WO2007125663A1 - Gas spring type vibration isolator and method of controlling the device - Google Patents
Gas spring type vibration isolator and method of controlling the device Download PDFInfo
- Publication number
- WO2007125663A1 WO2007125663A1 PCT/JP2007/052300 JP2007052300W WO2007125663A1 WO 2007125663 A1 WO2007125663 A1 WO 2007125663A1 JP 2007052300 W JP2007052300 W JP 2007052300W WO 2007125663 A1 WO2007125663 A1 WO 2007125663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- vibration isolation
- flow rate
- valve
- output
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 14
- 238000002955 isolation Methods 0.000 claims description 50
- 230000001133 acceleration Effects 0.000 claims description 38
- 238000001514 detection method Methods 0.000 claims description 20
- 238000010586 diagram Methods 0.000 description 12
- 238000006073 displacement reaction Methods 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/023—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
- F16F15/027—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means comprising control arrangements
- F16F15/0275—Control of stiffness
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D19/00—Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
- G05D19/02—Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means
Definitions
- the present invention relates to a gas panel type vibration isolator and a vibration isolation method using the vibration isolation device.
- the gas panel type vibration isolator is used for vibration control of a semiconductor manufacturing apparatus or an inspection apparatus for measuring a semiconductor line width.
- a conventional gas panel type vibration isolator has a pressure control type valve such as a nozzle flapper type pneumatic servo valve to control the internal pressure of a gas panel such as an air panel, and feeds back the displacement and acceleration of the air panel. Controlled.
- a method of feeding back the pressure in the air panel has been proposed.
- Japanese Laid-Open Patent Publication No. 2 005-2 8 2 6 96 discloses a vibration isolation mount device intended to improve pressure control resolution.
- Pressure control type valves such as nozzle flapper valves have a high linearity of the valve opening with respect to the input voltage, and when used in a vibration isolator, the pressure in the air spring has a first-order lag relationship with the input 1 Next delay system can be constructed. Therefore, although the pressure control type valve is said to be suitable for pressure control in the air spring of the vibration isolator, there is a problem that running cost is increased due to a large exhaust flow rate.
- the applicant of the present application is a pressure differential meter that has been developed and publicly known.
- Japanese Patent Laid-Open No. 2000-098 991 is proposed to construct a cascade control system. Thereby, even if a flow rate control type valve such as a spool type servo valve is used, the vibration isolation table of the vibration isolation device can be lifted and the exhaust flow rate can be suppressed.
- a configuration and control method are the same as those of the present application.
- Japanese Patent Application No. 2 0 0 4-3 3 3 6 3 8 by the applicant Japanese Patent Laid-Open No. 2 0 0 6-1 4 4 8 5 9) It is also described in.
- the pressure differential meter described in Japanese Patent Laid-Open No. 2 0 0 5-9 8 9 9 1 can measure the pressure change in the container to be measured with low noise and high resolution.
- the output (flow rate) relative to the input voltage is not linear (linear graph shown in Fig. 9), as shown by the multiple black dot plots in Fig. 9.
- a so-called “dead zone” region Z in which the output change with respect to the input change is zero or very small around the origin (input and output are zero).
- This dead zone is a region that is difficult to control because the change in output is small when the input is greatly changed compared to other regions.
- the output fluency of the spool valve when it is used in a vibration isolator is usually included in this dead zone. Therefore, when the spool valve is used, the dead zone is sufficiently compensated for by cascade control using a pressure differential meter. However, the anti-vibration performance remained at the same level as when a pressure-controlled valve was used, and further improvement of the anti-vibration performance was desired. In addition, when the load fluctuation due to environmental changes of the vibration isolator is severe, specifically when the speed of the vibration isolation table cannot be ignored, the cascade control that feeds back the displacement and acceleration may not be sufficient. . Therefore, from this point, a vibration isolation device that uses a flow control valve and has a higher vibration isolation performance than before is desired. Summary of the Invention
- the present invention maintains a merit that the exhaust flow rate is suppressed by using a flow control type valve, and a gas panel type vibration isolator capable of highly accurate control with higher responsiveness than the conventional one and a control method therefor.
- the purpose is to provide
- the present invention provides an anti-vibration table, a gas panel that supports the anti-vibration table, a flow control valve that supplies and exhausts air to the gas panel, and the anti-vibration table
- the control device performs cascade control including a position feedback loop that uses the output of the position detection means, and an acceleration feedback loop that uses the output of the acceleration detection means.
- the present invention provides a vibration isolator that performs model following control that follows a reference model that compensates for nonlinearity of the flow control valve.
- an output flow rate of the flow control type valve has a linear relationship with an input voltage.
- the vibration isolation device may further include a pressure differential meter that detects a pressure change in the gas panel, and in that case, the control device may include a pressure differential measured by the pressure differential meter in the model following control. Value Control is performed to follow the pressure differential value obtained by multiplying the output flow rate of the reference model by a predetermined coefficient.
- the vibration isolation device may further include a flow rate detection unit that detects an output flow rate of the flow rate control type valve. In that case, the control device is measured by the flow rate detection unit in the model following control. Control the output flow rate to follow the output flow rate of the reference model.
- the follow-up control includes speed feedback control for feeding back the speed of the vibration isolation table.
- the flow control type valve is a spool valve.
- an anti-vibration table a gas panel that supports the anti-vibration table, a flow control valve that supplies and exhausts gas to the gas panel, Position detecting means for detecting a position, acceleration detecting means for detecting the acceleration of the vibration isolation table, and a control device for controlling the flow control valve based on outputs of the position detecting means and the acceleration detecting means; And a cascade control including a position feedback loop using an output of the position detection means and an acceleration feedback loop using an output of the acceleration detection means, and the flow rate
- a control method for a vibration isolator characterized by performing model following control that follows a reference model that compensates for nonlinearity of a control valve.
- an output flow rate of the flow control type valve has a linear relationship with an input voltage.
- the follow-up control includes speed feedback control for feeding back the speed of the vibration isolation table.
- FIG. 1 is a diagram showing a preferred configuration example of the vibration isolator according to the first embodiment of the present invention.
- Fig. 2 is a diagram showing the detailed structure of the pressure differential meter shown in Fig. 1.
- Fig. 3 is a control block diagram of a conventional vibration isolator using a nozzle flapper valve.
- FIG. 4 is a control block diagram of the vibration isolator of the first embodiment, but does not include tracking control.
- FIG. 5 is a control block diagram of the vibration isolator according to the first embodiment, including tracking control.
- FIG. 6 is a diagram illustrating a preferred configuration example of the vibration isolation device according to the first embodiment of the present invention.
- FIG. 7 is a control block diagram of the vibration isolator of the second embodiment
- FIG. 8 shows the acceleration waveform of the vibration isolator during steady operation with the vibration isolator of the first embodiment and the conventional vibration isolator. It is a graph to compare with the vibration device,
- Fig. 9 is a graph showing the relationship of the output flow rate to the input voltage in a normal spool valve. Detailed description
- FIG. 1 is a diagram schematically showing a schematic configuration of a gas panel type vibration isolator 10 according to the first embodiment of the present invention.
- the vibration isolator 10 is a typical gas spring, an air spring 1 '2 having a buffer tank 1 2 a and a bellows portion 1 2 b, and a vibration isolation table disposed on the air spring 1 2.
- 1 4 ⁇ Vibration isolation table 14 Position detection means to detect displacement and acceleration of 4 respectively, ie position sensor 1 6 and acceleration detection means, ie acceleration sensor 1 8 To do.
- the vibration isolator 10 includes an air supply source 2 0 that supplies air to the air panel 1 2, and a flow control valve 2 that controls the flow of air from the air supply source 20 and sends it to the air spring 12. 2 and.
- a suitable flow control valve is a spool valve.
- the vibration isolator 10 has a pressure differential meter 24 developed by the same applicant as the present application in order to measure the pressure in the buffer tank portion 12 a of the
- the vibration isolator 10 has a control device 26 that performs feedback control, which will be described later, and the control device 26 has an appropriate amplification degree and time constant.
