JP2007285635A - Refrigerating cycle device and air conditioner - Google Patents

Refrigerating cycle device and air conditioner Download PDF

Info

Publication number
JP2007285635A
JP2007285635A JP2006115146A JP2006115146A JP2007285635A JP 2007285635 A JP2007285635 A JP 2007285635A JP 2006115146 A JP2006115146 A JP 2006115146A JP 2006115146 A JP2006115146 A JP 2006115146A JP 2007285635 A JP2007285635 A JP 2007285635A
Authority
JP
Japan
Prior art keywords
refrigerant
receiver
valve
liquid
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006115146A
Other languages
Japanese (ja)
Other versions
JP4734161B2 (en
JP2007285635A5 (en
Inventor
Kazumiki Urata
和幹 浦田
Kenichi Nakamura
憲一 中村
Shinichiro Nagamatsu
信一郎 永松
Tatsuya Ishigami
達也 石神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006115146A priority Critical patent/JP4734161B2/en
Priority to CN2006101280999A priority patent/CN101059288B/en
Publication of JP2007285635A publication Critical patent/JP2007285635A/en
Publication of JP2007285635A5 publication Critical patent/JP2007285635A5/ja
Application granted granted Critical
Publication of JP4734161B2 publication Critical patent/JP4734161B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle preventing liquid compression by suppressing a liquid return amount to a compressor in transient operating states such as starting, defrosting, and stoppage of the refrigerating cycle, and at the same time, capable of stabilizing the refrigerating cycle during small capacity operation. <P>SOLUTION: In the refrigerating cycle, a bridge circuit 5 composed of a check valve is provided between an outdoor pressure reducing device and an indoor pressure reducing device, a receiver 6 and a pressure reducing device 11 are sequentially connected in a circuit flowing in one direction of the bridge circuit, and a receiver bypass circuit 12 and a constantly closed receiver opening and closing valve 13 opening and closing the receiver bypass circuit are provided such that a gas coolant of a receiver vertex part flows with respect to a piping connecting the pressure reducing device and the bridge circuit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気調和機等の冷凍サイクル装置に関するものであり、特に液冷媒を貯留する受液器が室内熱交換器と室外熱交換器に配管で接続されたものに適している。   The present invention relates to a refrigeration cycle apparatus such as an air conditioner, and is particularly suitable for a receiver in which liquid refrigerant is stored and connected to an indoor heat exchanger and an outdoor heat exchanger by piping.

冷凍サイクルの起動時及び除霜運転の切替え時等の過渡的な運転の場合、圧縮機の吸入側に液冷媒が戻り易くなるため、従来の冷凍サイクルでは、圧縮機の手前にアキュムレータを配置し、アキュムレータ内に液冷媒を貯留させ、圧縮機の吸入側に戻る液冷媒量をある一定量以下にして、液圧縮の防止を図っていた。しかしながら、アキュムレータを配置することは、圧力損失増大による性能低下や、油と液冷媒の二相分離が生じる弊害もあり、本来的にはアキュムレータレスの構成が望ましい。しかし、アキュムレータを外した場合は、冷凍サイクルの起動時や除霜運転の切替え時に冷媒が蒸発器で十分気化されずに液冷媒として圧縮機の吸入側に戻り易くなるため、圧縮機の信頼性低下を招く。   In the case of a transient operation such as when the refrigeration cycle is started and when the defrosting operation is switched, the liquid refrigerant easily returns to the suction side of the compressor.Therefore, in the conventional refrigeration cycle, an accumulator is arranged in front of the compressor. The liquid refrigerant is stored in the accumulator, and the liquid refrigerant amount returning to the suction side of the compressor is set to a certain amount or less to prevent liquid compression. However, the arrangement of an accumulator is disadvantageous in that it causes performance degradation due to increased pressure loss and two-phase separation between oil and liquid refrigerant. However, if the accumulator is removed, the refrigerant is not sufficiently vaporized in the evaporator when starting the refrigeration cycle or when switching to the defrosting operation, and it is easy to return to the suction side of the compressor as a liquid refrigerant. Incurs a decline.

これに対して、アキュムレータレスの冷凍サイクル構成を成立させるための手段として、特許文献1に記載の方法によれば、圧縮機、凝縮器、受液器、減圧弁及び蒸発器を接続してなる冷媒回路で、且つ前記減圧弁がいかなる運転モードにおいても受液器の下流側となるように構成された冷凍サイクルにおいて、受液器上部のガス空間と減圧弁の下流側となる液ラインとを接続するバイパス回路とバイパス回路を開閉する常時閉の開閉弁を設け、圧縮機の起動時や除霜運転の切替え時に前記開閉弁を開状態にして、受液器上部のガス冷媒を減圧弁の下流側すなわち蒸発器の入口側に流すことにより、凝縮器内の液冷媒を受液器内に移動して貯留させると共に、蒸発器から戻る冷媒のかわき度を大きくすることができ、アキュムレータレスの場合でも圧縮機の吸入側に戻る液冷媒量を抑制することが可能となり、液圧縮の防止を図ることができる方法が提案されている。   On the other hand, according to the method described in Patent Document 1, as a means for establishing an accumulator-less refrigeration cycle configuration, a compressor, a condenser, a liquid receiver, a pressure reducing valve, and an evaporator are connected. In a refrigeration cycle which is a refrigerant circuit and configured so that the pressure reducing valve is downstream of the liquid receiver in any operation mode, a gas space above the liquid receiver and a liquid line downstream of the pressure reducing valve are provided. A bypass circuit to be connected and a normally closed on-off valve for opening and closing the bypass circuit are provided, and the on-off valve is opened when the compressor is started or defrosting operation is switched. By flowing to the downstream side, i.e., the inlet side of the evaporator, the liquid refrigerant in the condenser can be moved and stored in the receiver, and the degree of scrubbing of the refrigerant returning from the evaporator can be increased. Place But it is possible to suppress the amount of liquid refrigerant returns to the suction side of the compressor, how it is possible to prevent the liquid compression are proposed.

また、特許文献2には、受液器には、気液流量調整手段として、受液器の上部から受液器の前後の配管に対してバイパスするようにバイパス管が設けられており、それぞれの配管には開閉弁が設けられ、受液器の上部からそれぞれの配管には開閉弁それぞれのバイパス管に接続する配管の途中には、受液器から流出するガス流量を調整するためのガス流量調整装置が設けられている。   Further, in Patent Document 2, the liquid receiver is provided with a bypass pipe as a gas-liquid flow rate adjusting means so as to bypass from the upper part of the liquid receiver to the pipes before and after the liquid receiver, On-line valves are provided with on-off valves, and each pipe from the top of the receiver is connected to the bypass pipe of each on-off valve, and gas for adjusting the gas flow rate flowing out from the receiver A flow control device is provided.

特開平5−332644号公報(第2図)JP-A-5-332644 (FIG. 2) 特許第3331102号(第0027段落及び図1)Japanese Patent No. 3331102 (paragraph 0027 and FIG. 1)

特許文献1のものでは、受液器頭頂部のガス冷媒を膨張弁の下流側にバイパスするため、圧縮機の運転容量が小さい場合や蒸発温度が低い場合等の冷凍サイクル内の冷媒循環量が少ない場合に対して、以下に示す課題が生じる。すなわち、膨張弁の上流側に流入する冷媒は受液器から流出される液冷媒であるため、冷媒循環量が少ない場合は膨張弁の開度を絞り気味で使用しなければならない。このため、膨張弁の開度調整を行う場合は、開度に対して流量特性が敏感な所を使用するため、膨張弁の開度調整中に開度調整が上手くいかず液冷媒が戻り易くなる場合があり、冷凍サイクルが不安定になるばかりか圧縮機に対して液戻り量が増加し液圧縮を招く場合も発生する。   In the thing of patent document 1, since the gas refrigerant of a receiver top is bypassed to the downstream of an expansion valve, when the operating capacity of a compressor is small or the evaporation temperature is low, the amount of refrigerant circulation in a refrigerating cycle is low. The following problem arises when there are few cases. That is, since the refrigerant flowing into the upstream side of the expansion valve is a liquid refrigerant that flows out from the liquid receiver, when the refrigerant circulation amount is small, the opening degree of the expansion valve must be used with a slight throttle. For this reason, when adjusting the opening degree of the expansion valve, the flow rate characteristic is sensitive to the opening degree. Therefore, the opening degree adjustment is not successful during the adjustment of the opening degree of the expansion valve, and the liquid refrigerant is easy to return. In some cases, not only the refrigeration cycle becomes unstable, but also the amount of liquid return to the compressor increases, leading to liquid compression.

特許文献2のものでは、冷房、暖房共に受液器からガス冷媒を抜く構成となっており、開閉弁を2個使用しており、サイクルが複雑化している。また、冷房あるいは暖房運転中にガス冷媒を受液器から抜くために開動作する開閉弁以外の開閉弁には、流れ方向と反対に圧力がかかるため、チャタリングが発生する。   In the thing of patent document 2, it becomes the structure which extracts a gas refrigerant from a liquid receiver in both cooling and heating, and uses two on-off valves, and the cycle is complicated. In addition, since a pressure is applied to the on / off valves other than the on / off valve that opens to extract the gas refrigerant from the liquid receiver during the cooling or heating operation, a pressure is applied in the direction opposite to the flow direction, so that chattering occurs.

本発明の目的は、冷凍サイクルの起動時、除霜時、停止時等の過渡的な運転状態において圧縮機への液戻り量を簡易な構成で抑制し、液圧縮による故障を低減することにある。   An object of the present invention is to suppress the liquid return amount to the compressor in a transient operation state such as at the start of the refrigeration cycle, at the time of defrosting, at the time of stop, and the like, and to reduce failures due to liquid compression. is there.

上記課題を解決するために、本発明の一実施態様によれば、冷凍サイクル装置を、圧縮機、四方弁、室内熱交換器、室内膨張弁、室外熱交換器とを冷媒配管により接続した冷凍サイクル装置において、室内熱交換器及び室外熱交換器と冷媒配管により接続された受液器と、受液器上部のガス冷媒を通過させ前記受液器出口から流れた液冷媒と混合させるバイパス管と、バイパス管を通過するガス冷媒の量を調整する受液器開閉弁とを備え、バイパス管を通過したガス冷媒と受液器出口から流出した冷媒が混合した冷媒を前記室内膨張弁の上流又は室外膨張弁の上流に切り換えて流す切替部を設けた構成としている。   In order to solve the above-described problems, according to one embodiment of the present invention, a refrigeration cycle apparatus includes a compressor, a four-way valve, an indoor heat exchanger, an indoor expansion valve, and an outdoor heat exchanger connected by a refrigerant pipe. In a cycle apparatus, a receiver connected to an indoor heat exchanger and an outdoor heat exchanger by a refrigerant pipe, and a bypass pipe for allowing a gas refrigerant in an upper part of the receiver to pass through and mixing with a liquid refrigerant flowing from the outlet of the receiver And a receiver open / close valve that adjusts the amount of gas refrigerant passing through the bypass pipe, and the refrigerant mixed with the gas refrigerant passing through the bypass pipe and the refrigerant flowing out of the receiver outlet is upstream of the indoor expansion valve. Or it is set as the structure which provided the switching part which switches and flows to the upstream of an outdoor expansion valve.

さらに、切替部は逆止弁で構成されたブリッジ回路又は四方弁とすることが望ましい。さらに、受液器の下流に冷媒配管により過冷却器が接続され、過冷却器の主流部入口は受液器の出口配管に、過冷却器の主流部出口は前記切替部に、過冷却器の副流部入口は四方弁と圧縮機吸入側とを接続する配管に、過冷却器の副流部出口は受液器出口に配管接続された構成とすることが望ましい。さらに、受液器開閉弁を前記圧縮機の起動時から所定の時間開くことが望ましい。   Furthermore, it is desirable that the switching unit be a bridge circuit or a four-way valve composed of a check valve. Furthermore, a supercooler is connected to the downstream of the liquid receiver by a refrigerant pipe, the main stream part inlet of the supercooler is connected to the outlet pipe of the liquid receiver, the main stream part outlet of the supercooler is connected to the switching part, and the subcooler It is desirable that the substream inlet is connected to the pipe connecting the four-way valve and the compressor suction side, and the subflow outlet of the supercooler is connected to the receiver outlet. Furthermore, it is desirable to open the liquid receiver on / off valve for a predetermined time from the start of the compressor.

本発明によれば、簡易な構成で冷凍サイクル装置の液圧縮による故障を低減し、冷凍サイクル装置の信頼性を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, the failure by the liquid compression of a refrigeration cycle apparatus can be reduced with a simple structure, and the reliability of a refrigeration cycle apparatus can be improved.

以下に、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明の一実施形態を示す冷凍サイクルのブロック図である。図1に示す冷凍サイクルは、圧縮機1、主四方弁2、室外熱交換器3、室外膨張弁4で構成される室外機と、室内膨張弁8、室内熱交換器9で構成される室内機を、液阻止弁7とガス阻止弁10を介して配管接続した構成となっている。室外膨張弁4と室内膨張弁8の間には、逆止弁4個で構成されたブリッジ回路(切替部)5が設けられ、ブリッジ回路5の中で一方向に冷媒が流れる回路内に冷凍サイクルで余剰と成った液冷媒を貯留するための受液器6を設け、受液器6の出口側とブリッジ回路5とを接続する配管の途中に、ある一定の減圧効果を有する減圧装置11を設け、減圧装置11とブリッジ回路5を接続する配管の途中に、受液器6の頭頂部からガス冷媒を流すための受液器バイパス回路12を設け、受液器バイパス回路12の途中に常時閉の受液器開閉弁13が設けられている。ここで、ブリッジ回路とは、並列に配置した冷媒回路の中点同士を配管等により接続した冷媒回路である。また、圧縮機1には圧縮機1の起動及び停止を制御するための起動停止制御手段21が設けられ、主四方弁2には蒸発器として作用する熱交換器に霜が付着した場合に熱交換器の霜を融解させるための除霜運転モードに切替るための除霜制御手段22が設けられ、受液器開閉弁13には起動停止制御21及び除霜制御手段22の信号を元に任意に弁を開閉するための開閉弁制御手段23が設けられている。   FIG. 1 is a block diagram of a refrigeration cycle showing an embodiment of the present invention. The refrigeration cycle shown in FIG. 1 includes an outdoor unit composed of a compressor 1, a main four-way valve 2, an outdoor heat exchanger 3, an outdoor expansion valve 4, an indoor expansion valve 8, and an indoor heat exchanger 9. The machine is connected via a liquid blocking valve 7 and a gas blocking valve 10. Between the outdoor expansion valve 4 and the indoor expansion valve 8, a bridge circuit (switching unit) 5 composed of four check valves is provided, and the refrigerant flows into the circuit in which the refrigerant flows in one direction in the bridge circuit 5. A liquid receiver 6 for storing liquid refrigerant that has become surplus in the cycle is provided, and a pressure reducing device 11 having a certain pressure reducing effect is provided in the middle of a pipe connecting the outlet side of the liquid receiver 6 and the bridge circuit 5. In the middle of the pipe connecting the decompression device 11 and the bridge circuit 5, a liquid receiver bypass circuit 12 for flowing a gas refrigerant from the top of the liquid receiver 6 is provided, and in the middle of the liquid receiver bypass circuit 12. A normally closed receiver open / close valve 13 is provided. Here, the bridge circuit is a refrigerant circuit in which the midpoints of the refrigerant circuits arranged in parallel are connected by piping or the like. Further, the compressor 1 is provided with a start / stop control means 21 for controlling the start and stop of the compressor 1, and the main four-way valve 2 is heated when frost adheres to the heat exchanger acting as an evaporator. A defrost control means 22 for switching to a defrost operation mode for melting the frost of the exchanger is provided, and the receiver open / close valve 13 is based on signals from the start / stop control 21 and the defrost control means 22. On-off valve control means 23 for arbitrarily opening and closing the valve is provided.

次に、本発明の冷凍サイクルの運転モードについて説明する。 本図に示す実線矢印は暖房運転時における冷媒の流れを示し、破線矢印は冷房運転時における冷媒の流れを示している。暖房運転時は、圧縮機1で圧縮された高温高圧の冷媒が主四方弁2、ガス阻止弁10を通過して室内熱交換器9に流入し、室内熱交換器9を通過する空気と熱交換して凝縮液化して室内膨張弁8に流入する。室内膨張弁8では、室内熱交換器9出口の冷媒過冷却量をある一定値となるように調整され液阻止弁7を通りブリッジ回路5に流入する。ブリッジ回路5に流入した液冷媒は受液器6に送られ、冷凍サイクルで不要となった液冷媒が貯留され、受液器6下部の液冷媒を吸出して減圧装置11に送られる。減圧装置11に送られた冷媒は一定量だけ減圧され、再びブリッジ回路5に流入し室外膨張弁4に送られる。室外膨張弁4に送られた冷媒は、室外熱交換器3で蒸発できる圧力まで減圧され室外熱交換器3に流入し、室外熱交換器3を通過する空気と熱交換して蒸発ガス化して流出し、主四方弁2を通過して圧縮機1に戻ることで冷凍サイクルが形成される。   Next, the operation mode of the refrigeration cycle of the present invention will be described. The solid line arrows shown in this figure indicate the refrigerant flow during the heating operation, and the broken line arrows indicate the refrigerant flow during the cooling operation. During the heating operation, the high-temperature and high-pressure refrigerant compressed by the compressor 1 passes through the main four-way valve 2 and the gas blocking valve 10 and flows into the indoor heat exchanger 9, and the air and heat passing through the indoor heat exchanger 9. It is exchanged to condense and flow into the indoor expansion valve 8. In the indoor expansion valve 8, the refrigerant supercooling amount at the outlet of the indoor heat exchanger 9 is adjusted to be a certain constant value, and flows into the bridge circuit 5 through the liquid blocking valve 7. The liquid refrigerant that has flowed into the bridge circuit 5 is sent to the liquid receiver 6, the liquid refrigerant that is no longer necessary in the refrigeration cycle is stored, and the liquid refrigerant in the lower part of the liquid receiver 6 is sucked out and sent to the decompression device 11. The refrigerant sent to the decompression device 11 is decompressed by a certain amount, flows into the bridge circuit 5 again, and is sent to the outdoor expansion valve 4. The refrigerant sent to the outdoor expansion valve 4 is decompressed to a pressure that can be evaporated by the outdoor heat exchanger 3, flows into the outdoor heat exchanger 3, exchanges heat with air passing through the outdoor heat exchanger 3, and evaporates and gasifies. The refrigerant flows out, passes through the main four-way valve 2 and returns to the compressor 1 to form a refrigeration cycle.

また、冷房運転時は、圧縮機1で圧縮された高温高圧の冷媒が主四方弁2を通過し室外熱交換器3に流入し、室外熱交換器3を通過する空気と熱交換して凝縮液化して室外膨張弁4に流入する。室外膨張弁4では、室外熱交換器3出口の冷媒過冷却量をある一定値となるように調整されブリッジ回路5に流入する。ブリッジ回路5に流入した液冷媒は受液器6に送られ、冷凍サイクルで不要となった液冷媒が貯留され、受液器6下部の液冷媒を吸出して減圧装置11に送られる。減圧装置11に送られた冷媒は一定量だけ減圧され、再びブリッジ回路5に流入し液阻止弁7を通過して室内膨張弁8に送られる。室内膨張弁8に送られた冷媒は、室内熱交換器9で蒸発できる圧力まで減圧され室内熱交換器9に流入し、室内熱交換器9を通過する空気と熱交換して蒸発ガス化して流出し、ガス阻止弁10、主四方弁2を通過して圧縮機1に戻ることで冷凍サイクルが形成される。   During the cooling operation, the high-temperature and high-pressure refrigerant compressed by the compressor 1 passes through the main four-way valve 2 and flows into the outdoor heat exchanger 3, and is condensed by exchanging heat with the air passing through the outdoor heat exchanger 3. It liquefies and flows into the outdoor expansion valve 4. In the outdoor expansion valve 4, the refrigerant supercooling amount at the outlet of the outdoor heat exchanger 3 is adjusted to be a certain value and flows into the bridge circuit 5. The liquid refrigerant that has flowed into the bridge circuit 5 is sent to the liquid receiver 6, the liquid refrigerant that is no longer necessary in the refrigeration cycle is stored, and the liquid refrigerant in the lower part of the liquid receiver 6 is sucked out and sent to the decompression device 11. The refrigerant sent to the decompression device 11 is decompressed by a certain amount, flows again into the bridge circuit 5, passes through the liquid blocking valve 7, and is sent to the indoor expansion valve 8. The refrigerant sent to the indoor expansion valve 8 is depressurized to a pressure that can be evaporated by the indoor heat exchanger 9, flows into the indoor heat exchanger 9, and exchanges heat with air passing through the indoor heat exchanger 9, thereby evaporating and gasifying. The refrigerant flows out, passes through the gas blocking valve 10 and the main four-way valve 2 and returns to the compressor 1 to form a refrigeration cycle.

また、冷房運転及び暖房運転において、圧縮機1の起動時及び停止時や除霜運転への切替時または除霜運転から通常運転への切替時においては、受液器開閉弁13を開いて受液器6頭頂部のガス冷媒を受液器バイパス回路12に流す回路構成となる。受液器6内の圧力と受液器バイパス回路12の出口圧力は、受液器6出口から流出した液冷媒が減圧装置11を流れることで発生する圧力損失分だけ受液器バイパス回路12の出口圧力が低下した状態となる。この圧力差により、受液器バイパス回路12に対して受液器6の頭頂部にあるガス冷媒が流れ、減圧装置11から流出する気液二相状態の冷媒と合流してさらにガス量の多い冷媒かわき度となり、ブリッジ回路5を通り蒸発器として作用する熱交換器の上流側に付設する膨張弁に流入させることができる。   In the cooling operation and the heating operation, when the compressor 1 is started and stopped, when switching to the defrosting operation, or when switching from the defrosting operation to the normal operation, the receiver on-off valve 13 is opened to receive the air. The circuit configuration is such that the gas refrigerant at the top of the liquid container 6 flows through the liquid receiver bypass circuit 12. The pressure in the liquid receiver 6 and the outlet pressure of the liquid receiver bypass circuit 12 are the same as that of the liquid receiver bypass circuit 12 by the amount of pressure loss generated when the liquid refrigerant flowing out from the outlet of the liquid receiver 6 flows through the decompression device 11. The outlet pressure is reduced. Due to this pressure difference, the gas refrigerant at the top of the liquid receiver 6 flows into the liquid receiver bypass circuit 12 and merges with the gas-liquid two-phase refrigerant flowing out from the decompression device 11 to further increase the amount of gas. It becomes the degree of refrigerant clearance, and can flow into the expansion valve attached to the upstream side of the heat exchanger that acts as an evaporator through the bridge circuit 5.

次に、受液器開閉弁13を開いた場合と閉じた場合の冷凍サイクルの状態を図2に示すモリエル線図により説明する。図2において、実線で示される冷凍サイクルは受液器開閉弁13を閉じた場合を示し、破線で示される冷凍サイクルは受液器開閉弁13を開いた場合を示す。受液器開閉弁13を閉じた場合は、圧縮機1で圧縮された高温高圧のガス冷媒は点aとなり、凝縮器で凝縮液化して点bとなり、凝縮器として作用する熱交換器の下流側に付設する膨張弁により減圧され、点cの飽和液状態となり受液器に流入する。受液器6から流出した冷媒は、減圧装置11及び蒸発器として作用する熱交換器の上流側に付設する膨張弁により減圧され点dの状態となり、蒸発器で蒸発ガス化して点eの状態となり、再び圧縮機1で圧縮される。この時、蒸発器に流入する点eの冷媒のかわき度X1は、圧縮機1の液圧縮防止限界かわき度よりも小さい値となる。一方、受液器開閉弁13を開いた場合は、受液器6頭頂部からガス冷媒を抜いているため、受液器6内に貯留される液冷媒量が増加し、冷凍サイクル内を流れる有効冷媒量が減少するため、受液器開閉弁13を閉じた場合と比較して高圧側の運転圧力が低下する。すなわち、圧縮機1で圧縮された高温高圧のガス冷媒は点a'となり、凝縮器で凝縮液化して点b'となり、凝縮器として作用する熱交換器の下流側に付設する膨張弁により減圧され、点c'の気液二相状態となり受液器6に流入する。点c'の冷媒状態は、受液器バイパス回路12を流れるガス冷媒量と受液器6出口から流出し減圧装置11を流れる液冷媒量の比に相当する冷媒かわき度となる。そして、受液器6から流出した冷媒は、減圧装置11及び蒸発器として作用する熱交換器の上流側に付設する膨張弁により減圧され点d'の状態となり、蒸発器で蒸発ガス化して点e'の状態となり、再び圧縮機1で圧縮される。この時、蒸発器に流入する点e'の冷媒のかわき度X2は、受液器開閉弁13を閉じた場合の点eの冷媒かわき度X1や圧縮機1の液圧縮防止限界かわき度よりも大きい値となるように、受液器バイパス回路12を流れるガス冷媒量が調整されるように減圧装置11の減圧量が調整されている。   Next, the state of the refrigeration cycle when the liquid receiver on / off valve 13 is opened and closed will be described with reference to the Mollier diagram shown in FIG. In FIG. 2, the refrigeration cycle indicated by a solid line indicates a case where the liquid receiver open / close valve 13 is closed, and the refrigeration cycle indicated by a broken line indicates a case where the liquid receiver open / close valve 13 is opened. When the receiver open / close valve 13 is closed, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 becomes point a, condensates and liquefies by the condenser, and becomes point b, downstream of the heat exchanger that acts as a condenser. The pressure is reduced by the expansion valve attached to the side, and a saturated liquid state at point c is obtained and flows into the liquid receiver. The refrigerant flowing out of the liquid receiver 6 is depressurized by the decompression device 11 and an expansion valve attached upstream of the heat exchanger acting as an evaporator to be in the state of point d, and is evaporated into gas by the evaporator and is in the state of point e. Then, it is compressed again by the compressor 1. At this time, the degree of refrigerant X1 of the refrigerant at the point e flowing into the evaporator is smaller than the degree of liquid compression prevention limit of the compressor 1. On the other hand, when the liquid receiver open / close valve 13 is opened, the gas refrigerant is extracted from the top of the liquid receiver 6, so that the amount of liquid refrigerant stored in the liquid receiver 6 increases and flows in the refrigeration cycle. Since the effective refrigerant amount decreases, the operating pressure on the high pressure side decreases as compared with the case where the receiver open / close valve 13 is closed. That is, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 becomes a point a ′, is condensed and liquefied by the condenser to become a point b ′, and is decompressed by an expansion valve attached downstream of the heat exchanger acting as a condenser. Then, the gas-liquid two-phase state at the point c ′ is obtained and flows into the liquid receiver 6. The refrigerant state at the point c ′ is a refrigerant degree corresponding to the ratio of the amount of gas refrigerant flowing through the receiver bypass circuit 12 and the amount of liquid refrigerant flowing out of the outlet of the receiver 6 and flowing through the pressure reducing device 11. The refrigerant flowing out of the liquid receiver 6 is depressurized by the decompression device 11 and an expansion valve attached upstream of the heat exchanger acting as an evaporator to be in a state of a point d ′, and is evaporated into gas by the evaporator. The state becomes e ′ and is compressed again by the compressor 1. At this time, the degree of refrigerant X2 at the point e ′ flowing into the evaporator is higher than the degree X1 of refrigerant refrigerant at the point e when the receiver open / close valve 13 is closed and the degree of liquid compression prevention limit of the compressor 1. The decompression amount of the decompression device 11 is adjusted so that the amount of gas refrigerant flowing through the receiver bypass circuit 12 is adjusted so as to be a large value.

次に、蒸発器として作用する熱交換器の上流側に付設する膨張弁の開度と流量の特性について説明する。図3は、本発明の一実施形態で用いられる膨張弁の流量特性図である。横軸は膨張弁開度、縦軸は流量を表している。図中において、実線は受液器開閉弁13が閉状態の場合の流量特性を表し、破線は、受液器開閉弁13が開状態の場合の流量特性を表す。流量Q1における膨張弁開度は、受液器開閉弁13が閉状態の場合でV1、受液器開閉弁13が開状態の場合でV3となり、V1<V3の関係となる。流量をQ2に増やした場合は、受液器開閉弁13が閉状態の場合でV2、受液器開閉弁13が開状態の場合でV4となり、V2<V4の関係となる。ここで、膨張弁を流れる流量をQ1からQ2に変えるために必要な膨張弁開度の差分は、受液器開閉弁13が閉状態の場合で(V2−V1)、受液器開閉弁13が開状態の場合で(V4−V3)となり、(V2−V1)<(V4−V3)の関係となる。すなわち、受液器開閉弁13を開にした場合は、受液器開閉弁13を閉にした場合と比較して、同じ流量を流すためには膨張弁開度を大きくする必要があり、且つ同じ流量だけ増加させるためには膨張弁開度の変化幅を大きくする必要がある。すなわち、受液器開閉弁13を開にした場合は、受液器開閉弁13を閉にした場合と比較して膨張弁の流量特性が緩やかな所で制御することができることを表しており、膨張弁の制御に対して冷凍サイクルの変動が小さく安定し易いといえる。
次に、本発明の冷凍サイクルの各運転モードにおける受液器開閉弁13の動作について説明する。
Next, the characteristics of the opening degree and flow rate of the expansion valve attached to the upstream side of the heat exchanger acting as an evaporator will be described. FIG. 3 is a flow rate characteristic diagram of an expansion valve used in one embodiment of the present invention. The horizontal axis represents the expansion valve opening, and the vertical axis represents the flow rate. In the figure, the solid line represents the flow rate characteristic when the liquid receiver on / off valve 13 is closed, and the broken line represents the flow characteristic when the liquid receiver on / off valve 13 is open. The opening degree of the expansion valve at the flow rate Q1 is V1 when the liquid receiver on / off valve 13 is closed, V3 when the liquid receiver on / off valve 13 is open, and V1 <V3. When the flow rate is increased to Q2, V2 when the liquid receiver on / off valve 13 is closed, V4 when the liquid receiver on / off valve 13 is open, and V2 <V4. Here, the difference in the opening degree of the expansion valve necessary for changing the flow rate flowing through the expansion valve from Q1 to Q2 is when the liquid receiver on-off valve 13 is closed (V2-V1), and the liquid receiver on-off valve 13 (V4-V3) in the open state, and the relationship of (V2-V1) <(V4-V3) is established. That is, when the liquid receiver on / off valve 13 is opened, it is necessary to increase the expansion valve opening in order to flow the same flow rate as compared with the case where the liquid receiver on / off valve 13 is closed, and In order to increase the same flow rate, it is necessary to increase the change width of the expansion valve opening. That is, when the liquid receiver on / off valve 13 is opened, the flow rate characteristic of the expansion valve can be controlled at a gentle point compared to when the liquid receiver on / off valve 13 is closed, It can be said that the fluctuation of the refrigeration cycle is small and stable with respect to the control of the expansion valve.
Next, the operation of the receiver open / close valve 13 in each operation mode of the refrigeration cycle of the present invention will be described.

図4は、本発明の一実施形態の冷凍サイクルを暖房運転した場合のタイムチャート図である。圧縮機起動前の主四方弁2は、図1に示す冷凍サイクルにおいて破線で示す状態となっており、圧縮機起動前もしくは起動と同時に受液器開閉弁13を開、室内膨張弁8を全開、室外膨張弁4を起動時の所定開度に設定する。冷凍サイクルの起動時は、まず、圧縮機1が所定の周波数Hz1で起動し、受液器開閉弁13が開となっているため、起動時に蒸発器として作用する室内熱交換器9に流入する冷媒のかわき度が圧縮機1の液圧縮限界かわき度以上となり圧縮機1に戻るため、液圧縮もせずにスムーズに起動できる。次に、T1秒経過後に主四方弁2を切替えて、図1に示す冷凍サイクルにおいて実線で示す状態となり暖房運転が開始されるが、この時も受液器開閉弁13が開いているため、主四方弁2を切替える前に凝縮器として作用していた室外熱交換器3内の液冷媒量が少ないため、主四方弁2を切替えた後も液圧縮もせずにスムーズに運転できる。次に、圧縮機1の運転周波数がHz2まで上昇し、圧縮機1や熱交換器等の温度や圧力が十分安定となるT2秒まで経過した時点で受液器開閉弁13を閉じる。この際、受液器開閉弁13を閉じる前もしくは閉じると同時に蒸発器として作用している室外熱交換器3の上流側にある室外膨張弁4を所定量だけ絞ることにより、受液器開閉弁13を閉じた時に生じる液戻りを回避することができる。そして、冷凍サイクルの負荷に応じて圧縮機1の運転周波数が調整され、室内膨張弁8では室内熱交換器9での冷媒過冷却量が調整され、暖房運転が継続される。次に、冷凍サイクルが停止する場合は、凝縮器として作用している室内熱交換器9に溜まっている液冷媒を受液器6に回収するための回収運転を行う。この回収運転方法は、圧縮機1の運転周波数をHz3に落とし、室内膨張弁8を全開にし、受液器開閉弁13を開いて室外膨張弁4を全閉にすることで、圧縮機1の吸入側圧力が徐々に低下し、この圧力が大気圧以下とならない時点で圧縮機1の運転周波数を0にして停止することで行われる。これにより、凝縮器として作用していた室内熱交換器9内の余分な液冷媒は受液器6内に回収されると共に、室外膨張弁4が閉まっているため蒸発器として作用していた室外熱交換器3内に冷媒が供給されなくなるため、室外膨張弁4より下流側の冷媒が全て受液器6内に回収され、次に起動する際に低圧側には液冷媒が殆ど無いため液圧縮を防止することができる。   FIG. 4 is a time chart when the refrigeration cycle of the embodiment of the present invention is operated for heating. The main four-way valve 2 before starting the compressor is in a state indicated by a broken line in the refrigeration cycle shown in FIG. 1. The receiver open / close valve 13 is opened and the indoor expansion valve 8 is fully opened before or simultaneously with starting the compressor. The outdoor expansion valve 4 is set to a predetermined opening at the time of activation. At the start of the refrigeration cycle, first, the compressor 1 is started at a predetermined frequency Hz1, and the receiver open / close valve 13 is open, so that it flows into the indoor heat exchanger 9 that acts as an evaporator at the time of startup. Since the degree of cooling of the refrigerant is equal to or higher than the liquid compression limit of the compressor 1 and returns to the compressor 1, it can be started smoothly without liquid compression. Next, after the passage of T1 seconds, the main four-way valve 2 is switched, and the heating operation is started in the state shown by the solid line in the refrigeration cycle shown in FIG. 1, but since the receiver open / close valve 13 is open at this time, Since the amount of liquid refrigerant in the outdoor heat exchanger 3 that has acted as a condenser before switching the main four-way valve 2 is small, it can be smoothly operated without liquid compression even after the main four-way valve 2 is switched. Next, the receiver open / close valve 13 is closed when the operating frequency of the compressor 1 rises to Hz2 and T2 seconds have elapsed when the temperature and pressure of the compressor 1 and the heat exchanger are sufficiently stabilized. At this time, by closing the receiver expansion valve 4 on the upstream side of the outdoor heat exchanger 3 acting as an evaporator before or simultaneously with closing the receiver open / close valve 13 by a predetermined amount, the receiver open / close valve 13 The liquid return that occurs when 13 is closed can be avoided. And the operating frequency of the compressor 1 is adjusted according to the load of a refrigerating cycle, the refrigerant | coolant subcooling amount in the indoor heat exchanger 9 is adjusted in the indoor expansion valve 8, and heating operation is continued. Next, when the refrigeration cycle is stopped, a recovery operation for recovering the liquid refrigerant accumulated in the indoor heat exchanger 9 acting as a condenser in the liquid receiver 6 is performed. In this recovery operation method, the operating frequency of the compressor 1 is lowered to Hz3, the indoor expansion valve 8 is fully opened, the receiver open / close valve 13 is opened, and the outdoor expansion valve 4 is fully closed. The suction side pressure is gradually decreased, and when the pressure does not become the atmospheric pressure or less, the operation frequency of the compressor 1 is set to 0 and stopped. As a result, excess liquid refrigerant in the indoor heat exchanger 9 that has acted as a condenser is recovered in the liquid receiver 6 and the outdoor expansion valve 4 is closed, so that the outdoor functioning as an evaporator is closed. Since no refrigerant is supplied into the heat exchanger 3, all the refrigerant downstream from the outdoor expansion valve 4 is collected in the liquid receiver 6, and there is almost no liquid refrigerant on the low-pressure side when it is started next time. Compression can be prevented.

次に、冷房運転の場合について説明する。図5は、本発明の一実施形態の冷凍サイクルを冷房運転した場合のタイムチャート図である。圧縮機起動前の主四方弁2は、図1に示す冷凍サイクルにおいて破線で示す状態となっており、圧縮機起動前もしくは起動と同時に受液器開閉弁13を開、室内膨張弁8を起動時の所定開度、室外膨張弁4を全開に設定する。冷凍サイクルの起動時は、まず、圧縮機1が所定の周波数Hz4で起動し、受液器開閉弁13が開となっているため、起動時に蒸発器として作用する室内熱交換器9に流入する冷媒のかわき度が圧縮機1の液圧縮限界かわき度以上となり圧縮機1に戻るため、液圧縮もせずにスムーズに起動できる。次に、T3秒経過後に圧縮機1の運転周波数がHz5まで上昇し、圧縮機1や熱交換器等の温度や圧力が十分安定となるT4秒まで経過した時点で受液器開閉弁13を閉じる。この際、受液器開閉弁13を閉じる前もしくは閉じると同時に蒸発器として作用している室内熱交換器9の上流側にある室内膨張弁8を所定量だけ絞ることにより、受液器開閉弁13を閉じた時に生じる液戻りを回避することができる。そして、冷凍サイクルの負荷に応じて圧縮機1の運転周波数が調整され、室内膨張弁8では室内熱交換器9での冷媒過熱量が調整され、冷房運転が継続される。次に、冷凍サイクルが停止する場合は、凝縮器として作用している室外熱交換器3に溜まっている液冷媒を受液器6内に回収するための回収運転を行う。この回収運転方法は、圧縮機1の運転周波数をHz6に落とし、室内膨張弁8を全閉にし、受液器開閉弁13を開くことで、圧縮機1の吸入側圧力が徐々に低下し、この圧力が大気圧以下とならない時点で圧縮機1の運転周波数を0にして停止することで行われる。これにより、凝縮器として作用していた室外熱交換器3内の余分な液冷媒は受液器6内に回収されると共に、室内膨張弁8が閉まっているため蒸発器として作用していた室内熱交換器9内に冷媒が供給されなくなるため、室内膨張弁8より下流側の冷媒が全て受液器6内に回収され、次に起動する際に低圧側には液冷媒が殆ど無いため液圧縮を防止することができる。   Next, the case of the cooling operation will be described. FIG. 5 is a time chart when the refrigeration cycle of the embodiment of the present invention is in a cooling operation. The main four-way valve 2 before starting the compressor is in a state indicated by a broken line in the refrigeration cycle shown in FIG. 1, and the receiver open / close valve 13 is opened and the indoor expansion valve 8 is started before or simultaneously with the start of the compressor. The predetermined opening at the time and the outdoor expansion valve 4 are set to fully open. At the start of the refrigeration cycle, first, the compressor 1 is started at a predetermined frequency Hz4 and the receiver open / close valve 13 is open, so that it flows into the indoor heat exchanger 9 that acts as an evaporator at the time of startup. Since the degree of cooling of the refrigerant is equal to or higher than the liquid compression limit of the compressor 1 and returns to the compressor 1, it can be started smoothly without liquid compression. Next, when T3 seconds elapse, the operating frequency of the compressor 1 rises to Hz5, and when the temperature and pressure of the compressor 1 and the heat exchanger, etc. sufficiently stabilize until T4 seconds elapses, the receiver open / close valve 13 is turned on. close. At this time, by closing the receiver expansion valve 8 on the upstream side of the indoor heat exchanger 9 acting as an evaporator before or simultaneously with closing the receiver open / close valve 13 by a predetermined amount, the receiver open / close valve 13 The liquid return that occurs when 13 is closed can be avoided. Then, the operating frequency of the compressor 1 is adjusted according to the load of the refrigeration cycle, the refrigerant expansion heat amount in the indoor heat exchanger 9 is adjusted in the indoor expansion valve 8, and the cooling operation is continued. Next, when the refrigeration cycle is stopped, a recovery operation for recovering the liquid refrigerant accumulated in the outdoor heat exchanger 3 acting as a condenser in the liquid receiver 6 is performed. In this recovery operation method, the operating frequency of the compressor 1 is lowered to Hz6, the indoor expansion valve 8 is fully closed, and the receiver open / close valve 13 is opened, so that the suction side pressure of the compressor 1 gradually decreases, The operation is performed by setting the operation frequency of the compressor 1 to 0 and stopping when the pressure does not become the atmospheric pressure or less. As a result, excess liquid refrigerant in the outdoor heat exchanger 3 that has acted as a condenser is recovered in the liquid receiver 6 and the indoor expansion valve 8 is closed, so that the room that has acted as an evaporator. Since no refrigerant is supplied into the heat exchanger 9, all of the refrigerant downstream from the indoor expansion valve 8 is recovered in the liquid receiver 6, and there is almost no liquid refrigerant on the low pressure side when it is next started. Compression can be prevented.

次に、除霜運転の場合について説明する。図6は、本発明の一実施形態の冷凍サイクルを除霜運転した場合のタイムチャート図である。蒸発器として作用している熱交換器に流入する空気の温度が低い場合は、蒸発温度がマイナス温度となり、熱交換器の表面に霜が付着し、熱交換器の性能を著しく低下させるため除霜運転を行う。特に、冷凍サイクルの場合は、外気と接している室外熱交換器3が蒸発器として作用している暖房運転の場合に多いため、本実施例では、暖房運転時の除霜運転について説明する。なお、低温で室内熱交換器9を蒸発器として作用させる場合は、冷房運転の場合にも発生するが、基本的な運転方法については暖房運転と同じである。除霜運転開始からT5秒前の時点で凝縮器として作用している室内熱交換器9の下流側にある室内膨張弁8を全開とし、受液器開閉弁13を開いて凝縮器内に溜まっている冷媒を受液器6内に回収する運転を行う。その後、圧縮機1の運転周波数を下げて、主四方弁2を実線から破線に示す如く切替えて逆サイクル除霜運転を行う。上記の運転方法によれば、暖房運転時に凝縮器として作用し、除霜運転中に蒸発器として作用する室内熱交換器9内の液冷媒の量を主四方弁2の切替え時に軽減することができ、圧縮機1への液戻りを防止することが可能となる。そして、除霜運転の開始と同時に、室内膨張弁8を所定の開度に絞り、主四方弁2の切替えと同時もしくは切替えた後に受液器開閉弁13を閉じ、除霜運転を継続する。ここで、除霜運転直前に圧縮機1の運転周波数を下げる目的は、主四方弁2の切替時における衝撃音低減のためである。次に、除霜運転の終了時は、除霜運転の終了判定後にまず圧縮機1の運転周波数を下げ、且つ受液器開閉弁13を開く。これにより、室外熱交換器3内に溜まっている液冷媒を受液器6内に回収すると共に、室内熱交換器9内に流入する液冷媒量を軽減することができ、主四方弁2を切替えた時に圧縮機1への液戻り量を軽減し、液圧縮の防止を図ることができる。次に、主四方弁2を破線から実線に示す如く切替えて、暖房運転を行う。この際、主四方弁2の切替えと同時もしくは、切替えた後に室内膨張弁8を全開にする。その後は、暖房運転の起動と同様の運転となる。   Next, the case of defrosting operation will be described. FIG. 6 is a time chart when the refrigeration cycle of the embodiment of the present invention is defrosted. If the temperature of the air flowing into the heat exchanger acting as an evaporator is low, the evaporation temperature will be negative, and frost will adhere to the surface of the heat exchanger, which will significantly reduce the performance of the heat exchanger. Perform frost operation. In particular, in the case of a refrigeration cycle, there are many cases of heating operation in which the outdoor heat exchanger 3 that is in contact with outside air acts as an evaporator, and therefore, in this embodiment, a defrosting operation during heating operation will be described. In addition, when operating the indoor heat exchanger 9 as an evaporator at a low temperature, it also occurs in the cooling operation, but the basic operation method is the same as the heating operation. The indoor expansion valve 8 on the downstream side of the indoor heat exchanger 9 acting as a condenser at the time T5 seconds before the start of the defrosting operation is fully opened, and the receiver open / close valve 13 is opened to collect in the condenser. The refrigerant | coolant currently collect | recovered in the liquid receiver 6 is performed. Thereafter, the operating frequency of the compressor 1 is lowered, and the main four-way valve 2 is switched from the solid line to the broken line to perform the reverse cycle defrosting operation. According to the above operation method, the amount of liquid refrigerant in the indoor heat exchanger 9 that acts as a condenser during heating operation and acts as an evaporator during defrosting operation can be reduced when the main four-way valve 2 is switched. It is possible to prevent the liquid from returning to the compressor 1. Then, simultaneously with the start of the defrosting operation, the indoor expansion valve 8 is throttled to a predetermined opening, and simultaneously with or after the switching of the main four-way valve 2, the receiver open / close valve 13 is closed, and the defrosting operation is continued. Here, the purpose of reducing the operating frequency of the compressor 1 immediately before the defrosting operation is to reduce the impact noise when the main four-way valve 2 is switched. Next, at the end of the defrosting operation, after determining the end of the defrosting operation, the operating frequency of the compressor 1 is first lowered, and the receiver open / close valve 13 is opened. As a result, the liquid refrigerant accumulated in the outdoor heat exchanger 3 can be recovered in the liquid receiver 6 and the amount of liquid refrigerant flowing into the indoor heat exchanger 9 can be reduced. When switched, the amount of liquid return to the compressor 1 can be reduced, and liquid compression can be prevented. Next, the main four-way valve 2 is switched from the broken line to the solid line to perform the heating operation. At this time, the indoor expansion valve 8 is fully opened simultaneously with the switching of the main four-way valve 2 or after the switching. Thereafter, the operation is the same as the activation of the heating operation.

以上説明したように、ブリッジ回路5及び受液器開閉弁13により受液器6頭頂部のガス冷媒を冷房運転及び暖房運転共に蒸発器として作用する熱交換器の上流側に配設される膨張弁の上流側に導入することができ、蒸発器に流入する冷媒のかわき度を大きく保ちながら蒸発器で蒸発させ圧縮機1の吸入側に冷媒を導くことができるため、圧縮機1の吸入側に戻る液冷媒量が抑制され液圧縮の防止を図ることができる。また、圧縮機1の運転容量が小さい場合や蒸発温度が低い場合等で発生する膨張弁開度が小さくなる場合でも、膨張弁前を積極的に気液二相化するため膨張弁の開度を大きく保つことができ、膨張弁の開度調整を行う場合に流量特性が緩やかな所を使用できるため、冷凍サイクルが安定化し易く冷凍サイクルの信頼性を向上することができる。また、ブリッジ回路5を設け、暖房時には受液器上部のガス冷媒を室外膨張弁の前に導入し、冷房時には室内膨張弁の前に導入することで暖房起動時、冷房起動時ともに液圧縮を防止ることができる。   As described above, the bridge circuit 5 and the receiver open / close valve 13 expand the gas refrigerant at the top of the receiver 6 on the upstream side of the heat exchanger that acts as an evaporator in both the cooling operation and the heating operation. Since the refrigerant can be introduced to the upstream side of the valve and can be evaporated by the evaporator while keeping the degree of cooling of the refrigerant flowing into the evaporator large, the refrigerant can be guided to the suction side of the compressor 1. The amount of liquid refrigerant returning to step S is suppressed, and liquid compression can be prevented. Even when the operating capacity of the compressor 1 is small, or when the expansion valve opening generated when the evaporation temperature is low, etc., the opening of the expansion valve is positively converted into a gas-liquid two-phase before the expansion valve. Can be kept large, and when the opening degree of the expansion valve is adjusted, a place where the flow rate characteristic is gentle can be used. Therefore, the refrigeration cycle is easily stabilized and the reliability of the refrigeration cycle can be improved. In addition, a bridge circuit 5 is provided so that the gas refrigerant at the top of the receiver is introduced before the outdoor expansion valve during heating, and is introduced before the indoor expansion valve during cooling, so that liquid compression is performed both when heating is started and when cooling is started. Can be prevented.

図7は、本発明の他の実施形態を示す冷凍サイクルの配管系統図である。図中において、図1と同符号のものは同一のものを示す。本発明の冷凍サイクルは、図1に示す減圧装置11の替わりに、減圧装置11と同等の圧力損失を有する主流部と副流部を備えた過冷却器14を設け、過冷却器14の主流部入口24は受液器6の出口配管に、主流部出口25はブリッジ回路5に配管接続される。一方、過冷却器14の副流部入口26は主流部入口24から過冷却バイパス回路15と該過冷却バイパス回路15を流れる冷媒量を調整する過冷却用膨張弁16を介して接続され、副流部出口27は主四方弁2と圧縮機1の吸入側とを接続する配管に合流するように配管接続された構成となっている。それ以外は、図1と同様であり、説明は省略する。   FIG. 7 is a piping system diagram of a refrigeration cycle showing another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. In the refrigeration cycle of the present invention, instead of the decompression device 11 shown in FIG. 1, a supercooler 14 having a main flow portion and a subflow portion having the same pressure loss as the decompression device 11 is provided. The part inlet 24 is connected to the outlet pipe of the liquid receiver 6, and the main stream part outlet 25 is connected to the bridge circuit 5. On the other hand, the subflow inlet 26 of the supercooler 14 is connected to the subcooling bypass circuit 15 from the main flow inlet 24 via the subcooling expansion valve 16 that adjusts the amount of refrigerant flowing through the subcooling bypass circuit 15. The flow outlet 27 is connected by piping so as to join the piping connecting the main four-way valve 2 and the suction side of the compressor 1. Other than that, it is the same as that of FIG.

冷凍サイクルの起動時は、過冷却用膨張弁16の開度を閉にすることにより、過冷却器14での圧力損失が図1の減圧装置11と同等となるように構成されているため、受液器開閉弁13を開にした場合は受液器バイパス回路12を流れるガス冷媒量が同等となるため、凝縮器として作用する熱交換器内の液冷媒量を低減しつつ、蒸発器として作用する熱交換器へ流れる冷媒かわき度を液圧縮防止限界かわき度以上とすることができるため、圧縮機1の信頼性を確保しつつ冷凍サイクルを起動できる。
受液器開閉弁13を開状態に保ったままにした場合は、凝縮器の液量低下による吐出圧力低下により発生する放熱量不足や、蒸発器入口のかわき度増加による蒸発潜熱量低下による性能低下が発生する。このため、冷凍サイクルの運転状態が液圧縮しない状態となった時点で受液器開閉弁13を閉にして冷凍サイクルの性能を所定値に戻す必要がある。ところが、図1に示す冷凍サイクルでは、受液器開閉弁13を閉にすると受液器6頭頂部から流れていたガス冷媒の供給が無くなるため、蒸発器として作用している熱交換器の上流側にある膨張弁前の冷媒状態が気液二相状態から液単相状態となるため、膨張弁を流れる冷媒量が極端に多くなり、圧縮機1に液冷媒が戻り易くなり、最悪の場合は液圧縮を招く場合がある。このため、図7に示す冷凍サイクルでは、冷凍サイクルの運転状態が液圧縮しない状態となった時点で過冷却用膨張弁16を開き、過冷却器14の副流部を流れる低温低圧の冷媒流量を増加させて過冷却器14の主流部出口25の液冷媒を過冷却状態とさせ、受液器バイパス回路12の合流後のかわき度を過冷却用膨張弁16の開度に合わせて小さくなるように調整する。受液器バイパス回路12の合流後のかわき度が十分に小さくなった時点で、受液器開閉弁13を閉にすることにより、蒸発器として作用している熱交換器の上流側にある膨張弁前の冷媒状態の変化がほとんど無いため、膨張弁の流量特性にほとんど変化が無くなり、受液器開閉弁13が閉になった場合でも圧縮機1への液戻りが発生せず、安定した冷凍サイクルを提供することができる。また、受液器開閉弁13を閉とし過冷却用膨張弁16をある一定開度に制御した場合は、蒸発器に流れる冷媒量が少なくなるため、蒸発器での圧力損失が軽減され冷凍サイクルの性能が向上する利点もある。また、ブリッジ回路を設けてブリッジ回路内に受液器の下流側に接続することで暖房時、冷房時ともに性能を落とさずに運転することができる。
At the time of starting the refrigeration cycle, the pressure loss in the supercooler 14 is configured to be equivalent to that of the decompression device 11 in FIG. 1 by closing the opening of the expansion valve 16 for supercooling. When the receiver open / close valve 13 is opened, the amount of gas refrigerant flowing through the receiver bypass circuit 12 is equal, so that the amount of liquid refrigerant in the heat exchanger acting as a condenser is reduced while the evaporator is used. Since the degree of cooling of the refrigerant flowing to the acting heat exchanger can be equal to or higher than the limit of prevention of liquid compression, the refrigeration cycle can be started while ensuring the reliability of the compressor 1.
When the receiver open / close valve 13 is kept open, the performance due to a shortage of heat generated due to a decrease in discharge pressure due to a decrease in the amount of liquid in the condenser or a decrease in latent heat of evaporation due to an increase in the degree of preheating of the evaporator. A decrease occurs. For this reason, it is necessary to close the receiver open / close valve 13 and return the performance of the refrigeration cycle to a predetermined value when the operation state of the refrigeration cycle becomes a state where liquid compression is not performed. However, in the refrigeration cycle shown in FIG. 1, when the receiver open / close valve 13 is closed, the supply of the gas refrigerant flowing from the top of the receiver 6 is lost, so the upstream of the heat exchanger acting as an evaporator is eliminated. Since the refrigerant state before the expansion valve on the side changes from the gas-liquid two-phase state to the liquid single-phase state, the amount of refrigerant flowing through the expansion valve becomes extremely large and the liquid refrigerant easily returns to the compressor 1, which is the worst case. May cause liquid compression. For this reason, in the refrigeration cycle shown in FIG. 7, when the operation state of the refrigeration cycle becomes a state where liquid compression is not performed, the supercooling expansion valve 16 is opened and the low-temperature and low-pressure refrigerant flow flowing through the subflow portion of the subcooler 14. Is increased so that the liquid refrigerant at the outlet 25 of the main flow portion of the supercooler 14 is in a supercooled state, and the degree of flushing after the merge of the liquid receiver bypass circuit 12 is reduced according to the opening degree of the expansion valve 16 for supercooling. Adjust as follows. The expansion on the upstream side of the heat exchanger acting as an evaporator is closed by closing the receiver open / close valve 13 when the degree of pre-flow after the merge of the receiver bypass circuit 12 becomes sufficiently small. Since there is almost no change in the refrigerant state before the valve, there is almost no change in the flow characteristics of the expansion valve, and even when the receiver open / close valve 13 is closed, liquid return to the compressor 1 does not occur, and it is stable. A refrigeration cycle can be provided. When the receiver open / close valve 13 is closed and the subcooling expansion valve 16 is controlled to a certain opening, the amount of refrigerant flowing to the evaporator is reduced, so that the pressure loss in the evaporator is reduced and the refrigeration cycle is reduced. There is also an advantage that the performance is improved. In addition, by providing a bridge circuit and connecting the bridge circuit to the downstream side of the liquid receiver, it is possible to operate without degrading performance during heating and cooling.

図8は、本発明のさらに他の実施形態を示す冷凍サイクルの配管系統図である。図中において、図1と同符号のものは同一のものを示す。本発明の冷凍サイクルは、図1または図7に示す逆止弁4個により構成されているブリッジ回路5の替わりに、副四方弁17を設けた構成となっている。それ以外は、図1と同様であり、説明は省略する。   FIG. 8 is a piping system diagram of a refrigeration cycle showing still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. The refrigeration cycle of the present invention has a configuration in which a sub four-way valve 17 is provided instead of the bridge circuit 5 configured by four check valves shown in FIG. 1 or FIG. Other than that, it is the same as that of FIG.

副四方弁17を実線で示す如く切替えた場合は暖房運転として、破線で示す如く切替えた場合は冷房運転として作用し、図1に示す逆止弁4個により構成されるブリッジ回路5と同等の機能を有することができる。
逆止弁4個で構成されたブリッジ回路5の場合は、溶接箇所が全部で12箇所あるのに対して、副四方弁17を用いた場合は溶接箇所が4箇所と非常に少なくなる。このため、溶接箇所からの冷媒漏れの発生頻度が軽減され、信頼性の高い冷凍サイクルを提供することができる。
When the auxiliary four-way valve 17 is switched as indicated by a solid line, it operates as a heating operation, and when it is switched as indicated by a broken line, it operates as a cooling operation, and is equivalent to the bridge circuit 5 constituted by four check valves shown in FIG. Can have functions.
In the case of the bridge circuit 5 composed of four check valves, there are 12 welding locations in total, whereas when the auxiliary four-way valve 17 is used, the number of welding locations is very small, 4 locations. For this reason, the frequency of occurrence of refrigerant leakage from the welded portion is reduced, and a highly reliable refrigeration cycle can be provided.

図9は、本発明のさらに他の実施形態を示す冷凍サイクルの配管系統図である。図中において、図1と同符号のものは同一のものを示す。本発明の冷凍サイクルが、図7に示す冷凍サイクルと違う点は、圧縮機の吐出側配管から吸入側配管に対してガス冷媒をバイパスする圧縮機バイパス回路18を設け、圧縮機バイパス回路18の途中に常時閉となる圧縮機開閉弁19を設けた構成とした点である。それ以外は、図7と同様であり、説明は省略する。
本発明の冷凍サイクルでは、蒸発器として作用する熱交換器及び圧縮機1の吸入側に接続される配管内に液冷媒が貯留された状態で圧縮機1が起動した場合でも、前記圧縮機開閉弁19を開いて圧縮機1の吐出側を流れるガス冷媒の一部を圧縮機1の吸入側に流すことにより、圧縮機1の吸入側に戻る冷媒の状態を液圧縮限界かわき度以上にすることができるため、圧縮機1の液圧縮を防止することが可能となり、圧縮機1の信頼性をさらに向上することができる。また、圧縮機1の吸入側に高温のガス冷媒の一部をバイパスするため、吸入圧力の低下を防止し且つ圧縮機1の温度を早く上げることができるため、冷凍サイクルの立ち上がりを早くすることが可能となり、本発明の冷凍サイクルを空気調和機として用いた場合は、空調場の快適性を向上することができる。
FIG. 9 is a piping system diagram of a refrigeration cycle showing still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. The refrigeration cycle of the present invention is different from the refrigeration cycle shown in FIG. 7 in that a compressor bypass circuit 18 that bypasses the gas refrigerant from the discharge side piping to the suction side piping of the compressor is provided. The compressor open / close valve 19 that is normally closed is provided on the way. Other than that, it is the same as that of FIG.
In the refrigeration cycle of the present invention, even when the compressor 1 is started in a state where the liquid refrigerant is stored in the pipe connected to the suction side of the heat exchanger and the compressor 1 acting as an evaporator, the opening and closing of the compressor By opening the valve 19 and causing a part of the gas refrigerant flowing on the discharge side of the compressor 1 to flow to the suction side of the compressor 1, the state of the refrigerant returning to the suction side of the compressor 1 is made higher than the liquid compression limit clearance degree. Therefore, liquid compression of the compressor 1 can be prevented, and the reliability of the compressor 1 can be further improved. In addition, since a part of the high-temperature gas refrigerant is bypassed on the suction side of the compressor 1, it is possible to prevent a decrease in suction pressure and to quickly raise the temperature of the compressor 1, thereby speeding up the start-up of the refrigeration cycle. When the refrigeration cycle of the present invention is used as an air conditioner, the comfort of the air-conditioning station can be improved.

上述の実施例によれば、少なくとも、圧縮機、四方弁、室外熱交換器、室外減圧装置、室内減圧装置、室内熱交換器を接続して成る冷凍サイクルにおいて、逆止弁により構成されるブリッジ回路を室外減圧装置と室内減圧装置の間に設け、ブリッジ回路の1方向に流れる回路内に受液器、減圧装置を順次接続し、減圧装置とブリッジ回路とを接続する配管に対して受液器頭頂部のガス冷媒が流れるように受液器バイパス回路と該受液器バイパス回路を開閉する常時閉の受液器開閉弁を設け、冷凍サイクルの起動及び停止指令を受けた時に圧縮機の起動及び停止を行う起動停止制御手段と、冷凍サイクルの運転中に除霜指令により前記四方弁を切替えて除霜運転を行うように制御する除霜制御手段と、前記起動停止制御手段及び除霜制御手段の信号により受液器開閉弁を任意に開閉する開閉弁制御手段とを備えることにより、ブリッジ回路及び受液器開閉弁により受液器頭頂部のガス冷媒を冷房運転及び暖房運転共に蒸発器として作用する熱交換器の上流側に配設される膨張弁の上流側に導入することができ、蒸発器に流入する冷媒のかわき度を大きく保ちながら蒸発器で蒸発させ圧縮機の吸入側に冷媒を導くことができるため、圧縮機の吸入側に戻る液冷媒量が抑制され液圧縮の防止を図ることができる。また、圧縮機の運転容量が小さい場合や蒸発温度が低い場合等で発生する膨張弁開度が小さくなる場合でも、膨張弁前を積極的に気液二相化するため膨張弁の開度を大きく保つことができ、膨張弁の開度調整を行う場合に流量特性が緩やかな所を使用できるため、冷凍サイクルが安定化し易く冷凍サイクルの信頼性を向上することができる。   According to the above-mentioned embodiment, at least a compressor, a four-way valve, an outdoor heat exchanger, an outdoor pressure reducing device, an indoor pressure reducing device, a refrigeration cycle connected to the indoor heat exchanger, a bridge constituted by a check valve A circuit is provided between the outdoor pressure reducing device and the indoor pressure reducing device, and a liquid receiver and a pressure reducing device are sequentially connected in a circuit flowing in one direction of the bridge circuit, and the liquid is received with respect to a pipe connecting the pressure reducing device and the bridge circuit. A receiver bypass circuit and a normally closed receiver open / close valve that opens and closes the receiver bypass circuit so that the gas refrigerant at the top of the receiver flows are provided, and when the refrigeration cycle start and stop commands are received, Start / stop control means for starting and stopping, defrost control means for controlling the four-way valve to perform a defrost operation by a defrost command during operation of the refrigeration cycle, the start / stop control means and the defrost Control means With the open / close valve control means for opening and closing the receiver open / close valve as desired, the bridge circuit and the receiver open / close valve act as an evaporator for the cooling and heating operation of the gas refrigerant at the top of the receiver. The refrigerant can be introduced upstream of the expansion valve disposed upstream of the heat exchanger, evaporating with the evaporator while keeping the degree of cooling of the refrigerant flowing into the evaporator large, and the refrigerant is supplied to the suction side of the compressor. Therefore, the amount of liquid refrigerant returning to the suction side of the compressor is suppressed, and liquid compression can be prevented. Even when the operating capacity of the compressor is small, or when the expansion valve opening that occurs when the evaporation temperature is low, etc., the opening of the expansion valve is reduced in order to actively make the gas-liquid two-phase before the expansion valve. It can be kept large, and when adjusting the opening degree of the expansion valve, a place where the flow characteristic is gentle can be used. Therefore, the refrigeration cycle can be easily stabilized and the reliability of the refrigeration cycle can be improved.

本発明の一実施形態を示す冷凍サイクルのブロック図である。It is a block diagram of the refrigerating cycle which shows one Embodiment of this invention. 本発明の一実施形態の運転状態を示すモリエル線図である。It is a Mollier diagram which shows the driving | running state of one Embodiment of this invention. 本発明の一実施形態で用いられる膨張弁の流量特性図である。It is a flow characteristic figure of an expansion valve used in one embodiment of the present invention. 本発明の一実施形態の冷凍サイクルを暖房運転した場合のタイムチャート図である。It is a time chart figure at the time of heating operation of the refrigerating cycle of one embodiment of the present invention. 本発明の一実施形態の冷凍サイクルを冷房運転した場合のタイムチャート図である。It is a time chart figure at the time of cooling operation of the refrigerating cycle of one embodiment of the present invention. 本発明の一実施形態の冷凍サイクルを除霜運転した場合のタイムチャート図である。It is a time chart figure at the time of carrying out defrost operation of the refrigerating cycle of one embodiment of the present invention. 本発明の他の実施形態示す冷凍サイクルの配管系統図である。It is a piping system diagram of the refrigerating cycle which shows other embodiments of the present invention. 本発明のさらに他の実施形態を示す冷凍サイクルの配管系統図である。It is a piping system diagram of the refrigerating cycle which shows other embodiments of the present invention. 本発明のさらに他の実施形態を示す冷凍サイクルの配管系統図である。It is a piping system diagram of the refrigerating cycle which shows other embodiments of the present invention.

符号の説明Explanation of symbols

1…圧縮機、2…主四方弁、3…室外熱交換器、4…室外膨張弁、5…ブリッジ回路、6…受液器、7…液阻止弁、8…室内膨張弁、9…室内熱交換器、10…ガス阻止弁、11…減圧装置、12…受液器バイパス回路、13…受液器開閉弁、14…過冷却器、15…過冷却バイパス回路、16…過冷却用膨張弁、17…副四方弁、18…圧縮機バイパス回路、19…圧縮機開閉弁、21…起動停止制御手段、22…除霜制御手段、23…開閉弁制御手段、24…主流部入口、25…主流部出口、26…副流部入口、27…副流部出口。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Main four-way valve, 3 ... Outdoor heat exchanger, 4 ... Outdoor expansion valve, 5 ... Bridge circuit, 6 ... Receiver, 7 ... Liquid blocking valve, 8 ... Indoor expansion valve, 9 ... Indoor Heat exchanger, 10 ... gas blocking valve, 11 ... decompression device, 12 ... receiver receiver bypass circuit, 13 ... receiver receiver on-off valve, 14 ... supercooler, 15 ... supercooling bypass circuit, 16 ... expansion for supercooling Valves 17: Sub four-way valve 18 ... Compressor bypass circuit 19 ... Compressor on / off valve 21 ... Start / stop control means 22 ... Defrost control means 23 ... Open / close valve control means 24 ... Main stream inlet 25 ... main stream part outlet, 26 ... side stream part inlet, 27 ... side stream part outlet.

Claims (10)

圧縮機、四方弁、室内熱交換器、室内膨張弁、室外膨張弁、室外熱交換器とを冷媒配管により接続した冷凍サイクル装置において、前記室内熱交換器及び前記室外熱交換器と冷媒配管により接続され、冷媒を貯留する受液器と、前記受液器上部のガス冷媒を通過させ前記受液器出口から流出する冷媒と混合させるバイパス管と、前記バイパス管を通過するガス冷媒の量を調整する受液器開閉弁とを備え、前記バイパス管を通過したガス冷媒と前記受液器出口から流出した冷媒が混合した冷媒を前記室内膨張弁の上流又は室外膨張弁の上流に切り換えて流す切替部を設けたことを特徴とする冷凍サイクル装置。   In the refrigeration cycle apparatus in which a compressor, a four-way valve, an indoor heat exchanger, an indoor expansion valve, an outdoor expansion valve, and an outdoor heat exchanger are connected by a refrigerant pipe, the indoor heat exchanger and the outdoor heat exchanger and the refrigerant pipe A receiver that is connected to store the refrigerant, a bypass pipe that allows the gas refrigerant in the upper part of the receiver to pass through and mixes with the refrigerant that flows out of the outlet of the receiver, and the amount of the gas refrigerant that passes through the bypass pipe. A liquid receiver open / close valve to be adjusted, and the refrigerant in which the gas refrigerant passing through the bypass pipe and the refrigerant flowing out of the liquid receiver outlet are mixed is switched to flow upstream of the indoor expansion valve or upstream of the outdoor expansion valve. A refrigeration cycle apparatus comprising a switching unit. 請求項1において、前記切替部は逆止弁で構成されたブリッジ回路であることを特徴とする冷凍サイクル装置。   2. The refrigeration cycle apparatus according to claim 1, wherein the switching unit is a bridge circuit including a check valve. 請求項1において、前記切替部は四方弁であることを特徴とする冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein the switching unit is a four-way valve. 請求項1において、前記受液器の下流に過冷却器が冷媒配管により接続され、前記過冷却器の主流部入口は前記受液器の出口配管に、前記過冷却器の主流部出口は前記切替部に、前記過冷却器の副流部入口は前記四方弁と前記圧縮機吸入側とを接続する冷媒配管に、前記過冷却器の副流部出口は前記受液器出口に接続されたことを特徴とする冷凍サイクル装置。   2. The subcooler is connected to the downstream of the liquid receiver by a refrigerant pipe, the main stream part inlet of the subcooler is connected to the outlet pipe of the liquid receiver, and the main stream part outlet of the subcooler is In the switching unit, the subflow inlet of the supercooler is connected to a refrigerant pipe connecting the four-way valve and the compressor suction side, and the subflow outlet of the supercooler is connected to the receiver outlet. A refrigeration cycle apparatus characterized by that. 請求項1において、前記受液器開閉弁を前記圧縮機の起動時から所定の時間開くことを特徴とする冷凍サイクル装置。   2. The refrigeration cycle apparatus according to claim 1, wherein the receiver open / close valve is opened for a predetermined time from the start of the compressor. 圧縮機、四方弁、室内熱交換器、室内膨張弁、室外膨張弁、室外熱交換器とを冷媒配管により接続した冷凍サイクル装置において、前記室内熱交換器及び前記室外熱交換器と冷媒配管により接続され冷媒を貯留する受液器と、前記受液器上部のガス冷媒を通過させ前記受液器出口から流出する冷媒と混合させるバイパス管と、前記バイパス管を通過するガス冷媒の量を調整する受液器開閉弁とを備え、前記バイパス管を通過したガス冷媒と前記受液器出口から流出した冷媒が混合した冷媒を前記室内膨張弁の上流又は室外膨張弁の上流に切り換えて流す切替部を設けたことを特徴とする空気調和機。   In the refrigeration cycle apparatus in which a compressor, a four-way valve, an indoor heat exchanger, an indoor expansion valve, an outdoor expansion valve, and an outdoor heat exchanger are connected by a refrigerant pipe, the indoor heat exchanger and the outdoor heat exchanger and the refrigerant pipe Adjusting the amount of gas refrigerant passing through the bypass pipe, connected to the liquid receiver for storing the refrigerant, bypass pipe for allowing the gas refrigerant in the upper part of the liquid receiver to pass through and mixing with the refrigerant flowing out from the outlet of the liquid receiver A liquid receiver open / close valve that switches the refrigerant that is mixed with the gas refrigerant that has passed through the bypass pipe and the refrigerant that has flowed out of the outlet of the liquid receiver to flow upstream of the indoor expansion valve or upstream of the outdoor expansion valve An air conditioner characterized by providing a section. 請求項6において、前記切替部は逆止弁で構成されたブリッジ回路であることを特徴とする空気調和機。   The air conditioner according to claim 6, wherein the switching unit is a bridge circuit including a check valve. 請求6において、前記切替部は四方弁であることを特徴とする空気調和機。   The air conditioner according to claim 6, wherein the switching unit is a four-way valve. 請求項6において、前記受液器の下流に冷媒配管により過冷却器が接続され、前記過冷却器の主流部入口は前記受液器の出口配管に、前記過冷却器の主流部出口は前記切替部に、前記過冷却器の副流部入口は前記四方弁と前記圧縮機吸入側とを接続する配管に、前記過冷却器の副流部出口は前記受液器出口に接続されたことを特徴とする空気調和機。   The supercooler is connected to the downstream of the liquid receiver by a refrigerant pipe, the main stream part inlet of the supercooler is connected to the outlet pipe of the liquid receiver, and the main stream part outlet of the subcooler is the The sub-flow part inlet of the supercooler is connected to the pipe connecting the four-way valve and the compressor suction side, and the sub-flow part outlet of the supercooler is connected to the receiver outlet. Air conditioner characterized by. 請求項6において、前記受液器開閉弁を前記圧縮機の起動時から所定の時間開くことを特徴とする空気調和機。
7. The air conditioner according to claim 6, wherein the receiver open / close valve is opened for a predetermined time from the start of the compressor.
JP2006115146A 2006-04-19 2006-04-19 Refrigeration cycle apparatus and air conditioner Expired - Fee Related JP4734161B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006115146A JP4734161B2 (en) 2006-04-19 2006-04-19 Refrigeration cycle apparatus and air conditioner
CN2006101280999A CN101059288B (en) 2006-04-19 2006-09-04 Refrigeration cycle device and air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115146A JP4734161B2 (en) 2006-04-19 2006-04-19 Refrigeration cycle apparatus and air conditioner

Publications (3)

Publication Number Publication Date
JP2007285635A true JP2007285635A (en) 2007-11-01
JP2007285635A5 JP2007285635A5 (en) 2008-12-11
JP4734161B2 JP4734161B2 (en) 2011-07-27

Family

ID=38757581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115146A Expired - Fee Related JP4734161B2 (en) 2006-04-19 2006-04-19 Refrigeration cycle apparatus and air conditioner

Country Status (2)

Country Link
JP (1) JP4734161B2 (en)
CN (1) CN101059288B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159897A (en) * 2008-09-17 2011-08-17 大金工业株式会社 Air conditioning device
WO2012043377A1 (en) * 2010-09-30 2012-04-05 ダイキン工業株式会社 Refrigeration circuit
JP2012102979A (en) * 2010-11-12 2012-05-31 Espec Corp Temperature adjusting device and thermo-hygrostat
CN104930770A (en) * 2015-05-29 2015-09-23 广东美的制冷设备有限公司 Defrosting method and defrosting device of heat pump air conditioner
JP2016084984A (en) * 2014-10-27 2016-05-19 ダイキン工業株式会社 Heat pump device
CN106225122A (en) * 2016-08-10 2016-12-14 宁德职业技术学院 A kind of natural, ecological air-conditioning and using method thereof
JP2019082279A (en) * 2017-10-30 2019-05-30 ダイキン工業株式会社 Air conditioner
CN112361683A (en) * 2020-11-26 2021-02-12 珠海格力电器股份有限公司 Compressor starting protection device, control method and air-cooled water chilling unit
CN112880228A (en) * 2021-02-02 2021-06-01 三菱重工海尔(青岛)空调机有限公司 Air conditioner liquid return prevention device and method for preventing air conditioner liquid return

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528142B (en) * 2012-07-05 2016-02-03 珠海格力电器股份有限公司 Antifrost air-conditioning and control method thereof
DE112013007326T5 (en) * 2013-08-09 2016-07-28 Trane Air Conditioning Systems (China) Co., Ltd. Control of temporary refrigerant migration in refrigeration systems
CN105020950B (en) * 2015-07-15 2017-09-05 宁波奥克斯电气股份有限公司 Multi-connected machine defrosting control method
EP3361184B1 (en) 2015-10-08 2020-05-06 Mitsubishi Electric Corporation Refrigeration cycle device
JP7002227B2 (en) * 2017-06-14 2022-01-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN108072202A (en) * 2017-08-28 2018-05-25 浙江大学 A kind of bridge-type two-way Auto-cascade cycle system of heat pump
CN108061399A (en) * 2017-08-28 2018-05-22 浙江大学 A kind of two-way heat recovery heat pump system
CN107747825A (en) * 2017-08-28 2018-03-02 浙江大学 A kind of bridge-type two-way heat regenerative system of heat pump
CN112166290B (en) * 2018-06-08 2022-03-11 三菱电机株式会社 Outdoor unit and refrigeration cycle device
CN110173794B (en) * 2019-05-27 2021-06-18 广东美的制冷设备有限公司 Air conditioner and control method and device thereof
DK4030116T3 (en) * 2019-09-09 2023-11-13 Mitsubishi Electric Corp OUTDOOR UNIT AND REFRIGERATION CIRCUIT
CN114364929B (en) * 2019-09-09 2024-01-02 三菱电机株式会社 Outdoor unit and refrigeration cycle device
CN111879029B (en) * 2020-07-28 2021-05-14 西安交通大学 Heat pump system of micro-channel heat exchanger and optimized restarting heating control method
CN112228972B (en) * 2020-10-21 2022-04-19 青岛海信日立空调系统有限公司 Multi-split air conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332625A (en) * 1992-05-29 1993-12-14 Daikin Ind Ltd Operation control device for freezer
JP2004044883A (en) * 2002-07-11 2004-02-12 Hitachi Ltd Air conditioner
JP2005003252A (en) * 2003-06-11 2005-01-06 Toshiba Kyaria Kk Air conditioner
JP2005069566A (en) * 2003-08-25 2005-03-17 Daikin Ind Ltd Freezer
JP2006090639A (en) * 2004-09-24 2006-04-06 Daikin Ind Ltd Refrigerating apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697487B2 (en) * 1992-05-29 1998-01-14 ダイキン工業株式会社 Operation control device for refrigeration equipment
JP3331102B2 (en) * 1995-08-16 2002-10-07 株式会社日立製作所 Refrigeration cycle capacity control device
CN2366801Y (en) * 1999-01-08 2000-03-01 浙江吉佳机电设备有限公司 Air cooling heat pump refrigeration system using plate type exchanger
JP4089139B2 (en) * 2000-07-26 2008-05-28 ダイキン工業株式会社 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332625A (en) * 1992-05-29 1993-12-14 Daikin Ind Ltd Operation control device for freezer
JP2004044883A (en) * 2002-07-11 2004-02-12 Hitachi Ltd Air conditioner
JP2005003252A (en) * 2003-06-11 2005-01-06 Toshiba Kyaria Kk Air conditioner
JP2005069566A (en) * 2003-08-25 2005-03-17 Daikin Ind Ltd Freezer
JP2006090639A (en) * 2004-09-24 2006-04-06 Daikin Ind Ltd Refrigerating apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159897A (en) * 2008-09-17 2011-08-17 大金工业株式会社 Air conditioning device
US9303881B2 (en) 2008-09-17 2016-04-05 Daikin Industries, Ltd. Air conditioning apparatus
WO2012043377A1 (en) * 2010-09-30 2012-04-05 ダイキン工業株式会社 Refrigeration circuit
JP2012077983A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Refrigerating circuit
JP2012102979A (en) * 2010-11-12 2012-05-31 Espec Corp Temperature adjusting device and thermo-hygrostat
JP2016084984A (en) * 2014-10-27 2016-05-19 ダイキン工業株式会社 Heat pump device
CN104930770A (en) * 2015-05-29 2015-09-23 广东美的制冷设备有限公司 Defrosting method and defrosting device of heat pump air conditioner
CN106225122A (en) * 2016-08-10 2016-12-14 宁德职业技术学院 A kind of natural, ecological air-conditioning and using method thereof
JP2019082279A (en) * 2017-10-30 2019-05-30 ダイキン工業株式会社 Air conditioner
CN112361683A (en) * 2020-11-26 2021-02-12 珠海格力电器股份有限公司 Compressor starting protection device, control method and air-cooled water chilling unit
CN112880228A (en) * 2021-02-02 2021-06-01 三菱重工海尔(青岛)空调机有限公司 Air conditioner liquid return prevention device and method for preventing air conditioner liquid return

Also Published As

Publication number Publication date
CN101059288A (en) 2007-10-24
JP4734161B2 (en) 2011-07-27
CN101059288B (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4734161B2 (en) Refrigeration cycle apparatus and air conditioner
JP6033297B2 (en) Air conditioner
WO2013001688A1 (en) Refrigeration-cycle device
JP5132354B2 (en) Air conditioner
JP5258197B2 (en) Air conditioning system
EP3273188A1 (en) Control device, air conditioner, and controlling method
JP5173857B2 (en) Air conditioner
JP4407012B2 (en) Refrigeration equipment
WO2016189739A1 (en) Air conditioning device
JP2016205729A (en) Refrigeration cycle device
JP4981411B2 (en) Air conditioner
JP2004003717A (en) Air conditioner
JP3317170B2 (en) Refrigeration equipment
JP2009228975A (en) Remote condenser type air conditioner
JP2009293887A (en) Refrigerating device
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
JP4274250B2 (en) Refrigeration equipment
JP3263343B2 (en) Multi air conditioner
JP3082752B2 (en) Refrigeration equipment
WO2020179005A1 (en) Refrigeration cycle device
JP2889762B2 (en) Air conditioner
CN114364929A (en) Outdoor unit and refrigeration cycle device
JP7474911B1 (en) Refrigeration Cycle Equipment
JP2006145174A (en) Air conditioner and its operating method
WO2017199384A1 (en) Air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees