JP2007292405A - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP2007292405A
JP2007292405A JP2006122163A JP2006122163A JP2007292405A JP 2007292405 A JP2007292405 A JP 2007292405A JP 2006122163 A JP2006122163 A JP 2006122163A JP 2006122163 A JP2006122163 A JP 2006122163A JP 2007292405 A JP2007292405 A JP 2007292405A
Authority
JP
Japan
Prior art keywords
air
fan
heat exchanger
cross flow
flow fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006122163A
Other languages
English (en)
Other versions
JP4678327B2 (ja
Inventor
Hiroki Okazawa
宏樹 岡澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006122163A priority Critical patent/JP4678327B2/ja
Publication of JP2007292405A publication Critical patent/JP2007292405A/ja
Application granted granted Critical
Publication of JP4678327B2 publication Critical patent/JP4678327B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 天井の外側または天井の内側に設置される空気調和機において、熱交換器を通過する気流の速度分布を均一化すると共に、空気吸込口付近が高静圧となっても逆吸込み及び異常音の発生を抑制でき、さらにファンモータ入力を低減する。
【解決手段】 室内ユニット7の下面または側面に設けられた空気吸込口6から垂直方向の距離よりも水平方向に離れた位置に空気吹出口5を設け、さらに空気吸込口5と空気吹出口6とを連結する風路内の空気吸込口6側に設けたクロスフローファン1と、クロスフローファン1と空気吹出口5の間に設けた熱交換器2を備え、空気吸込口6からクロスフローファン1に直接室内空気を吸込んで通過させた後、熱交換器2で熱交換して空気吹出口5から吹出すように構成する。
【選択図】 図1

Description

この発明は、空気調和機の室内ユニットに関し、特に天井の内側または外側に設置される室内ユニットに関するものである。
従来の天井の内側または外側に設置される室内機、例えば天吊室内機は、シロッコファン、熱交換器、空気清浄装置を備え、室外機を伴って冷凍サイクルを構成し、冷暖房可能な機能を有する(例えば、特許文献1参照)。
特許第3158543号公報
従来の空気調和機における天吊室内機では、シロッコファンを用いており、シロッコファンの特性から、吸入口近傍に設けた空気清浄装置に埃が堆積した場合にも室内から吹出口への逆流が生じにくく、異常音が生じにくい流れを形成することができる。ところが、シロッコファンではファンの回転軸方向から空気を吸込む構成であり、熱交換器の積み幅(ファンの回転軸方向の幅)のなるべく全域に亘って気流が吹出すように複数のシロッコファンを設けようとしても、隣り合うシロッコファンとの間には空気を吸込む空間やファンモータ設置用の空間が必要となる。
従来装置では、熱交換器側で急激に流路が拡大する拡大流路を形成しているが、複数のシロッコファンから吹出される領域は熱交換器積み幅の全域に該当するものではなく、熱交換器積み幅の約半分程度であった。このため、熱交換器積み幅方向において風速分布が不均一となり、熱交換器性能が低下するという課題があった。
また、送風機としてクロスフローファンを用いた空気調和機では、ファンの回転軸方向の幅は熱交換器積み幅とほぼ等しく構成することができ、熱交換器積み幅方向において風速分布はほぼ均一となる。このため、シロッコファンよりも熱交換性能を向上できる。ファンによって発生する音に対しては、シロッコファンでは外周に設けられた翼のうち、熱交換器に対向しない部分をケーシングで覆うことで翼間から出る音を防ぐことができる。しかし、クロスフローファンではファンの熱交換器に対向しない部分は空気吸入口に対向して吸入した気流を通過させるので、消音板を設けることができず、異常音が発生しやすいという課題があった。また、クロスフローファンの特性上、クロスフローファンの上流側で埃の堆積などによって高静圧となったとき、室内から空気吹出口への逆流である逆吸込み現象が生じやすくなる。逆流によって、冷房運転時に空気吹出口に露が付きやすくなったり、異常音が発生しやすくなるなどの課題があった。
この発明は、上記のような課題を解決するためになされたもので、熱交換器積み幅方向において風速分布をほぼ均一として熱交換性能を向上でき、空気吸込口付近で高静圧となった場合の空気吹出口付近での逆流を防止でき、さらに異常音が発生しにくい空気調和機の室内ユニットを得ることを目的とするものである。
さらに、ファン入力を小さくすることができる空気調和機を得ることを目的とするものである。
この発明に係る空気調和機は、天井の外側または天井の内側に設置される室内ユニットの下面または側面に設けられた空気吸込口と、前記空気吸込口から垂直方向の距離よりも水平方向に離れた位置に設けられた空気吹出口と、前記空気吸込口と前記空気吹出口とを連結する風路と、前記風路内の前記空気吸込口側に設けられ前記空気吸込口から前記空気吹出口に室内空気を送風するクロスフローファンと、前記クロスフローファンと前記空気吹出口の間に設けられ、前記クロスフローファンの回転軸方向に複数のフィンを並設し、フィン面を通過する空気と配管内を流れる冷媒とで熱交換を行う熱交換器と、を備え、前記空気吸込口から前記クロスフローファンに直接室内空気を吸込んで前記クロスフローファンを通過させた後、前記熱交換器で熱交換して前記空気吹出口から吹出すことを特徴とするものである。
この発明に係わる空気調和機は、クロスフローファンを用いることで熱交換器積み幅方向において風速分布をほぼ均一として熱交換性能を向上できる。さらに、熱交換器をクロスフローファンの下流側のみに配置することにより、空気吸込口付近で高静圧となった場合においても、空気吹出口において室内からの空気吹出口への逆流が生じにくく、異常音を低減できる効果がある。
さらに、熱交換器をクロスフローファンの下流側のみに配置することで、クロスフローファンの吸込み領域における翼間風量を増大してファン入力を低減する。
実施の形態1.
一般に空気調和機は室内ユニットと室外ユニットで構成され、例えば天井の内側や外側に設置される室内ユニットには室内熱交換器を格納し、室外ユニットには、圧縮機、四方弁、膨張弁、室外熱交換器などを格納する。室外ユニットに格納されている各機器と室内ユニットの室内熱交換器とは冷媒配管、例えば液配管とガス配管で接続され、冷媒を循環させて冷凍サイクルを構成する。
冷房運転時には、以下のような動作となる。
室外ユニットにおいて、圧縮機で圧縮されて吐出する高圧高温ガス冷媒は四方弁を介して室外熱交換器に流入し、ここで冷媒は周囲空気と熱交換して凝縮し、高圧液冷媒として流出する。室外熱交換器から流出した冷媒は膨張弁に流入して減圧されて低圧の気液二相冷媒となり、室外ユニットと室内ユニットとを接続する液配管を介して室内熱交換器に流入する。室内熱交換器内で冷媒は周囲空気と熱交換して蒸発し、低圧ガス冷媒として流出する。流出した冷媒は室内ユニットと室外ユニットとを接続するガス配管及び四方弁を介して圧縮機に戻る。室内熱交換器で冷媒が蒸発する際、室内空気を冷やす冷房が行われる。
また、暖房運転時には、以下のような動作となる。
圧縮機で圧縮されて吐出した高圧高温ガス冷媒は、四方弁及びガス配管を介して室内熱交換器に流入し、ここで冷媒は周囲空気と熱交換して凝縮し、高圧液冷媒として流出する。そして室内熱交換器から流出した冷媒は、液配管を介して室外ユニットの膨張弁に流入して減圧され、低圧の気液二相冷媒となり、室外熱交換器に流入する。室外熱交換器で冷媒は周囲空気と熱交換して蒸発し、低圧ガス冷媒として流出する。その後四方弁を介して圧縮機に戻る。室内熱交換器で冷媒が凝縮する際、室内空気を暖める暖房が行われる。
また、室外熱交換器における冷媒ー空気の熱交換を促進するための室外ファン及び室外ファンモータ、室内熱交換器における冷媒ー空気の熱交換を促進するための室内ファン及び室内ファンモータを備える。
図1はこの発明の実施の形態1に係る空気調和機の室内ユニットを示す断面構成図である。図において、室内ユニット7は、空気吹出口5と空気吸込口6を有し、この間に風路が形成される。空気吸込口6側に配設されるクロスフローファン1によって室内空気が空気吸込口6から吸込まれて、風路を通って送風され、空気吹出口5から吹出される。空気吸込口6には空気清浄装置、例えば空気清浄フィルター4を設けており、室内空気は空気吸込口6に吸込まれる際に埃などが取り除かれる。空気清浄装置は、空気清浄フィルター4に限らず電気集塵機などが設けられることもある。
クロスフローファン1は紙面に略垂直な方向に伸びる回転軸を有し、円周上に回転方向(白抜き矢印)に前傾する複数の翼3を有する。クロスフローファン1の近傍にはノーズ8が設けられている。ノーズ8は、一端8aが室内ユニット7の筐体に固定されその固定部8aからクロスフローファン1の回転中心Oに向かって伸び、他端8bがクロスフローファン1の円周の近傍に配置される。ノーズ8の他端8bには、クロスフローファン1の円周に沿って翼3との対向面8cを有する。ノーズ8の作用は、空気吸込口6からクロスフローファン1までの吸込側風路Fと、クロスフローファン1から空気吹出口5までの吹出側風路とを分離すると共に壁面で風路部材を構成する。さらに対向面8c付近でクロスフローファン1の吸込み領域と吹出し領域とを反転している。また、吹出側風路のノーズ8と対向する部分の風路部材を構成するようにケーシング9を有する。ケーシング9は、クロスフローファン1の翼間から吹出す気流の形状に沿うような曲面を有し、この形状によって吹出す気流を安定化する。このため、ケーシング9は吹出側風路に突出した壁面を有し、クロスフローファン1からケーシング9が最も突出している部分までの吹出側風路の風路面積は略同一となっている。そして、ケーシング9の凸部9aの下流側の吹出側風路、即ち凸部9aの下流側から空気吹出口5までは、風路が拡大されて広い吹出側風路が形成されている。この風路が拡大される直前、即ちケーシング9の凸部9aで最も突出している部分の近傍の風路をファン吹出口20と称し、クロスフローファン1からファン吹出口20までの風路面積が略同一の部分をファン吹出風路19と称する。
クロスフローファン1が回転すると、矢印のように空気吸込口6から室内空気が流入し、ノーズ8の吸込み側壁面などによって構成された吸込側風路Fに導かれてクロスフローファン1に直接吸込まれる。そしてクロスフローファン1の内部で吸込み領域から吹出し領域に向かって通過する。そしてクロスフローファン1から吹出した気流は、ノーズ8の吹出し側壁面とケーシング9で構成されるファン吹出風路19で導かれて、ファン吹出口20を通る。この後、ファン吹出口20の下流に設けられている熱交換器2を通過する。
熱交換器2はファンの回転軸方向、即ち紙面に略平行に板状の複数のフィンを並設し、フィン面に略垂直な方向からフィンを貫通するように複数本の伝熱管が設けられ、各伝熱管は入口及び出口以外は端部で互いに接続されている。このフィン間を空気が流れる時に伝熱管を流れる冷媒と熱交換し、空気は加熱または冷却される。そして風向変更ベーン10で定められた方向に向かって空気吹出口5から室内に吹出す。
ここで、変向板11は、ファン吹出口20付近の風路に設けられ、ファン吹出口20の下流側で吹出側風路が拡大するのに対応して、気流を広角に変向して下流に流すように作用する。
熱交換器2はファン吹出口20から空気吹出口5までの吹出側風路の広い部分に設けられている。その構成は、例えば、3列12段で、列ピッチ12.7mm、段ピッチ20.4mm、伝熱管軸方向長さは675mm、通風抵抗ΔP1=23.11.3[Pa](V:速度[m/s])であり、室内ユニット7の大きさは、例えば奥行き(DP)600mm、高さ(H)200mm、幅(W)675mmである。天井の外側の室内側または天井の内側の反室内側に設置される室内ユニット7は、設置場所及び美観から高さが制限されるという要求があり、高くても200mm程度であるのが好ましい。この室内ユニット7は、奥行き(DP)よりも高さ(H)の長さが短い横長の形状である。高さの制限がある下で、効率よく効果的に風路を構成すると共に、クロスフローファン1や熱交換器2などをどのように配置するかということが、大きな課題となっている。このため、図1の構成では空気吸込口6と空気吹出口5を、垂直方向の距離よりも水平方向に互いに離れるように配置する。空気吸込口6と空気吹出口5の位置とは、それぞれの開口の略中央部分の位置とする。
図1に示す室内ユニット7の筐体内で、クロスフローファン1の空気吸込口6側に形成された吸込側風路Fは、室内ユニット7の筐体の側壁面とノーズ8の空気吸込み口6側の壁面で構成されている。また、図1に向かって右側のケーシング9の背面の空間Sはほとんど空気が流れない領域であり、例えば制御基板などを格納する電気部品箱が配置される。
この実施の形態では、ファンとしてクロスフローファン1を用いると共に、熱交換器2をクロスフローファン1の下流側に配置したところに特徴がある。
図2はこの実施の形態の構成と比較する例として、クロスフローファンを使った室内ユニットの断面構成を示す構成図であり、室内の壁面に設置するタイプの室内ユニットである。これは従来の室内ユニットを示しておりクロスフローファン1の空気吸込口6側に前面熱交換器13と背面熱交換器14が配置されている。また、図3はクロスフローファン1が引き起こす空気流を検証するためのモデルであり、クロスフローファン1とノーズ8とケーシング9のみの基本構成で、ファン単体を示す構成図である。
図2に示す室内ユニットにおいて、空気吸込口6には空気清浄フィルター4が設けられており、クロスフローファン1が回転すると、空気吸込口6から室内空気が空気清浄フィルター4で埃などが除かれて吸込まれ、熱交換器13、14で冷媒と熱交換する。そしてクロスフローファン1を通過して空気吹出口5から室内に吹出される。冷房運転で空気が冷媒によって冷やされることにより生じた水滴は熱交換器13、14のフィンを伝ってドレンパン12に集められ、室内ユニット外に排出される。
熱交換器13、14は3列16段で、列ピッチ12.7mm、段ピッチ20.4mm、積み幅は675mm、通風抵抗ΔP2=22.1V1.3[Pa](V:速度[m/s])であり、室内ユニットの大きさは、例えば奥行き(DP)238mm、高さ(H)298mm、幅(W)675mmである。この室内の壁面に設置されるタイプの室内ユニットでは、ファンの回転軸方向の長さである幅(W)は、図1の構成と同様であるが、高さ(H)よりも奥行き(DP)の長さが短い縦長の形状であるのが好ましい。このため、図1の構成では空気吸込口6と空気吹出口5の位置が、垂直方向の距離よりも水平方向に離れているのに対し、図2の構成では水平方向の距離よりも垂直方向に離れている。
図4はクロスフローファン1の1つの翼3を示す説明図である。翼3はファン1の回転中心を中心とする円の外周側3aと内周側3bの間で湾曲した形状をなし、凸状の外側を負圧面、凸状の内側を圧力面とする。クロスフローファン1の吸込み側の翼3において、吸込んだ空気は翼3の外周側3aから矢印で示す流入速度ベクトルで流入し、入射角aは翼3の反り線を基線として矢印の方向を正とする。図5は、図1及び図2及び図3に示した室内ユニットのファン吸込み領域α(deg.)における吸込み側の入射角(deg.)を示すグラフであり、図6は、図1及び図2及び図3に示した室内ユニットのファン吸込み領域α(deg.)における翼間風量(m/min)を示すグラフである。ここで吸込み領域(deg.)は翼3の外周側から内周側に流れる風量が正である領域と定義する。図5、図6において、横軸は、図1、図2に示したノーズ8の対抗面8cの空気吹出口5側端部Aとファンの回転中心Oを結んだ線を基線とし、翼3の最も外周側の点3aと回転中心Oを結んだ線と基線とのなす角度αを示し、矢印の方向を正とする。クロスフローファン1の吸込み領域は、角度αが20°〜180°付近となる。
図5及び図6において、まず図2に示した構成(黒丸印)と図3に示した構成のファン単体(白抜き三角印)とを比較する。図3の構成では、α=40°付近で吸込み側の入射角a(deg.)が大きく、翼間風量(m/min)が多くなって、吸込み風量が大きい。ところが、図2に示した構成のように、熱交換器13、14、ドレンパン12を設置すると、黒丸印で示されるようにα=40°付近で吸込み側の入射角a(deg.)は小さく、翼間風量(m/min)もα=40°〜60°付近で少なくなって、吸込み風量が減少する。α=40°〜60°付近の風量が減少すると、図2に示したようなクロスフローファン1の内部に生成される固定渦15の周囲を流れる風の速度が小さくなる。このため、固定渦15へ供給される運動量が減少し、固定渦15は不安定になりやすく、異常音や空気吹出口5における逆吸込みの原因となる。逆吸込みとは、上流から下流への流れとは逆に空気吹出口5から室内空気を吸込むことである。
また、図2に示した構成のように熱交換器13、14、ドレンパン12を設置したときは、α=120°付近では入射角aが大きく、失速しやすい状態であるため吸込みにくくなって翼間流量(m/min)が減少する。この結果、クロスフローファン1の性能低下が生じ、ファン入力及び騒音値増大の原因となる。図5において、縦軸の1目盛りは10°であり、黒丸の最高値は20°を越えている。クロスフローファン1の特性から、翼3への入射角aが10°〜15°を越えると失速して風量は小さくなりファン入力が大きくなる。図7は横軸に入射角、縦軸にファン入力を示す特性図である。図7から、入射角aが15°を越えるとファン入力が急激に増える傾向にある。入射角aが大きくなると、翼3の負圧面に渦ができ、これが音の原因となる。また、渦ができることで翼3の負圧面の静圧が下がってファン入力が増える。このため、クロスフローファン1の吸込み領域における翼3への入射角aは10°〜15°を越えないような構成であることが好ましい。
図2の構成ではクロスフローファン1のファン吸込み側に熱交換器13、14を設けたこと、及び、冷房運転時、熱交換器13、14で発生した水滴が室内ユニットの外部に漏れないようするため、ドレンパン12も吸込み側に設ける必要があることが、次のような不具合をもたらす。固定渦15が不安定となって、異常音や空気吹出口5における逆吸込みの原因となる。さらに、α=120°付近で入射角aが大きくなり、失速しやすくなって、ファン入力増大の原因となる。
次に、熱交換器をクロスフローファン1の吹出し側にのみ配置した図1のような構成において、吸込み側の入射角と翼間風量について検討する。図5で示すように、熱交換器2をクロスフローファン1の吹出し側のみに配置した場合(白丸印)は、図2の構成(黒丸印)と比較して、入射角aが全体的に小さくなっている。特に、角度αが40°〜60°及び100°〜150°で入射角が小さくなることが次のような効果をもたらす。
角度αが40°〜60°で入射角aが小さくなっていることで、図6に示すように、図2の構成(黒丸印)よりも図1の構成(白丸印)の方が風量が大きくなっている。このため、固定渦15に供給される運動量が増加して速度の速い渦となり、固定渦15の静圧が下がって安定する。この固定渦15を安定化することで、図2の構成で課題となっていた逆吸込みや異常音の発生を防止できる。
また、図5では角度αが100°〜150°付近で入射角aが大きくなる図2の構成と比較して、図1の構成ではこの領域で入射角aが小さく、10°程度以下である。このため、入射角aが増大したときに起こる失速を防止して、図6で示すように、図2の構成では翼間風量が低くなっていた100°〜150°の領域で翼間風量を増加させることができる。このようにしてクロスフローファン1の性能低下を抑制し、ファン入力の低減及び異常音の低減を実現できる。
表1に、図2に示す構成(熱交換器をクロスフローファンの吸込み側に配置した構成)の場合と、図1に示す構成(熱交換器をクロスフローファンの吹出し側に配置した構成)の場合の、室内ユニットからの吹出し風量が16m/minのときのファン入力(W)を示す。なお、吹出し風量16m/minとは空気調和機における最大暖房能力を得るときの風量である。
Figure 2007292405
表1に示すように、図1の構成の室内ユニットの方が、図2の構成と比較して熱交換器の段数が少なく、通風抵抗が大きいにも関わらず、ファン入力が小さくなっている。
以上のことから、図1に示す構成のように、熱交換器2をクロスフローファン1の吹出し側のみに設置して、空気吸込口6からクロスフローファン1に直接室内空気を吸込むことで、吸込側風路の翼3の近傍には風路の障害物となるものがなく、スムーズに翼3に吸い込まれる。このため、翼3への入射角aが小さくなるので、ファン内部に生成される固定渦15が安定し、異常音や空気吹出口5における逆吸込みが生じにくく、かつファン入力を小さくすることができる。
図8はシロッコファンを用いた場合の室内ユニット27の概略構成を示し、図8(a)は平面構成図、図8(b)は側面構成図である。室内ユニット27において、熱交換器2の積み幅方向31に対して3台のシロッコファン28を備え、それらの回転軸を同一としている。このように、熱交換器30の積み幅方向31に対して複数台のシロッコファン28を備えていても、軸方向から吸込むので吸込みスペースを確保したり、ファンモータ32を設置する場所が必要になる。このため、熱交換器2の積み幅方向31の全面に亘ってシロッコファン28の吹出口が対応するようには構成できない。図8ではシロッコファン28のファン横幅29の合計の長さが、熱交換器30の積み幅方向31の長さに対して約1/2程度である。この構成では、熱交換器30の積み幅方向31で熱交換器30に気流が流れにくい領域があり、熱交換器30の積み幅方向31で速度分布が不均一となって熱交換器30の伝熱性能を低下させていた。
従来、シロッコファン28は、空気清浄フィルターの埃堆積量が多い状態や、冷房運転時、水滴が熱交換器30内部に溜まることで熱交換器30の通風抵抗が増加したような高静圧の運転状態においても、空気吹出口5において逆流が生じにくく、異常音が発生しにくいなどの利点を有する。さらに、空気清浄フィルターの埃堆積量が多くなって空気吸込口付近が高静圧になっても、埃堆積量の少ない場合に比べて風量低下幅が小さい、即ち、P−Q特性に優れるという特徴もある。
シロッコファンを用いた場合の伝熱性能低下という不具合に対し、クロスフローファン1で構成すれば、熱交換器の積み幅方向で速度分布を均一として、熱交換器の伝熱性能を向上できる。
これまで、クロスフローファン1を用いた室内ユニット7では、図2のように構成され、空気清浄フィルター4の埃堆積量が多くなって空気吸込口6付近が高静圧である状態においては、ファン吸込み領域において失速しやすくなるため、空気吹出口5において逆流が生じやすく、異常音が発生しやすかった。また、埃堆積量が少ない場合に比べて風量低下が大きい、即ち、P−Q特性に課題があるとされていた。
ところが、熱交換器2を空気吹出口5側にのみ設置し、吸込側風路Fに熱交換器やドレンパンなどを設けずに空間とし、室内空気をクロスフローファン1に直接吸込むように構成した場合には、これらの課題が解消される。この構成では、空気清浄フィルター4の埃堆積量が多くなって空気吸込口6において高静圧状態となっても、ファン吸込み領域の入射角aの増加量は小さいので埃堆積量が少ない場合に比べて風量低下が小さく、空気吹出口5での逆流や異常音の発生を抑制できる。即ち、P−Q特性が向上する。
そこで、本実施の形態ではクロスフローファン1を用い、熱交換器2の積み幅方向の速度分布を均一化して、熱交換器2の伝熱性能を向上する。さらに図1に示したように熱交換器2をクロスフローファン1の下流側のみに配置して室内空気を直接クロスフロ−ファン1に流入させる。そして、ファン吸込み領域での翼間風量を増加し、空気吸込口6付近が高静圧での運転においても、空気吹出口5において室内からの空気吹出口5への逆流が生じにくく、異常音の発生を低減できるという効果が得られる。
図1に示す構成では、ノーズ8の一端は空気吸込口6の周囲の室内ユニット筐体に固定され、クロスフローファン1の回転中心Oに向かって伸び、翼3の近傍では円周に沿った対向面を有する。このノーズ8の構成のため、空気吸込口6の内側は、ノーズ8とクロスフローファン1と室内ユニット7の筐体とで大きな空間が形成されている。この空間に熱交換器やドレンパンなどを設けないので、空気吸込口6から吸込まれた室内空気が吸込側風路Fを通って直接クロスフローファン1にスムーズに吸込まれる。また、空気吸込口6の面積を大きく構成すれば、空気清浄フィルター4の通過速度が低くなり、通風抵抗が下がってファン入力及び騒音値をさらに低減できる。
なお、本実施の形態では図1のように室内ユニット7を天井の外側、即ち天井面に設置するタイプのもので、空気吸込口6が下面にある場合について説明したが、空気吸込口6が側面にあるような構成の空気調和機でも同様の効果を奏する。図1では、図に向かって右側面に空気吸込口がある構成となり、天井の内側に埋め込まれ、空気吹出口及び空気吸込口がダクト(図示せず)に接続される室内ユニットに見られる構成である。空気吹出口及び空気吸込口がダクトに接続される構成のものでは、ダクトで分岐すれば1台の室内ユニットで複数の部屋の空気調和を行うことができる。
以上のように、天井の外側または天井の内側に設置される室内ユニット7の下面または側面に設けられた空気吸込口6と、空気吸込口6から垂直方向の距離よりも水平方向に離れた位置に設けられた空気吹出口5と、空気吸込口6と空気吹出口5とを連結する風路と、風路内の空気吸込口6側に設けられ空気吸込口6から空気吹出口5に室内空気を送風するクロスフローファン1と、クロスフローファン1と空気吹出口5の間に設けられ、クロスフローファン1の回転軸方向に複数のフィンを並設し、フィン面を通過する空気と配管内を流れる冷媒とで熱交換を行う熱交換器2と、を備え、空気吸込口6からクロスフローファン1に直接室内空気を吸込んでクロスフローファン1を通過させた後、熱交換器2で熱交換して空気吹出口5から吹出すように構成したので、熱交換器2の積み幅方向において風速分布をほぼ均一として熱交換性能を向上でき、空気吹出口5における逆流の発生や異常音を低減でき、さらにファン入力を低減できる空気調和機が得られる効果がある。
また、一端8aが空気吸込口6近傍に配置されると共に他端8bがクロスフローファン1の円周近傍に配置され、風路をクロスフローファン1の吸込側風路Fと吹出側風路とに仕切るノーズ8と、クロスフローファン1の吹出し側に設けられクロスフローファン1から吹出す気流を安定させるように気流の吹出し方向に沿って下方側に突出する凸部9aを有するケーシング9と、を備え、室内空気を空気吸込口6から吸込側風路Fを通って直接クロスフローファン1を通過させることにより、室内空気をスムーズにクロスフローファン1に通過させることができ、さらに熱交換器2に均一かつスムーズに送風することができるので、熱交換性能を向上でき、空気吹出口5における逆流の発生や異常音を低減でき、さらにファン入力を低減できる空気調和機が得られる効果がある。
また、空気吸込口6に設けられ吸込む室内空気を清浄する空気清浄装置4を備えたことにより、埃が室内ユニット7に入り込むことない信頼性の高い空気調和機が得られる。さらに、空気清浄装置4に埃が堆積して高静圧になっても、室内から空気吹出口5への逆流が生じにくく、異常音の発生を低減でき、ファン入力を低減できる効果がある。
実施の形態2.
図9は、この発明の実施の形態2に係る空気調和機の室内ユニットを示す断面構成図である。図中、図1と同一符号は同一、または相当部分を示す。
この実施の形態に係る空気調和機の室内ユニット7は、クロスフローファン1の下流側に、水平方向に突出するようなV字状に熱交換器15、16を配置したものであり、他の各部は図1と同様の構成である。上方側の熱交換器15と、下方側の熱交換器16は共に2列9段、冷媒配管の総数は36本であり、図1に示した3列12段の熱交換器2の配管本数と同一である。
熱交換器15、16をV字状に取り付けるために、クロスフローファン1から空気吹出口5までの風路形状が図1とは多少異なる。即ち、図1の構成では熱交換器2の上端部を空気吹出口5付近の筐体に固定し、下端部をファン吹出口20付近の筐体に固定した。これに対し本実施の形態の構成では、上方側熱交換器15の上端部をケーシング9の凸部9aの下流側で広い風路の部分の風路壁面に固定し、下方側熱交換器16の下端部をファン吹出口20の下流側で、上方側熱交換器15の上端部と同様の奥行き位置付近の風路壁面に固定した。このような構成上の違いはあるが、主な作用効果は実施の形態1と同様である。
本実施の形態に係る空気調和機においても、送風機としてクロスフローファン1を用いたので、熱交換器2の積み幅方向において風速分布をほぼ均一として熱交換性能を向上できる。また、クロスフローファン1のファン吹出口20の下流側にのみ熱交換器15、16を有し、空気吸込口6からクロスフローファン1までは広い空間とした。このため、空気清浄フィルター4に埃が堆積した場合においても逆流が生じにくく、異常音の低減、ファン入力の低減を実現できる空気調和機が得られる効果がある。
さらに本実施の形態におけるV字状の熱交換器15、16の特徴を以下に説明する。
表2に図1に示した室内ユニットと図9に示した室内ユニットにおいて、吹出し風量が16m/minのときのファン入力を示す。
Figure 2007292405
このように、本実施の形態による室内ユニットの方がファン入力が小さいという計測結果が得られた。図1の構成と図9の構成では、冷媒配管の総数は36本で同じであるが、図1では3列12段であるのに対し、図9では2列18段で熱交換器が構成されている。即ち、本実施の形態による室内ユニットでは熱交換器の1列の段数を12段から18段としたため、前面面積が1.5倍大きくなり、吹出し風量が同一の場合は熱交換器の前面風速が1.5倍小さくなって、熱交換器の通風抵抗が低減したためである。
さらに、熱交換器をV字状にした場合、室内ユニット7の奥行き(DP)の寸法を小さくすることができ、コンパクト化することができる。
図9では、熱交換器をV字状としたが、これに限るものではない。図1では熱交換器2を直線形状としており、少し湾曲させたり、U字形状にしても、直線形状よりも熱交換器の前面面積を大きくすることができるので、ファン入力を低減する効果がある。
また、図9では空気吹出口5側に突出するV形状の熱交換器を有する構成にしたが、熱交換器の左右を逆にしてクロスフローファン1側に突出するように配設してもよい。即ち、熱交換器の形状を、水平方向に突出させたり湾曲させれば、直線の場合よりも熱交換器の前面面積を大きくすることができる。熱交換器の前面面積とは、クロスフローファン1から流れてきた気流がフィンを通過する時のフィンの前面面積であるので、フィンの前面面積を大きくするように構成すれば、さらに通風抵抗を低減することができる。例えば、伝熱管の本数や構成はそのままで、フィンの形状を前面面積が大きくなるように構成してもよい。
また、図9では、上方側の熱交換器15と下方側の熱交換器16とを、同列同段で構成したものを示しているが、これに限るものではない。上方側の熱交換器15を下方側の熱交換器16よりも長くしてもよいし、その逆でもよい。ただし、図9の構成では、ノーズ8の下流側の空間がケーシング9の凸部9aの下流側の空間よりも大きいので、下方側の熱交換器16を長くしたほうが、この空間を有効に使うことができ、全体としてコンパクトに構成できる。
また、図9の熱交換器15、16では、2列としたが、図1と同様、3列としてもよい。ただし、列を増やす方向は気流の下流になるので、列数の後方になるに従って伝熱管内を流れる冷媒と気流との温度差が小さくなる。このため、列を増やすよりも前面面積を大きくする方がファン入力の低減効果は大きい。
上記のように熱交換器は、水平方向に突出するようなV字状としたことにより、熱交換器の前面面積を大きくでき、ファン入力を小さくすることができる。
実施の形態3.
本実施の形態では、図1や図9に示した構成の空気調和機の室内ユニット7において、クロスフローファン1のファン径(D)と室内ユニットの筐体の高さ(H)の関係について説明する。
図10は、図9に示した室内ユニット7において、ユニット高さ(H)を変えず、ファン径(D)を変えたときのファン入力Wとファン径(D)/ユニット高さ(H)の関係を示すグラフである。ここで、吹出し風量は16m/minとした。なお、ファン径(D)を変えた場合は、ケーシング9と室内ユニット7との最短距離を5mmに固定し、ファン吹出口20から空気吹出口5までの風路において、主流がケーシング9及びノーズ8のどちらにも偏らないように、ケーシング9とノーズ8の形状を調整してある。
図10によれば、ファン径(D)/ユニット高さ(H)=0.7のとき、ファン入力が最小となる。ファン径(D)は大きいほどファン効率が向上するが、大きすぎると、クロスフローファン1と通風抵抗体である空気清浄フィルター4との距離が小さくなり、ファン吸込み領域において入射角が大きくなって失速が生じる。このため、ファン径(D)/ユニット高さ(H)=0.7でファン入力が最小となる最適値となり、この近傍のD/Hの値で室内ユニット7を構成すれば、ファン入力を低減できる。
図11は、この発明の実施の形態3に係る空気調和機の室内ユニットの他の構成例を示す断面構成図である。図中、図9と同一符号は同一、または相当部分を示す。
図9に示した構成では空気吸込口6を室内ユニット7の下方に設けていたが、図11の構成例では右側面に空気吸込口6を設ける。このような構成の室内ユニット7は、空気吸込口6と空気吹出口5にダクトが接続され、天井の内側に埋め込んで設置されるものである。この構成では、通常、空気吸込口6に空気清浄フィルター4を設けずに、ダクトで接続された先の空気吸込口(図示せず)に空気清浄フィルターを設ける。この構成の室内ユニット7でも、実施の形態1と同様、クロスフローファン1を用いると共にクロスフローファン1の下流側にのみ熱交換器15、16を設けることで、実施の形態1と同様の作用効果を得ることができる。即ち、熱交換性能を向上できると共に、空気吸込口6の付近で通風抵抗が大きくなっても空気吹出口5で逆流が生じにくく、異常音の低減、ファン入力の低減を実現できる。
図12は、図11に示した室内ユニット7において、ユニット高さ(H)を変えず、ファン径(D)を変えたときのファン入力Wとファン径(D)/ユニット高さ(H)の関係を示すグラフである。ここで、吹出し風量は16m/minとした。
図12によれば、ファン径(D)/ユニット高さ(H)=0.5のとき、ファン入力が最小となる。側面に空気吸込口6がある場合でも図9の構成と同様、ファン径(D)は大きいほどファン効率が向上するが、大きすぎると、クロスフローファン1は下壁に近づくため、ファンの吸込みスペースが減少し、ファン吸込み領域において入射角が大きくなって失速が生じる。このため、ファン径(D)/ユニット高さ(H)=0.5でファン入力が最小となる最適値となり、この近傍のD/Hの値で室内ユニット7を構成すれば、ファン入力を低減できる。
空気吸込口6は、室内ユニット7の設置環境により、下面にある場合、側面にある場合、下面、側面の両方にある場合があるため、0.5≦ファン径(D)/ユニット高さ(H)≦0.7となるように室内ユニット7を構成すれば、空気吸込口6が、図9及び図11のどちらの位置にあっても、大幅にファン入力が大きくなることはない。
以上のことから、0.5≦ファン径(D)/ユニット高さ(H)≦0.7で構成することにより、ファン入力を低減することができる。
本実施の形態において、図9及び図11の構成の室内ユニット7の計測値から、ファン径(D)/ユニット高さ(H)の範囲を設定したが、これはクロスフローファン1の空気吸入口6とファン付近の構成から最適範囲を設定したものであるので、クロスフローファン1の下流側がどのような構成であっても、同様のことが言える。即ち、図1においても、0.5≦ファン径(D)/ユニット高さ(H)≦0.7となるようにファン径及びユニット高さを構成することで、ファン入力を低減することができる。
また、奥行き(DP)方向について、図9の構成に基づいて説明する。
クロスフローファン1は空気吸込口6側に配設しており、室内ユニット7の空気吸込口6側の側面とクロスフローファン1の回転中心までの長さL、奥行きの長さDPとしたとき、(DP−L)>Lとする。クロスフローファン1の空気吸込口6側は、室内空気を吸込む吸込側風路Fが形成されているが、この吸込側風路Fには、熱交換器を配置することなく、室内空気をスムーズに翼3に吸込む構成である。一方、クロスフローファン1の空気吹出口5側は、ファン吹出風路と熱交換器を配設して熱交換する風路とで吹出側風路が形成されており、熱交換器を設置するスペースが必要となる。このため、吸込側風路Fよりも吹出側風路を長くしている。
即ち、(DP−L)>Lとなる位置にクロスフローファン1を配設することで、吸込み領域の翼3での入射角を小さくできると共に、熱交換領域を長くできるので、伝熱性能を確保できる。このことは、図11の構成においても同様である。
上記のように、クロスフローファン1のファン径をD、室内ユニット7の筐体の高さをHとしたとき、0.5≦D/H≦0.7の範囲になるように構成したことにより、ファン入力を低減することができる空気調和機が得られる効果がある。
実施の形態4.
この発明の実施の形態4は熱交換器の構成に関するものであり、クロスフローファン1の吹出し側から室内ユニット7の空気吹出口5までの限られた空間で、熱交換効率の向上を図るものである。
図13は、この発明の実施の形態4に係る空気調和機の室内ユニットを示す断面構成図である。図中、図9と同一符号は同一、または相当部分を示す。図において、上方側の熱交換器15の上側、及び、下方側の熱交換器16の下側に補助熱交換器17を備えている。補助熱交換器17は上方側及び下方側で共に、例えば1列4段、列ピッチ20.4mm、段ピッチ12.7mm、フィンピッチ1.3mmとした。
冷凍サイクルを循環する冷媒は、熱交換器15、16、補助熱交換器17の冷媒配管を順次、又は並列に流れて気流に温熱又は冷熱を与える。ここで、補助熱交換器とは、主となる熱交換器15、16とは別体のフィンで構成され、フィンの面積が主となる熱交換器15、16よりも小さく、回転軸方向(図13では紙面に垂直な方向)には熱交換器15、16と同様の長さを有する。ファン吹出口20から空気吹出口5までの吹出側風路の空間を有効に利用するため、主となる熱交換器15、16を配設し、さらに存在する空間に入るように構成されていればよい。
表3に補助熱交換器17がある場合と、ない場合のCOP(空調能力とその空調能力を得る電気入力の比、Coefficient Of Performance)を示す。ここで、室内ユニット7からの吹出し風量は、例えば12m/minとする。吹出し風量12m/minとは、空気調和機において最大冷房能力を得るときの風量である。
Figure 2007292405
このように補助熱交換器17を備えた室内ユニットの方が、補助熱交換器17を備えていない室内ユニットよりもCOPが向上している。これは補助熱交換器17を備えたことにより、熱交換器の伝熱面積が大きくなり、伝熱性能が向上したためである。
本実施の形態では、補助熱交換器17を熱交換器15、16の風下側に備えた場合について説明したが、風上側に設けてもよい。また、風上側と風下側の両方に設けてもよく、熱交換器15、16のどちらか一方に備え付けてもよい。また、回転軸方向では熱交換器15、16と同様の長さで設けているが、これに限るものではない。熱交換器15、16の近傍に伝熱面積を増やすように設ければ、ある程度の効果を奏する。
また、V字形状の熱交換器15、16に補助熱交換器17を設けるだけではなく、図1のような構成において、熱交換器2の上方側または下方側の空間に入るように補助熱交換器を設けても、同様の効果を奏する。
上記のように、熱交換器の近傍に補助熱交換器17を備え、伝熱面積を大きくすることにより、伝熱性能を向上し、COPを向上できる空気調和機が得られる。
実施の形態5.
図9では、上方側熱交換器15と下方側熱交換器16を共に2列9段、列ピッチ20.4mm、段ピッチ12.7mm、フィンピッチ1.3mmとし、全く同じ構成としている。冷房運転を行った場合、室内から空気吸込口6、クロスフローファン1を通過した空気は熱交換器15、16を通過する際に冷却され、凝縮して水滴が生成される。上方側熱交換器15で生成された水滴は、重力により、いずれ下方側熱交換器16へ落下する。下方側熱交換器16においても同様に水滴は生成されるので、上方側熱交換器15よりも下方側熱交換器16の方が水滴が溜まりやすく、熱交換器の通風抵抗が大きくなる。このため、下方側熱交換器16の方が、上方側熱交換器15よりも熱交換器を通過する風量が小さくなり、熱交換量が小さくなる。
冷房運転するにつれて下方側熱交換器16の通風抵抗が大きくなり、伝熱性能が低減するのを防止するためには、予め熱交換器の重力方向で下方に位置する部分の通風抵抗が小さくなるように構成しておけばよい。
熱交換器の通風抵抗を小さく構成するには、フィンピッチを大きくする、段ピッチ、列ピッチを大きくする、列数を減らす、段数を増やす、補助熱交換器を上方側に配置された熱交換器のみに取付ける、などが効果的である。また、フィンには伝熱性能を向上するために、通常フィン面にスリットが設けられているが、このスリットを低圧損化してもよい。
ここで、例えば上方側熱交換器15のフィンピッチを1.3mmに固定し、下方側熱交換器16のフィンピッチを1.3mm、1.5mmにして、上方側熱交換器15の通風抵抗よりも下方側熱交換器16の通風抵抗が小さくなるように構成する。表4に外気温度35℃、室内設定温度27℃の条件で空気調和機の冷房運転を行い、室内ユニットから吹出される風量を12m/minとし、上方側に配置された熱交換器15を通過する風量と、下方側に配置された熱交換器16を通過する風量の割合を示す。
Figure 2007292405
表4に示したように下方側に配置された熱交換器16のフィンピッチを大きくすると下方側に配置された熱交換器16を通過する風量が大きくなり、COPも向上する。これは下方側に配置された熱交換器16の通風抵抗が小さくなり、風量が増えたことにより、伝熱性能が向上したためである。
表4はフィンピッチを大きくすることで、熱交換器の通風抵抗を小さくしているが、段ピッチ、列ピッチを大きくする、列数を減らす、段数を増やす、補助熱交換器を上方側に配置された熱交換器のみに取付ける、フィンのスリットを低圧損化することのいずれでも効果がある。また、これらの2つ以上を組み合わせてもよい。
上記のように、下方側に配置される熱交換器16の通風抵抗を、上方側に配置される熱交換器15の通風抵抗よりも小さく構成したことにより、冷房運転で特に下方側熱交換器16に水滴がついて通風抵抗が大きくなっても、下方側熱交換器16の風量が上方側熱交換器15の風量よりも小さくなるのを防止でき、COPを向上できる。
実施の形態6.
図14はこの発明の実施の形態6に係る空気調和機の室内ユニットを示す断面構成図である。図において、図9と同一符号は同一、または相当部分を示す。上方側熱交換器15と下方側熱交換器16において、熱交換器のフィンの長手方向端面と水平方向とのなす角度βをそれぞれ例えば10°程度としている。図において、点Pは上方側熱交換器15の上端、点Qは下方側熱交換器16の下端、点Xはケーシング9の最下流の点、点Yは点Xから引いた垂線とノーズ8の交点である。18はドレンパンの機能も兼ねている風路部材である。ファン吹出口20の高さ方向の距離がX−Yで表され、熱交換器15、16の高さ方向の距離がP−Qで表される。クロスフローファン1の吹出側風路において、クロスフローファン1からファン吹出口20までのファン吹出風路19は略同一の断面積で構成され、この部分から下流側、即ちファン吹出口20から空気吹出口5までは、ファン吹出風路19よりも大きな断面積の風路となっている。
本実施の形態による室内ユニットで冷房運転を行う場合、熱交換器15、16のフィン面や伝熱管の周囲に水滴が生成する。この水滴が生成した後、できるだけ短い時間でドレンパンに落下するほど、熱交換器の通風抵抗を増大させずに冷房運転を行うことができる。
例えば、β=90°の場合は、水滴は熱交換器の段方向の向きに落下するのでフィン面の長手方向に伝い、なかなかフィン面から落下しない。これに対し、β=0°の場合は、段方向ではなく、列方向の向きに落下する。ここで、段方向とは隣の段に向かう方向であり、列方向とは隣の列に向かう方向である。一般に空気調和機に用いられる熱交換器は段数よりも列数の方が少ない。このため、隣の列に向かって列方向に落下する方が段方向に落下するよりも、水滴が生成されてからドレンパン18に落下するまでの時間が短くなり、熱交換器15、16の通風抵抗が増大するのを抑制できる。
そこで、βを変化させ、水滴が列方向の向きに落下する角度を測定した結果、β≦25°で水滴が列方向の向きに移動し、β>25°で段方向の向きに移動することが確認された。図14では例えば上方側熱交換器15と下方側熱交換器16の傾斜角度β=10°としているので、上方側熱交換器15と下方側熱交換器16のどちらにおいても生じた水滴は列方向の向きに移動する。このため、生じた水滴が長時間フィン面に付着して熱交換器15、16の通風抵抗が増大するのを抑制できる。
また、熱交換器高さPQと、ファン吹出口20の高さXYとを略等しくした場合、熱交換器15、16全体に風を流すことができ、熱交換器15、16の伝熱性能を向上することができる。図1、図9、図11、図13の構成のものは熱交換器高さPQがファン吹出口20の高さXYよりも大幅に大きい構成となっている。このため、図1、図9、図11、図13の構成では、変向板11を設けてファン吹出口20付近で気流を広角に拡大して下流に流すように構成している。これに対して本実施の形態の構成ではファン吹出口20の気流がそのままの幅で下流に流れても、熱交換器15、16の全体で比較的均一に熱交換できる。変向板11は風路の途中に配設されるものであり、気流に対しては抵抗となるので、できれば設けない方が好ましが、ここでは気流を変向して伝熱性能を向上する効果を優先している。
以上のことから、熱交換器15、16の傾斜角度β≦25°とすることで、冷房運転時に水滴により熱交換器の通風抵抗が増大するのを抑制することができる。
さらに、熱交換器15、16の傾斜角度βを小さく構成して熱交換器高さPQと、ファンからの吹出口高さXYを略等しくすることにより、伝熱性能を向上できる。
本実施の形態では、さらにファン入力の低減を図るために、ファン径Dを大きくして、例えばD/H=0.7程度としている。これは図10で示したように、下面に空気吸込口6を配設する室内ユニット7の構成では、最小のファン入力を実現できる。
ファン吹出口20では、断面におけるケーシング9の凸部9aが最も下方に位置し、この部分の近傍で熱交換器15、16の端部と接続されている。ノーズ8では、ノーズ8のほぼ基部で下方側熱交換器16に接続されている。このファン吹出口20におけるケーシング9と上方側熱交換器15との接続部の隙間、及びノーズ8と下方側熱交換器16との接続部の隙間に、漏れ空気を防ぐために漏れ防止材として、例えばスポンジなどの充填物を充填している。このため、伝熱性能のさらなる向上を図ることができる。
以上のように、熱交換器15、16のフィンの長手方向端面と水平方向とのなす角度が25°以下になるように熱交換器15、16を構成したことにより、冷房運転時に水滴により熱交換器の通風抵抗が増大するのを抑制することができ、伝熱性能を向上できる。
実施の形態7.
この発明の実施の形態7では、変向板11の作用効果について詳しく説明する。図15はこの発明の実施の形態7に係る空気調和機の室内ユニット7を示す断面構成図である。図において、図9と同一符号は同一、または相当部分を示す。この構成のV字形状の熱交換器15、16は、例えば水平方向からの傾斜角度βをそれぞれ25°程度とし、ファン吹出口20よりも下流側でファン吹出風路19よりも風路面積が広がった部分の吹出側風路の風路壁に固定されている。この様な構成の場合には、ケーシング9の凸部9aの最も突出した位置よりも上方に熱交換器の一部が配置される。この図では上方側熱交換器15の上半分以上がケーシング9の最も突出した凸部9aよりも上方に位置している。ファン吹出口20から上方に吹出される気流がこの部分の熱交換器に流れるのであるが、ファン吹出口20から水平に流れる気流や下方に流れる気流よりも流れにくい構成となっている。
図16はこの気流の流れにくさを説明する説明図であり、図16(a)は熱交換器15、16及びその段番号の位置を示し、図16(b)は段番号のそれぞれに対する熱交換器の前面風速(m/s)を示す。前面風速(m/s)は変向板11を設けた場合(変向板あり)と変向板11を設けない場合(変向板なし)を比較して示している。ここで、熱交換器の前面風速は、熱交換器15、16の段毎の前面において、熱交換器15、16に垂直な速度成分を測定し、段毎の通過風量割合で示したものである。
変向板11の形状は、図に示したように上流側前縁で薄く下流側後縁で厚くなるような断面を有し、断面の前縁から後縁に向かう反り線はケーシング9の凸部9a付近の風路壁面と同様の曲線である。また、変向板11は室内ユニット7のファン回転幅方向の一端から他端に亘って設けられ、例えばプラスチックなどの材質で形成される。変向板11の機能はファン吹出口20付近の気流の流れ方向を広角に変向して下流側に導くように働く。
図16(b)で明らかなように、変向板なしの場合、上方側熱交換器15の段番号14〜18(領域A)では、他の部分よりも前面風速がかなり低くなっており、この領域に風が流れにくい構成であることを示している。特に段番号17、18あたりではほとんど気流が流れていない状態であり、熱交換器の伝熱性能の低下を招く。
これに対し、変向板ありの場合には、熱交換器の段毎の通過風量が均一化されている。これは、変向板11によってファン吹出口20付近における気流が広角に変向されて、熱交換器の領域Aに流れやすくなったためである。
変向板11は上記では室内ユニット7の幅、即ちクロスフローファン1の回転軸方向の一端から他端に亘って設けているが、これに限るものではなく、回転軸方向に複数個に分割されていてもよい。また、後縁で厚くなるような断面形状の変向板11としたが、これに限るものではない。前縁から後縁まで同一の厚みであってもよい。ファン吹出口20から下流に吹出す気流の向きを広角にして上方に変えることができれば、熱交換器の段毎の通過風量をある程度均一化でき、特に上方側熱交換器15の段番号17、18付近の端部における熱交換性能を向上できる。
また、本実施の形態ではV形状を構成する熱交換器15、16を有する室内ユニット7について説明したが、図1に示すように、直線状の熱交換器2を有する構成に適用しても、同様の効果を有する。ファン吹出口20における風路面積よりも拡大された吹出側風路に熱交換器を配設した場合には、ファン吹出口20付近に気流を広角に拡大して下流に導く機能を有する変向板11を設ければ、熱交換性能を向上できる効果がある。
なお、風路の形状によっては、変向板11を設ける必要がない。変向板11は上記で説明したように、熱交換器15、16の上端部が、ケーシング9の凸部9aよりも上方に配置している場合に有効であり、熱交換器15、16の上端部と下端部の幅が大きいとき、例えばファン径の1.5倍程度よりも大きいときに効果がある。図14のように、熱交換器15、16の上端部と下端部の幅が、ファン吹出風路19と同程度の場合には、変向板11を設ける必要はない。
以上のように、ケーシング9の曲面で形成される凸部9a付近の風路20に設けられ、気流を広角にして流す変向板11を備えたことで、熱交換器の段毎の通過風量をある程度均一化でき、熱交換性能を向上できる空気調和機が得られる。
実施の形態8.
図17はこの発明の実施の形態8に係る空気調和機の室内ユニットを示す断面構成図である。図において、図15と同一符号は同一、または相当部分を示す。図において、変向板11の前縁に逆流防止板21を設けている。変向板11及び逆流防止板21を拡大した斜視図を図18に示す。
逆流防止板21は、例えばクロスフローファンの回転軸に垂直な方向で風路に突出している方向の長さを3mm、厚さを2mmとし、変向板11の前縁先端に、ファン回転軸方向の変向板11の幅と同様の幅で設けている。例えば逆流防止板21を変向板1の前縁に接着などによって固定する。図18では逆流防止板21の取り付ける角度を示すために、逆流防止板21と変向板11の反り線22とのなす角度をγとし、矢印23の方向を正方向と定義する。また、変向板11の反り線22が、ケーシング9の変向板11と対向して設けられている部分の面に略平行となるように変向板11を設ける。このため、逆流防止板21の角度γは、ケーシング9の壁面からの角度ということもできる。
空気清浄フィルター4に埃が堆積してくると、ファン吹出風路19においてケーシング9に沿って流れる気流の風量が少なくなってくる。このため、ファン吹出口20付近の変向板11が設けられている上方側で、ケーシング9の下流側からクロスフローファン1へ向かう方向に流れる逆流が生じやすくなる。この逆流を図17の点線矢印Bで示す。埃が堆積していないときには、クロスフローファン1の翼間から吹出される空気はある程度ケーシング9に沿って流れる。このため、矢印Bのような逆流が生じることはない。これに対し、空気吸込口6付近が高静圧になると、吸込む気流の速度が遅くなり、ファン内部に生成される固定渦15に供給される運動量が少なくなる。このため、固定渦15が大きく圧力が上がって不安定になる。即ち、クロスフローファン1の吸込み領域において失速が生じやすくなって、ファン内部に生成される固定渦15が不安定になり、クロスフローファン1の翼間から吹出される気流は、ノーズ8側に向かう流れが多くなり、ケーシング9の近くで矢印Bのような逆流が起こりやすくなる。
そこで、本実施の形態では、変向板11の前縁に逆流防止板21を設けて、矢印Bのような逆流の発生を防止する。ファン1の翼3間から吹出された風が逆流防止板21に衝突すると、風の動圧が逆流防止板21のファン側の面の静圧上昇に変換される。このため、逆流防止板21が設けられているファン吹出風路19のケーシング9付近の静圧は上昇して、ケーシング9の下流側の静圧よりも高くなり、逆流を防止できる。
埃を模擬するため、空気清浄フィルター4の上流側に圧損ΔP=40V1.7[Pa]となる抵抗物を設置した状態で、角度βを0°≦γ≦180°の範囲で変化させて、変向板11付近でケーシング9の下流側からファン1へ向かう方向に流れる逆流の有無を測定した。ここで、Vは抵抗物を通過する速度[m/s]である。この圧損ΔPの値は、一般家庭で常識的に空気調和機を動作させ、半年程度清浄フィルター4の掃除をしなかった場合の清浄フィルタ−4の詰まり具合をモデルとしている。
角度γ<35°、またはγ>150°の場合は、逆流が生じたが、35°≦γ≦150°の場合は逆流が生じなかった。また、逆流防止板21の長さを5mm、厚さ2mmとした場合は、25°≦γ≦160°の場合は逆流が生じなかった。これより、逆流防止板21の長さを3mm以上とし、35°≦γ≦150°の角度で変向板11の前縁に設けた場合に逆流が生じないという結果が得られた。計測結果から、逆流防止板21の長さを長くすれば、角度γの範囲は広くなり、変向板11からの角度を寝かせることができ、また、逆流防止板21の長さを短くすれば、角度γの範囲は狭くなり、変向板11からの角度を起こして設ければよい。
本実施の形態では逆流防止板21と変向板11が別部品の場合について説明したが、逆流防止板21と変向板11を1つの部品として一体に成型してもよい。一体に成型する場合には、逆流防止板21と変向板11の接合部を滑らかな形状とすることもでき、気流に対して障害となるのを極力防止できる。
上記のように、変向板11の気流の前縁に気流に対して抵抗となるように設けられ、下流側から上流側への逆流を防止する逆流防止板21を備えたことにより、逆流が生じるのを低減でき、特に空気吸込口6付近で埃などによって通風抵抗が大きくなった場合のケーシング9に沿って生じる逆流を防止できる空気調和機が得られる。
実施の形態9.
図19はこの発明の実施の形態9に係る空気調和機の室内ユニットのケーシング部材を示す斜視図であり、図19(a)は図14に示した構成の室内ユニット7を構成するケーシング部材、図19(b)は本実施の形態で、図19(a)に改良を加えた構成のケーシング部材である。図において、図14と同一符号は同一、または相当部分を示す。
本実施の形態では図19(b)に示すようにケーシング9の曲面の凸部9aで、室内ユニット7の幅方向の両端及び中央部に、ケーシング9の凸部9aの壁面よりも更に風路側に突出した抵抗体24を設けている。抵抗体24の形状はケーシング9の凸部9a壁面に滑らかに接続され、気流の流れ方向に、ケーシング9の凸部9a壁面から傾斜させ、最大凸部を越えた後はケーシング9の下流側の壁面に滑らかに接続する。ファン回転軸方向の抵抗体24の長さを例えば40mmとする。また、ケーシング上流側では抵抗体24の最小高さを例えば0mmとし、ケーシング9の凸部9a面と同じとした。このように、抵抗体24のケーシング面から最も突出した部分が、気流の最も下流側となるように構成する。
空気清浄フィルター4に埃が堆積して空気吸込口6付近で通風抵抗が増大すると、変向板11付近でケーシング9の下流側からクロスフローファン1へ向かう方向に流れる逆流が生じやすくなる。これは埃が堆積するほど、ファン1の吸込み領域において失速が生じやすくなり、ファン内部に生成される固定渦15が不安定になるためである。埃を模擬するため、空気清浄フィルター4の上流側に圧損ΔP=40V1.7[Pa]となる抵抗物(Vは抵抗物を通過する速度[m/s])を設置した状態で、抵抗体24の最大高さK、即ちケーシング9の凸部9a壁面から抵抗体24の最も突出した部分までの高さKを、0mm≦K≦20mmとしてファン1へ向かう方向に流れる逆流の有無を測定した。また、構成としては、ケーシング9の幅方向(クロスフローファン1の回転軸方向)の両端に抵抗体24を設けた場合、中央部のみに抵抗体24を設けた場合、両端と中央部の3箇所に抵抗体24を設けた場合、の3ケースを比較した。
K<6mmの場合は、ケーシング9の両端、中央部、両端+中央部に抵抗体44を備えた場合のいずれも逆流が生じたが、K≧6mmの場合は、両端、中央部、両端+中央部に抵抗体24を備えた場合のいずれも逆流が生じなかった。この時、クロスフローファン1のファン径を135mm、ケーシング9の凸部9aの高さを90mmで構成している。また、熱交換器15、16の上端部から下端部までの高さは、クロスフローファン1からファン吹出口20までのファン吹出風路19の高さと同程度に構成しており、変向板11によって気流の向きを広角に変える必要のない構成である。
このことから、ケーシング9の凸部9aに突出壁面よりも突出した抵抗体24を備えることにより、ケーシング9の凸部9a付近で下流側から上流側へ逆流が生じるのを抑制することができる。これは抵抗体24により、ケーシング9の凸部9a付近に形成されているファン吹出口20から下流側への吹出し面積が小さくなり、気流の吹出し速度が大きくなったため、逆流が生じにくくなったためと考えられる。
このような抵抗体24は、多く設ければ設けるほど吹出し面積が小さくなり、逆流の生じにくさは高まるが、一方で通風抵抗が大きくなって大きなファン入力を必要とする。このため、逆流が生じない程度で、且つなるべく通風抵抗を増やさないように設けるのが好ましい。特に室内ユニット7の幅方向(ファン回転軸方向)の両端で逆流が起こりやすいので、この両端に抵抗体24を設けるのが好ましい。
図19は図14の構成の室内ユニット7のケーシング部材に抵抗体24を設けた図を示したが、図1、図9、図11、図13、図15、図17を構成するケーシング部材9に抵抗体24を設けても同様の効果を奏する。
上記のように、ケーシング9の曲面の凸部9aであって、クロスフローファン1の回転軸方向の両端部及び中央部のうちの少なくとも1箇所に、凸部9aからさらに風路に突出して設けられ、下流側から上流側への逆流を防止する抵抗体を備えたことにより、逆流が生じるのを抑制でき、特に空気吸込口6付近で埃などによって通風抵抗が大きくなった場合のケーシング9に沿って生じる逆流を防止できる空気調和機が得られる。
実施の形態10.
図20は、この発明の実施の形態10に係るクロスフローファン1の円周上に複数設けられている翼3の一枚を拡大して示す説明図である。図において、図4と同一符号は同一、または相当部分を示す。複数の翼3は外周側の端部で回転方向に前傾し、回転軸方向には同様の断面形状で伸びた形状である。1aは翼3の外周側端部3aを通り、クロスフローファン1の回転中心を中心とする円弧、1bは翼3の内周側端部3bを通り、クロスフローファン1の回転中心を中心とする円弧であり、出口角θ1は翼3の反り線と円弧1aの接線とのなす角度、入口角θ2は翼3の反り線と円弧1bの接線とのなす角度である。
クロスフローファン1では、回転中心の周りに翼3を有する構成であり、翼3が回転する際、空気吸込口6側に位置する翼3の領域が吸込み領域、ファン吹出口20側に位置する翼3の領域が吹出し領域となる。このため、吸込み領域に位置する翼3では、気流は外周側の翼端部3aから入射し回転中心へ流れ、吹出し領域に位置する翼3では、気流は回転中心側の翼端部3bから外周側に流れる。図20には吸込み領域のときの入射角a1と吹出し領域のときの入射角a2を示す。それぞれ翼3の反り線を基線とする角度であり、図に示す角度a1、a2をプラスとし、基線の逆側にできる角度をマイナスとする。
入口角θ2を84°に固定し、出口角θ1を6〜32°の範囲で変化させたときの騒音値を図21、ファンモータ入力を図22に示す。図21において、横軸は出口角θ1(deg.)、縦軸は騒音値(dBA)であり、図22において、横軸は出口角θ1(deg.)、縦軸はファン入力(W)である。ただし、空気吹出口5における室内ユニット7からの吹出し風量を12m/minとした時の計測値である。
図21より、騒音値は出口角θ1が略12°程度のときに最小となっている。これは、出口角θ1が小さいほどクロスフローファン1の吸込み領域において、入射角aが小さくなって失速しにくくなること、及び、クロスフローファン1の吹出し領域において、翼間の風量分布が均一になることから、騒音値は小さくなる。
また、図22より、ファンモータ入力は出口角θ1が略27°程度のときに最小となっている。これは、出口角θ1が大きいほど、クロスフローファン1の吹出し領域において、翼面上で後縁剥離が生じにくくなるため、ファンモータ入力は小さくなる。
図21及び図22から、出口角θ1を12°≦θ1≦27°とすることにより、騒音値が低く、ファン入力の小さい室内ユニットが得られる。出口角θ1が12°よりも小さくなると、ファン入力が大きくなり、出口角θが27°よりも大きくなると、騒音値が大きくなる。
なお、この出口角θ1を12°≦θ1≦27°としたときのCOPはほぼ同様の値を示す。出口角θ1が小さいと入射角a1は小さくなり、騒音値38dBのときの風量は大きくなり、熱交換器での伝熱性能は向上するが、ファンモータ入力は増加する。一方、出口角θ1が大きいと入射角a1は大きくなり、騒音値38dBのときの風量は小さくなって、熱交換器での伝熱性能は低下するが、ファンモータ入力は減少する。このとき、熱交換器の伝熱性能変化分と、ファンモータ入力の変化分はほぼ等しいため、騒音値が38dBのときのCOPは12°≦θ1≦27°の範囲でほぼ等しくなる。実際、試験結果はCOPの計測値は3.52〜3.58となり、誤差内と判断できる。ここで、オフィスなどでデスクワーク中に騒音であると認識する値は、例えば40dB程度であるため、騒音値38dBの場合を考慮している。
上記のように、クロスフローファン1の円周上に回転方向に前傾する複数の翼3を備え、翼3の外周側先端3aを結んでできる円弧1aと翼3の反り線との成す角度θ1を、12°≦θ1≦27°の範囲になるように構成したことにより、騒音及びファンモータ入力を低減できる空気調和機が得られる効果がある。
実施の形態11.
実施の形態10では、図20における出口角θ1について述べたが、実施の形態11では、入口角θ2について述べる。
出口角β1を18°に固定し、入口角θ2を70〜110°の範囲で変化させたときの騒音値を図23、ファンモータ入力を図24に示す。図23において、横軸は入口角θ2(deg.)、縦軸はファン入力(W)である。ただし、空気吹出口5における室内ユニット7からの吹出し風量を12m/minとした時の計測値である。
図23より、騒音値は入口角θ2が略80°程度のときに最小となっている。これは、入口角θ2が小さいほどクロスフローファン1の吸込み領域において、後縁剥離が生じにくくなること、及び、クロスフローファン1の吹出し領域において、翼間の風量分布が均一になることから、騒音値は小さくなる。
また、図24より、ファンモータ入力は入口角θ2が略100°程度のときに最小となっている。これは、入口角θ2が大きいほど、クロスフローファン1の吹出し領域において、入射角a2が小さくなるため、ファンモータ入力は小さくなる。
図23及び図24から、入口角θ2を80°≦θ2≦100°とすることにより、騒音値が低く、ファン入力の小さい室内ユニットが得られる。入口角θ2が80°よりも小さい場合には、ファン入力が大きくなると共に騒音値も上昇する。また、入口角θ2が100°よりも大きい場合には、騒音値が大きくなると共にファン入力も上昇する。
なお、この入口角θ2を80°≦θ2≦100°としたときのCOPはほぼ同様の値を示す。入口角θ2が大きいと入射角a2は小さくなり、騒音値38dBのときの風量は小さくなって、熱交換器の伝熱性能は低下するが、ファンモータ入力は減少する。一方、入口角θ2が小さいと入射角a2は大きくなり、騒音値38dBのときの風量は大きくなって、熱交換器の伝熱性能は向上するが、ファンモータ入力は増加する。このとき、熱交換器の伝熱性能変化分と、ファンモータ入力の変化分はほぼ等しいため、騒音値が38dBのときのCOPは80°≦θ2≦100°の範囲でほぼ等しくなる。実際、試験結果はCOPの計測値は3.51〜3.55となり、誤差内と判断できる。
このように、クロスフローファン1の円周上に回転方向に前傾する複数の翼3を備え、翼3の内周側先端3bを結んでできる円弧1bと翼3の反り線との成す角度θ2を、80°≦θ2≦100°の範囲になるように構成したことにより、騒音及びファンモータ入力を低減できる空気調和機が得られる効果がある。
なお、実施の形態10及び実施の形態11では、クロスフローファン1の翼3の形状について説明したが、実施の形態1〜実施の形態9における空気調和機の室内ユニット7に設けられているクロスフローファン1のいずれに適用しても、同様の効果を奏する。
この発明の実施の形態1に係る空気調和機の室内ユニットを示す断面構成図である。 この発明の実施の形態1に係る室内ユニットの比較例として、壁面に設置する室内ユニットを示す構成図である。 この発明の実施の形態1に係る室内ユニットの比較例として、ファン単体を示す構成図である。 この発明の実施の形態1に係るクロスフローファンの1つの翼を示す説明図である。 この発明の実施の形態1に係る室内ユニットのファン吸込み領域α(deg.)における吸込み側の入射角(deg.)を示すグラフである。 この発明の実施の形態1に係る室内ユニットのファン吸込み領域α(deg.)における翼間風量(m/min)を示すグラフである。 この発明の実施の形態1に係るクロスフローファンの吸込み側における入射角に対するフィン入力を示す特性図である。 この発明の実施の形態1に係る室内ユニットの比較例として、シロッコファンを用いた場合の室内ユニットの概略構成図である。 この発明の実施の形態2に係る空気調和機の室内ユニットを示す断面構成図である。 この発明の実施の形態3に係り、ファン径(D)を変えたときのファン入力Wとファン径(D)/ユニット高さ(H)の関係を示すグラフである。 この発明の実施の形態3に係る空気調和機の室内ユニットの他の構成例を示す断面構成図である。 この発明の実施形態3に係り、ファン径(D)を変えたときのファン入力Wとファン径(D)/ユニット高さ(H)の関係を示すグラフである。 この発明の実施の形態4に係る空気調和機の室内ユニットを示す断面構成図である。 この発明の実施の形態6に係る空気調和機の室内ユニットを示す断面構成図である。 この発明の実施の形態7に係る空気調和機の室内ユニットを示す断面構成図である。 この発明の実施形態7に係る気流の流れにくさを説明する説明図である。 この発明の実施の形態8に係る空気調和機の室内ユニットを示す断面構成図である。 この発明の実施形態8に係る逆流防止板を拡大して示す斜視図である。 この発明の実施の形態9に係る空気調和機の室内ユニットのケーシング部材を示す斜視図である。 この発明の実施の形態10に係るクロスフローファンの翼を拡大して示す説明図である。 この発明の実施の形態10に係り、出口角(deg.)に対する騒音値(dBA)を示すグラフである。 この発明の実施の形態10に係り、出口角(deg.)に対するファン入力(W)を示すグラフである。 この発明の実施の形態11に係り、入口角(deg.)に対する騒音値(dBA)を示すグラフである。 この発明の実施の形態11に係り、入口角(deg.)に対するファン入力(W)を示すグラフである。
符号の説明
1 クロスフローファン
2 熱交換器
3 翼
4 空気清浄装置
5 空気吹出口
6 空気吸込口
7 室内ユニット
8 ノーズ
9 ケーシング
11 変向板
15 上方側熱交換器
16 下方側熱交換器
17 補助熱交換器
18 ドレンパン
19 ファン吹出風路
20 ファン吹出口
21 逆流防止板
24 抵抗体

Claims (12)

  1. 天井の外側または天井の内側に設置される室内ユニットの下面または側面に設けられた空気吸込口と、前記空気吸込口の位置から垂直方向の距離よりも水平方向に離れた位置に設けられた空気吹出口と、前記空気吸込口と前記空気吹出口とを連結する風路と、前記風路内の前記空気吸込口側に設けられ前記空気吸込口から前記空気吹出口に室内空気を送風するクロスフローファンと、前記クロスフローファンと前記空気吹出口の間に設けられ、前記クロスフローファンの回転軸方向に複数のフィンを並設し、フィン面を通過する空気と配管内を流れる冷媒とで熱交換を行う熱交換器と、を備え、前記空気吸込口から前記クロスフローファンに直接室内空気を吸込んで前記クロスフローファンを通過させた後、前記熱交換器で熱交換して前記空気吹出口から吹出すことを特徴とする空気調和機。
  2. 一端が前記空気吸込口近傍に配置されると共に他端が前記クロスフローファンの円周近傍に配置され、前記風路を前記クロスフローファンの吸込側風路と吹出側風路とに仕切るノーズと、前記クロスフローファンの吹出し側に設けられ前記クロスフローファンから吹出す気流を安定させるように前記気流の吹出し方向に沿って風路側に突出する凸部を有するケーシングと、を備え、前記クロスフローファンから吹出した室内空気を、前記前記ケーシングと前記ノーズで構成されるファン吹出風路に通過させた後、前記ケーシングの凸部近傍から下流側に配置された前記熱交換器で熱交換することを特徴とする請求項1記載の空気調和機。
  3. 前記クロスフローファンのファン径をD、前記室内ユニットの筐体の高さをHとしたとき、0.5≦D/H≦0.7の範囲になるように構成したことを特徴とする請求項1または請求項2に記載の空気調和機。
  4. 前記ケーシングの凸部付近の風路に設けられ、気流を広角にして流す変向板を備えたことを特徴とする請求項2または請求項3に記載の空気調和機。
  5. 前記変向板の気流の前縁に前記気流に対して抵抗となるように設けられ、下流側から上流側への逆流を防止する逆流防止板を備えたことを特徴とする請求項4記載の空気調和機。
  6. 前記ケーシングの凸部であって、前記クロスフローファンの回転軸方向の両端部及び中央部のうちの少なくとも1箇所に、前記凸部からさらに前記風路に突出して設けられ、下流側から上流側への逆流を防止する抵抗体を備えたことを特徴とする請求項2乃至請求項5のいずれか1項に記載の空気調和機。
  7. 前記熱交換器は、水平方向に突出するようなV字状であることを特徴とする請求項1乃至請求項6のいずれか1項に記載の空気調和機。
  8. 前記熱交換器の近傍に補助熱交換器を備え、伝熱面積を大きくすることを特徴とする請求項1乃至請求項7のいずれか1項に記載の空気調和機。
  9. 下方側に配置される熱交換器の通風抵抗を、上方側に配置される熱交換器の通風抵抗よりも小さく構成したことを特徴とする請求項7または請求項8に記載の空気調和機。
  10. 前記熱交換器のフィンの長手方向端面と水平方向とのなす角度が25°以下になるように前記熱交換器を構成したことを特徴とする請求項7乃至請求項9のいずれか1項に記載の空気調和機。
  11. 前記クロスフローファンの円周上に回転方向に前傾する複数の翼を備え、前記翼の外周側先端を結んでできる円弧と前記翼の反り線との成す角度θ1を、12°≦θ1≦27°の範囲になるように構成したことを特徴とする請求項1乃至請求項10のいずれか1項に記載の空気調和機。
  12. 前記クロスフローファンの円周上に回転方向に前傾する複数の翼を備え、前記翼の内周側先端を結んでできる円弧と前記翼の反り線との成す角度θ2を、80°≦θ2≦100°の範囲になるように構成したことを特徴とする請求項1乃至請求項11のいずれか1項に記載の空気調和機。
JP2006122163A 2006-04-26 2006-04-26 空気調和機 Active JP4678327B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122163A JP4678327B2 (ja) 2006-04-26 2006-04-26 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122163A JP4678327B2 (ja) 2006-04-26 2006-04-26 空気調和機

Publications (2)

Publication Number Publication Date
JP2007292405A true JP2007292405A (ja) 2007-11-08
JP4678327B2 JP4678327B2 (ja) 2011-04-27

Family

ID=38763177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122163A Active JP4678327B2 (ja) 2006-04-26 2006-04-26 空気調和機

Country Status (1)

Country Link
JP (1) JP4678327B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013295A (ja) * 2010-06-30 2012-01-19 Sanyo Electric Co Ltd ビルトイン型空気調和装置
JP2013011393A (ja) * 2011-06-29 2013-01-17 Sanyo Electric Co Ltd ビルトイン型空気調和装置
CN103322619A (zh) * 2013-06-21 2013-09-25 青岛海信日立空调系统有限公司 风管式空调室内机
JP2016008730A (ja) * 2014-06-23 2016-01-18 株式会社富士通ゼネラル ダクト型空気調和機
WO2018189933A1 (ja) * 2017-04-10 2018-10-18 シャープ株式会社 空気調和機
WO2019187895A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 空気調和機の室内機
WO2019187897A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 空気調和機の室内機
CN112050296A (zh) * 2019-06-06 2020-12-08 夏普株式会社 空气调节机
CN114165900A (zh) * 2021-11-29 2022-03-11 青岛海信日立空调系统有限公司 一种空调器
CN114183815A (zh) * 2021-12-16 2022-03-15 宁波奥克斯电气股份有限公司 一种降噪控制方法、装置及空调器
CN114450180A (zh) * 2019-10-11 2022-05-06 三菱重工制冷空调系统株式会社 车辆用空调装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247221B (zh) * 2013-06-10 2017-06-23 松下知识产权经营株式会社 风机和使用其的空气调节机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649824A (en) * 1979-09-29 1981-05-06 Hitachi Ltd Indoor unit of separate type room air conditioner
JPS62173616U (ja) * 1986-04-22 1987-11-04
JPS6357419U (ja) * 1986-09-30 1988-04-16
JPH0387529A (ja) * 1989-06-23 1991-04-12 Hitachi Ltd 貫流フアンを用いた送風装置および空気調和機
JPH03233234A (ja) * 1990-02-09 1991-10-17 Toshiba Corp 空気調和機
JPH04100515U (ja) * 1991-02-05 1992-08-31
JPH08200283A (ja) * 1995-01-30 1996-08-06 Hitachi Ltd 貫流ファンおよびこれを備えた空気調和機
JPH11182884A (ja) * 1997-12-16 1999-07-06 Lg Electron Inc エアコンの室内機
WO2002029331A1 (fr) * 2000-09-29 2002-04-11 Mitsubishi Denki Kabushiki Kaisha Climatiseur
JP2005016933A (ja) * 2003-06-06 2005-01-20 Sanyo Electric Co Ltd 空気調和装置の室内機
JP2006057862A (ja) * 2004-08-17 2006-03-02 Matsushita Electric Ind Co Ltd 空気調和機の室内機

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649824A (en) * 1979-09-29 1981-05-06 Hitachi Ltd Indoor unit of separate type room air conditioner
JPS62173616U (ja) * 1986-04-22 1987-11-04
JPS6357419U (ja) * 1986-09-30 1988-04-16
JPH0387529A (ja) * 1989-06-23 1991-04-12 Hitachi Ltd 貫流フアンを用いた送風装置および空気調和機
JPH03233234A (ja) * 1990-02-09 1991-10-17 Toshiba Corp 空気調和機
JPH04100515U (ja) * 1991-02-05 1992-08-31
JPH08200283A (ja) * 1995-01-30 1996-08-06 Hitachi Ltd 貫流ファンおよびこれを備えた空気調和機
JPH11182884A (ja) * 1997-12-16 1999-07-06 Lg Electron Inc エアコンの室内機
WO2002029331A1 (fr) * 2000-09-29 2002-04-11 Mitsubishi Denki Kabushiki Kaisha Climatiseur
JP2005016933A (ja) * 2003-06-06 2005-01-20 Sanyo Electric Co Ltd 空気調和装置の室内機
JP2006057862A (ja) * 2004-08-17 2006-03-02 Matsushita Electric Ind Co Ltd 空気調和機の室内機

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013295A (ja) * 2010-06-30 2012-01-19 Sanyo Electric Co Ltd ビルトイン型空気調和装置
JP2013011393A (ja) * 2011-06-29 2013-01-17 Sanyo Electric Co Ltd ビルトイン型空気調和装置
CN103322619A (zh) * 2013-06-21 2013-09-25 青岛海信日立空调系统有限公司 风管式空调室内机
JP2016008730A (ja) * 2014-06-23 2016-01-18 株式会社富士通ゼネラル ダクト型空気調和機
WO2018189933A1 (ja) * 2017-04-10 2018-10-18 シャープ株式会社 空気調和機
CN111902679A (zh) * 2018-03-30 2020-11-06 大金工业株式会社 空调机的室内机
WO2019187897A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 空気調和機の室内機
JP2019178853A (ja) * 2018-03-30 2019-10-17 ダイキン工業株式会社 空気調和機の室内機
WO2019187895A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 空気調和機の室内機
US20210033288A1 (en) * 2018-03-30 2021-02-04 Daikin Industries, Ltd. Indoor unit of air conditioner
CN112050296A (zh) * 2019-06-06 2020-12-08 夏普株式会社 空气调节机
CN112050296B (zh) * 2019-06-06 2024-02-06 夏普株式会社 空气调节机
CN114450180A (zh) * 2019-10-11 2022-05-06 三菱重工制冷空调系统株式会社 车辆用空调装置
CN114450180B (zh) * 2019-10-11 2023-07-14 三菱重工制冷空调系统株式会社 车辆用空调装置
CN114165900A (zh) * 2021-11-29 2022-03-11 青岛海信日立空调系统有限公司 一种空调器
CN114183815A (zh) * 2021-12-16 2022-03-15 宁波奥克斯电气股份有限公司 一种降噪控制方法、装置及空调器
CN114183815B (zh) * 2021-12-16 2023-10-20 宁波奥克斯电气股份有限公司 一种降噪控制方法、装置及空调器

Also Published As

Publication number Publication date
JP4678327B2 (ja) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4678327B2 (ja) 空気調和機
JP5369141B2 (ja) 空気調和機
JP5579134B2 (ja) 室内機
JP6058242B2 (ja) 空気調和機
EP2119995B1 (en) Heat exchanger
WO2012002081A1 (ja) ファン、成型用金型および流体送り装置
JP4761324B2 (ja) 貫流ファン、成型用金型および流体送り装置
JP2016200338A (ja) 空気調和機
JP2009121731A (ja) 空気調和機
KR100971855B1 (ko) 공기 조화기
JP5320435B2 (ja) 貫流ファン、成型用金型および流体送り装置
JP2006153332A (ja) 空気調和機の室外機
CN114440316B (zh) 风道组件和具有其的空气调节设备
JP5506821B2 (ja) 空気調和機
JP6614876B2 (ja) 空気調和機の室内機
CN114484611A (zh) 壁挂式空调室内机
WO2019123743A1 (ja) 空気調和機の室内機
JPH04316930A (ja) 空気調和機
JP7401802B2 (ja) 熱交換器及び室内機
JP5997115B2 (ja) 空気調和機
US20210293444A1 (en) Systems and methods to moderate airflow
JP4675799B2 (ja) 空気調和機
TWI276760B (en) Integral air conditioner
JP2008095971A (ja) 空気調和装置の室内ユニット
KR100261478B1 (ko) 분리형 공기조화기의 실내기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R151 Written notification of patent or utility model registration

Ref document number: 4678327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250