibration control device and system
JP2005172135A (en) * 2003-12-11 2005-06-30 Canon Inc Vibration resistant mount device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138775A (en) * 2007-12-03 2009-06-25 Tokkyokiki Corp Air pressure type vibration isolation device
JP2010014159A (en) * 2008-07-01 2010-01-21 Tokkyokiki Corp Vibration resistant device

Also Published As

Publication number Publication date
WO2007125663A1 (en) 2007-11-08
JP4113960B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US10516957B2 (en) High displacement acoustic transducer systems
JP4936439B2 (en) Pressure regulator and vibration isolator
Kato et al. A new, high precision, quick response pressure regulator for active control of pneumatic vibration isolation tables
JP2006283966A (en) Active vibration removing apparatus
US20080246200A1 (en) Vibration Isolation System and Method
JP4113960B2 (en) Gas spring type vibration isolator and control method thereof
KR20190013593A (en) Active vibration isolation device
JP2010230310A (en) Servo vibration sensor and vibration controller
JP5002759B2 (en) Vibration isolator and vibration isolation method
US8894052B2 (en) Active oscillation isolation system by means of a hysteresis-free pneumatic bearing
JP5124038B2 (en) Pressure regulator and vibration isolator
KR20210015971A (en) Flow control system and flow measurement method
JP5457821B2 (en) Active vibration isolator
JP2006144859A (en) Vibration isolator
JP2000301067A (en) Hydraulic exciting machine
JPH10256141A (en) Active vibration eliminator
JP5762069B2 (en) Vibration suppression control method for pneumatic vibration isolation table system
Shirani et al. Feedforward control of the flow disturbance to the pneumatic isolation table
JP4982272B2 (en) Active vibration isolation mount mechanism
Kato et al. Development of a Precise and Quick Response Pneumatic Pressure Regulator and its Application to Pneumatic Vibration Isolator
JP2005307993A (en) Method for calibrating stage device using variable restriction static pressure bearing
Shirani et al. Suppression of isolation table's fluctuation due to switching of feedforward controller
JP2006258700A (en) Excitation testing machine
CN107781350A (en) Shock absorber air control unit and its control method and shock absorber
Nakamura et al. Flow disturbance rejection of pneumatic vibration isolators using compensation input

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

RD02 Notification of acceptance of power of attorney

Effective date: 20071116

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150