TWI461946B - Method of designing a vibration isolating system and a related elecronic device - Google Patents

Method of designing a vibration isolating system and a related elecronic device Download PDF

Info

Publication number
TWI461946B
TWI461946B TW100132208A TW100132208A TWI461946B TW I461946 B TWI461946 B TW I461946B TW 100132208 A TW100132208 A TW 100132208A TW 100132208 A TW100132208 A TW 100132208A TW I461946 B TWI461946 B TW I461946B
Authority
TW
Taiwan
Prior art keywords
vibration isolating
vibration
vibration isolation
isolating member
physical
Prior art date
Application number
TW100132208A
Other languages
Chinese (zh)
Other versions
TW201312377A (en
Inventor
Hsiang Chieh Wu
I Chun Wu
Original Assignee
Wistron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wistron Corp filed Critical Wistron Corp
Priority to TW100132208A priority Critical patent/TWI461946B/en
Priority to CN2011102958986A priority patent/CN102979850A/en
Publication of TW201312377A publication Critical patent/TW201312377A/en
Application granted granted Critical
Publication of TWI461946B publication Critical patent/TWI461946B/en

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

設計隔振系統之方法及其電子裝置Method for designing vibration isolation system and electronic device thereof

本發明係有關於一種隔振系統,尤指一種用來設計隔振系統之方法及其電子裝置。The invention relates to a vibration isolation system, in particular to a method for designing a vibration isolation system and an electronic device thereof.

傳統的電子產品中可能有複數種振動源,例如一揚聲器、一風扇或一儲存裝置等等,會造成使用者於操作電子產品時感受到異常的振動或噪音。一般來說,傳統的隔振方式係將由彈性材質所組成之隔振環設置於振動源及殼體之間,以防止振動經由殼體傳遞。振動源與隔振環可視為一維線性振動系統,若該振動系統之自然頻率實質上接近振動源之共振頻率時,即會產生相當劇烈的振動,故如何選擇適當的隔振環即相當重要。隔振環的彈力常數係與其尺寸與形狀有關,傳統方式係於隔振環製作完畢後經由量測而得知,故隔振環的傳統設計方式係以多年累積的經驗來設計或選購適合的隔振環,如此一來容易挑選到不合適的隔振環,且係於驗證品管階段才發現隔振效果不佳,以致提高產品的人力成本與製造成本。因此,如何發展出一種可依據各振動系統之特性而製作出適合之隔振元件的設計方法,即為現今機構產業亟需努力的目標之一。There may be a plurality of vibration sources in a conventional electronic product, such as a speaker, a fan or a storage device, etc., which may cause abnormal vibration or noise when the user operates the electronic product. In general, the conventional vibration isolation method is to provide a vibration isolation ring composed of an elastic material between the vibration source and the casing to prevent vibration from being transmitted through the casing. The vibration source and the vibration isolation ring can be regarded as a one-dimensional linear vibration system. If the natural frequency of the vibration system is substantially close to the resonance frequency of the vibration source, considerable vibration will occur, so how to choose an appropriate vibration isolation ring is very important. . The elastic constant of the vibration isolating ring is related to its size and shape. The traditional method is known after the vibration isolation ring is produced. Therefore, the traditional design method of the vibration isolation ring is designed or purchased with years of accumulated experience. The vibration isolation ring makes it easy to select an improper vibration isolation ring, and it is found that the vibration isolation effect is not good at the verification quality control stage, so that the labor cost and the manufacturing cost of the product are improved. Therefore, how to develop a design method that can produce suitable vibration isolating components according to the characteristics of each vibration system is one of the goals that is urgently needed for the current institutional industry.

本發明係提供一種用來設計隔振系統之方法及其電子裝置,以解決上述之問題。The present invention provides a method for designing a vibration isolation system and an electronic device thereof to solve the above problems.

本發明之申請專利範圍係揭露一種設計一隔振系統之方法,該隔振系統包含有一隔振件與一被隔振物。該方法包含有輸入該隔振件之複數個物理參數;取得各物理參數之相關函數及相對應之加權函數;利用各物理參數相關函數與各相對應加權函數,計算出該隔振件之一彈力常數;利用該彈力常數及該隔振件與該被隔振物之重量,計算出該隔振系統之一自然頻率;比較該自然頻率與該被隔振物之一共振頻率;以及分析該比較結果,以產生該隔振件之各物理參數的設計值。The patent application scope of the present invention discloses a method for designing a vibration isolation system including a vibration isolation member and a vibration isolating object. The method comprises inputting a plurality of physical parameters of the vibration isolation member; obtaining a correlation function of each physical parameter and a corresponding weighting function; and calculating one of the vibration isolation members by using each physical parameter correlation function and each corresponding weighting function An elastic constant; calculating a natural frequency of the vibration isolation system by using the elastic constant and the weight of the vibration isolating member; and comparing the natural frequency with a resonant frequency of the vibration isolating object; and analyzing the The result is compared to produce a design value for each physical parameter of the vibration isolating member.

本發明之申請專利範圍另揭露一種用來設計一隔振系統之電子裝置,該隔振系統包含有一隔振件與一被隔振物。該電子裝置包含有一輸入單元,用來輸入該隔振件之複數個物理參數;一資料庫,用來儲存該隔振件之相關資訊;以及一運算單元,電連接於該輸入單元且連線至該資料庫。該運算單元係用來於接收到該輸入單元所輸出之該複數個物理參數後,連線至該資料庫以取得各物理參數之相關函數及相對應加權函數。該運算單元另用來利用各物理參數相關函數、該相對應加權函數、及該隔振件與該被隔振物之重量,以計算出該隔振系統之一自然頻率。該運算單元另用來比較該自然頻率與該被隔振物之一共振頻率,以產生該隔振件之各物理參數的設計值。The patent application scope of the present invention further discloses an electronic device for designing a vibration isolation system, the vibration isolation system comprising a vibration isolation member and a vibration isolating material. The electronic device includes an input unit for inputting a plurality of physical parameters of the vibration isolating member, a database for storing related information of the vibration isolating member, and an arithmetic unit electrically connected to the input unit and connected To the database. The operation unit is configured to receive the plurality of physical parameters output by the input unit, and then connect to the database to obtain a correlation function and a corresponding weighting function of each physical parameter. The arithmetic unit is further configured to calculate a natural frequency of the vibration isolation system by using each physical parameter correlation function, the corresponding weighting function, and the weight of the vibration isolating member and the vibration isolating object. The arithmetic unit is further configured to compare the natural frequency with a resonant frequency of the vibration isolating object to generate a design value of each physical parameter of the vibration isolating member.

本發明係以數位模擬方式設計隔振件之尺寸與型式,並利用運算單元搭配資料庫以驗證該模擬的隔振件是否可符合實體隔振件之設計需求,以達到降低設計人力、減少試作工時、以及節省解決共振問題所需的人力與費用。The invention designs the size and type of the vibration isolation member by digital simulation, and uses the operation unit to match the database to verify whether the simulated vibration isolation component can meet the design requirements of the physical vibration isolation component, so as to reduce the design manpower and reduce the trial work. Work hours, and the manpower and expense required to solve resonance problems.

請參閱第1圖,第1圖為本發明之一實施例之一電子裝置10之功能方塊示意圖。電子裝置10係用來利用數位模擬方式計算出一隔振系統12之各項相關物理參數,以提供產線進行實體產品之製作。請參閱第2圖,第2圖為本發明之實施例之隔振系統12之示意圖。隔振系統12包含有至少一隔振件14,與設置於隔振件14上之一被隔振物16(或可為產生振動頻率之待測物)。請參閱第3圖與第4圖,第3圖為本發明之一第一實施例之隔振件14之外觀示意圖,第4圖為本發明之第一實施例之隔振件14之剖視圖。一般來說,被隔振物16可為於運轉時會產生振動之一振動源,例如一揚聲器、一風扇、一光碟機或一硬碟機等等。隔振件14係可為由彈性材質所組成之一工字型隔振環。當被隔振物16藉由隔振件14設置於一殼體18時,被隔振物16所產生之振動可為隔振件14吸收,以避免傳遞至殼體18進而影響其他電子元件之操作。Please refer to FIG. 1. FIG. 1 is a functional block diagram of an electronic device 10 according to an embodiment of the present invention. The electronic device 10 is used to calculate various physical parameters of a vibration isolation system 12 by digital simulation to provide a production line for physical product production. Please refer to FIG. 2, which is a schematic diagram of the vibration isolation system 12 according to an embodiment of the present invention. The vibration isolation system 12 includes at least one vibration isolating member 14 and one of the vibration isolating objects 16 disposed on the vibration isolating member 14 (or may be a test object that generates a vibration frequency). 3 and 4, FIG. 3 is a schematic view showing the appearance of the vibration isolating member 14 according to the first embodiment of the present invention, and FIG. 4 is a cross-sectional view showing the vibration isolating member 14 of the first embodiment of the present invention. Generally, the vibration isolating object 16 can be a vibration source that generates vibration during operation, such as a speaker, a fan, a CD player or a hard disk drive, and the like. The vibration isolating member 14 is an I-shaped vibration isolating ring composed of an elastic material. When the vibration isolating body 16 is disposed on a casing 18 by the vibration isolating member 14, the vibration generated by the vibration insulator 16 can be absorbed by the vibration isolating member 14 to avoid transmission to the casing 18 and affect other electronic components. operating.

