JP2007291285A - Optical stabilization group-containing cage-like silsesquioxane and its preparation process - Google Patents

Optical stabilization group-containing cage-like silsesquioxane and its preparation process Download PDF

Info

Publication number
JP2007291285A
JP2007291285A JP2006123100A JP2006123100A JP2007291285A JP 2007291285 A JP2007291285 A JP 2007291285A JP 2006123100 A JP2006123100 A JP 2006123100A JP 2006123100 A JP2006123100 A JP 2006123100A JP 2007291285 A JP2007291285 A JP 2007291285A
Authority
JP
Japan
Prior art keywords
group
general formula
formula
carbon atoms
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006123100A
Other languages
Japanese (ja)
Other versions
JP4711076B2 (en
Inventor
Takayuki Honma
孝之 本間
Toru Kubota
透 久保田
Ayumi Kiyomori
歩 清森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006123100A priority Critical patent/JP4711076B2/en
Publication of JP2007291285A publication Critical patent/JP2007291285A/en
Application granted granted Critical
Publication of JP4711076B2 publication Critical patent/JP4711076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel optical stabilization group-containing cage-like silsesquioxane with a low volatility and an excellent heat-resistance, and its preparation process. <P>SOLUTION: The optical stabilization group-containing cage-like silsesquioxane represented by the following formula (1): [R<SP>1</SP>SiO<SB>3/2</SB>]<SB>m</SB>[R<SP>2</SP>SiO<SB>3/2</SB>]<SB>n</SB>[R<SP>1</SP>SiO<SB>2</SB>R<SP>3</SP>]<SB>p</SB>(1) (wherein R<SP>1</SP>is a mono-valent organic group containing a hindered amino group, R<SP>2</SP>is a substituted or unsubstituted mono-valent hydrocarbon group having 1-30C numbers, R<SP>3</SP>is a hydrogen atom or an alkyl group having 1-6C numbers, each may be the same or different, m is an integer of 0-14, n is an integer of 0-13, p is 0 or 1, however, m and p simultaneously become 0, and m+n+p is an integer of 8-14), and its preparation process are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特に高分子材料の安定性向上のために好適に用いられる光安定化基含有かご状シルセスキオキサン及びその製造方法に関するものである。   The present invention relates to a light-stabilizing group-containing cage-shaped silsesquioxane that is suitably used for improving the stability of a polymer material, and a method for producing the same.

ビニル系重合体やポリイミド、ポリアミドイミド、ポリアミド、ポリウレタン、ポリフェニレンスルフィド、ポリエーテルスルフォン、ポリフェニレンエーテル、ポリカーボネート等多くの高分子体は、光の作用により経時劣化することは周知である。この劣化は、高分子材料の物理的特性の悪化として、例えば粘度指数の変化を伴う最大引張応力や可撓性の低減として現れる。   It is well known that many polymers such as vinyl polymers, polyimides, polyamideimides, polyamides, polyurethanes, polyphenylene sulfides, polyether sulfones, polyphenylene ethers, polycarbonates and the like deteriorate with time due to the action of light. This deterioration appears as a deterioration of the physical properties of the polymer material, for example, as a decrease in maximum tensile stress or flexibility with a change in viscosity index.

この種の劣化に対抗するため、紫外線吸収剤であるベンゾトリアゾールやベンゾフェノン、ニッケル錯体等の安定化剤や酸化防止剤であるヒンダードフェノール系、特に1,6−ビス(tert−ブチル)−ヒドロキシトルエン系の安定化剤と共にヒンダードアミン系、特に2,2,6,6−テトラメチルピペリジニル基や1,2,2,6,6−ペンタメチルピペリジニル基を含む化合物を配合することが検討されてきた。   In order to combat this type of degradation, stabilizers such as benzotriazole, benzophenone and nickel complexes as ultraviolet absorbers and hindered phenols as antioxidants, particularly 1,6-bis (tert-butyl) -hydroxy A compound containing a hindered amine group, particularly a 2,2,6,6-tetramethylpiperidinyl group or a 1,2,2,6,6-pentamethylpiperidinyl group, together with a toluene stabilizer. Has been studied.

しかしながら、近年、材料に要求される特性は益々厳しくなってきており、長期間使用時における揮散や、熱可塑性樹脂の加工時における揮散等、添加した安定剤が減少することにより安定化効果が持続しないことや、揮散した化合物による高分子材料の表面汚染等が問題となっている。これらの問題を解決するために、ヒンダードアミン系化合物において高分子材料に直接ヒンダードアミン化合物を結合したり(特開2000−336118号公報(特許文献1))、複数のヒンダードアミン化合物を結合させ高分子量化する方法(特開2005−112809号公報(特許文献2))が報告されているが、高分子量化されたヒンダードアミン化合物自身の熱安定性や耐候性がまだ十分ではない等、更なる改良が望まれている。   However, in recent years, the required properties of materials have become increasingly severe, and the stabilizing effect has been sustained by the reduction of added stabilizers such as volatilization during long-term use and volatilization during processing of thermoplastic resins. And surface contamination of the polymer material by the volatilized compound is a problem. In order to solve these problems, a hindered amine compound is directly bonded to a polymer material in a hindered amine compound (Japanese Patent Laid-Open No. 2000-336118 (Patent Document 1)), or a plurality of hindered amine compounds are bonded to increase the molecular weight. Although a method (Japanese Patent Laid-Open No. 2005-112809 (Patent Document 2)) has been reported, further improvement is desired, such as the thermal stability and weather resistance of the high molecular weight hindered amine compound itself are still insufficient. ing.

また、ヒンダードアミン化合物の熱安定性や耐候性を向上するために、シリコーン重合体にヒンダードアミノ基を含有させる方法が(特許2961541号公報(特許文献3))に開示されている。しかしながら、上記特許公報に記載された直鎖状、ランダム構造の重合体では、末端にアルコキシル基やシラノール基が残るために安定性が低く、保存中に残留シラノールの架橋反応により高分子量化が進行し溶解性が低下することで固体が析出するといった問題や高分子材料中に構造の制御されていないヒンダードアミノ基を含む高分子量体が存在してしまうといった問題があった。   Moreover, in order to improve the thermal stability and weather resistance of a hindered amine compound, a method of incorporating a hindered amino group into a silicone polymer is disclosed in Japanese Patent No. 2995141 (Patent Document 3). However, the linear and random structure polymers described in the above patent publications have low stability because alkoxyl groups and silanol groups remain at the ends, and the molecular weight increases due to the crosslinking reaction of residual silanols during storage. However, there is a problem that a solid precipitates due to a decrease in solubility and a problem that a polymer having a hindered amino group whose structure is not controlled exists in the polymer material.

特開2000−336118号公報JP 2000-336118 A 特開2005−112809号公報JP-A-2005-112809 特許2961541号公報Japanese Patent No. 2954141

本発明の目的は、揮発性が低く、耐熱性に優れた新規な光安定化基含有かご状シルセスキオキサンとその製造方法を提供することにある。   An object of the present invention is to provide a novel light-stabilizing group-containing cage silsesquioxane having low volatility and excellent heat resistance, and a method for producing the same.