- the output of the acceleration sensor 1 8 passes through the filter 2 8 b and is used to adjust the valve opening of the spool valve 2 2.
- the output of the position sensor 16 is compared with the set displacement in the comparator 30 through the filter 28a, and the result, that is, the deviation signal passes through the PI compensator 32 to adjust the valve opening of the spool valve. used.
- the output of the pressure differential meter 24 is used for adjusting the valve opening of the spool valve through the filter 28 c and the I compensator 34, which will be described later.
- the basic structure of the pressure differentiator 2 is the same as that described in Japanese Patent Laid-Open No. 2 0 0 5-9 8 9 9 1.
- an isothermal pressure vessel 2 4 a Measured air spring 1 2 Buffer tank part 1 2 of the tank 1 2 a and the isothermal pressure vessel 2 4 a are connected to the communication path (in the example shown, multiple slits) 2 4 b and the isothermal pressure vessel 2 4 c and a differential pressure gauge (diaphragm type differential pressure gauge in the illustrated example) 2 4 c for detecting the pressure difference between the inside of the buffer tank 1 2 a and the inside of the buffer tank 1 2 a.
- a differential pressure gauge diaphragm type differential pressure gauge in the illustrated example
- the pressure differential value in the buffer tank 1 2 a can be obtained with low noise and high resolution.
- An example in which a pressure differential meter is applied to an air panel type vibration isolator is shown in Japanese Patent Application No. 2 0 0 4-3 It is also described in the specification of 3 3 6 3 8 (Japanese Patent Laid-Open No. 2 0 06-1 4 4 8 5 9).
- FIG. 1 a control block diagram of an air spring type vibration isolator using a conventional nozzle flapper type suppo valve is shown in FIG.
- a pressure control type valve such as a nozzle flapper valve
- the pressure P in the air panel has a first-order lag relationship with the input voltage u
- the pressure P and the vibration isolation table displacement X are as shown in Fig. 3.
- the displacement X and acceleration d 2 x / dt 2 of the vibration isolation table are measured using a displacement meter and an accelerometer, respectively, and for displacement X, PI control with respect to the target value, acceleration d 2 x / dt
- the feedback control is performed by the signal multiplied by the acceleration feedback gain Ka.
- K and T are the nozzle flapper output gain and time constant, respectively, and m, A, k and b are the mass of the load on the air panel, the cross-sectional area of the part in the air panel that supports the load, and the air Panel spring constant and viscosity coefficient.
- FIG. 4 shows a spool valve proposed by the applicant of the present application in Japanese Patent Application No. 2 0 0 4-3 3 3 6 3 8 (Japanese Patent Laid-Open No. 2 0 0 6 1 4 4 8 5 9).
- a control block diagram of an air panel vibration isolator using a pressure differential meter. 4 differs from FIG. 3 in the part surrounded by a broken line, and the other parts may be the same as in FIG. R, 0 and V are the gas constant, the absolute temperature of the gas and the volume of the air panel, respectively.
- the feature of Fig. 4 is that it has a pressure differential feedback loop in addition to the conventional acceleration and position feedback loop.
- FIG. 5 is a diagram showing a control block of the vibration isolator 10 according to the first embodiment of the present invention using a spool valve and a pressure differential meter.
- FIG. 5 differs from FIG. 3 or FIG. 4 in the portion surrounded by the alternate long and short dash line, and the other portions may be the same as in FIG. 3 or FIG.
- the feature of the first embodiment is that, in addition to having a pressure differential value feedback loop as in FIG. 4, the reference model following control is performed in the feedback of the pressure differential value.
- the output flow rate G with respect to the input voltage u of the spool valve 2 2 exhibits non-linearity, in other words, the output change with respect to the input change does not substantially exist or there is a minute “dead zone”. . Therefore, in the present invention, in order to improve the dynamic characteristics of the spool valve in this dead zone, the feedback value (signal) of the pressure differential value The relationship between the input voltage and the output flow rate has a linearity that passes through the zero point ( Reference model G re This is controlled to follow the value multiplied by a predetermined coefficient to compensate for the nonlinearity of the spool valve.
- G KV ⁇ u
- the fine pressure fluctuation in the buffer tank 1 2 a of the air spring 1 2 is detected by a high-resolution pressure differential meter, and the feedback value of the tracking control system is applied to the obtained value (signal). Therefore, highly accurate and highly responsive pressure control can be realized, and as a result, a vibration isolator having high vibration isolation performance can be obtained while suppressing the exhaust gas flow rate.
- K ad , Kadl, and T ad are the proportional gain, integral gain, and time constant of the tracking control, respectively.
- the value (signal) obtained by multiplying the vibration isolation table speed dx / dt by a coefficient is used as a feedback value differential pressure value.
- the speed signal can be obtained by integrating the acceleration signal, differentiating the displacement signal, or by a speed sensor (not shown) provided separately.
- the differential value of the pressure in the air panel is measured using a pressure differential meter and the pressure differential value is fed back.
- the pressure differential meter is used.
- the output flow rate of the spool valve is used for feedback instead of the pressure differential value.
- the gas panel type vibration isolator 10 0 ′ according to the second embodiment shown in FIG. 6 has a flow rate of the spool valve 2 2 instead of the pressure differential meter 2 4 of the vibration isolator 10 according to the first embodiment. It has a flow meter 3 6 to measure
- the other components of the vibration isolator 1 0 ′ shown in FIG. 6 may be the same as those of the first vibration isolator 1 0, and thus description thereof is omitted.
- FIG. 7 is a control block diagram of the second vibration isolator 1 0 ′.
- the flow rate G measured by the flow meter 36 is compared with the flow rate model G re e i having ideal linearity as the reference model described above. Except that the value to be compared is replaced with the flow rate from the pressure differential value, the other concepts may be the same as described with reference to FIG. Therefore, in the second embodiment, control is performed to control the flow rate G to suppress the displacement and acceleration changes of the vibration isolation table 14 to a minimum.
- the flow meter 3 6 for example, there is a highly responsive flow meter capable of measuring the flow rate of an unsteady flow fluid as described in Japanese Patent Laid-Open No. 2000-077 3 27. I like it.
- This example relates to a vibration isolator using a spool valve and a pressure differential meter corresponding to the first embodiment described above.
- the main specifications of the vibration isolator were as follows.
- the steady-state exhaust flow rate was 0.75 N 1 / min in the vibration isolator according to the first embodiment.
- the steady exhaust flow rate was 16.7 N1 / min, so the consumption flow rate can be significantly reduced to approximately 1/22.
- FIG. 8 is a graph comparing acceleration waveforms of the vibration isolation table during steady operation between the vibration isolation device using the spool valve and the vibration isolation device using the nozzle flapper valve according to the first embodiment of the present invention.
- the solid line L 1 shows the former acceleration waveform
- the broken line L 2 shows the latter acceleration waveform.
- the fluctuation range of the acceleration is generally smaller than that using the conventional nozzle flapper valve, and exhibits excellent vibration isolation performance. I understand that.
- the flow control type valve The exhaust flow rate can be remarkably reduced using conventional and the non-linearity of the flow control type valve can be compensated by applying a control system that follows the reference model. Therefore, a vibration isolator having a low running cost and a high vibration isolation performance can be obtained.
- the follow-up control is advantageously performed on the pressure differential value in the air spring detected using a pressure differential meter capable of high resolution measurement. Alternatively, follow-up control can be performed on the output flow rate of the flow control type valve.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Vibration Prevention Devices (AREA)
- Feedback Control In General (AREA)
Abstract
A vibration oscillator comprises a spool valve and a pressure differentiator. In order to improve the dynamic characteristics of the spool valve in the dead band, the vibration isolator is so controlled that the feedback value of pressure differential value follows a reference model having such a linearity that the relation between an input voltage and an output flow passes through a zero point to compensate the nonlinearity of the spool valve.