如第1圖所示,電子裝置10包含有一輸入單元20、一資料庫22、一運算單元24以及一輸出單元26。輸入單元20係可為一滑鼠、一鍵盤或一觸控介面等可用以輸入資訊之裝置。資料庫22係可為一近端主機或一遠端伺服器,用以儲存隔振件14之相關資訊。輸出單元26係可為一顯示器,用以顯示資訊以供使用者辨識。運算單元24係電連接於輸入單元20與輸出單元26,且可視資料庫22之特性與其保持一連線狀態。運算單元24可用來判讀輸入單元20所輸入資訊,連線至資料庫22以取得相關之參數函數與加權函數,並利用該參數函數、該加權函數以及隔振系統12之相關參數以計算出隔振件14之各物理參數的最佳設計值。As shown in FIG. 1 , the electronic device 10 includes an input unit 20 , a database 22 , an operation unit 24 , and an output unit 26 . The input unit 20 can be a device for inputting information such as a mouse, a keyboard or a touch interface. The database 22 can be a near-end host or a remote server for storing information about the vibration isolating member 14. The output unit 26 can be a display for displaying information for identification by the user. The arithmetic unit 24 is electrically connected to the input unit 20 and the output unit 26, and the characteristics of the visual library 22 are maintained in a connected state. The operation unit 24 can be used to interpret the information input by the input unit 20, connect to the database 22 to obtain the related parameter function and weighting function, and use the parameter function, the weighting function, and the relevant parameters of the vibration isolation system 12 to calculate the interval. The optimum design value of each physical parameter of the vibrating member 14.

請參閱第5圖,第5圖為本發明之實施例之隔振系統12之設計流程圖。該方法包含有下列步驟:Please refer to FIG. 5. FIG. 5 is a flow chart showing the design of the vibration isolation system 12 according to the embodiment of the present invention. The method includes the following steps:

步驟100:依據隔振系統12之特性,使用者利用輸入單元20輸入隔振件14之複數個物理參數。Step 100: According to the characteristics of the vibration isolation system 12, the user inputs the plurality of physical parameters of the vibration isolating member 14 by using the input unit 20.

步驟102:運算單元24接收且紀錄輸入單元20所輸入之該複數個物理參數。Step 102: The operation unit 24 receives and records the plurality of physical parameters input by the input unit 20.

步驟104:運算單元24連線至資料庫22,並依據資料庫22所儲存之資訊取得各物理參數之相關函數,以及相對應各物理參數相關函數之加權函數。Step 104: The computing unit 24 is connected to the database 22, and obtains a correlation function of each physical parameter according to the information stored in the database 22, and a weighting function corresponding to each physical parameter correlation function.

步驟106:運算單元24利用各物理參數相關函數與各相對應加權函數,計算出隔振件14之一彈力常數k。Step 106: The arithmetic unit 24 calculates an elastic constant k of the vibration isolating member 14 by using each physical parameter correlation function and each corresponding weighting function.

步驟108:運算單元24利用彈力常數k與隔振件14及被隔振物16之重量總和(意即隔振系統12之系統重量),計算出隔振系統12之一自然頻率fn,其中輸出單元26可用來顯示自然頻率fn以供使用者參考。Step 108: The arithmetic unit 24 calculates the natural frequency fn of the vibration isolation system 12 by using the elastic constant k and the sum of the weights of the vibration isolating member 14 and the vibration isolating body 16 (that is, the system weight of the vibration isolation system 12). Unit 26 can be used to display the natural frequency fn for reference by the user.

步驟110:運算單元24比較自然頻率fn與被隔振物16之一共振頻率f。當fn小於f/2時,執行步驟112;當fn大於f/2時,執行步驟114。Step 110: The arithmetic unit 24 compares the natural frequency fn with the resonant frequency f of one of the isolators 16. When fn is less than f/2, step 112 is performed; when fn is greater than f/2, step 114 is performed.

步驟112:使用者將步驟100所輸入之複數個物理參數作為隔振件14之設計值,接著執行步驟116。Step 112: The user uses the plurality of physical parameters input in step 100 as the design value of the vibration isolating member 14, and then performs step 116.

步驟114:使用者重新選擇相異於步驟100所輸入之該複數個物理參數並輸入至輸入單元20,接著執行步驟102。Step 114: The user reselects the plurality of physical parameters different from the input in step 100 and inputs to the input unit 20, and then performs step 102.

步驟116:結束。Step 116: End.