本発明者らは、上記課題を解決すべく鋭意研究を行った結果、〔1〕光安定化基としてヒンダードアミノ基を有する加水分解性シランを加水分解させること、〔2〕光安定化基としてヒンダードアミノ基を有する加水分解性シランを1価炭化水素基を有する加水分解性シランの共存か加水分解縮合させること、又は〔3〕光安定化基としてヒンダードアミノ基を有する加水分解性シランとかご状シルセスキオキサンのトリシラノールとを反応させることで、下記一般式(1)
[R1SiO3/2m[R2SiO3/2n[R1SiO23p (1)
(式中、R1はヒンダードアミノ基を含む1価の有機基、R2は炭素数1〜30の置換又は非置換の1価炭化水素基、R3は水素原子又は炭素数1〜6のアルキル基であって、各々同一でも異なっていてもよい。mは0〜14の整数、nは0〜13の整数、pは0又は1であるが、mとpは同時に0にならず、かつm+n+pは8〜14の整数である。)
で表される新規な光安定化基含有かご状シルセスキオキサンとその製造方法を完成させるに至った。
As a result of intensive studies to solve the above problems, the present inventors have [1] hydrolyzing a hydrolyzable silane having a hindered amino group as a light stabilizing group, and [2] a light stabilizing group. Hydrolyzable silane having a hindered amino group as a coexistence or hydrolytic condensation of a hydrolyzable silane having a monovalent hydrocarbon group, or [3] hydrolyzable having a hindered amino group as a light stabilizing group By reacting silane with trisilanol of cage silsesquioxane, the following general formula (1)
[R 1 SiO 3/2 ] m [R 2 SiO 3/2 ] n [R 1 SiO 2 R 3 ] p (1)
Wherein R 1 is a monovalent organic group containing a hindered amino group, R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 30 carbon atoms, R 3 is a hydrogen atom or 1 to 6 carbon atoms. Each may be the same or different, m is an integer of 0 to 14, n is an integer of 0 to 13, and p is 0 or 1, but m and p are not 0 at the same time. And m + n + p is an integer of 8 to 14.)
A new light-stabilizing group-containing cage silsesquioxane represented by the formula (1) and a method for producing the same have been completed.

即ち、本発明は、下記の光安定化基含有かご状シルセスキオキサンとその製造方法を提供する。
請求項1:
下記一般式(1)
[R1SiO3/2m[R2SiO3/2n[R1SiO23p (1)
(式中、R1はヒンダードアミノ基を含む1価の有機基、R2は炭素数1〜30の置換又は非置換の1価炭化水素基、R3は水素原子又は炭素数1〜6のアルキル基であって、各々同一でも異なっていてもよい。mは0〜14の整数、nは0〜13の整数、pは0又は1であるが、mとpは同時に0にならず、かつm+n+pは8〜14の整数である。)
で表されることを特徴とする光安定化基含有かご状シルセスキオキサン。
請求項2:
一般式(1)中のR1において、ヒンダードアミノ基が2,2,6,6−テトラメチル−ピペリジニル基又は1,2,2,6,6−ペンタメチル−ピペリジニル基であることを特徴とする請求項1記載の光安定化基含有かご状シルセスキオキサン。
請求項3:
一般式(1)において、R2がメチル基、エチル基、イソブチル基、イソオクチル基、シクロペンチル基、シクロヘキシル基、フェニル基又は3−トリフルオロプロピル基であることを特徴とする請求項1又は2記載の光安定化基含有かご状シルセスキオキサン。
請求項4:
下記一般式(2)
1SiX3 (2)
(式中、R1はヒンダードアミノ基を含む1価の有機基、Xは塩素又は炭素数1〜6のアルコキシル基であって、各々同一でも異なっていてもよい。)
で表される加水分解性シランを加水分解縮合させることを特徴とする請求項1乃至3のいずれか1項記載の光安定化基含有かご状シルセスキオキサンの製造方法。
請求項5:
下記一般式(2)
1SiX3 (2)
(式中、R1はヒンダードアミノ基を含む1価の有機基、Xは塩素又は炭素数1〜6のアルコキシル基であって、各々同一でも異なっていてもよい。)
で表される加水分解性シランと、下記一般式(3)
2SiX3 (3)
(式中、R2は炭素数1〜30の置換又は非置換の1価炭化水素基、Xは塩素又は炭素数1〜6のアルコキシル基であって、各々同一でも異なっていてもよい。)
で表される加水分解性シランを加水分解縮合することを特徴とする請求項4記載の光安定化基含有かご状シルセスキオキサンの製造方法。
請求項6:
下記一般式(2)
1SiX3 (2)
(式中、R1はヒンダードアミノ基を含む1価の有機基、Xは塩素又は炭素数1〜6のアルコキシル基であって、各々同一でも異なっていてもよい。)
で表される加水分解性シランと、下記一般式(4)
(R2SiO3/2a(R2SiO2H)3 (4)
(式中、R2は炭素数1〜30の置換又は非置換の1価炭化水素基であって、各々同一でも異なっていてもよい。aは4〜11の整数である。)
で表されるかご状シルセスキオキサンのトリシラノールとを反応させることを特徴とする請求項1乃至3のいずれか1項記載の光安定化基含有かご状シルセスキオキサンの製造方法。
That is, the present invention provides the following light-stabilizing group-containing cage silsesquioxane and a method for producing the same.
Claim 1:
The following general formula (1)
[R 1 SiO 3/2 ] m [R 2 SiO 3/2 ] n [R 1 SiO 2 R 3 ] p (1)
Wherein R 1 is a monovalent organic group containing a hindered amino group, R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 30 carbon atoms, R 3 is a hydrogen atom or 1 to 6 carbon atoms. Each may be the same or different, m is an integer of 0 to 14, n is an integer of 0 to 13, and p is 0 or 1, but m and p are not 0 at the same time. And m + n + p is an integer of 8 to 14.)
A cage-shaped silsesquioxane containing a light-stabilizing group, wherein
Claim 2:
R 1 in the general formula (1) is characterized in that the hindered amino group is a 2,2,6,6-tetramethyl-piperidinyl group or a 1,2,2,6,6-pentamethyl-piperidinyl group. The cage-shaped silsesquioxane containing the photostabilizing group according to claim 1.
Claim 3:
The general formula (1), wherein R 2 is a methyl group, an ethyl group, an isobutyl group, an isooctyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, or a 3-trifluoropropyl group. A cage silsesquioxane containing a light stabilizing group.
Claim 4:
The following general formula (2)
R 1 SiX 3 (2)
(In the formula, R 1 is a monovalent organic group containing a hindered amino group, X is chlorine or an alkoxyl group having 1 to 6 carbon atoms, which may be the same or different.)
The method for producing a light-stabilizing group-containing cage silsesquioxane according to any one of claims 1 to 3, wherein the hydrolyzable silane represented by the formula (1) is hydrolyzed and condensed.
Claim 5:
The following general formula (2)
R 1 SiX 3 (2)
(In the formula, R 1 is a monovalent organic group containing a hindered amino group, X is chlorine or an alkoxyl group having 1 to 6 carbon atoms, which may be the same or different.)
And a hydrolyzable silane represented by the following general formula (3)
R 2 SiX 3 (3)
(Wherein R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 30 carbon atoms, and X is chlorine or an alkoxyl group having 1 to 6 carbon atoms, which may be the same or different.)
The method for producing a light-stabilizing group-containing cage silsesquioxane according to claim 4, wherein the hydrolyzable silane represented by the formula is hydrolyzed and condensed.
Claim 6:
The following general formula (2)
R 1 SiX 3 (2)
(In the formula, R 1 is a monovalent organic group containing a hindered amino group, X is chlorine or an alkoxyl group having 1 to 6 carbon atoms, which may be the same or different.)
And a hydrolyzable silane represented by the following general formula (4)
(R 2 SiO 3/2 ) a (R 2 SiO 2 H) 3 (4)
(In the formula, R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 30 carbon atoms, and each may be the same or different. A is an integer of 4 to 11)
The method for producing a light-stabilizing group-containing cage silsesquioxane according to any one of claims 1 to 3, wherein the trisilanol of cage silsesquioxane represented by the formula is reacted.

本発明の光安定化基含有かご状シルセスキオキサンは、揮発性が低く、安定性、耐熱性に優れ、かつ高分子材料に添加することで物性の向上を寄与しつつ光安定化効果をもたらす添加剤として非常に有用である。   The light-stabilizing group-containing cage silsesquioxane of the present invention has low volatility, excellent stability and heat resistance, and contributes to improvement of physical properties by adding to a polymer material, while providing a light stabilization effect. It is very useful as an additive.

以下、本発明について、詳細に説明する。
本発明の光安定化基含有かご状シルセスキオキサンは、下記一般式(1)
[R1SiO3/2m[R2SiO3/2n[R1SiO23p (1)
(式中、R1はヒンダードアミノ基を含む1価の有機基、R2は炭素数1〜30の置換又は非置換の1価炭化水素基、R3は水素原子又は炭素数1〜6のアルキル基であって、各々同一でも異なっていてもよい。mは0〜14の整数、nは0〜13の整数、pは0又は1であるが、mとpは同時に0にならず、かつm+n+pは8〜14の整数である。)
で表される。
Hereinafter, the present invention will be described in detail.
The light-stabilizing group-containing cage silsesquioxane of the present invention has the following general formula (1):
[R 1 SiO 3/2 ] m [R 2 SiO 3/2 ] n [R 1 SiO 2 R 3 ] p (1)
Wherein R 1 is a monovalent organic group containing a hindered amino group, R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 30 carbon atoms, R 3 is a hydrogen atom or 1 to 6 carbon atoms. Each may be the same or different, m is an integer of 0 to 14, n is an integer of 0 to 13, and p is 0 or 1, but m and p are not 0 at the same time. And m + n + p is an integer of 8 to 14.)
It is represented by

上記一般式(1)で表される光安定化基含有かご状シルセスキオキサンのR1は、光安定化基としてヒンダードアミノ基を含む好ましくは炭素数10〜20の1価の有機基であり、R1は同一でも異なっていてもよく、ヒンダードアミノ基として2,2,6,6−テトラメチル−ピペリジニル基(例えば、2,2,6,6−テトラメチル−1−ピペリジニル基又は2,2,6,6−テトラメチル−4−ピペリジニル基)、1,2,2,6,6−ペンタメチル−ピペリジニル基(例えば、1,2,2,6,6−ペンタメチル−4−ピペリジニル基)等のヒンダードピペリジニル基を含むものが好ましい。具体的には、下記一般式(A)に示すものが挙げられる。 R 1 of the cage-shaped silsesquioxane containing the light stabilizing group represented by the general formula (1) preferably contains a hindered amino group as the light stabilizing group, and is preferably a monovalent organic group having 10 to 20 carbon atoms. R 1 may be the same or different, and a 2,2,6,6-tetramethyl-piperidinyl group (for example, a 2,2,6,6-tetramethyl-1-piperidinyl group as a hindered amino group) Or 2,2,6,6-tetramethyl-4-piperidinyl group), 1,2,2,6,6-pentamethyl-piperidinyl group (for example, 1,2,2,6,6-pentamethyl-4-piperidinyl group) A group containing a hindered piperidinyl group such as a group) is preferable. Specifically, what is shown in the following general formula (A) is mentioned.

Figure 2007291285
Figure 2007291285

式(A)中、Rb及びRcは、下記表1のRb及び表2のRcの組み合わせ、又は表3のRb及び表4のRcの組み合わせが好ましいが、特にRbがH−又はCH3−、Rcが−OC36−又は−NHC36−の組み合わせや、Rbが−C36−、Rcが−Hの組み合わせが好ましい。 Wherein (A), R b and R c are the combination of R b and Table 2 of R c in the following Table 1, or combinations Table 3 R b and Table 4 R c are preferred, in particular R b A combination in which H— or CH 3 —, R c is —OC 3 H 6 — or —NHC 3 H 6 —, or a combination in which R b is —C 3 H 6 — and R c is —H is preferable.

Figure 2007291285
なお、表中c−C611−はシクロヘキシル基、Phはフェニル基を表す。
Figure 2007291285
In the table, c-C 6 H 11 -represents a cyclohexyl group, and Ph represents a phenyl group.

Figure 2007291285
Figure 2007291285

Figure 2007291285
Figure 2007291285

Figure 2007291285
なお、表中Phはフェニル基を表す。
Figure 2007291285
In the table, Ph represents a phenyl group.

また、上記一般式(1)中のR2は、炭素原子数1〜30、好ましくは1〜10の置換又は非置換の1価炭化水素基であり、R2は同一でも異なっていてもよい。R2の具体例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、sec−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、n−ヘキシル基、イソヘキシル基、シクロヘキシル基、n−ヘプチル基、イソヘプチル基、n−オクチル基、イソオクチル基、tert−オクチル基、n−ノニル基、イソノニル基、n−デシル基、イソデシル基、n−ウンデシル基、イソウンデシル基、n−ドデシル基、イソドデシル基等の直鎖状若しくは分岐状のアルキル基といった非環状又は環状脂肪族1価炭化水素基、ベンジル基、フェネチル基、2−メチルベンジル基、3−メチルベンジル基、4−メチルベンジル基等のアラルキル基、アラアルケニル基、フェニル基、トリル基、キシリル基のようなアリール基、3,3,3−トリフルオロ−n−プロピル基等の含フッ素アルキル基等が挙げられるが、特にエチル基、イソブチル基、イソオクチル基、シクロペンチル基、シクロヘキシル基、フェニル基、3−トリフルオロプロピル基が好ましく、特にメチル基、エチル基、イソブチル基、イソオクチル基、シクロペンチル基、シクロヘキシル基、フェニル基、3−トリフルオロプロピル基が好ましい。 R 2 in the general formula (1) is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms, and R 2 may be the same or different. . Specific examples of R 2 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, isopentyl group, Neopentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, tert-octyl group, n-nonyl group, isononyl group, n-decyl group An acyclic or cyclic aliphatic monovalent hydrocarbon group such as a linear or branched alkyl group such as an isodecyl group, an n-undecyl group, an isoundecyl group, an n-dodecyl group or an isododecyl group, a benzyl group, a phenethyl group, 2 -Aralkyl groups such as methylbenzyl group, 3-methylbenzyl group, 4-methylbenzyl group, Examples include an aryl group such as a kenyl group, a phenyl group, a tolyl group, and a xylyl group, and a fluorine-containing alkyl group such as a 3,3,3-trifluoro-n-propyl group. Particularly, an ethyl group, an isobutyl group, an isooctyl group, and the like. Group, cyclopentyl group, cyclohexyl group, phenyl group and 3-trifluoropropyl group are preferable, and methyl group, ethyl group, isobutyl group, isooctyl group, cyclopentyl group, cyclohexyl group, phenyl group and 3-trifluoropropyl group are particularly preferable. .

また、上記一般式(1)中のR3は水素原子又は炭素数1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基等)であり、R3は同一でも異なっていてもよい。 Moreover, R < 3 > in the said General formula (1) is a hydrogen atom or a C1-C6 alkyl group (for example, a methyl group, an ethyl group, a propyl group, a butyl group etc.), and R < 3 > is the same or different. May be.

上記一般式(1)中、mは0〜14、特に0〜12の整数であり、nは0〜13、特に0〜7の整数、pは0又は1であるが、mとpは同時に0にならず、かつm+n+pは8〜14の整数である。   In the general formula (1), m is an integer of 0 to 14, particularly 0 to 12, n is an integer of 0 to 13, particularly 0 to 7, and p is 0 or 1, but m and p are simultaneously It is not 0, and m + n + p is an integer of 8-14.

上記一般式(1)で表されるシルセスキオキサンの分子配列の形状はその構成原子の50質量%以上でかご状部分、即ち、シロキサン結合で形成された三次元網状部分を構成することが好ましく、このようなものとしては、例えば下記一般式(5)〜(10)に代表される構造のものが挙げられ、シルセスキオキサンは単体であっても混合物であってもよい。また、分子配列がランダム構造やラダー構造のものも含んでもよいが、好ましくは重量平均分子量(GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算値)が5,000より小さいシルセスキオキサンの合計が50質量%以下であることが好ましい。   The shape of the molecular arrangement of the silsesquioxane represented by the general formula (1) may form a cage-like portion, that is, a three-dimensional network portion formed of siloxane bonds, with 50% by mass or more of the constituent atoms. Preferably, as such a thing, the thing of the structure represented by the following general formula (5)-(10) is mentioned, for example, Silsesquioxane may be single substance or a mixture. Moreover, although the molecular arrangement | sequence may also include a random structure or a ladder structure, Preferably the sum total of the silsesquioxane whose weight average molecular weight (The polystyrene conversion value by GPC (gel permeation chromatography)) is smaller than 5,000 is included. It is preferable that it is 50 mass% or less.

Figure 2007291285
Figure 2007291285

上記一般式(5)〜(10)において、R4は上記一般式(1)中のR1又はR2であり、R1を1つ以上含む。R3は上記と同じである。 In the general formulas (5) to (10), R 4 is R 1 or R 2 in the general formula (1), and includes one or more R 1 . R 3 is the same as above.

次に上記一般式(1)の光安定化基含有かご状シルセスキオキサンの製造方法について述べる。
上記一般式(1)の光安定化基含有かご状シルセスキオキサンは、出発物質として下記一般式(2)若しくは(3)で示される加水分解性シラン又は下記一般式(4)で示されるかご状シルセスキオキサンのトリシラノールを用いて製造することができる。
1SiX3 (2)
2SiX3 (3)
(R2SiO3/2a(R2SiO2H)3 (4)
Next, a method for producing the light-stabilizing group-containing cage silsesquioxane of the general formula (1) will be described.
The light-stabilizing group-containing cage silsesquioxane of the general formula (1) is represented by the hydrolyzable silane represented by the following general formula (2) or (3) or the following general formula (4) as a starting material. It can be produced using trisilanol of cage silsesquioxane.
R 1 SiX 3 (2)
R 2 SiX 3 (3)
(R 2 SiO 3/2 ) a (R 2 SiO 2 H) 3 (4)

一般式(2)〜(4)中のR1及びR2は各々上記一般式(1)中のR1及びR2と同じであり、Xは塩素又は炭素数1〜6のアルコキシル基であり、Xは同一でも異なっていてもよく、具体的には、塩素、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。また、上記一般式(4)中のaは4〜11の整数であり、好ましくはaは4、6、8である。一般式(4)の具体例は、下記一般式(11)、(12)、(13)で表されるものである。 Formula (2) ~ (4) R 1 and R 2 in are each the same as R 1 and R 2 in the general formula (1), X is an alkoxyl group having 1 to 6 carbon chlorine or C , X may be the same or different, and specific examples include chlorine, methoxy group, ethoxy group, propoxy group, butoxy group and the like. Moreover, a in the said General formula (4) is an integer of 4-11, Preferably a is 4, 6, 8. Specific examples of the general formula (4) are those represented by the following general formulas (11), (12), and (13).

一般式(4)で示されるかご状シルセスキオキサンのトリシラノールは対応する炭化水素基を有する官能シランを酸又は塩基性触媒を用いて溶媒中で加水分解することにより得ることができる。   The trisilanol of the cage silsesquioxane represented by the general formula (4) can be obtained by hydrolyzing a functional silane having a corresponding hydrocarbon group in a solvent using an acid or basic catalyst.

Figure 2007291285
Figure 2007291285

具体的には、
〔1〕上記一般式(2)で示される加水分解性シランと水とを反応させる、
〔2〕上記一般式(2)で示される加水分解性シランと上記一般式(3)で示される加水分解性シランと水とを反応させる、又は
〔3〕上記一般式(2)で示される加水分解性シランと上記一般式(4)で示されるかご状シルセスキオキサンのトリシラノールとを反応させる
ことにより、本発明の上記一般式(1)で示される光安定化基含有かご状シルセスキオキサンが得られる。
In particular,
[1] The hydrolyzable silane represented by the general formula (2) is reacted with water.
[2] The hydrolyzable silane represented by the general formula (2) is reacted with the hydrolyzable silane represented by the general formula (3) and water, or [3] represented by the general formula (2). By reacting the hydrolyzable silane with the trisilanol of the cage silsesquioxane represented by the general formula (4), the light-stabilizing group-containing cage silyl represented by the general formula (1) of the present invention is obtained. Sesquioxane is obtained.

上記反応においては、塩基性触媒が好適に用いられる。塩基性触媒の例としては、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩、テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩などが挙げられ、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシドが、その触媒活性が高いことからに好ましい。また、塩基性触媒は水溶液やアルコール溶液等として用いることができる。   In the above reaction, a basic catalyst is preferably used. Examples of basic catalysts include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, etc. And ammonium fluoride salts such as tetrabutylammonium fluoride. Tetramethylammonium hydroxide and tetraethylammonium hydroxide are preferred because of their high catalytic activity. The basic catalyst can be used as an aqueous solution or an alcohol solution.

この触媒の使用量は特に制限はないが、多すぎるとコストが高くなったり除去が困難になりし、少なすぎると反応が遅くなってしまうため、好ましくは加水分解性シラン1モルに対して0.001〜1.0モル、更に好ましくは0.01〜0.1モルの範囲で使用できる。   The amount of the catalyst used is not particularly limited, but if it is too much, the cost becomes high or difficult to remove, and if it is too little, the reaction becomes slow. 0.001 to 1.0 mol, and more preferably 0.01 to 0.1 mol.

加水分解縮合する場合(上記〔1〕又は〔2〕の製造方法の場合)は、加水分解性シランと水との量比は、加水分解性シラン1モルに対し、水0.1〜100モル、特に1.5〜3モルの割合であることが好ましい。水の量が少なすぎると、反応が遅くなり、目的とするシルセスキオキサンの収率が低くなるおそれがあり、水の量が多すぎると高分子量化し、かご状構造の生成物が減少するおそれがある。また、使用する水は塩基性触媒を水溶液として用いる場合はその水で代用してもよいし、別途水を加えてもよい。   In the case of hydrolytic condensation (in the case of the above production method [1] or [2]), the amount ratio of hydrolyzable silane to water is 0.1 to 100 mol of water with respect to 1 mol of hydrolyzable silane. In particular, a ratio of 1.5 to 3 mol is preferable. If the amount of water is too small, the reaction may be slowed and the yield of the desired silsesquioxane may be lowered. If the amount of water is too large, the product will have a high molecular weight and the product of the cage structure will decrease. There is a fear. Moreover, when using a basic catalyst as aqueous solution, the water to be used may be substituted with the water, and water may be added separately.

上記反応において、溶媒は使用しなくてもよいが、溶媒を用いる方が生成するかご状構造の割合が増加するので好ましい。溶媒としては、極性溶媒、非極性溶媒を単独又は混合物として用いることができる。極性溶媒としてはメタノール、エタノール、2−プロパノール等の低級アルコール類、アセトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン等のエーテル類が用いられるが、特にアセトン、テトラヒドロフランは沸点が低く系が均一になり反応性が向上することからに好ましい。   In the above reaction, the solvent may not be used, but the use of the solvent is preferable because the ratio of the cage structure to be generated increases. As the solvent, polar solvents and nonpolar solvents can be used alone or as a mixture. As the polar solvent, lower alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone and methyl isobutyl ketone, and ethers such as tetrahydrofuran are used. In particular, acetone and tetrahydrofuran have a low boiling point and the system becomes uniform. It is preferable because the reactivity is improved.

非極性溶媒としては、炭化水素系溶媒が好ましく、トルエン、キシレン等の水よりも沸点が高い溶媒が好ましく、特にトルエン等の水と共沸する溶媒は系内から水を効率よく除去できるため好ましい。特に、極性溶媒と非極性溶媒とを混合することで、前述したそれぞれの利点が得られるため混合溶媒として用いることが好ましい。   As the nonpolar solvent, a hydrocarbon solvent is preferable, a solvent having a boiling point higher than that of water such as toluene and xylene is preferable, and a solvent azeotropic with water such as toluene is particularly preferable because water can be efficiently removed from the system. . In particular, mixing a polar solvent and a nonpolar solvent provides the above-described advantages, so that it is preferably used as a mixed solvent.

反応温度としては0〜200℃、好ましくは20〜200℃、更に好ましくは、20〜120℃である。また、この反応は圧力によらず実施できるが、0.02〜0.2MPa、特に0.08〜0.15MPaが好ましい。   As reaction temperature, it is 0-200 degreeC, Preferably it is 20-200 degreeC, More preferably, it is 20-120 degreeC. This reaction can be carried out regardless of pressure, but is preferably 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa.

加水分解反応では、加水分解と共に縮合反応が進行し、一般式(2)及び/又は(3)中のXの大部分、好ましくはほとんどがOH基に加水分解され、更にOH基の大部分、好ましくは95%以上、より好ましくはほぼ100%を縮合させることが好ましい。   In the hydrolysis reaction, the condensation reaction proceeds together with the hydrolysis, and most of X in the general formulas (2) and / or (3), preferably most, is hydrolyzed to OH groups, and most of the OH groups, It is preferable to condense 95% or more, more preferably almost 100%.

本発明の製造方法による反応後の混合液からは、溶媒や反応で生成したアルコール、触媒を公知の手法で除去し、高純度の目的生成物として本発明の安定化基含有かご状シルセスキオキサンを得ることができる。なお、得られた生成物は、その目的品質に応じて、触媒を洗浄、カラム分離、固体吸着剤等の各種の精製法によって除去し、更に精製することもできるが、水洗により触媒を除去することが効率の上で好ましく、溶媒や生成したアルコールは圧力にかかわらず留去することができる。   From the mixed solution after the reaction by the production method of the present invention, the solvent, the alcohol produced by the reaction, and the catalyst are removed by a known method, and the stabilized group-containing cage silsesquioxy of the present invention is obtained as a high-purity target product. You can get sun. The obtained product can be further purified by removing the catalyst by various purification methods such as washing, column separation, solid adsorbent, etc. depending on the target quality, but the catalyst is removed by washing with water. From the viewpoint of efficiency, the solvent and the produced alcohol can be distilled off regardless of the pressure.

以下、実施例を示し、本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1] (化合物Iの合成)
ジムロート式冷却凝縮器、ディーンスターク、撹拌機、温度計を備えた100mlの四つ口フラスコを十分窒素置換した。次いで、3−(2,2,6,6−テトラメチル−ピペリジニル−4−オキシ)−プロピルトリメトキシシラン5.0g、トルエン22ml、アセトン11mlを仕込み、10%水酸化テトラエチルアンモニウム水溶液0.5gと水0.16gをゆっくりと添加した。室温で2時間熟成した後、還流下で2時間熟成した。熟成後常圧で徐々に溶媒を抜き出し、釜温が109℃に達した所で加熱を止め冷却した。得られた溶液が中性になるまで飽和食塩水で水洗し、硫酸マグネシウムを加え脱水した。ろ過により固体を除去した後、濃縮、ヘキサン洗浄、乾燥することで無色透明なオイル状生成物が3.7g得られた。得られた生成物の分析結果を以下に示す。1H−NMRスペクトルは、図1に示すとおりであり、29Si−NMRスペクトルは、図2に示すとおりである。MALDI−TOFMS〔マトリックス支援レーザー脱離イオン化−飛行時間型質量分析〕(マトリックス:Co)の測定結果は図3に示すとおりである。FT−IRスペクトルの測定結果は図4に示すとおりである。以上の結果より、得られた生成物が下記式(I)で示される光安定化基含有かご状シルセスキオキサンであることがわかった。
Example 1 Synthesis of Compound I
A 100 ml four-necked flask equipped with a Dimroth type cooling condenser, a Dean Stark, a stirrer, and a thermometer was sufficiently purged with nitrogen. Next, 5.0 g of 3- (2,2,6,6-tetramethyl-piperidinyl-4-oxy) -propyltrimethoxysilane, 22 ml of toluene, and 11 ml of acetone were charged, and 0.5 g of 10% tetraethylammonium hydroxide aqueous solution was added. 0.16 g of water was slowly added. The mixture was aged for 2 hours at room temperature and then aged for 2 hours under reflux. After aging, the solvent was gradually withdrawn at normal pressure, and when the kettle temperature reached 109 ° C., the heating was stopped and the system was cooled. The resulting solution was washed with saturated brine until neutral, and magnesium sulfate was added for dehydration. After removing the solid by filtration, 3.7 g of a colorless and transparent oily product was obtained by concentration, washing with hexane, and drying. The analysis result of the obtained product is shown below. The 1 H-NMR spectrum is as shown in FIG. 1, and the 29 Si-NMR spectrum is as shown in FIG. The measurement results of MALDI-TOFMS [Matrix Assisted Laser Desorption / Ionization-Time of Flight Mass Spectrometry] (Matrix: Co) are as shown in FIG. The measurement result of the FT-IR spectrum is as shown in FIG. From the above results, it was found that the obtained product was a light-stabilizing group-containing cage silsesquioxane represented by the following formula (I).

Figure 2007291285
Figure 2007291285

[実施例2] (化合物IIの合成)
ジムロート式冷却凝縮器、ディーンスターク、撹拌機、温度計を備えた100mlの四つ口フラスコを十分窒素置換した。次いで、3−(1,2,2,6,6−ペンタメチル−ピペリジニル−4−オキシ)−プロピルトリエトキシシラン5.8g、トルエン22ml、アセトン11mlを仕込み、10%水酸化テトラエチルアンモニウム水溶液0.5gと水0.15gをゆっくりと添加した。室温で2時間熟成した後、還流下で2時間熟成した。熟成後常圧で徐々に溶媒を抜き出し、釜温が109℃に達した所で加熱を止め冷却した。得られた溶液が中性になるまで飽和食塩水で水洗し、硫酸マグネシウムを加え脱水した。ろ過により固体を除去した後、濃縮、ヘキサン洗浄、乾燥することで無色透明なオイル状生成物が3.7g得られた。得られた生成物の分析結果を以下に示す。1H−NMRスペクトルは、図5に示すとおりであり、29Si−NMRスペクトルは、図6に示すとおりである。MALDI−TOFMSの測定結果は図7に示すとおりである。FT−IRスペクトルの測定結果は図8に示すとおりである。以上の結果より、得られた生成物が下記式(II)で示される光安定化基含有かご状シルセスキオキサンであることがわかった。
Example 2 Synthesis of Compound II
A 100 ml four-necked flask equipped with a Dimroth type cooling condenser, a Dean Stark, a stirrer, and a thermometer was sufficiently purged with nitrogen. Next, 5.8 g of 3- (1,2,2,6,6-pentamethyl-piperidinyl-4-oxy) -propyltriethoxysilane, 22 ml of toluene and 11 ml of acetone were charged, and 0.5 g of 10% aqueous tetraethylammonium hydroxide solution was added. And 0.15 g of water were slowly added. The mixture was aged for 2 hours at room temperature and then aged for 2 hours under reflux. After aging, the solvent was gradually withdrawn at normal pressure, and when the pot temperature reached 109 ° C., heating was stopped and cooling was performed. The resulting solution was washed with saturated brine until neutral, and magnesium sulfate was added for dehydration. After removing the solid by filtration, 3.7 g of a colorless and transparent oily product was obtained by concentration, washing with hexane, and drying. The analysis result of the obtained product is shown below. The 1 H-NMR spectrum is as shown in FIG. 5, and the 29 Si-NMR spectrum is as shown in FIG. The measurement result of MALDI-TOFMS is as shown in FIG. The measurement result of the FT-IR spectrum is as shown in FIG. From the above results, it was found that the obtained product was a light-stabilizing group-containing cage silsesquioxane represented by the following formula (II).

Figure 2007291285
Figure 2007291285

[実施例3] (化合物IIIの合成)
ジムロート式冷却凝縮器、ディーンスターク、撹拌機、温度計を備えた100mlの四つ口フラスコを十分窒素置換した。次いで、3−(2,2,6,6−テトラメチル−ピペリジニル−4−アミノ)−プロピルトリメトキシシラン5.0g、トルエン22ml、アセトン11mlを仕込み、10%水酸化テトラエチルアンモニウム水溶液0.5gと水0.16gをゆっくりと添加した。室温で2時間熟成した後、還流下で2時間熟成した。熟成後常圧で徐々に溶媒を抜き出し、釜温が109℃に達した所で加熱を止め冷却した。得られた溶液が中性になるまで飽和食塩水で水洗し、硫酸マグネシウムを加え脱水した。ろ過により固体を除去した後、濃縮、ヘキサン洗浄、乾燥することで淡黄色透明なオイル状生成物が3.6g得られた。得られた生成物の分析結果を以下に示す。1H−NMRスペクトルは、図9に示すとおりであり、29Si−NMRスペクトルは、図10に示すとおりである。MALDI−TOFMSの測定結果は図11に示すとおりである。FT−IRスペクトルの測定結果は図12に示すとおりである。以上の結果より、得られた生成物が下記式(III)で示される光安定化基含有かご状シルセスキオキサンであることがわかった。
Example 3 Synthesis of Compound III
A 100 ml four-necked flask equipped with a Dimroth type cooling condenser, a Dean Stark, a stirrer, and a thermometer was sufficiently purged with nitrogen. Next, 5.0 g of 3- (2,2,6,6-tetramethyl-piperidinyl-4-amino) -propyltrimethoxysilane, 22 ml of toluene and 11 ml of acetone were charged, and 0.5 g of 10% tetraethylammonium hydroxide aqueous solution was added. 0.16 g of water was slowly added. The mixture was aged for 2 hours at room temperature and then aged for 2 hours under reflux. After aging, the solvent was gradually withdrawn at normal pressure, and when the pot temperature reached 109 ° C., heating was stopped and cooling was performed. The resulting solution was washed with saturated brine until neutral, and magnesium sulfate was added for dehydration. After removing the solid by filtration, 3.6 g of a pale yellow transparent oily product was obtained by concentration, washing with hexane, and drying. The analysis result of the obtained product is shown below. The 1 H-NMR spectrum is as shown in FIG. 9, and the 29 Si-NMR spectrum is as shown in FIG. The measurement results of MALDI-TOFMS are as shown in FIG. The measurement result of the FT-IR spectrum is as shown in FIG. From the above results, it was found that the obtained product was a light-stabilizing group-containing cage silsesquioxane represented by the following formula (III).

Figure 2007291285
Figure 2007291285

[実施例4] (化合物IVの合成)
ジムロート式冷却凝縮器、ディーンスターク、撹拌機、温度計を備えた100mlの四つ口フラスコを十分窒素置換した。次いで、((i−C49)SiO3/24((i−C49)SiO2H)35.0g、3−(2,2,6,6−テトラメチル−ピペリジニル−4−オキシ)−プロピルトリメトキシシラン2.1g、メタノール100mlを仕込み、40%水酸化ベンジルトリメチルアンモニウムのメタノール溶液0.14gをゆっくりと添加した。室温で10時間熟成した後、1晩放置した。析出した白色固体をろ過により取り除き、精製、乾燥することで白色固体生成物が2.6g得られた。得られた生成物の分析結果を以下に示す。1H−NMRスペクトルは、図13に示すとおりであり、29Si−NMRスペクトルは、図14に示すとおりである。MALDI−TOFMSの測定結果は図15に示すとおりである。FT−IRスペクトルの測定結果は図16に示すとおりである。以上の結果より、得られた生成物が下記式(IV)で示される光安定化基含有かご状シルセスキオキサンであることがわかった。
Example 4 Synthesis of Compound IV
A 100 ml four-necked flask equipped with a Dimroth type cooling condenser, a Dean Stark, a stirrer, and a thermometer was sufficiently purged with nitrogen. Then, ((i-C 4 H 9) SiO 3/2) 4 ((i-C 4 H 9) SiO 2 H) 3 5.0g, 3- (2,2,6,6- tetramethyl - piperidinyl -4-Oxy) -propyltrimethoxysilane (2.1 g) and methanol (100 ml) were charged, and 40% benzyltrimethylammonium hydroxide in methanol (0.14 g) was slowly added. After aging at room temperature for 10 hours, it was left overnight. The precipitated white solid was removed by filtration, purified and dried to obtain 2.6 g of a white solid product. The analysis result of the obtained product is shown below. The 1 H-NMR spectrum is as shown in FIG. 13, and the 29 Si-NMR spectrum is as shown in FIG. The measurement result of MALDI-TOFMS is as shown in FIG. The measurement result of the FT-IR spectrum is as shown in FIG. From the above results, it was found that the obtained product was a light-stabilizing group-containing cage silsesquioxane represented by the following formula (IV).

Figure 2007291285
Figure 2007291285

[実施例5] (化合物Vの合成)
ジムロート式冷却凝縮器、ディーンスターク、撹拌機、温度計を備えた100mlの四つ口フラスコを十分窒素置換した。次いで、((i−C49)SiO3/24((i−C49)SiO2H)35.0g、3−(1,2,2,6,6−ペンタメチル−ピペリジニル−4−オキシ)−プロピルトリメトキシシラン2.3g、メタノール100mlを仕込み、40%水酸化ベンジルトリメチルアンモニウムのメタノール溶液0.14gをゆっくりと添加した。室温で10時間熟成した後、1晩放置した。析出した白色固体をろ過により取り除き、精製、乾燥することで白色固体生成物が3.2g得られた。得られた生成物の分析結果を以下に示す。1H−NMRスペクトルは、図17に示すとおりであり、29Si−NMRスペクトルは、図18に示すとおりである。MALDI−TOFMSの測定結果は図19に示すとおりである。FT−IRスペクトルの測定結果は図20に示すとおりである。以上の結果より、得られた生成物が下記式(V)で示される光安定化基含有かご状シルセスキオキサンであることがわかった。
[Example 5] (Synthesis of Compound V)
A 100 ml four-necked flask equipped with a Dimroth type cooling condenser, a Dean Stark, a stirrer, and a thermometer was sufficiently purged with nitrogen. Then, ((i-C 4 H 9 ) SiO 3/2 ) 4 ((i-C 4 H 9 ) SiO 2 H) 3 5.0 g, 3- (1,2,2,6,6-pentamethyl- Piperidinyl-4-oxy) -propyltrimethoxysilane (2.3 g) and methanol (100 ml) were charged, and 40% benzyltrimethylammonium hydroxide in methanol (0.14 g) was slowly added. After aging at room temperature for 10 hours, it was left overnight. The precipitated white solid was removed by filtration, purified and dried to obtain 3.2 g of a white solid product. The analysis result of the obtained product is shown below. The 1 H-NMR spectrum is as shown in FIG. 17, and the 29 Si-NMR spectrum is as shown in FIG. The measurement result of MALDI-TOFMS is as shown in FIG. The measurement result of the FT-IR spectrum is as shown in FIG. From the above results, it was found that the obtained product was a light-stabilizing group-containing cage silsesquioxane represented by the following formula (V).

Figure 2007291285
Figure 2007291285

実施例1の生成物の重クロロホルム溶液(内部標準:テトラメチルシラン)にて測定した1H−NMRスペクトルを示す。Heavy chloroform solution (internal standard: tetramethylsilane) of the product of Example 1 shows a 1 H-NMR spectrum was measured at. 実施例1の生成物の重クロロホルム溶液(内部標準:テトラメチルシラン)にて測定した29Si−NMRスペクトルを示す。The 29 Si-NMR spectrum measured with the deuterated chloroform solution (internal standard: tetramethylsilane) of the product of Example 1 is shown. 実施例1の生成物のMALDI−TOFMSスペクトル(マトリックス:Co)を示す。2 shows a MALDI-TOFMS spectrum (matrix: Co) of the product of Example 1. 実施例1の生成物のFT−IRスペクトルを示す。2 shows the FT-IR spectrum of the product of Example 1. 実施例2の生成物の重クロロホルム溶液(内部標準:テトラメチルシラン)にて測定した1H−NMRスペクトルを示す。Heavy chloroform solution (internal standard: tetramethylsilane) of the product of Example 2 shows a 1 H-NMR spectrum was measured at. 実施例2の生成物の重クロロホルム溶液(内部標準:テトラメチルシラン)にて測定した29Si−NMRスペクトルを示す。The 29 Si-NMR spectrum measured with the heavy chloroform solution (internal standard: tetramethylsilane) of the product of Example 2 is shown. 実施例2の生成物のMALDI−TOFMSスペクトル(マトリックス:Co)を示す。The MALDI-TOFMS spectrum (matrix: Co) of the product of Example 2 is shown. 実施例2の生成物のFT−IRスペクトルを示す。The FT-IR spectrum of the product of Example 2 is shown. 実施例3の生成物の重クロロホルム溶液(内部標準:テトラメチルシラン)にて測定した1H−NMRスペクトルを示す。Heavy chloroform solution (internal standard: tetramethylsilane) of the product of Example 3 shows the 1 H-NMR spectrum was measured at. 実施例3の生成物の重クロロホルム溶液(内部標準:テトラメチルシラン)にて測定した29Si−NMRスペクトルを示す。The 29 Si-NMR spectrum measured with the heavy chloroform solution (internal standard: tetramethylsilane) of the product of Example 3 is shown. 実施例3の生成物のMALDI−TOFMSスペクトル(マトリックス:α−シアノ−4−ヒドロキシ−シンナミックアシッド(CHCA))を示す。1 shows a MALDI-TOFMS spectrum (matrix: α-cyano-4-hydroxy-cinnamic acid (CHCA)) of the product of Example 3. 実施例3の生成物のFT−IRスペクトルを示す。2 shows the FT-IR spectrum of the product of Example 3. 実施例4の生成物の重クロロホルム溶液(内部標準:テトラメチルシラン)にて測定した1H−NMRスペクトルを示す。Heavy chloroform solution (the internal standard: tetramethylsilane) of the product of Example 4 1 H-NMR spectrum was measured at. 実施例4の生成物の重クロロホルム溶液(内部標準:テトラメチルシラン)にて測定した29Si−NMRスペクトルを示す。The 29 Si-NMR spectrum measured with the deuterated chloroform solution (internal standard: tetramethylsilane) of the product of Example 4 is shown. 実施例4の生成物のMALDI−TOFMSスペクトル(マトリックス:CHCA)を示す。The MALDI-TOFMS spectrum (matrix: CHCA) of the product of Example 4 is shown. 実施例4の生成物のFT−IRスペクトルを示す。2 shows the FT-IR spectrum of the product of Example 4. 実施例5の生成物の重クロロホルム溶液(内部標準:テトラメチルシラン)にて測定した1H−NMRスペクトルを示す。The 1 H-NMR spectrum measured with the deuterated chloroform solution (internal standard: tetramethylsilane) of the product of Example 5 is shown. 実施例5の生成物の重クロロホルム溶液(内部標準:テトラメチルシラン)にて測定した29Si−NMRスペクトルを示す。The 29 Si-NMR spectrum measured with the deuterated chloroform solution (internal standard: tetramethylsilane) of the product of Example 5 is shown. 実施例5の生成物のMALDI−TOFMSスペクトル(マトリックス:Co)を示す。The MALDI-TOFMS spectrum (matrix: Co) of the product of Example 5 is shown. 実施例5の生成物のFT−IRスペクトルを示す。2 shows the FT-IR spectrum of the product of Example 5.

Claims (6)

下記一般式(1)
[R1SiO3/2m[R2SiO3/2n[R1SiO23p (1)
(式中、R1はヒンダードアミノ基を含む1価の有機基、R2は炭素数1〜30の置換又は非置換の1価炭化水素基、R3は水素原子又は炭素数1〜6のアルキル基であって、各々同一でも異なっていてもよい。mは0〜14の整数、nは0〜13の整数、pは0又は1であるが、mとpは同時に0にならず、かつm+n+pは8〜14の整数である。)
で表されることを特徴とする光安定化基含有かご状シルセスキオキサン。
The following general formula (1)
[R 1 SiO 3/2 ] m [R 2 SiO 3/2 ] n [R 1 SiO 2 R 3 ] p (1)
Wherein R 1 is a monovalent organic group containing a hindered amino group, R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 30 carbon atoms, R 3 is a hydrogen atom or 1 to 6 carbon atoms. Each may be the same or different, m is an integer of 0 to 14, n is an integer of 0 to 13, and p is 0 or 1, but m and p are not 0 at the same time. And m + n + p is an integer of 8 to 14.)
A cage-shaped silsesquioxane containing a light-stabilizing group, wherein
一般式(1)中のR1において、ヒンダードアミノ基が2,2,6,6−テトラメチル−ピペリジニル基又は1,2,2,6,6−ペンタメチル−ピペリジニル基であることを特徴とする請求項1記載の光安定化基含有かご状シルセスキオキサン。 R 1 in the general formula (1) is characterized in that the hindered amino group is a 2,2,6,6-tetramethyl-piperidinyl group or a 1,2,2,6,6-pentamethyl-piperidinyl group. The cage-shaped silsesquioxane containing the photostabilizing group according to claim 1. 一般式(1)において、R2がメチル基、エチル基、イソブチル基、イソオクチル基、シクロペンチル基、シクロヘキシル基、フェニル基又は3−トリフルオロプロピル基であることを特徴とする請求項1又は2記載の光安定化基含有かご状シルセスキオキサン。 The general formula (1), wherein R 2 is a methyl group, an ethyl group, an isobutyl group, an isooctyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, or a 3-trifluoropropyl group. A cage silsesquioxane containing a light stabilizing group. 下記一般式(2)
1SiX3 (2)
(式中、R1はヒンダードアミノ基を含む1価の有機基、Xは塩素又は炭素数1〜6のアルコキシル基であって、各々同一でも異なっていてもよい。)
で表される加水分解性シランを加水分解縮合させることを特徴とする請求項1乃至3のいずれか1項記載の光安定化基含有かご状シルセスキオキサンの製造方法。
The following general formula (2)
R 1 SiX 3 (2)
(In the formula, R 1 is a monovalent organic group containing a hindered amino group, X is chlorine or an alkoxyl group having 1 to 6 carbon atoms, which may be the same or different.)
The method for producing a light-stabilizing group-containing cage silsesquioxane according to any one of claims 1 to 3, wherein the hydrolyzable silane represented by the formula (1) is hydrolyzed and condensed.
下記一般式(2)
1SiX3 (2)
(式中、R1はヒンダードアミノ基を含む1価の有機基、Xは塩素又は炭素数1〜6のアルコキシル基であって、各々同一でも異なっていてもよい。)
で表される加水分解性シランと、下記一般式(3)
2SiX3 (3)
(式中、R2は炭素数1〜30の置換又は非置換の1価炭化水素基、Xは塩素又は炭素数1〜6のアルコキシル基であって、各々同一でも異なっていてもよい。)
で表される加水分解性シランを加水分解縮合することを特徴とする請求項4記載の光安定化基含有かご状シルセスキオキサンの製造方法。
The following general formula (2)
R 1 SiX 3 (2)
(In the formula, R 1 is a monovalent organic group containing a hindered amino group, X is chlorine or an alkoxyl group having 1 to 6 carbon atoms, which may be the same or different.)
And a hydrolyzable silane represented by the following general formula (3)
R 2 SiX 3 (3)
(Wherein R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 30 carbon atoms, and X is chlorine or an alkoxyl group having 1 to 6 carbon atoms, which may be the same or different.)
The method for producing a light-stabilizing group-containing cage silsesquioxane according to claim 4, wherein the hydrolyzable silane represented by the formula is hydrolyzed and condensed.
下記一般式(2)
1SiX3 (2)
(式中、R1はヒンダードアミノ基を含む1価の有機基、Xは塩素又は炭素数1〜6のアルコキシル基であって、各々同一でも異なっていてもよい。)
で表される加水分解性シランと、下記一般式(4)
(R2SiO3/2a(R2SiO2H)3 (4)
(式中、R2は炭素数1〜30の置換又は非置換の1価炭化水素基であって、各々同一でも異なっていてもよい。aは4〜11の整数である。)
で表されるかご状シルセスキオキサンのトリシラノールとを反応させることを特徴とする請求項1乃至3のいずれか1項記載の光安定化基含有かご状シルセスキオキサンの製造方法。
The following general formula (2)
R 1 SiX 3 (2)
(In the formula, R 1 is a monovalent organic group containing a hindered amino group, X is chlorine or an alkoxyl group having 1 to 6 carbon atoms, which may be the same or different.)
And a hydrolyzable silane represented by the following general formula (4)
(R 2 SiO 3/2 ) a (R 2 SiO 2 H) 3 (4)
(In the formula, R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 30 carbon atoms, and each may be the same or different. A is an integer of 4 to 11)
The method for producing a light-stabilizing group-containing cage silsesquioxane according to any one of claims 1 to 3, wherein the trisilanol of cage silsesquioxane represented by the formula is reacted.
JP2006123100A 2006-04-27 2006-04-27 Light-stabilizing group-containing cage silsesquioxane and method for producing the same Active JP4711076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123100A JP4711076B2 (en) 2006-04-27 2006-04-27 Light-stabilizing group-containing cage silsesquioxane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123100A JP4711076B2 (en) 2006-04-27 2006-04-27 Light-stabilizing group-containing cage silsesquioxane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007291285A true JP2007291285A (en) 2007-11-08
JP4711076B2 JP4711076B2 (en) 2011-06-29

Family

ID=38762223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123100A Active JP4711076B2 (en) 2006-04-27 2006-04-27 Light-stabilizing group-containing cage silsesquioxane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4711076B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163551A (en) * 2009-01-16 2010-07-29 Nec Corp Radical compound, method for producing the same and secondary battery
JP2017160387A (en) * 2016-03-11 2017-09-14 信越化学工業株式会社 Antifogging agent
JP2017160172A (en) * 2016-03-11 2017-09-14 信越化学工業株式会社 Hindered amino group-containing organic silicon compound, composition containing the same, and method for producing hindered amino group-containing organic silicon compound
CN114573820A (en) * 2022-03-15 2022-06-03 黄山明杰新材料有限公司 Polyester resin for weather-resistant paint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101389A (en) * 1986-10-08 1988-05-06 エニーケム・シンテシース・エセ・ピ・ア Reactive stabilizer compound, manufacture and stabilized polymer composition
JPH08225651A (en) * 1994-11-30 1996-09-03 Ciba Geigy Ag Silane-group-containing piperidine compound as stabilizer for organic material
JP2000191467A (en) * 1998-03-02 2000-07-11 L'oreal Sa Use of anti-oxidant organosiloxane and/or organosilane for optically protecting color tone of natural colored keratin fiber or artificially dyed keratin fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101389A (en) * 1986-10-08 1988-05-06 エニーケム・シンテシース・エセ・ピ・ア Reactive stabilizer compound, manufacture and stabilized polymer composition
JPH08225651A (en) * 1994-11-30 1996-09-03 Ciba Geigy Ag Silane-group-containing piperidine compound as stabilizer for organic material
JP2000191467A (en) * 1998-03-02 2000-07-11 L'oreal Sa Use of anti-oxidant organosiloxane and/or organosilane for optically protecting color tone of natural colored keratin fiber or artificially dyed keratin fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163551A (en) * 2009-01-16 2010-07-29 Nec Corp Radical compound, method for producing the same and secondary battery
JP2017160387A (en) * 2016-03-11 2017-09-14 信越化学工業株式会社 Antifogging agent
JP2017160172A (en) * 2016-03-11 2017-09-14 信越化学工業株式会社 Hindered amino group-containing organic silicon compound, composition containing the same, and method for producing hindered amino group-containing organic silicon compound
CN114573820A (en) * 2022-03-15 2022-06-03 黄山明杰新材料有限公司 Polyester resin for weather-resistant paint

Also Published As

Publication number Publication date
JP4711076B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
EP2180001A1 (en) Organosilicon compound having amino group and its production method
JP4711076B2 (en) Light-stabilizing group-containing cage silsesquioxane and method for producing the same
JP4905674B2 (en) Organosilicon compound
JP6111174B2 (en) Glycoluril ring-containing organosilane, glycoluril ring-containing organosiloxane and process for producing them
KR20190136951A (en) Carbonate-containing silane compound and making method
JP5234909B2 (en) Alkoxy group-containing cage-type siloxane compound, silanol group-containing cage-type siloxane compound, and methods for producing them
JP5346593B2 (en) Cage-cleavable siloxane resin having a functional group and method for producing the same
JP2009191207A (en) Method for producing diorganopolysiloxane having both terminals each blocked with (meth)acryloxypropyl group
JP2009263316A (en) Method for producing incompletely condensed oligosilsesquioxane
JP4863002B2 (en) Silanol compound, silanol condensate-containing aqueous solution, and method for producing the same
JP4835841B2 (en) Amino group-containing silsesquioxane protected with triorganosilyl group
JP2019137750A (en) Curable composition, cured product, adhesive and coating film
RU2019113350A (en) POLYMER COMPOSITION FOR ABSORBING UV RADIATION
JP2017052737A (en) Manufacturing method of one terminal aminosilicone
JP5062231B2 (en) Organosilicon resin having alcoholic hydroxyl group and method for producing the same
JP2015013846A (en) Diallyl isocyanurate compound and derivative
JP6409695B2 (en) Organosilicon compound having amino group and method for producing the same
JP2008031077A (en) Siloxane oligomer containing photo-stabilizing group and method for producing the same
JP7128573B2 (en) Method for producing functionalized cyclic polysiloxane
JP2008111023A (en) Aqueous solution containing propylsilanol compound having tertiary amino group
US6136940A (en) Silacyclobutane compounds, methods of preparing same, and polymers formed therefrom
KR100780483B1 (en) Preparation of fluoroalkoxy trialkyl silane using acid catalysts supported on the imidazolium based polymer
JP6574120B2 (en) Method for producing one-terminal (meth) acrylamide silicone
JP4362690B2 (en) Method for producing branched low-molecular siloxane
JP2012219072A (en) Silazane compound bearing fluoroalkyl group, and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R150 Certificate of patent or registration of utility model

Ref document number: 4711076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150