Description
気体パネ式除振装置及び該装置の制御方法 Gas panel type vibration isolator and control method of the device
背景技術 Background art
1 . 技術分野 1. Technical field
本発明は、 気体パネ式の除振装置及び該除振裟置を用いた除振方 明 The present invention relates to a gas panel type vibration isolator and a vibration isolation method using the vibration isolation device.
法及び該装置の制御方法に関する。 And a method for controlling the apparatus.
田 Rice field
2 . 関連技術の説明. 2. Description of related technology.
気体パネ式除振装置は、 半導体製造装置や半導体の線幅を測定す る検査装置等の振動制御に利用される。 従来の気体パネ式除振装置 は、 空気パネのような気体パネの内部圧力を制御するために圧力制 御型弁例えばノズルフラッパ型空気圧サーポ弁を有し、 空気パネの 変位及び加速度をフィー ドバックして制御される。 あるいは、 空気 パネ内の圧力をフィードバックする方法も提案されている。 例えば 特開 2 0 0 5— 2 8 2 6 9 6号公報には、 圧力制御分解能を改善す ることを目的とした除振マウント装置が開示されている。 The gas panel type vibration isolator is used for vibration control of a semiconductor manufacturing apparatus or an inspection apparatus for measuring a semiconductor line width. A conventional gas panel type vibration isolator has a pressure control type valve such as a nozzle flapper type pneumatic servo valve to control the internal pressure of a gas panel such as an air panel, and feeds back the displacement and acceleration of the air panel. Controlled. Alternatively, a method of feeding back the pressure in the air panel has been proposed. For example, Japanese Laid-Open Patent Publication No. 2 005-2 8 2 6 96 discloses a vibration isolation mount device intended to improve pressure control resolution.
ノズルフラッパ弁のような圧力制御型弁は入力電圧に対するバル ブ開度の線形性が高く、 除振装置に使用した場合は入力に対して空 気バネ内の圧力が 1次遅れの関係となる 1次遅れ系を構築すること ができる。 従って圧力制御型弁は、 除振装置の空気バネ内の圧力制 御に適するとされているが、 排気流量が多いことからランニングコ ス 卜がかかるという問題があった。 Pressure control type valves such as nozzle flapper valves have a high linearity of the valve opening with respect to the input voltage, and when used in a vibration isolator, the pressure in the air spring has a first-order lag relationship with the input 1 Next delay system can be constructed. Therefore, although the pressure control type valve is said to be suitable for pressure control in the air spring of the vibration isolator, there is a problem that running cost is increased due to a large exhaust flow rate.
除振装置の排気流量を抑制して省エネルギ化を実現するためには 、 圧力制御型弁の代わりに、 スプール弁のような排気流量の少ない 流量制御型弁を用いて空気の消費流量を抑制することが考えられる 。 しかしながら、 除振装置の空気バネ内は微圧制御が必要であり、
従来の圧力センサ及び流量制御型弁を用いて微圧制御系を構築する ことは、 圧力センサの分解能不足や、 除振装置への外乱による平衡 圧力の変化等の問題から大変困難であった。 In order to save energy by suppressing the exhaust flow rate of the vibration isolator, use a flow control type valve with a low exhaust flow rate, such as a spool valve, instead of a pressure control type valve, to suppress the air consumption flow rate. It is possible to do. However, fine pressure control is necessary inside the air spring of the vibration isolator, Building a fine pressure control system using a conventional pressure sensor and flow control valve has been extremely difficult due to problems such as insufficient resolution of the pressure sensor and changes in the equilibrium pressure due to disturbance to the vibration isolator.
そこで本願出願人は、 自らが開発し公知となっている圧力微分計 Therefore, the applicant of the present application is a pressure differential meter that has been developed and publicly known.
(特開 2 0 0 5— 9 8 9 9 1号公報参照) を用いてカスケ一ド制御 系を構築することを提案している。 これにより、 スプール型サーポ 弁のような流量制御型弁を使用しても除振装置の除振台を浮上させ 、 かつ排気流量を抑制することができる。 このような構成及ぴ制御 方法は、 本願と同一.出願人による特願 2 0 0 4— 3 3 3 6 3 8号明 細書 (特開 2 0 0 6 — 1 4 4 8 5 9号公報) にも記載されている。 特開 2 0 0 5 - 9 8 9 9 1号公報に記載の圧力微分計は、 測定対 象である容器内の圧力変化を低ノィズかつ高い分解能で測定するこ とができるため、 スプール弁を使用してもノズルフラッパ弁を用い た除振装置と同等の除振性能を得ることができ、 かつ排気流量を抑 制して省エネルギ化を図ることができる。 しかしながら、 スプール 弁のような流量制御型弁においては一般に、 図 9において複数の黒 点プロッ トで示すように、 入力電圧に対する出力 (流量) が線形 ( 図 9に示す線形グラフ) とはならず、 具体的には、 原点 (入力及び 出力がゼロ) 前後において入力変化に対する出力変化がゼロ又は微 小である、 いわゆる 「不感帯」 とよばれる領域 Zが存在する。 この 不感帯は、 他の領域と比べて入力を大きく変化させたときの出力の 変化が小さく、 故に制御が困難な領域となっている。 また除振装置 に使用されているときのスプール弁の出力流畺は通常はこの不感帯 に含まれており、 故にスプール弁を使用した場合、 圧力微分計を用 いたカスケード制御では不感帯を十分に補償できず、 その除振性能 は圧力制御型弁を使用した場合と同等程度に止まっており、 さらな る除振性能の向上が望まれていた。
また、 除振装置の環境変化等による負荷変動が激しい場合、 具体 的には除振台の速度が無視できない場合には、 変位及び加速度をフ イードバックするカスケード制御だけでは不十分な場合がある。 従 つてこの点からも、 流量制御型弁を使用するとともに従来よりも除 振性能の高い除振装置が望まれる。 発明の概要 (See Japanese Patent Laid-Open No. 2000-098 991) is proposed to construct a cascade control system. Thereby, even if a flow rate control type valve such as a spool type servo valve is used, the vibration isolation table of the vibration isolation device can be lifted and the exhaust flow rate can be suppressed. Such a configuration and control method are the same as those of the present application. Japanese Patent Application No. 2 0 0 4-3 3 3 6 3 8 by the applicant (Japanese Patent Laid-Open No. 2 0 0 6-1 4 4 8 5 9) It is also described in. The pressure differential meter described in Japanese Patent Laid-Open No. 2 0 0 5-9 8 9 9 1 can measure the pressure change in the container to be measured with low noise and high resolution. Even if it is used, vibration isolation performance equivalent to that of a vibration isolation device using a nozzle flapper valve can be obtained, and energy can be saved by suppressing the exhaust flow rate. However, in a flow control type valve such as a spool valve, the output (flow rate) relative to the input voltage is not linear (linear graph shown in Fig. 9), as shown by the multiple black dot plots in Fig. 9. Specifically, there is a so-called “dead zone” region Z in which the output change with respect to the input change is zero or very small around the origin (input and output are zero). This dead zone is a region that is difficult to control because the change in output is small when the input is greatly changed compared to other regions. In addition, the output fluency of the spool valve when it is used in a vibration isolator is usually included in this dead zone. Therefore, when the spool valve is used, the dead zone is sufficiently compensated for by cascade control using a pressure differential meter. However, the anti-vibration performance remained at the same level as when a pressure-controlled valve was used, and further improvement of the anti-vibration performance was desired. In addition, when the load fluctuation due to environmental changes of the vibration isolator is severe, specifically when the speed of the vibration isolation table cannot be ignored, the cascade control that feeds back the displacement and acceleration may not be sufficient. . Therefore, from this point, a vibration isolation device that uses a flow control valve and has a higher vibration isolation performance than before is desired. Summary of the Invention
そこで本発明は、 流量制御型弁を用いて排気流量を抑制するとい う長所を維持しつつ.、 従来よりも応答性の高い高精度な制御が可能 な気体パネ式除振装置及びその制御方法を提供することを目的とす る。 Therefore, the present invention maintains a merit that the exhaust flow rate is suppressed by using a flow control type valve, and a gas panel type vibration isolator capable of highly accurate control with higher responsiveness than the conventional one and a control method therefor. The purpose is to provide
上記目的を達成するために、 本発明は、 除振台と、 前記除振台を 支持する気体パネと、 前記気体パネへの給気及び排気を行う流量制 御型弁と、 前記除振台の位置を検出する位置検出手段と、 前記除振 台の加速度を検出する加速度検出手段と、 前記位置検出手段及び前 記加速度検出手段の出力に基づいて前記流量制御型弁を制御する制 御装置と、 を有する除振装置であって、 前記制御装置は、 前記位置 検出手段の出力を用いる位置フィードバックループ、 及び前記加速 度検出手段の出力を用いる加速度フィ一ドバックループを含むカス ケード制御を行うとともに、 前記流量制御型弁の非線形性を補償す る規範モデルに追従するモデル追従制御を行う ことを特徴とする、 除振装置を提供する。 In order to achieve the above object, the present invention provides an anti-vibration table, a gas panel that supports the anti-vibration table, a flow control valve that supplies and exhausts air to the gas panel, and the anti-vibration table A position detecting means for detecting the position of the vibration isolator, an acceleration detecting means for detecting the acceleration of the vibration isolation table, and a control device for controlling the flow control valve based on outputs of the position detecting means and the acceleration detecting means. The control device performs cascade control including a position feedback loop that uses the output of the position detection means, and an acceleration feedback loop that uses the output of the acceleration detection means. In addition, the present invention provides a vibration isolator that performs model following control that follows a reference model that compensates for nonlinearity of the flow control valve.
好適な実施形態では、 前記規範モデルにおいて、 前記流量制御型 弁の出力流量は入力電圧に対して線形関係を有する。 In a preferred embodiment, in the reference model, an output flow rate of the flow control type valve has a linear relationship with an input voltage.
除振装置は、 前記気体パネ内の圧力変化を検出する圧力微分計を さらに有してもよく、 その場合前記制御装置は、 前記モデル追従制 御において、 前記圧力微分計により測定された圧力微分値を、 前記
規範モデルの出力流量に所定の係数を掛けた圧力微分値に追従させ る制御を行う。 The vibration isolation device may further include a pressure differential meter that detects a pressure change in the gas panel, and in that case, the control device may include a pressure differential measured by the pressure differential meter in the model following control. Value Control is performed to follow the pressure differential value obtained by multiplying the output flow rate of the reference model by a predetermined coefficient.
除振装置は、 前記流量制御型弁の出力流量を検出する流量検出手 段をさらに有してもよく、 その場合前記制御装置は、 前記モデル追 従制御において、 前記流量検出手段により測定された出力流量を前 記規範モデルの出力流量に追従させる制御を行う。 The vibration isolation device may further include a flow rate detection unit that detects an output flow rate of the flow rate control type valve. In that case, the control device is measured by the flow rate detection unit in the model following control. Control the output flow rate to follow the output flow rate of the reference model.
好適な実施形態では、 前記追従制御は、 前記除振台の速度をフィ ードバックする速度フィードバック制御を含む。 In a preferred embodiment, the follow-up control includes speed feedback control for feeding back the speed of the vibration isolation table.
好適な実施形態では、 前記流量制御型弁はスプール弁である。 また本発明の他の態様によれば、 除振台と、 前記除振台を支持す る気体パネと、 前記気体パネへの給気及び排気を行う流量制御型弁 と、 前記除振台の位置を検出する位置検出手段と、 前記除振台の加 速度を検出する加速度検出手段と、 前記位置検出手段及び前記加速 度検出手段の出力に基づいて前記流量制御型弁を制御する制御装置 と、 を有する除振装置の制御方法であって、 前記位置検出手段の出 力を用いる位置フィ一ドバックループ、 及び前記加速度検出手段の 出力を用いる加速度フィードバックループを含むカスケード制御を 行うとともに、 前記流量制御型弁の非線形性を補償する規範モデル に追従するモデル追従制御を行うことを特徴とする、 除振装置の制 御方法が提供される。 In a preferred embodiment, the flow control type valve is a spool valve. According to another aspect of the present invention, an anti-vibration table, a gas panel that supports the anti-vibration table, a flow control valve that supplies and exhausts gas to the gas panel, Position detecting means for detecting a position, acceleration detecting means for detecting the acceleration of the vibration isolation table, and a control device for controlling the flow control valve based on outputs of the position detecting means and the acceleration detecting means; And a cascade control including a position feedback loop using an output of the position detection means and an acceleration feedback loop using an output of the acceleration detection means, and the flow rate There is provided a control method for a vibration isolator characterized by performing model following control that follows a reference model that compensates for nonlinearity of a control valve.
好適な実施形態では、 前記規範モデルにおいて、 前記流量制御型 弁の出力流量は入力電圧に対して線形関係を有する。 In a preferred embodiment, in the reference model, an output flow rate of the flow control type valve has a linear relationship with an input voltage.
好適な実施形態では、 前記追従制御は、 前記除振台の速度をフィ 一ドバックする速度フィードバック制御を含む。 図面の簡単な説明 In a preferred embodiment, the follow-up control includes speed feedback control for feeding back the speed of the vibration isolation table. Brief Description of Drawings
本発明の上述又は他の目的、 特徴及び長所は、 以下の好適な実施
形態を添付図面を参照しつつ説明することによりさらに明らかにな るであろう。 The above or other objects, features and advantages of the present invention are as follows. The form will be further clarified by describing with reference to the accompanying drawings.
図 1 は、 本発明に係る第 1 の実施形態の除振装置の好適な構成例 を示す図であり、 FIG. 1 is a diagram showing a preferred configuration example of the vibration isolator according to the first embodiment of the present invention.
図 2は、 図 1 に示す圧力微分計の詳細構造を示す図であり、 図 3は、 ノズルフラッパ弁を用いた従来の除振装置の制御プロッ ク線図であり、 Fig. 2 is a diagram showing the detailed structure of the pressure differential meter shown in Fig. 1. Fig. 3 is a control block diagram of a conventional vibration isolator using a nozzle flapper valve.
図 4は、 第 1の実施形態の除振装置の制御プロック線図であるが 、 追従制御は含まない図であり、 FIG. 4 is a control block diagram of the vibration isolator of the first embodiment, but does not include tracking control.
図 5は、 第 1 の実施形態の除振装置の制御ブロック線図であり、 追従制御を含む図であり、 FIG. 5 is a control block diagram of the vibration isolator according to the first embodiment, including tracking control.
図 6は、 本発明に係る第 1の実施形態の除振装置の好適な構成例 を示す図であり、 FIG. 6 is a diagram illustrating a preferred configuration example of the vibration isolation device according to the first embodiment of the present invention.
図 7は、 第 2の実施形態の除振装置の制御プロック線図であり、 図 8は、 定常運転時の除振台の加速度波形を、 第 1の実施形態の 除振装置と従来の除振装置とで比較するグラフであり、 FIG. 7 is a control block diagram of the vibration isolator of the second embodiment, and FIG. 8 shows the acceleration waveform of the vibration isolator during steady operation with the vibration isolator of the first embodiment and the conventional vibration isolator. It is a graph to compare with the vibration device,
図 9は、 通常のスプール弁における、 入力電圧に対する出力流量 の関係を示すグラフである。 詳細な説明 Fig. 9 is a graph showing the relationship of the output flow rate to the input voltage in a normal spool valve. Detailed description
以下、 図面を参照しながら本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
図 1は、 本発明の第 1の実施形態に係る気体パネ式除振装置 1 0 の概略構成を模式的に示す図である。 除振装置 1 0は、 典型的な気 体バネである、 バッファタンク 1 2 a及びべローズ部 1 2 bを備え た空気バネ 1 ' 2、 空気バネ 1 2の上に配置される除振台 1 4、 除振 台 1 4の変位及び加速度をそれぞれ検出する位置検出手段すなわち 位置センサ 1 6及び加速度検出手段すなわち加速度センサ 1 8を有
する。 また除振装置 1 0は、 空気パネ 1 2に空気を供給する空気供 給源 2 0 と、 空気供給源 2 0からの空気を流量制御して空気バネ 1 2に送るための流量制御型弁 2 2 とを有する。 好適な流量制御型弁 としてはスプール弁が挙げられる。 さらに除振装置 1 0は、 空気バ ネ 1 2のバッファタンク部分 1 2 a内の圧力を測定するために、 本 願と同一出願人が開発した圧力微分計 2 4を有する。 FIG. 1 is a diagram schematically showing a schematic configuration of a gas panel type vibration isolator 10 according to the first embodiment of the present invention. The vibration isolator 10 is a typical gas spring, an air spring 1 '2 having a buffer tank 1 2 a and a bellows portion 1 2 b, and a vibration isolation table disposed on the air spring 1 2. 1 4 、 Vibration isolation table 14 Position detection means to detect displacement and acceleration of 4 respectively, ie position sensor 1 6 and acceleration detection means, ie acceleration sensor 1 8 To do. The vibration isolator 10 includes an air supply source 2 0 that supplies air to the air panel 1 2, and a flow control valve 2 that controls the flow of air from the air supply source 20 and sends it to the air spring 12. 2 and. A suitable flow control valve is a spool valve. Further, the vibration isolator 10 has a pressure differential meter 24 developed by the same applicant as the present application in order to measure the pressure in the buffer tank portion 12 a of the air bath 12.
また除振装置 1 0は、 後述するフイードバック制御を行う制御装 置 2 6を有し、 制御装置 2 6は、 適当な増幅度及び時定数を有する フィル夕 2 8 a、 2.8 b及び 2 8 c、 比較器 3 0、 P I補償器 3 2 並びに I補償器 3 4を有する。 図示するように、 加速度センサ 1 8 の出力はフィルタ 2 8 bを通ってスプール弁 2 2の弁開度の調節に 使用される。 また位置センサ 1 6の出力はフィル夕 2 8 aを通って 比較器 3 0にて設定変位と比較され、 その結果すなわち偏差信号が P I補償器 3 2を通ってスプール弁の弁開度調節に使用される。 さ らに圧力微分計 2 4の出力はフィルタ 2 8 c及び I補償器 3 4を通 つてスプール弁の弁開度調節に使用されるが、 これについては後述 する。 Further, the vibration isolator 10 has a control device 26 that performs feedback control, which will be described later, and the control device 26 has an appropriate amplification degree and time constant. A comparator 30, a PI compensator 3 2, and an I compensator 3 4. As shown in the figure, the output of the acceleration sensor 1 8 passes through the filter 2 8 b and is used to adjust the valve opening of the spool valve 2 2. The output of the position sensor 16 is compared with the set displacement in the comparator 30 through the filter 28a, and the result, that is, the deviation signal passes through the PI compensator 32 to adjust the valve opening of the spool valve. used. Furthermore, the output of the pressure differential meter 24 is used for adjusting the valve opening of the spool valve through the filter 28 c and the I compensator 34, which will be described later.
圧力微分計 2 は、 その基本構成は特開 2 0 0 5— 9 8 9 9 1号 公報に記載されるものと同じであり、 例えば図 2に示すように、 等 温化圧力容器 2 4 a、 計測対象である空気バネ 1 2のバッファタン ク部分 1 2 aと等温化圧力容器 2 4 aとを連通する導通路 (図示例 では複数のスリ ッ ト) 2 4 b、 及び等温化圧力容器 2 4 a内とバッ ファタンク 1 2 a内との圧力差を検出する差圧計 (図示例ではダイ ャフラム式差圧計) 2 4 c とを有する。 圧力微分計 2 4を使用する ことにより、 バッファタンク 1 2 a内の圧力微分値を低ノイズかつ 高い分解能で求めることができる。 なお空気パネ式除振装置に圧力 微分計を適用した例は、 本願と同一出願人による特願 2 0 0 4— 3
3 3 6 3 8号明細書 (特開 2 0 0 6— 1 4 4 8 5 9号公報) にも記 載されている。 The basic structure of the pressure differentiator 2 is the same as that described in Japanese Patent Laid-Open No. 2 0 0 5-9 8 9 9 1. For example, as shown in FIG. 2, an isothermal pressure vessel 2 4 a Measured air spring 1 2 Buffer tank part 1 2 of the tank 1 2 a and the isothermal pressure vessel 2 4 a are connected to the communication path (in the example shown, multiple slits) 2 4 b and the isothermal pressure vessel 2 4 c and a differential pressure gauge (diaphragm type differential pressure gauge in the illustrated example) 2 4 c for detecting the pressure difference between the inside of the buffer tank 1 2 a and the inside of the buffer tank 1 2 a. By using the pressure differential meter 2 4, the pressure differential value in the buffer tank 1 2 a can be obtained with low noise and high resolution. An example in which a pressure differential meter is applied to an air panel type vibration isolator is shown in Japanese Patent Application No. 2 0 0 4-3 It is also described in the specification of 3 3 6 3 8 (Japanese Patent Laid-Open No. 2 0 06-1 4 4 8 5 9).
次に、 除振装置 1 0の制御方法について説明するが、 先ず比較の ために従来のノズルフラッパ型サ一ポ弁を用いた空気バネ式除振装 置の制御ブロック線図を図 3に示す。 ノズルフラッパ弁のような圧 力制御型弁では空気パネ内の圧力 Pが入力電圧 uに対して 1次遅れ の関係になり、 また圧力 Pと除振台の変位 Xとは図 3 に示すような 関係を有する。 図 3からわかるように、 変位計及び加速度計を用い て除振台の変位 X及び加速度 d 2 x / d t 2をそれぞれ測定し、 変位 Xについては目標値に対する P I 制御、 加速度 d2 x/ d t 2につい ては加速度フィードバックゲイン K aを掛けた信号によるフィード バック制御を行う。 なお、 K及び Tはそれぞれノズルフラッパ出力 ゲイン及び時定数であり、 また m、 A、 k及び bはそれぞれ空気バ ネ上の負荷の質量、 該負荷を支持する空気パネ内の部分の断面積、 空気パネのバネ定数及び粘性係数である。 Next, a control method of the vibration isolator 10 will be described. First, for comparison, a control block diagram of an air spring type vibration isolator using a conventional nozzle flapper type suppo valve is shown in FIG. In a pressure control type valve such as a nozzle flapper valve, the pressure P in the air panel has a first-order lag relationship with the input voltage u, and the pressure P and the vibration isolation table displacement X are as shown in Fig. 3. Have a relationship. As can be seen from Fig. 3, the displacement X and acceleration d 2 x / dt 2 of the vibration isolation table are measured using a displacement meter and an accelerometer, respectively, and for displacement X, PI control with respect to the target value, acceleration d 2 x / dt For 2 , the feedback control is performed by the signal multiplied by the acceleration feedback gain Ka. K and T are the nozzle flapper output gain and time constant, respectively, and m, A, k and b are the mass of the load on the air panel, the cross-sectional area of the part in the air panel that supports the load, and the air Panel spring constant and viscosity coefficient.
次に図 4は、 特願 2 0 0 4— 3 3 3 6 3 8号明細書 (特開 2 0 0 6— 1 4 4 8 5 9号公報) において本願出願人が提案した、 スプー ル弁及び圧力微分計を使用した空気パネ式除振装置の制御プロック 線図である。 図 4が図 3 と異なる点は破線で囲まれた部分であり、 他の部分については従来すなわち図 3 と同様でよい。 なお R、 0及 ぴ Vはそれぞれ気体定数、 気体の絶対温度及び空気パネの容積であ る。 図 4の特徴は、 従来の加速度及び位置のフィードバックループ に加えて圧力微分値のフィードバックル一プを有することにある。 但しこの制御では、 入力電圧 uに対する出力流量 Gを線形近似 (比 例ゲイン Κ ν·を掛ける) しており、 上述のスプール弁の 「不感帯」 を考慮していない。 従って圧力微分計の使用によってノズルフラッ パ弁を用いた除振装置と同等の除振装置は得られるものの、 除振台
の速度が無視できない場合等において、 十分に速い動特性を得るこ とは困難である。 Next, FIG. 4 shows a spool valve proposed by the applicant of the present application in Japanese Patent Application No. 2 0 0 4-3 3 3 6 3 8 (Japanese Patent Laid-Open No. 2 0 0 6 1 4 4 8 5 9). And a control block diagram of an air panel vibration isolator using a pressure differential meter. 4 differs from FIG. 3 in the part surrounded by a broken line, and the other parts may be the same as in FIG. R, 0 and V are the gas constant, the absolute temperature of the gas and the volume of the air panel, respectively. The feature of Fig. 4 is that it has a pressure differential feedback loop in addition to the conventional acceleration and position feedback loop. However, in this control, the output flow rate G with respect to the input voltage u is linearly approximated (multiplied by the proportional gain ν ν), and the above-mentioned “dead zone” of the spool valve is not taken into consideration. Therefore, although a vibration isolator equivalent to that using a nozzle flapper valve can be obtained by using a pressure differential meter, It is difficult to obtain sufficiently fast dynamic characteristics when the speed of the vehicle cannot be ignored.
図 5は、 スプール弁及び圧力微分計を使用した本発明の第 1の実 施形態の除振装置 1 0の制御ブロックを示す図である。 図 5が図 3 又は図 4と異なる点は一点鎖線で囲まれた部分であり、 他の部分に ついては図 3又は図 4と同様でよい。 第 1の実施形態の特徴は、 図 4と同様に圧力微分値のフィードバックループを有することに加え 、 その圧力微分値のフィードバックにおいて規範モデル追従制御を 行うことにある。 FIG. 5 is a diagram showing a control block of the vibration isolator 10 according to the first embodiment of the present invention using a spool valve and a pressure differential meter. FIG. 5 differs from FIG. 3 or FIG. 4 in the portion surrounded by the alternate long and short dash line, and the other portions may be the same as in FIG. 3 or FIG. The feature of the first embodiment is that, in addition to having a pressure differential value feedback loop as in FIG. 4, the reference model following control is performed in the feedback of the pressure differential value.
図 5の破線部内にて示すように、 スプール弁 2 2の入力電圧 uに 対する出力流量 Gは非線形性を呈し、 換言すれば入力変化に対する 出力変化が実質ない又は微小な 「不感帯」 が存在する。 そこで本発 明では、 スプール弁のこの不感帯での動特性を向上させるために、 圧力微分値のフィードバック値 (信号) 力 入力電圧と出力流量と の関係がゼロ点を通る線形性を備えた (比例.ゲイン K Vを掛けた) 規範モデル G re こ所定の係数を掛けた値に追従するような制御'を 行い、 スプール弁の非線形性を補償する。 好適な規範モデル G re f は、 例えば図 9に示す線形グラフのように G = K V · uを満足する モデルである。 このように、 空気バネ 1 2のバッファタンク 1 2 a 内の微圧変動を高分解能の圧力微分計で検出し、 得られた値 (信号 ) に対して追従制御系のフィードバック処理を行うことにより、 高 精度かつ高応答の圧力制御が実現でき、 結果として排気流量を抑制 しつつ除振性能の高い除振装置を得ることができる。 なお K a d、 K a d l及び T a dはそれぞれ追従制御の比例ゲイン、 積分ゲイン及びフ ィル夕の時定数である。 As shown in the broken line in FIG. 5, the output flow rate G with respect to the input voltage u of the spool valve 2 2 exhibits non-linearity, in other words, the output change with respect to the input change does not substantially exist or there is a minute “dead zone”. . Therefore, in the present invention, in order to improve the dynamic characteristics of the spool valve in this dead zone, the feedback value (signal) of the pressure differential value The relationship between the input voltage and the output flow rate has a linearity that passes through the zero point ( Reference model G re This is controlled to follow the value multiplied by a predetermined coefficient to compensate for the nonlinearity of the spool valve. A suitable reference model G ref is a model that satisfies G = KV · u, for example, a linear graph shown in FIG. In this way, the fine pressure fluctuation in the buffer tank 1 2 a of the air spring 1 2 is detected by a high-resolution pressure differential meter, and the feedback value of the tracking control system is applied to the obtained value (signal). Therefore, highly accurate and highly responsive pressure control can be realized, and as a result, a vibration isolator having high vibration isolation performance can be obtained while suppressing the exhaust gas flow rate. K ad , Kadl, and T ad are the proportional gain, integral gain, and time constant of the tracking control, respectively.
また図 5に示すように、 第 1の実施形態では、 除振台の速度 d x / d t に係数を掛けた値 (信号) を圧力微分値のフィードバックル
ープ内に組み入れることができる。 このようにすれば、 速度変動を 含んだ結果に基づいてフィ一ドバック制御ができるので、 除振台の 速度が無視できない場合であっても高い除振性能を得ることができ る。 なお速度信号は加速度信号の積分、 変位信号の微分又は別途設 けた速度センサ (図示せず) から得ることができる。 Further, as shown in FIG. 5, in the first embodiment, the value (signal) obtained by multiplying the vibration isolation table speed dx / dt by a coefficient is used as a feedback value differential pressure value. Can be incorporated into a group. In this way, since feedback control can be performed based on the result including the speed fluctuation, high vibration isolation performance can be obtained even when the speed of the vibration isolation table cannot be ignored. The speed signal can be obtained by integrating the acceleration signal, differentiating the displacement signal, or by a speed sensor (not shown) provided separately.
次に、 本発明に係る除振装置の第 2の実施形態について説明する 。 上述の第 1の実施形態では圧力微分計を用いて空気パネ内の圧力 の微分値を測定してその圧力微分値のフィードバックを行ったが、 以下に説明する第 2の実施形態では圧力微分計を使用せず、 圧力微 分値の代わりにスプール弁の出力流量をフイードバックに使用する 。 図 6に示す第 2の実施形態に係る気体パネ式除振装置 1 0 ' は、 第 1の実施形態に係る除振装置 1 0の圧力微分計 2 4の代わりにス プール弁 2 2の流量を測定する流量計 3 6 を有する。 図 6に表記さ れる除振装置 1 0 ' の他の構成要素は第 1の除振装置 1 0 と同様で あってよく、 故に説明は省略する。 Next, a second embodiment of the vibration isolator according to the present invention will be described. In the first embodiment described above, the differential value of the pressure in the air panel is measured using a pressure differential meter and the pressure differential value is fed back. In the second embodiment described below, the pressure differential meter is used. The output flow rate of the spool valve is used for feedback instead of the pressure differential value. The gas panel type vibration isolator 10 0 ′ according to the second embodiment shown in FIG. 6 has a flow rate of the spool valve 2 2 instead of the pressure differential meter 2 4 of the vibration isolator 10 according to the first embodiment. It has a flow meter 3 6 to measure The other components of the vibration isolator 1 0 ′ shown in FIG. 6 may be the same as those of the first vibration isolator 1 0, and thus description thereof is omitted.
図 7は、 第 2の除振装置 1 0 ' の制御プロック図である。 ここで は、 流量計 3 6により測定された流量 Gと、 上述した規範モデルと して理想的な線形性を有する流量モデル G r e iとが比較される。 比 較される値が圧力微分値から流量に置換されていることを除けば、 他の考え方は図 5 を用いて説明したものと同様でよい。 従って第 2 の実施形態では、 流量 Gを制御して除振台 1 4の変位及び加速度の 変化を最小限に抑制するような制御が行われる。 なお流量計 3 6 と しては、 例えば特開 2 0 0 4— 7 7 3 2 7号公報に記載されるよう な、 非定常流の流体の流量を測定可能な応答性の高い流量計が好ま しい。 FIG. 7 is a control block diagram of the second vibration isolator 1 0 ′. Here, the flow rate G measured by the flow meter 36 is compared with the flow rate model G re e i having ideal linearity as the reference model described above. Except that the value to be compared is replaced with the flow rate from the pressure differential value, the other concepts may be the same as described with reference to FIG. Therefore, in the second embodiment, control is performed to control the flow rate G to suppress the displacement and acceleration changes of the vibration isolation table 14 to a minimum. As the flow meter 3 6, for example, there is a highly responsive flow meter capable of measuring the flow rate of an unsteady flow fluid as described in Japanese Patent Laid-Open No. 2000-077 3 27. I like it.
またこの場合も、 除振台 1 4の速度フィードバックを行う ことが できる。
次に、 本発明の実施例について説明する。 なおこの実施例は、 上 述の第 1の実施形態に相当するスプール弁及び圧力微分計を用いた 除振装置についてのものである。 なお除振装置の主仕様は以下の通 りであった。 Also in this case, speed feedback of the vibration isolation table 14 can be performed. Next, examples of the present invention will be described. This example relates to a vibration isolator using a spool valve and a pressure differential meter corresponding to the first embodiment described above. The main specifications of the vibration isolator were as follows.
空気パネ内の部分の有効受圧面積 (A) : Effective pressure receiving area of the air panel (A):
7 2. 4 X 1 0 - 4 [m2 ] 負荷重量 (m) : 8 7 [k g ] 7 2. 4 X 1 0 - 4 [m 2] Load weight (m): 8 7 [kg ]
空気バネ容積 (V) : 1. 7 X 1 0—3 [m3] Air spring volume (V): 1. 7 X 1 0— 3 [m 3 ]
実験は、 ス トロークが約 2 mmの空気バネを用い、 除振台を所定 の変位 (ここでは 1. 4 mm) で定位浮上させ、 除振台の加速度信 号の安定性を従来のノズルフラッパ弁を用いた除振装置と比較した 。 また、 スプール弁及びノズルフラッパ弁の定常排気流量の比較も 併せて行った。 なお実験中の空気パネ内の圧力は約 2 7 0 k P a ( a b s ) であった。 In the experiment, an air spring with a stroke of about 2 mm was used to float the vibration isolation table at a predetermined displacement (1.4 mm in this case), and the stability of the acceleration signal of the vibration isolation table was improved by the conventional nozzle flapper valve. Compared with the vibration isolator using. We also compared the steady exhaust flow rates of the spool valve and the nozzle flapper valve. Note that the pressure in the air panel during the experiment was approximately 270 kPa (abs).
上記条件での実験を行った結果、 第 1 の実施形態に係る除振装置 では定常排気流量が 0. 7 5 N 1 /分であった。 比較として同じ空 気パネについてノズルフラッパ弁を用いた除振装置の場合は定常排 気流量が 1 6. 7 N 1 /分であったことから、 消費流量は約 1 / 2 2 と大幅に削減できていることがわかる。 As a result of experiments under the above conditions, the steady-state exhaust flow rate was 0.75 N 1 / min in the vibration isolator according to the first embodiment. For comparison, in the case of a vibration isolation device using a nozzle flapper valve for the same air panel, the steady exhaust flow rate was 16.7 N1 / min, so the consumption flow rate can be significantly reduced to approximately 1/22. You can see that
また図 8は、 本発明の第 1の実施形態に係るスプール弁を用いた 除振装置とノズルフラッパ弁を用いた除振装置とで定常運転時の除 振台の加速度波形を比較したグラフである。 なお実線 L 1が前者の 加速度波形を示し、 破線 L 2が後者の加速度波形を示す。 図 8から わかるように、 第 1の実施形態に係る除振装置では加速度の変動幅 が従来のノズルフラッパ弁を用いたものより全般的に小さくなつて おり、 優れた除振性能を発揮していることがわかる。 FIG. 8 is a graph comparing acceleration waveforms of the vibration isolation table during steady operation between the vibration isolation device using the spool valve and the vibration isolation device using the nozzle flapper valve according to the first embodiment of the present invention. . The solid line L 1 shows the former acceleration waveform, and the broken line L 2 shows the latter acceleration waveform. As can be seen from FIG. 8, in the vibration isolator according to the first embodiment, the fluctuation range of the acceleration is generally smaller than that using the conventional nozzle flapper valve, and exhibits excellent vibration isolation performance. I understand that.
本発明に係る除振装置又はその制御方法によれば、 流量制御型弁
を用いて従来よりも排気流量を顕著に低減させることができるとと もに、 規範モデルに追従する制御系を適用することにより、 流量制 御型弁が有する非線形性を補償することができる。 従ってランニン グコス 卜が低くかつ除振性能が高い除振装置を得ることができる。 上記追従制御は、 高分解能の測定が可能な圧力微分計を用いて検 出された空気バネ内の圧力微分値について行われることが有利であ る。 あるいは、 追従制御を流量制御型弁の出力流量について行う こ ともできる。 According to the vibration isolator or the control method thereof according to the present invention, the flow control type valve The exhaust flow rate can be remarkably reduced using conventional and the non-linearity of the flow control type valve can be compensated by applying a control system that follows the reference model. Therefore, a vibration isolator having a low running cost and a high vibration isolation performance can be obtained. The follow-up control is advantageously performed on the pressure differential value in the air spring detected using a pressure differential meter capable of high resolution measurement. Alternatively, follow-up control can be performed on the output flow rate of the flow control type valve.
また除振台の速度フィードバックを追従制御に組み込むことによ り、 除振台の速度が無視できないような場合でも高精度の制御を行 うことが可能になる。 In addition, by incorporating the speed feedback of the vibration isolation table into the follow-up control, high-precision control can be performed even when the speed of the vibration isolation table cannot be ignored.
説明のために選定された特定の実施形態を参照して本発明が説明 されたが、 当業者には本発明の基本的概念及び範囲から逸脱するこ となく多数の変更が可能であることは明らかである。
Although the present invention has been described with reference to particular embodiments selected for illustration, it should be understood that many modifications may be made by those skilled in the art without departing from the basic concept and scope of the invention. it is obvious.
Claims
1 . 除振台と、 前記除振台を支持する気体パネと、 前記気体バネ への給気及び排気を行う流量制御型弁と、 前記除振台の位置を検出 する位置検出手段と、 前記除振台の加速度を検出する加速度検出手 段と、 前記位置検出手段及び前記加速度検出手段の出力に基づいて 請 1. a vibration isolation table, a gas panel that supports the vibration isolation table, a flow control valve that supplies and exhausts air to the gas spring, a position detection unit that detects a position of the vibration isolation table, Based on an acceleration detection means for detecting the acceleration of the vibration isolation table, and the outputs of the position detection means and the acceleration detection means.
前記流量制御型弁を制御する制御装置と、 を有する除振装置であつ て、 A vibration isolator having a control device for controlling the flow control valve;
前記制御装置は、 前記位置検出手段の出力を用いる位置フィ一ド バックル一プ、 及び前記加速度検出手段の出力を用いる加速度フィ ードバックループを含むカスケード制御を囲行うとともに、 前記流量 制御型弁の非線形性を補償する規範モデルに追従するモデル追従制 御を行う ことを特徴とする、 除振装置。 The control device surrounds cascade control including a position feedback loop using an output of the position detection means and an acceleration feedback loop using an output of the acceleration detection means, and nonlinearity of the flow control type valve A vibration isolator that performs model following control to follow a reference model that compensates for noise.
2 . 前記規範モデルにおいて、 前記流量制御型弁の出力流量は入 力電圧に対して線形関係を有する、 請求項 1.に記載の除振装置。 2. The vibration isolation device according to claim 1, wherein in the reference model, an output flow rate of the flow control type valve has a linear relationship with an input voltage.
3 . 前記気体パネ内の圧力変化を検出する圧力微分計をさらに有 し、 前記制御装置は、 前記モデル追従制御において、 前記圧力微分 計により測定された圧力微分値を、 前記規範モデルの出力流量に所 定の係数を掛けた圧力微分値に追従させる制御を行う、 請求項 2に 記載の除振装置。 3. It further has a pressure differential meter for detecting a pressure change in the gas panel, and the control device uses the pressure differential value measured by the pressure differential meter in the model following control as an output flow rate of the reference model. The vibration isolator according to claim 2, wherein control is performed to follow a pressure differential value obtained by multiplying a predetermined coefficient by.
4 . 前記流量制御型弁の出力流量を検出する流量検出手段をさら に有し、 前記制御装置は、 前記モデル追従制御において、 前記流量 検出手段により測定された出力流量を前記規範モデルの出力流量に 追従させる制御を行う、 請求項 2に記載の除振装置。 4. Further comprising a flow rate detecting means for detecting an output flow rate of the flow rate control type valve, wherein the control device uses the output flow rate measured by the flow rate detecting means in the model following control as an output flow rate of the reference model. The vibration isolation device according to claim 2, wherein control is performed to follow the vibration.
5 . 前記追従制御は、 前記除振台の速度をフィードバックする速 度フィードバック制御を含む、 請求項 1 に記載の除振装置。 5. The vibration isolation device according to claim 1, wherein the follow-up control includes speed feedback control that feeds back a speed of the vibration isolation table.
6 . 前記流量制御型弁はスプール弁である、 請求項 1 に記載の制
御方法。 6. The control of claim 1, wherein the flow control valve is a spool valve. Your method.
7 . 除振台と、 前記除振台を支持する気体パネと、 前記気体パネ への給気及び排気を行う流量制御型弁と、 前記除振台の位置を検出 する位置検出手段と、 前記除振台の加速度を検出する加速度検出手 段と、 前記位置検出手段及び前記加速度検出手段の出力に基づいて 前記流量制御型弁を制御する制御装置と、 を有する除振装置の制御 方法であって、 7. a vibration isolation table, a gas panel that supports the vibration isolation table, a flow control valve that supplies and exhausts air to the gas panel, a position detection unit that detects a position of the vibration isolation table, A method for controlling a vibration isolator comprising: an acceleration detection means for detecting an acceleration of a vibration isolation table; and a control device for controlling the flow control valve based on the output of the position detection means and the acceleration detection means. And
前記位置検出手段の出力を用いる位置フィ一ドバックループ、 及 び前記加速度検出手.段の出力を用いる加速度フィ一ドバックル一プ を含むカスケード制御を行うとともに、 前記流量制御型弁の非線形 性を補償する規範モデルに追従するモデル追従制御を行うことを特 徴とする、 除振装置の制御方法。 Cascade control including a position feedback loop that uses the output of the position detection means and an acceleration feedback buckle that uses the output of the acceleration detection stage and compensates for the nonlinearity of the flow control valve A method for controlling a vibration isolator characterized by performing model following control to follow a reference model to be performed.
8 . 前記規範モデルにおいて、 前記流量制御型弁の出力流量は入 力電圧に対して線形関係を有する、 請求項 7に記載の制御方法。 8. The control method according to claim 7, wherein in the reference model, an output flow rate of the flow control type valve has a linear relationship with an input voltage.
9 . 前記追従制御は、 前記除振台の速度をフィードバックする速 度フィードバック制御を含む、 請求項 7に記載の制御方法。
9. The control method according to claim 7, wherein the follow-up control includes speed feedback control that feeds back a speed of the vibration isolation table.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-126082 | 2006-04-28 | ||
JP2006126082A JP4113960B2 (en) | 2006-04-28 | 2006-04-28 | Gas spring type vibration isolator and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007125663A1 true WO2007125663A1 (en) | 2007-11-08 |
Family
ID=38655203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/052300 WO2007125663A1 (en) | 2006-04-28 | 2007-02-02 | Gas spring type vibration isolator and method of controlling the device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4113960B2 (en) |
WO (1) | WO2007125663A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102979850A (en) * | 2011-09-07 | 2013-03-20 | 纬创资通股份有限公司 | Method for preparing vibration isolation system and electronic device thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5051450B2 (en) * | 2007-12-03 | 2012-10-17 | 特許機器株式会社 | Pneumatic vibration isolator |
JP5064316B2 (en) * | 2008-07-01 | 2012-10-31 | 特許機器株式会社 | Vibration isolator |
JP2022109059A (en) * | 2021-01-14 | 2022-07-27 | 住友重機械工業株式会社 | Control device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000154843A (en) * | 1998-11-18 | 2000-06-06 | Canon Inc | Vibration damping device |
JP2000284832A (en) * | 1999-03-31 | 2000-10-13 | Komatsu Ltd | Temperature controller and valve control part of the same |
JP2002364702A (en) * | 2001-06-12 | 2002-12-18 | Canon Inc | Vibration removing device and semiconductor manufacturing device having the same |
JP2005147318A (en) * | 2003-11-18 | 2005-06-09 | Tokkyokiki Corp | Active vibration control device and system |
JP2005172135A (en) * | 2003-12-11 | 2005-06-30 | Canon Inc | Vibration resistant mount device |
-
2006
- 2006-04-28 JP JP2006126082A patent/JP4113960B2/en active Active
-
2007
- 2007-02-02 WO PCT/JP2007/052300 patent/WO2007125663A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000154843A (en) * | 1998-11-18 | 2000-06-06 | Canon Inc | Vibration damping device |
JP2000284832A (en) * | 1999-03-31 | 2000-10-13 | Komatsu Ltd | Temperature controller and valve control part of the same |
JP2002364702A (en) * | 2001-06-12 | 2002-12-18 | Canon Inc | Vibration removing device and semiconductor manufacturing device having the same |
JP2005147318A (en) * | 2003-11-18 | 2005-06-09 | Tokkyokiki Corp | Active vibration control device and system |
JP2005172135A (en) * | 2003-12-11 | 2005-06-30 | Canon Inc | Vibration resistant mount device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102979850A (en) * | 2011-09-07 | 2013-03-20 | 纬创资通股份有限公司 | Method for preparing vibration isolation system and electronic device thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4113960B2 (en) | 2008-07-09 |
JP2007298102A (en) | 2007-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kato et al. | A new, high precision, quick response pressure regulator for active control of pneumatic vibration isolation tables | |
US8195336B2 (en) | Pressure regulator | |
US10516957B2 (en) | High displacement acoustic transducer systems | |
US7669455B2 (en) | Automatic zero point correction device for a pressure sensor, a pressure control device and a pressure type flow rate control device | |
US9910448B2 (en) | Pressure-based gas flow controller with dynamic self-calibration | |
KR101391198B1 (en) | Controller gain scheduling for mass flow controllers | |
KR100427563B1 (en) | Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device | |
US8922096B2 (en) | Circuit arrangement and method for actuating a piezo valve | |
WO2007125663A1 (en) | Gas spring type vibration isolator and method of controlling the device | |
WO2007054860A2 (en) | Vibration isolation system and method | |
WO2020026784A1 (en) | Flow rate control system and flow rate measurement method | |
JPH067815A (en) | Adjusting method having preliminary control | |
JP2007107604A (en) | Vibration resistant device, and vibration resistant method | |
JP5124038B2 (en) | Pressure regulator and vibration isolator | |
Shirani et al. | Feedforward control of the flow disturbance to the pneumatic isolation table | |
JP2001221201A (en) | Electric-pneumatic positioner | |
JPH06159433A (en) | Active vibration elimination method and vibration elimination device | |
RU2246101C2 (en) | Gas pressure reference-point device | |
JP2006144859A (en) | Vibration isolator | |
Kato et al. | Development of a Precise and Quick Response Pneumatic Pressure Regulator and its Application to Pneumatic Vibration Isolator | |
JPH0731554B2 (en) | Flow controller | |
Nakamura et al. | Flow disturbance rejection of pneumatic vibration isolators using compensation input | |
JPH0469401A (en) | Pneumatic actuator | |
Kato et al. | Application of minor feedback of flow rate to pressure spring system | |
JPH05297955A (en) | Mass flow controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07713962 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07713962 Country of ref document: EP Kind code of ref document: A1 |