於此針對上述步驟進行詳述說明。首先,使用者可依據工作經驗及隔振系統12之結構特性,挑選出幾個適當的隔振件14的物理參數值,並透過輸入單元20鍵入電子裝置10內以進行數位模擬驗證。如第3圖與第4圖所示,隔振件14之物理參數可包含有一徑向長度R、一截面積A(A=πR2 -πr2 )、一高度H1 與H2 、一預壓值d、以及一材質強度I。當運算單元24讀取到該複數個物理參數後,即可連線至資料庫22,並依據資料庫22內所儲存之資訊來判斷且取得各物理參數之相關函數,例如:g(R)、g(A/H1 )、g(A/H2 )、g(d)、g(I),以及該相對應加權函數,例如:p1、p2、p3、p4、p5,而計算出彈力常數k。其中彈力常數k與各物理參數相關函數及各加權函數之間的關係式係可為:The above steps are described in detail herein. First, the user can select the physical parameter values of the appropriate vibration isolating members 14 according to the work experience and the structural characteristics of the vibration isolation system 12, and input them into the electronic device 10 through the input unit 20 for digital analog verification. As shown in Figures 3 and 4, the physical parameters of the vibration isolating member 14 may include a radial length R, a cross-sectional area A (A = πR 2 - πr 2 ), a height H 1 and H 2 , a pre- The pressure value d, and a material strength I. After the operation unit 24 reads the plurality of physical parameters, it can connect to the database 22, and according to the information stored in the database 22, determine and obtain a correlation function of each physical parameter, for example: g(R) , g(A/H 1 ), g(A/H 2 ), g(d), g(I), and the corresponding weighting function, for example: p1, p2, p3, p4, p5, and calculate the elastic force Constant k. The relationship between the elastic constant k and the correlation function of each physical parameter and each weighting function may be:

值得一提的是,該加權函數係可為各物理參數於不同隔振方向的條件情況下相對彈力常數k之一權重,舉例來說,該權重係可介於0~1之間,意即該加權函數可用來表示各相對應物理參數相關函數於公式k中的影響權重。It is worth mentioning that the weighting function can be one of the relative elastic constants k for each physical parameter in different vibration isolation directions. For example, the weighting system can be between 0 and 1, that is, The weighting function can be used to represent the influence weight of each corresponding physical parameter correlation function in the formula k.

當計算出彈力常數k後,運算單元24接著再將彈力常數k,以及隔振件14與被隔振物16之重量總和(意即系統重量m)代入隔振系統12之自然頻率公式fn,以得出自然頻率fn之數值:After calculating the spring constant k, the arithmetic unit 24 then substitutes the spring constant k and the sum of the weights of the vibration isolating member 14 and the vibration isolating object 16 (that is, the system weight m) into the natural frequency formula fn of the vibration isolation system 12, To get the value of the natural frequency fn:

其中輸出單元26可用來顯示自然頻率fn,以供使用者辨識與參考。於本發明之實施例中,隔振系統12之自然頻率fn一般係低於被隔振物16(振動源)之共振頻率f的二分之一數值時,方可得到較佳的避振效果,因此運算單元24另可用來比較隔振系統12之自然頻率fn與被隔振物16之共振頻率f的數值大小。當自然頻率fn實質上大於共振頻率f的二分之一數值時,步驟100所輸入之該複數個物理參數並非是隔振件14的最佳設計值,因此使用者可另選擇相異於步驟100所輸入之該複數個物理參數,重新鍵入至輸入單元20,以重新執行步驟102至步驟110。反之,當自然頻率fn實質上小於共振頻率f的二分之一數值時,步驟100所輸入之該複數個物理參數即可用來作為隔振件14的設計值。此時輸出單元26另可用來顯示該比較結果與隔振件14之設計值,以提供使用者參考,於此完成本發明之隔振系統12的設計流程。The output unit 26 can be used to display the natural frequency fn for the user to recognize and reference. In the embodiment of the present invention, the natural frequency fn of the vibration isolation system 12 is generally lower than the one-half value of the resonance frequency f of the vibration insulator 16 (vibration source), so that a better vibration isolation effect can be obtained. Therefore, the arithmetic unit 24 can be further used to compare the natural frequency fn of the vibration isolation system 12 with the magnitude of the resonance frequency f of the vibration insulator 16. When the natural frequency fn is substantially greater than one-half of the resonant frequency f, the plurality of physical parameters input in step 100 are not the optimal design values of the vibration isolating member 14, so the user may additionally select different steps. The plurality of physical parameters input by 100 are re-typed into the input unit 20 to re-execute steps 102 to 110. Conversely, when the natural frequency fn is substantially less than one-half of the resonant frequency f, the plurality of physical parameters input in step 100 can be used as the design value of the vibration isolating member 14. At this time, the output unit 26 can be further used to display the comparison result and the design value of the vibration isolating member 14 to provide a user reference, thereby completing the design flow of the vibration isolation system 12 of the present invention.

除此之外,請參閱第6圖與第7圖,第6圖為本發明之一第二實施例之一隔振件30之示意圖,第7圖為本發明之一第三實施例之一隔振件40之示意圖。如第6圖所示,隔振件30可於其中間穿孔之側壁表面形成有複數個固定肋301。固定肋301係可用來減少隔振件30與殼體18之接觸面積。然而,固定肋301之結構特性會影響到彈力常數k的數值,因此前述彈力常數k的方程式的設計變數另可加入固定肋301之一長度L或一截面積A’,運算單元24於讀取到固定肋301之物理參數時,可連線至資料庫22取得該物理參數之相關函數,例如:g(L)與g(A’),與相對應加權函數p6及p7。運算單元24於後續流程中亦會將g(L)、g(A’)、p6及p7代入彈力常數k與自然頻率fn之計算方程式中,以得出隔振系統之最精確的自然頻率值。此外,如第7圖所示,隔振件40可為一雙工字型隔振環,隔振件40與第一實施例之隔振件14之差異在於,第三實施例於隔振件40之不同區段之各高度可為彈力常數k的方程式的設計變數,意即隔振件40另具有高度H3 與高度H4 之物理參數。因此運算單元24係可透過資料庫22取得相對應高度H3 與高度H4 的物理參數相關函數及相對應加權函數,以供代入後續彈力常數k與自然頻率fn之計算方程式中,藉此得出精確的自然頻率值。In addition, please refer to FIG. 6 and FIG. 7 , FIG. 6 is a schematic diagram of a vibration isolating member 30 according to a second embodiment of the present invention, and FIG. 7 is a third embodiment of the present invention. Schematic diagram of the vibration isolating member 40. As shown in Fig. 6, the vibration isolating member 30 may be formed with a plurality of fixing ribs 301 on the side wall surface of the intermediate hole. The fixing rib 301 can be used to reduce the contact area of the vibration isolating member 30 with the housing 18. However, the structural characteristics of the fixing rib 301 may affect the value of the elastic constant k. Therefore, the design variable of the equation of the aforementioned elastic constant k may be added to one of the lengths L or a cross-sectional area A' of the fixing rib 301, and the operation unit 24 reads When the physical parameters of the fixed rib 301 are reached, the correlation function of the physical parameter can be obtained by linking to the database 22, for example: g(L) and g(A'), and the corresponding weighting functions p6 and p7. In the subsequent process, the arithmetic unit 24 will also substitute g(L), g(A'), p6 and p7 into the calculation formula of the elastic constant k and the natural frequency fn to obtain the most accurate natural frequency value of the vibration isolation system. . In addition, as shown in FIG. 7, the vibration isolating member 40 may be a double-shaped vibration isolating ring, and the vibration isolating member 40 is different from the vibration isolating member 14 of the first embodiment in that the third embodiment is in the vibration isolating member. Each height of the different sections of 40 may be a design variable of the equation of the spring constant k, meaning that the vibration isolating member 40 additionally has physical parameters of height H 3 and height H 4 . Therefore, the computing unit 24 can obtain the physical parameter correlation function and the corresponding weighting function corresponding to the height H 3 and the height H 4 through the database 22 for substituting into the calculation equation of the subsequent elastic constant k and the natural frequency fn. Precise natural frequency values.

綜上所述,本發明之設計方法係利用數位模擬方式得到大量的計算數據,以建立起資訊完善的資料庫,因此可有效地利用資料庫而計算出各物理參數(意即設計變數)與自然頻率之間的對應方程式。使用者係可藉由分析隔振系統之結構特性,以輸入隔振系統所需之隔振件的各相對應物理參數。接著利用資料庫內所儲存的大量資訊,運算單元可快速地計算出隔振件之彈力常數以及隔振系統之自然頻率,以判斷初始輸入值是否符合設計需求。因此,本發明係可以數位模擬方式有效掌握隔振件之結構特性與設計變數,而避免傳統隔振件以先製作、再除錯的設計方式所造成製作時程冗長、設計成本昂貴等缺點。In summary, the design method of the present invention uses a digital simulation method to obtain a large amount of calculation data to establish a database with perfect information, so that the physical database can be effectively utilized to calculate various physical parameters (ie, design variables) and Corresponding equation between natural frequencies. The user can input the corresponding physical parameters of the vibration isolation member required for the vibration isolation system by analyzing the structural characteristics of the vibration isolation system. Then, using the large amount of information stored in the database, the arithmetic unit can quickly calculate the spring constant of the vibration isolating member and the natural frequency of the vibration isolation system to determine whether the initial input value meets the design requirements. Therefore, the present invention can effectively grasp the structural characteristics and design variables of the vibration isolating member in a digital analog mode, and avoid the shortcomings such as long production time and high design cost caused by the conventional vibration-isolating device in the prior design and the error-removing design.

相較於先前技術,本發明係以數位模擬方式設計隔振件之尺寸與型式,並利用運算單元搭配資料庫以驗證該模擬的隔振件是否可符合實體隔振件之設計需求,以達到降低設計人力、減少試作工時、以及節省解決共振問題所需的人力與費用。Compared with the prior art, the present invention designs the size and type of the vibration isolating device by digital simulation, and uses the computing unit to match the database to verify whether the simulated vibration isolating component can meet the design requirements of the physical vibration isolation component. Reduce manpower and expense for design manpower, reduced trial work time, and savings in solving resonance problems.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10...電子裝置10. . . Electronic device

12...隔振系統12. . . Vibration isolation system

14...隔振件14. . . Vibration isolation

16...被隔振物16. . . Isolator

18...殼體18. . . case

20...輸入單元20. . . Input unit

22...資料庫twenty two. . . database

24...運算單元twenty four. . . Arithmetic unit

26...輸出單元26. . . Output unit

30...隔振件30. . . Vibration isolation

301...固定肋301. . . Fixed rib

40...隔振件40. . . Vibration isolation

100、102、104、106、108、110、112、114、116...步驟100, 102, 104, 106, 108, 110, 112, 114, 116. . . step

第1圖為本發明之實施例之電子裝置之功能方塊示意圖。FIG. 1 is a functional block diagram of an electronic device according to an embodiment of the present invention.

第2圖為本發明之實施例之隔振系統之示意圖。2 is a schematic view of a vibration isolation system according to an embodiment of the present invention.

第3圖為本發明之第一實施例之隔振件之外觀示意圖。Fig. 3 is a schematic view showing the appearance of a vibration isolating member according to a first embodiment of the present invention.

第4圖為本發明之第一實施例之隔振件之剖視圖。Fig. 4 is a cross-sectional view showing the vibration isolating member of the first embodiment of the present invention.

第5圖為本發明之實施例之隔振系統之設計流程圖。Figure 5 is a flow chart showing the design of the vibration isolation system of the embodiment of the present invention.

第6圖為本發明之第二實施例之隔振件之示意。Fig. 6 is a view showing the vibration isolating member of the second embodiment of the present invention.

第7圖為本發明之第三實施例之隔振件之示意圖。Figure 7 is a schematic view of a vibration isolating member according to a third embodiment of the present invention.

100、102、104、106、108、110、112、114、116...步驟100, 102, 104, 106, 108, 110, 112, 114, 116. . . step

Claims (13)

一種設計一隔振系統之方法,該隔振系統包含有一隔振件與一被隔振物,該方法用來計算該隔振件之物理參數以供製作實體隔振件,該方法包含有:輸入該隔振件之複數個物理參數;取得各物理參數之相關函數及相對應之加權函數;利用各物理參數相關函數與各相對應加權函數,計算出該隔振件之一彈力常數,其中該加權函數為各物理參數於不同隔振方向的條件情況下相對該彈力常數之一權重;利用該彈力常數及該隔振件與該被隔振物之重量,計算出該隔振系統之一自然頻率;比較該自然頻率與該被隔振物之一共振頻率;以及分析該比較結果,以產生該隔振件之各物理參數的設計值。 A method for designing a vibration isolation system, the vibration isolation system comprising a vibration isolation member and a vibration isolating object, the method for calculating physical parameters of the vibration isolation member for fabricating a physical vibration isolation member, the method comprising: Inputting a plurality of physical parameters of the vibration isolation member; obtaining a correlation function of each physical parameter and a corresponding weighting function; calculating an elastic constant of the vibration isolation member by using each physical parameter correlation function and each corresponding weighting function, wherein The weighting function is a weight corresponding to the elastic constant of each physical parameter in different vibration isolation directions; using the elastic constant and the vibration isolating member and the weight of the vibration isolating object, one of the vibration isolation systems is calculated. a natural frequency; comparing the natural frequency with a resonant frequency of the one of the isolators; and analyzing the comparison to generate a design value of each physical parameter of the vibration isolating member. 如請求項1所述之方法,其中輸入該隔振件之該複數個物理參數包含有:依據該隔振系統之特性,輸入相對應之該複數個物理參數。 The method of claim 1, wherein the plurality of physical parameters input to the vibration isolating member comprises: inputting the plurality of physical parameters corresponding to the vibration isolation system. 如請求項1所述之方法,其中取得各物理參數之相關函數及該相對應加權函數包含有:連線至一資料庫,並依據該資料庫所儲存之資訊以取得 各物理參數之相關函數及該相對應加權函數。 The method of claim 1, wherein obtaining a correlation function of each physical parameter and the corresponding weighting function comprises: connecting to a database, and obtaining information according to the information stored in the database A correlation function of each physical parameter and the corresponding weighting function. 如請求項1所述之方法,其中分析該比較結果以產生該隔振件之各物理參數的設計值包含有:當該隔振系統之該自然頻率係實質上小於該被隔振物之該共振頻率的二分之一時,使用前述輸入之各物理參數為該隔振件之設計值;以及當該隔振系統之該自然頻率係實質上大於該被隔振物之該共振頻率的二分之一時,輸入相異於前述輸入之該隔振件的各物理參數。 The method of claim 1, wherein analyzing the comparison result to generate a design value of each physical parameter of the vibration isolating member comprises: when the natural frequency of the vibration isolation system is substantially smaller than the vibration isolation material At one-half of the resonant frequency, each physical parameter of the input is used as a design value of the vibration isolating member; and when the natural frequency of the vibration isolation system is substantially greater than the resonant frequency of the isolating object In one step, the physical parameters of the vibration isolating member different from the aforementioned input are input. 如請求項1所述之方法,其中該複數個物理參數包含有該隔振件之一徑向長度、該隔振件之一截面積、該隔振件之一高度、該隔振件之一預壓值、以及該隔振件之一材質強度。 The method of claim 1, wherein the plurality of physical parameters include a radial length of one of the vibration isolating members, a cross-sectional area of the vibration isolating member, a height of the vibration isolating member, and one of the vibration isolating members. The preload value and the material strength of one of the vibration isolating members. 一種用來設計一隔振系統之電子裝置,該隔振系統包含有一隔振件與一被隔振物,該電子裝置用來計算該隔振件之物理參數以供製作實體隔振件,該電子裝置包含有:一輸入單元,用來輸入該隔振件之複數個物理參數;一資料庫,用來儲存該隔振件之相關資訊;以及一運算單元,電連接於該輸入單元且連線至該資料庫,該運算單元係用來於接收到該輸入單元所輸出之該複數個物理參數後,連線至該資料庫以取得各物理參數之相關函數及相對應加權函數,該運算單元另用來利用各物理參數相關函數、該相對應加權函 數、及該隔振件與該被隔振物之重量,以計算出該隔振系統之一自然頻率,該運算單元另用來比較該自然頻率與該被隔振物之一共振頻率,以產生該隔振件之各物理參數的設計值,其中該加權函數為各物理參數於不同隔振方向的條件情況下相對該彈力常數之一權重。 An electronic device for designing a vibration isolation system, the vibration isolation system comprising a vibration isolation member and a vibration isolating device, wherein the electronic device is configured to calculate physical parameters of the vibration isolation member for fabricating a physical vibration isolating member, The electronic device includes: an input unit for inputting a plurality of physical parameters of the vibration isolating member; a database for storing relevant information of the vibration isolating member; and an arithmetic unit electrically connected to the input unit and connected Line to the database, the operation unit is configured to receive the plurality of physical parameters output by the input unit, and then connect to the database to obtain a correlation function of each physical parameter and a corresponding weighting function, the operation The unit is additionally used to utilize each physical parameter correlation function, the corresponding weighting function And the weight of the vibration isolating member and the vibration isolating object to calculate a natural frequency of the vibration isolating system, and the computing unit is further configured to compare the natural frequency with a resonant frequency of the vibration isolating object, A design value of each physical parameter of the vibration isolating member is generated, wherein the weighting function is weighted relative to one of the elastic constants under the condition that the physical parameters are in different vibration isolation directions. 如請求項6所述之電子裝置,其另包含有:一輸出單元,電連接於該運算單元,該輸出單元係用來顯示該隔振系統之該自然頻率、該比較結果與該隔振件之該設計值。 The electronic device of claim 6, further comprising: an output unit electrically connected to the operation unit, wherein the output unit is configured to display the natural frequency of the vibration isolation system, the comparison result, and the vibration isolation member The design value. 如請求項6所述之電子裝置,其中該加權函數係為各物理參數於不同的隔振方向相對該彈力常數之一權重。 The electronic device of claim 6, wherein the weighting function is that each physical parameter is weighted with respect to one of the elastic constants in different vibration isolation directions. 如請求項8所述之電子裝置,其中該權重實質上介於0至1之間。 The electronic device of claim 8, wherein the weight is substantially between 0 and 1. 如請求項6所述之電子裝置,其中該隔振件係為一工字型隔振環。 The electronic device of claim 6, wherein the vibration isolating member is an I-shaped vibration isolating ring. 如請求項6所述之電子裝置,其中該複數個物理參數包含有該隔振件之一徑向長度、該隔振件之一截面積、該隔振件之一高度、該隔振件之一預壓值、以及該隔振件之一材質強度。 The electronic device of claim 6, wherein the plurality of physical parameters include a radial length of one of the vibration isolating members, a cross-sectional area of the vibration isolating member, a height of the vibration isolating member, and the vibration isolating member a preload value, and a material strength of the vibration isolating member. 如請求項11所述之電子裝置,其中該複數個物理參數另包含有該隔振件之不同區段之各高度。 The electronic device of claim 11, wherein the plurality of physical parameters further comprise respective heights of different sections of the vibration isolating member. 如請求項11所述之電子裝置,其中該複數個物理參數另 包含有該隔振件之一固定肋之一長度。The electronic device of claim 11, wherein the plurality of physical parameters are another A length of one of the fixing ribs of the vibration isolating member is included.
TW100132208A 2011-09-07 2011-09-07 Method of designing a vibration isolating system and a related elecronic device TWI461946B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100132208A TWI461946B (en) 2011-09-07 2011-09-07 Method of designing a vibration isolating system and a related elecronic device
CN2011102958986A CN102979850A (en) 2011-09-07 2011-09-30 Method for preparing vibration isolation system and electronic device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100132208A TWI461946B (en) 2011-09-07 2011-09-07 Method of designing a vibration isolating system and a related elecronic device

Publications (2)

Publication Number Publication Date
TW201312377A TW201312377A (en) 2013-03-16
TWI461946B true TWI461946B (en) 2014-11-21

Family

ID=47854131

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100132208A TWI461946B (en) 2011-09-07 2011-09-07 Method of designing a vibration isolating system and a related elecronic device

Country Status (2)

Country Link
CN (1) CN102979850A (en)
TW (1) TWI461946B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405101A (en) * 1980-10-29 1983-09-20 United Technologies Corp. Vibration isolation system
US6675955B2 (en) * 2001-04-27 2004-01-13 Hayssen, Inc. Self tuning vibratory control means
TWM243514U (en) * 2003-09-08 2004-09-11 Wen-Lung Li The structure of support columns with vibration isolation through adjusting its stiffness for an elevated floor
CN1880794A (en) * 2005-06-15 2006-12-20 东海橡胶工业株式会社 Active vibration insulator
TW200741665A (en) * 2006-04-24 2007-11-01 Inventec Corp Damping element, damping system using the same, and damping element design method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1148679C (en) * 2000-02-03 2004-05-05 英业达集团(上海)电子技术有限公司 Processing speed optimizing device and method for personal digital assistant system
CN1724892A (en) * 2005-05-20 2006-01-25 上海微电子装备有限公司 Precision vibration damping and locating device
JP4113960B2 (en) * 2006-04-28 2008-07-09 国立大学法人東京工業大学 Gas spring type vibration isolator and control method thereof
CN200968376Y (en) * 2006-09-30 2007-10-31 英业达股份有限公司 Vibrating isolation damping collar
CN101225865B (en) * 2007-12-26 2010-06-02 西安交通大学 Single-degree-of-freedom ultralow frequency vertical vibration isolation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405101A (en) * 1980-10-29 1983-09-20 United Technologies Corp. Vibration isolation system
US6675955B2 (en) * 2001-04-27 2004-01-13 Hayssen, Inc. Self tuning vibratory control means
TWM243514U (en) * 2003-09-08 2004-09-11 Wen-Lung Li The structure of support columns with vibration isolation through adjusting its stiffness for an elevated floor
CN1880794A (en) * 2005-06-15 2006-12-20 东海橡胶工业株式会社 Active vibration insulator
TW200741665A (en) * 2006-04-24 2007-11-01 Inventec Corp Damping element, damping system using the same, and damping element design method

Also Published As

Publication number Publication date
CN102979850A (en) 2013-03-20
TW201312377A (en) 2013-03-16

Similar Documents

Publication Publication Date Title
Zucca et al. Modeling underplatform dampers for turbine blades: a refined approach in the frequency domain
US20200159879A1 (en) Refinement of finite element model of integrally bladed disk
CN110059397B (en) Low-noise oil tank design method, system and medium for oil-immersed distribution transformer
CN103528779B (en) The pilot system of a kind of vibration characteristic of overall base of motor and test method
US8370774B2 (en) Constructing mapping between model parameters and electrical parameters
US8032349B2 (en) Efficient methodology for the accurate generation of customized compact model parameters from electrical test data
Tang et al. Geometric optimization of dry friction ring dampers
CN111881564A (en) Method for predicting amplitude-variable fatigue life of mechanical structure
Liao Global resonance optimization analysis of nonlinear mechanical systems: application to the uncertainty quantification problems in rotor dynamics
TWI461946B (en) Method of designing a vibration isolating system and a related elecronic device
JP5139391B2 (en) Variation distribution simulation apparatus and method
JP2008293066A (en) Library for electronic circuit simulation, library generating system, recording medium storing them, and method for manufacturing electronic apparatus using them
Yan et al. A practical simulation flow for singing capacitor based acoustic noise analysis
Chen et al. A study on time schemes for DRBEM analysis of elastic impact wave
JP6797662B2 (en) Tire noise evaluation methods, equipment, and programs
CN106885674B (en) Pendulum rushes testing machine spectrum shape base construction method and adjustment method
JP2005216290A (en) Method and device for extracting machine vector loop
Rimpel A simple contact model for simulating tie bolt rotor butt joints with and without pilot fits
Pakzad et al. Modal analysis of the surface grinding machine structure through FEM and experimental test
Middleton Dynamic performance of high frequency floors
JP2021056851A (en) Method of evaluating tire models and method of manufacturing tires
Schwingshackl et al. Modelling of flange joints for the nonlinear dynamic analysis of gas turbine engine casings
Das et al. Development of a 3D biological method for fatigue life based optimisation and its application to structural shape design
Troge et al. Acoustical optimization of a train gearbox based on overall system simulation
Shahrooi et al. Evaluation of cyclic plasticity models of multi-surface and non-linear hardening by an energy-based fatigue criterion

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees