JP7002227B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP7002227B2
JP7002227B2 JP2017116727A JP2017116727A JP7002227B2 JP 7002227 B2 JP7002227 B2 JP 7002227B2 JP 2017116727 A JP2017116727 A JP 2017116727A JP 2017116727 A JP2017116727 A JP 2017116727A JP 7002227 B2 JP7002227 B2 JP 7002227B2
Authority
JP
Japan
Prior art keywords
expansion valve
liquid
indoor
outdoor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017116727A
Other languages
Japanese (ja)
Other versions
JP2019002620A (en
Inventor
宏治 内藤
修平 多田
真一 小杉
雅裕 渡邉
亮祐 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2017116727A priority Critical patent/JP7002227B2/en
Priority to US15/996,588 priority patent/US20180363961A1/en
Priority to CN201810582780.3A priority patent/CN109084392B/en
Publication of JP2019002620A publication Critical patent/JP2019002620A/en
Application granted granted Critical
Publication of JP7002227B2 publication Critical patent/JP7002227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/15Control issues during shut down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、空気調和機に関し、特に、圧縮機停止後の膨張弁制御に特徴を有するマルチ空気調和機に関する。 The present invention relates to an air conditioner, and more particularly to a multi-air conditioner characterized by expansion valve control after the compressor is stopped.

空気調和機内の冷媒分布は、運転中と停止中で大きく異なることが知られている。図6は、空気調和機内部の冷媒分布の一例であり、空気調和機内部を、接続液管、接続ガス管、室外機、その他の四区分に大別し、運転中と停止中(停止から所定時間経過後)の冷媒分布を比較したものである。ここから、運転中に比べ停止中は、接続液管内と室外機内の冷媒が減り、接続ガス管内の冷媒が増えていることが分かる。 It is known that the distribution of refrigerant in the air conditioner differs greatly between when it is in operation and when it is stopped. FIG. 6 is an example of the distribution of the refrigerant inside the air conditioner, and the inside of the air conditioner is roughly divided into four categories: connecting liquid pipe, connecting gas pipe, outdoor unit, and other four categories, and is in operation and stopped (from stop). This is a comparison of the refrigerant distributions after a lapse of a predetermined time). From this, it can be seen that the amount of refrigerant in the connecting liquid pipe and the outdoor unit decreases, and the amount of refrigerant in the connecting gas pipe increases during the stop compared to during operation.

特に注目すべきは、接続液管が保有する冷媒量の大幅な変化であり、図6の例では、運転中に約6割を占めた接続液管内の冷媒が、停止中は約4割にまで減少している。これは、接続液管内の冷媒の多くが、接続ガス配管に移動したためである。 Of particular note is the significant change in the amount of refrigerant held in the connecting liquid pipe. In the example of FIG. 6, the refrigerant in the connecting liquid pipe, which accounted for about 60% during operation, became about 40% when stopped. Has decreased to. This is because most of the refrigerant in the connecting liquid pipe has moved to the connecting gas pipe.

図6のように、停止中に接続液管から接続ガス管へ冷媒が移動してしまうと、次に空気調和機を起動する際に、接続ガス管に移動している冷媒が接続液管に移動し、接続液管に適正量の冷媒が再び溜まるのを待つ必要があり、空気調和機の立ち上がりに時間がかかるという問題がある。 As shown in FIG. 6, if the refrigerant moves from the connecting liquid pipe to the connecting gas pipe while stopped, the refrigerant moving to the connecting gas pipe will move to the connecting liquid pipe the next time the air conditioner is started. There is a problem that it is necessary to move and wait for an appropriate amount of refrigerant to be accumulated again in the connecting liquid pipe, and it takes time to start up the air conditioner.

また、接続液管から室外機に冷媒が移動する場合には、接続ガス管やアキュムレータなどに冷媒が溜まり込む恐れがある。この溜まり込みが発生した状態での再起動時は、圧縮機の液圧縮のリスクが高くなるため、アキュムレータの容積を大きくすることで液圧縮のリスクを回避する必要がある。 Further, when the refrigerant moves from the connecting liquid pipe to the outdoor unit, the refrigerant may accumulate in the connecting gas pipe, the accumulator, or the like. When restarting in the state where this accumulation occurs, the risk of liquid compression of the compressor increases, so it is necessary to avoid the risk of liquid compression by increasing the volume of the accumulator.

本発明の目的は、停止中の接続液管からの冷媒移動を抑制することで、再起動に要するの時間を短縮し、快適性や信頼性を向上させるとともに、アキュムレータの大型化に伴う製造コスト増加を防いだ空気調和機を提供することにある。 An object of the present invention is to suppress the movement of the refrigerant from the stopped connecting liquid pipe, thereby shortening the time required for restarting, improving comfort and reliability, and manufacturing cost due to the increase in size of the accumulator. The purpose is to provide an air conditioner that prevents the increase.

上記課題を解決するために、本発明の空気調和機は、圧縮機、室外熱交換器、室外膨張弁を有する室外機と、室内熱交換器、室内膨張弁を有する室内機と、前記室外機と前記室内機を接続する液管と、前記室外機と前記室内機を接続するガス管と、を備え、前記室外熱交換器の一端は前記室外膨張弁を介して前記液管に連結され、前記室内熱交換器の一端は前記室内膨張弁を介して前記液管に連結されており、前記圧縮機の停止から所定時間経過後に、前記室外膨張弁及び前記室内膨張弁の両方を閉じるものとした。 In order to solve the above problems, the air conditioner of the present invention includes an outdoor unit having a compressor, an outdoor heat exchanger and an outdoor expansion valve, an indoor heat exchanger, an indoor unit having an indoor expansion valve, and the outdoor unit. A liquid pipe connecting the indoor unit and a gas pipe connecting the outdoor unit and the indoor unit is provided, and one end of the outdoor heat exchanger is connected to the liquid pipe via the outdoor expansion valve. One end of the indoor heat exchanger is connected to the liquid pipe via the indoor expansion valve, and both the outdoor expansion valve and the indoor expansion valve are closed after a predetermined time has elapsed from the stop of the compressor. did.

また、本発明の他の空気調和機は、圧縮機、室外熱交換器、室外膨張弁を有する室外機と、室内熱交換器、室内膨張弁を有する室内機と、高低圧ガス管切替弁と低圧ガス管切替弁を有する冷暖切替ユニットと、前記室外機と前記室内機を接続する液管と、前記室外機と前記高低圧ガス管切替弁を接続する高低圧ガス管と、前記室外機と前記低圧ガス管切替弁を接続する低圧ガス管と、前記室内機と前記冷暖切替ユニットを接続するガス管と、を備え、前記室外熱交換器の一端は前記室外膨張弁を介して前記液管に連結され、前記室内熱交換器の一端は前記室内膨張弁を介して前記液管に連結されており、前記圧縮機の停止から所定時間経過後に、前記室外膨張弁と前記室内膨張弁の両方を閉じるか、前記室外膨張弁と前記高低圧ガス管切替弁と前記低圧ガス管切替弁の全てを閉じるものとした。 Further, other air conditioners of the present invention include an outdoor unit having a compressor, an outdoor heat exchanger and an outdoor expansion valve, an indoor heat exchanger, an indoor unit having an indoor expansion valve, and a high / low pressure gas pipe switching valve. A cooling / heating switching unit having a low-pressure gas pipe switching valve, a liquid pipe connecting the outdoor unit and the indoor unit, a high-low pressure gas pipe connecting the outdoor unit and the high-low pressure gas pipe switching valve, and the outdoor unit. A low-pressure gas pipe connecting the low-pressure gas pipe switching valve and a gas pipe connecting the indoor unit and the cooling / heating switching unit are provided, and one end of the outdoor heat exchanger is the liquid pipe via the outdoor expansion valve. One end of the indoor heat exchanger is connected to the liquid pipe via the indoor expansion valve, and after a predetermined time has elapsed from the shutdown of the compressor, both the outdoor expansion valve and the indoor expansion valve Or close all of the outdoor expansion valve, the high / low pressure gas pipe switching valve, and the low pressure gas pipe switching valve.

さらに、本発明の他の空気調和機は、圧縮機、室外熱交換器、室外膨張弁を有する室外機と、室内熱交換器、室内膨張弁を有する室内機と、気液分離器、高圧管用切替弁、低圧管用切替弁、液圧調整膨張弁を有する冷暖切替ユニットと、前記室外機と前記冷暖切替ユニットを連結する高圧管と、前記室外機と前記冷暖切替ユニットを連結する低圧管と、前記室内機と前記冷暖切替ユニットを連結するガス管と、前記室内機と前記冷暖切替ユニットを連結する液管と、を備え、前記室外熱交換器の一端は前記室外膨張弁を介して前記高圧管に連結され、前記室内熱交換器の一端は前記室内膨張弁を介して前記液管に連結されており、前記圧縮機の停止から所定時間経過後に、前記室外膨張弁、前記室内膨張弁、前記高圧管用切替弁、前記低圧管用切替弁、前記液圧調整弁の全てを閉じるものとした。 Further, other air conditioners of the present invention include a compressor, an outdoor heat exchanger, an outdoor unit having an outdoor expansion valve, an indoor heat exchanger, an indoor unit having an indoor expansion valve, a gas-liquid separator, and a high-pressure pipe. A cooling / heating switching unit having a switching valve, a switching valve for a low pressure pipe, and a hydraulic pressure adjusting expansion valve, a high pressure pipe connecting the outdoor unit and the cooling / heating switching unit, and a low pressure pipe connecting the outdoor unit and the cooling / heating switching unit. A gas pipe connecting the indoor unit and the cooling / heating switching unit, and a liquid pipe connecting the indoor unit and the cooling / heating switching unit are provided, and one end of the outdoor heat exchanger has the high pressure via the outdoor expansion valve. One end of the indoor heat exchanger is connected to the liquid pipe via the indoor expansion valve, and after a predetermined time has elapsed from the shutdown of the compressor, the outdoor expansion valve, the indoor expansion valve, and the like. The switching valve for the high pressure pipe, the switching valve for the low pressure pipe, and the hydraulic pressure adjusting valve are all closed.

本発明によれば、停止時の接続液管からの冷媒移動を抑制できるため、空気調和機の再起動時の暖房運転または冷房運転の立ち上りを早めることができ、快適性を向上させることができる。また、アキュムレータを大型化しなくても、圧縮機での液圧縮の可能性を低減できるため、製造コストを上昇させることなく、信頼性を向上させることができる。 According to the present invention, since the movement of the refrigerant from the connecting liquid pipe at the time of stopping can be suppressed, the start-up of the heating operation or the cooling operation at the time of restarting the air conditioner can be accelerated, and the comfort can be improved. .. Further, since the possibility of liquid compression in the compressor can be reduced without increasing the size of the accumulator, the reliability can be improved without increasing the manufacturing cost.

冷暖切替マルチにおける従来の暖房停止時膨張弁制御Conventional expansion valve control when heating is stopped in the cooling / heating switching multi 冷暖切替マルチにおける従来の冷房停止時膨張弁制御Conventional expansion valve control when cooling is stopped in the cooling / heating switching multi 冷暖切替マルチにおける実施例1の停止時膨張弁制御Expansion valve control at the time of stop of Example 1 in the cooling / heating switching multi 高低差による冷媒差圧の例Example of refrigerant differential pressure due to height difference 室内外温度差による冷媒差圧の例Example of refrigerant differential pressure due to indoor / outdoor temperature difference 運転中と停止中の冷媒分布の一例An example of refrigerant distribution during operation and stop 液冷媒の等容変化Isochoric change of liquid refrigerant 従来の運転から停止中の圧力挙動Pressure behavior during stop from conventional operation 停止時膨張弁制御時の運転から停止中の圧力挙動Pressure behavior during stop from operation during stop expansion valve control 停止時膨張弁制御時の運転から停止中の圧力挙動Pressure behavior during stop from operation during stop expansion valve control 停止時膨張弁制御のフローチャート例Flow chart example of expansion valve control when stopped 冷暖同時マルチにおける従来の停止時膨張弁制御Conventional stop expansion valve control in simultaneous cooling and heating multi 冷暖同時マルチにおける実施例2の停止時膨張弁制御Expansion valve control when stopped in Example 2 in simultaneous cooling and heating multi 冷暖同時マルチにおける実施例2の変形例の停止時膨張弁制御(冷暖切替ユニット弁開)Expansion valve control at the time of stop of the modified example of Example 2 in the simultaneous cooling / heating multi (cooling / heating switching unit valve open) 冷暖同時マルチにおける実施例2の他の変形例の停止時膨張弁制御(暖房室内膨張弁開)Expansion valve control at the time of stop of another modification of Example 2 in the simultaneous cooling and heating multi (heating chamber expansion valve open) 2管式冷暖同時マルチにおける従来の停止時膨張弁制御Conventional expansion valve control at stop in 2-tube cooling / heating simultaneous multi 2管式冷暖同時マルチにおける実施例3の停止時膨張弁制御Expansion valve control when stopped in Example 3 in a two-tube cooling / heating simultaneous multi 過冷却回路使用構成における実施例4の冷房停止時膨張弁制御Expansion valve control when cooling is stopped according to the fourth embodiment in the configuration using a supercooling circuit.

以下、図面を用いて本発明の実施例を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1~図5、図7~図11を用いて、本発明の実施例1の空気調和機を説明する。
<従来の暖房停止時膨張弁制御>
図1は、冷暖切換マルチの空気調和機100に適用した従来の暖房停止時膨張弁制御を示す冷凍サイクル系統図である。ここに示す空気調和機100は、室外機10と、室内機40(40a,40b,40c,40dの総称)を、液主管21とガス主管24で接続したものであり、各室内機40は暖房停止状態である。なお、図1では、室外機10が一台、室内機40が四台の構成を例示しているが、これ以外の台数構成であってもよい。
First, the air conditioner according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5 and 7 to 11.
<Conventional expansion valve control when heating is stopped>
FIG. 1 is a refrigeration cycle system diagram showing conventional expansion valve control when heating is stopped, which is applied to the air conditioner 100 of the cooling / heating switching multi. The air conditioner 100 shown here is a device in which an outdoor unit 10 and an indoor unit 40 (general term for 40a, 40b, 40c, 40d) are connected by a liquid main pipe 21 and a gas main pipe 24, and each indoor unit 40 is heated. It is in a stopped state. Although FIG. 1 illustrates a configuration in which one outdoor unit 10 and four indoor units 40 are used, a configuration other than this may be used.

室内機40aは、室内熱交換器41a、室内膨張弁42a、室内熱交換器用ファン49aから構成される。そして、室内熱交換器41の一端は、室内膨張弁42を介して、液主管21に連通する。また、図示する箇所に、室内熱交換器ガス温度センサ45a、室内熱交換器液温度センサ46a、室内温度センサ73aを設置している。なお、室内機40b、40c、40dの構成は同等であるので、重複説明を省略する。 The indoor unit 40a is composed of an indoor heat exchanger 41a, an indoor expansion valve 42a, and an indoor heat exchanger fan 49a. Then, one end of the indoor heat exchanger 41 communicates with the liquid main pipe 21 via the indoor expansion valve 42. Further, an indoor heat exchanger gas temperature sensor 45a, an indoor heat exchanger liquid temperature sensor 46a, and an indoor heat exchanger 73a are installed at the locations shown in the figure. Since the configurations of the indoor units 40b, 40c, and 40d are the same, duplicate description will be omitted.

室外機10は、圧縮機11、四方弁12、室外熱交換器用ファン13、室外熱交換器14、室外膨張弁15、圧縮機逆止弁16、アキュムレータ18から構成される。そして、室外熱交換器14の一端は、室外膨張弁15を介して、液主管21に連通する。また、図示する箇所に、吐出圧力検知センサ55、室外熱交換器液温度センサ50、室外熱交換器ガス温度センサ51、液圧力検知装置71、外気温度センサ72を設置している。 The outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger fan 13, an outdoor heat exchanger 14, an outdoor expansion valve 15, a compressor check valve 16, and an accumulator 18. Then, one end of the outdoor heat exchanger 14 communicates with the liquid main pipe 21 via the outdoor expansion valve 15. Further, a discharge pressure detection sensor 55, an outdoor heat exchanger liquid temperature sensor 50, an outdoor heat exchanger gas temperature sensor 51, a liquid pressure detection device 71, and an outside air temperature sensor 72 are installed at the locations shown in the figure.

次に、暖房運転中と暖房停止時の冷媒の流れを説明する。暖房運転中は、圧縮機11で圧縮された高温高圧ガス冷媒が、四方弁12、ガス主管24を介して、室内機40へ送られる。 Next, the flow of the refrigerant during the heating operation and when the heating is stopped will be described. During the heating operation, the high-temperature high-pressure gas refrigerant compressed by the compressor 11 is sent to the indoor unit 40 via the four-way valve 12 and the gas main pipe 24.

室内機40では、室内熱交換器41に流入したガス冷媒が、室内空気と熱交換して凝縮し、高圧二相冷媒あるいは高圧過冷却冷媒となり、室内膨張弁42、液主管21を介して、室外機10へ送られる。 In the indoor unit 40, the gas refrigerant flowing into the indoor heat exchanger 41 exchanges heat with the indoor air and condenses to become a high-pressure two-phase refrigerant or a high-pressure overcooling refrigerant, via the indoor expansion valve 42 and the liquid main pipe 21. It is sent to the outdoor unit 10.

室外機10では、流入した冷媒が所望の開度で開放された室外膨張弁15で流量調整され、室外熱交換器14で室外空気と熱交換して蒸発し、低圧ガス冷媒となった後、四方弁12、アキュムレータ18を介して、圧縮機11へ送られ、暖房運転時の冷凍サイクルが完成する。この暖房運転中は、液主管21内はほぼ液冷媒で満たされており、ガス主管24内はガス冷媒のみが存在している。 In the outdoor unit 10, the flow rate of the inflowing refrigerant is adjusted by the outdoor expansion valve 15 opened at a desired opening degree, heat is exchanged with the outdoor air by the outdoor heat exchanger 14, and the refrigerant evaporates to become a low-pressure gas refrigerant. It is sent to the compressor 11 via the four-way valve 12 and the accumulator 18, and the refrigeration cycle during the heating operation is completed. During this heating operation, the inside of the liquid main pipe 21 is almost filled with the liquid refrigerant, and only the gas refrigerant is present in the gas main pipe 24.

ここから暖房停止に移行すると、図1に示すように、室外膨張弁15は全閉、室内膨張弁42は開となる。圧縮機11の停止直後に、その下流のガス主管24の圧力は低下し、ある程度時間が経過すると圧縮機11の吸入側圧力とバランスする。このバランス圧力が液主管21の圧力よりも下がると、液主管21内の液冷媒が室内膨張弁42、室内熱交換器41を通ってガス主管24に移動し、図6のような冷媒移動が生じる。また、四方弁12や圧縮機逆止弁16などは完全密閉ではないため、ガス主管24内の冷媒が、アキュムレータ18や室外熱交換器14に移動することもある。このように、液主管21内の冷媒が冷凍サイクル各所に分散してしまうと、次の起動時に、冷媒が冷凍サイクル各所に適正配分されるまで、運転効率が悪く、暖房立ち上がりに時間がかかってしまう。 When the heating is stopped from here, as shown in FIG. 1, the outdoor expansion valve 15 is fully closed and the indoor expansion valve 42 is open. Immediately after the compressor 11 is stopped, the pressure of the gas main pipe 24 downstream thereof decreases, and after a certain period of time, it balances with the suction side pressure of the compressor 11. When this balance pressure becomes lower than the pressure of the liquid main pipe 21, the liquid refrigerant in the liquid main pipe 21 moves to the gas main pipe 24 through the indoor expansion valve 42 and the indoor heat exchanger 41, and the refrigerant moves as shown in FIG. Occurs. Further, since the four-way valve 12 and the compressor check valve 16 are not completely sealed, the refrigerant in the gas main pipe 24 may move to the accumulator 18 and the outdoor heat exchanger 14. In this way, if the refrigerant in the liquid main pipe 21 is dispersed in various parts of the refrigeration cycle, the operation efficiency is poor and it takes time to start heating until the refrigerant is properly distributed to each part of the refrigeration cycle at the next start-up. It ends up.

また、暖房運転の停止後、室外熱交換器14に冷媒が溜まり込むと、起動時に気液混合状態の冷媒がアキュムレータ18に入る。アキュムレータ18は、気液混合状態の低圧冷媒から液冷媒を分離し、ガス冷媒を圧縮機11に送り出し、圧縮機11の液圧縮を防止するものであるが、室外熱交換器14からの液戻り量が多い場合、或いはアキュムレータ18自体に冷媒が溜まり込む場合は、液冷媒を分離する機能が低下し、圧縮機液圧縮のリスクが高くなる。これを防ぐにはアキュムレータ18の容積を大きくする必要があり、製造コストが増加してしまう。
<従来の冷房停止時膨張弁制御>
図2は、図1と同構成の空気調和機100に適用した従来の冷房停止時膨張弁制御を示す冷凍サイクル系統図であり、四方弁12の接続が図1と異なっている。この図を用いて、冷房運転中と冷房停止時の冷媒の流れを説明する。冷房運転中は、圧縮機11で圧縮された高温高圧ガス冷媒が、四方弁12を介して室外熱交換器14へ送られる。室外熱交換器14に流入したガス冷媒は、室外空気と熱交換して凝縮し、高圧二相冷媒あるいは高圧過冷却冷媒となり、室外膨張弁15、液主管21を介して、室内機40へ送られる。室内機40では、流入した冷媒が所望の開度で開放された室内膨張弁42で流量調整され、室内熱交換器41で室内空気と熱交換して蒸発し、低圧ガス冷媒となった後、ガス主管24、四方弁12、アキュムレータ18を介して、圧縮機11へ送られ、冷房運転時の冷凍サイクルが完成する。この冷房運転中は、液主管21内はほぼ液冷媒で満たされ、ガス主管24内はガス冷媒のみが存在している。
Further, when the refrigerant is accumulated in the outdoor heat exchanger 14 after the heating operation is stopped, the refrigerant in the gas-liquid mixed state enters the accumulator 18 at the time of starting. The accumulator 18 separates the liquid refrigerant from the low-pressure refrigerant in the gas-liquid mixed state and sends the gas refrigerant to the compressor 11 to prevent the liquid compression of the compressor 11, but the liquid returns from the outdoor heat exchanger 14. If the amount is large, or if the refrigerant is accumulated in the accumulator 18 itself, the function of separating the liquid refrigerant is lowered, and the risk of liquid compression of the compressor is increased. In order to prevent this, it is necessary to increase the volume of the accumulator 18, which increases the manufacturing cost.
<Conventional expansion valve control when cooling is stopped>
FIG. 2 is a refrigeration cycle system diagram showing the conventional expansion valve control at the time of cooling stop applied to the air conditioner 100 having the same configuration as that of FIG. 1, and the connection of the four-way valve 12 is different from that of FIG. Using this figure, the flow of the refrigerant during the cooling operation and during the cooling stop will be described. During the cooling operation, the high-temperature high-pressure gas refrigerant compressed by the compressor 11 is sent to the outdoor heat exchanger 14 via the four-way valve 12. The gas refrigerant flowing into the outdoor heat exchanger 14 exchanges heat with the outdoor air and condenses to become a high-pressure two-phase refrigerant or a high-pressure overcooling refrigerant, which is sent to the indoor unit 40 via the outdoor expansion valve 15 and the liquid main pipe 21. Be done. In the indoor unit 40, the flow rate of the inflowing refrigerant is adjusted by the indoor expansion valve 42 opened at a desired opening, and the indoor heat exchanger 41 exchanges heat with the indoor air to evaporate and becomes a low-pressure gas refrigerant. It is sent to the compressor 11 via the gas main pipe 24, the four-way valve 12, and the accumulator 18, and the refrigeration cycle during the cooling operation is completed. During this cooling operation, the inside of the liquid main pipe 21 is almost filled with the liquid refrigerant, and only the gas refrigerant is present in the gas main pipe 24.

ここから冷房停止に移行すると、図2に示すように、室内膨張弁42は全閉、室外膨張弁15は開となる。圧縮機11の停止直後に室外熱交換器14の圧力は低下し、ある程度時間が経過すると圧縮機11の吸入側圧力とバランスする。このバランス圧力が液主管21の圧力よりも下がると、液主管21の冷媒が室外膨張弁15を通って、室外熱交換器14に移動するため、図6に示した冷媒移動が生じる。また、四方弁12や圧縮機逆止弁16などは完全密閉ではないため、室外熱交換器14内の冷媒が、アキュムレータ18やガス主管24に移動することもある。このように、液主管21内の冷媒が冷凍サイクル各所に分散してしまうと、次の起動時に、冷媒が冷凍サイクル各所に適正配分されるまで、冷房効率が悪く、冷房立ち上がりに時間がかかってしまう。 When the cooling is stopped from here, the indoor expansion valve 42 is fully closed and the outdoor expansion valve 15 is opened, as shown in FIG. Immediately after the compressor 11 is stopped, the pressure of the outdoor heat exchanger 14 drops, and after a certain period of time, it balances with the suction side pressure of the compressor 11. When this balance pressure becomes lower than the pressure of the liquid main pipe 21, the refrigerant of the liquid main pipe 21 moves to the outdoor heat exchanger 14 through the outdoor expansion valve 15, so that the refrigerant movement shown in FIG. 6 occurs. Further, since the four-way valve 12 and the compressor check valve 16 are not completely sealed, the refrigerant in the outdoor heat exchanger 14 may move to the accumulator 18 and the gas main pipe 24. In this way, if the refrigerant in the liquid main pipe 21 is dispersed in various parts of the refrigeration cycle, the cooling efficiency is poor and it takes time to start cooling until the refrigerant is properly distributed to each part of the refrigeration cycle at the next start-up. It ends up.

また、冷房運転の停止後、ガス主管24に冷媒が溜まり込むと、起動時の液戻り量が多くなり、アキュムレータ18での液冷媒分離機能が低下し、圧縮機液圧縮のリスクが高くなる。これを防ぐにはアキュムレータ18の容積を大きくする必要があり、製造コストが増加してしまう。
<実施例1の停止時膨張弁制御>
図3は、図1、図2と同構成の空気調和機100に適用した実施例1の停止時膨張弁制御を示す冷凍サイクル系統図である。なお、ここでは、四方弁12が冷房運転時の接続(図2)である状況を例示しているが、暖房運転時の接続(図1)である状況であっても、本実施例の停止時膨張弁制御を適用することができる。
Further, if the refrigerant accumulates in the gas main pipe 24 after the cooling operation is stopped, the amount of liquid returned at the time of starting increases, the liquid-refrigerant separation function of the accumulator 18 deteriorates, and the risk of compressor liquid compression increases. In order to prevent this, it is necessary to increase the volume of the accumulator 18, which increases the manufacturing cost.
<Control of expansion valve when stopped in Example 1>
FIG. 3 is a refrigeration cycle system diagram showing stop-time expansion valve control of the first embodiment applied to the air conditioner 100 having the same configuration as that of FIGS. 1 and 2. Here, the situation where the four-way valve 12 is connected during the cooling operation (FIG. 2) is illustrated, but even if the situation is the connection during the heating operation (FIG. 1), the present embodiment is stopped. Time expansion valve control can be applied.

本実施例では、冷房運転から冷房停止に移行すると、図3に示すように、室内膨張弁42の全てと、室外膨張弁15を閉じる。前述したように、従来の停止時膨張弁制御では、圧縮機11が停止し、圧縮機11の流出側の圧力が低下すると、開放された膨張弁を介して、冷媒が冷凍サイクルの各所に分散するが、本実施例のように、液主管21の両端の膨張弁を共に閉じることで、運転中に液主管21に溜まった液冷媒が他の場所に移動するのを防ぐことができ、次回起動時の冷房運転または暖房運転の立ち上がりを早めることができる。 In this embodiment, when the cooling operation is shifted to the cooling stop, all the indoor expansion valves 42 and the outdoor expansion valves 15 are closed as shown in FIG. As described above, in the conventional expansion valve control at the time of stop, when the compressor 11 is stopped and the pressure on the outflow side of the compressor 11 is reduced, the refrigerant is dispersed in various parts of the refrigeration cycle via the opened expansion valve. However, by closing the expansion valves at both ends of the liquid main pipe 21 together as in this embodiment, it is possible to prevent the liquid refrigerant accumulated in the liquid main pipe 21 from moving to another place during operation, and the next time. It is possible to accelerate the start-up of cooling operation or heating operation at startup.

次に、図4、図5の模式図を用いて、室外機10と室内機40の冷媒差圧による液冷媒移動とその対策を説明する。 Next, the liquid refrigerant movement due to the refrigerant differential pressure between the outdoor unit 10 and the indoor unit 40 and the countermeasures thereof will be described with reference to the schematic views of FIGS. 4 and 5.

図4は、下方に室外機10を配置し、その10m上方に室内機40を配置した空気調和機100の冷房運転停止時の模式図であり、液主管21両端の高低差によって冷媒が下方の熱交換器に移動しやすい一例である。なお、図4は、同図中のかっこ書きで示すように、下方に室内機40を配置し、その上方に室外機10を配置した空気調和機の暖房運転停止時の模式図でもある。 FIG. 4 is a schematic view of the air conditioner 100 in which the outdoor unit 10 is arranged below and the indoor unit 40 is arranged 10 m above the indoor unit 40 when the cooling operation is stopped. This is an example of how easy it is to move to a heat exchanger. Note that FIG. 4 is also a schematic view of an air conditioner in which the indoor unit 40 is arranged below and the outdoor unit 10 is arranged above the indoor unit 40 when the heating operation is stopped, as shown in parentheses in the figure.

冷房運転停止後に下方の膨張弁を開くと、液柱のヘッドの影響で、液冷媒は下方の熱交換器へ移動する。例えば、室外機10と室内機40の高低差が10m、冷媒の液密度が1000kg/m、室外膨張弁15が開の場合、液主管21の下端に設置された室外膨張弁15には、約0.1MPaの差圧が発生し、液主管21内の冷媒が下に移動する。これを防ぐには、本実施例のように、下側にある膨張弁を停止時に閉じる必要がある。具体的には、室外機10が下、室内機40が上の冷房停止時には、室外膨張弁15を閉じ、室外機10が上、室内機が下の暖房停止時には、室内膨張弁42を閉じる。このように、室外機10と室内機40の設置場所に高低差がある場合、運転停止時に下方の膨張弁を閉じることで下方の熱交換器等への液冷媒の流入を防止することができる。 When the lower expansion valve is opened after the cooling operation is stopped, the liquid refrigerant moves to the lower heat exchanger due to the influence of the head of the liquid column. For example, when the height difference between the outdoor unit 10 and the indoor unit 40 is 10 m, the liquid density of the refrigerant is 1000 kg / m 3 , and the outdoor expansion valve 15 is open, the outdoor expansion valve 15 installed at the lower end of the liquid main pipe 21 may be used. A differential pressure of about 0.1 MPa is generated, and the refrigerant in the liquid main pipe 21 moves downward. To prevent this, it is necessary to close the expansion valve on the lower side when stopped, as in this embodiment. Specifically, when the outdoor unit 10 is down and the indoor unit 40 is up, the outdoor expansion valve 15 is closed, and when the outdoor unit 10 is up and the indoor unit is down, the indoor expansion valve 42 is closed. In this way, when there is a height difference between the installation locations of the outdoor unit 10 and the indoor unit 40, it is possible to prevent the inflow of the liquid refrigerant into the lower heat exchanger or the like by closing the lower expansion valve when the operation is stopped. ..

図5は、17℃の雰囲気中に室外機10を配置し、20℃の雰囲気中に室内機40を配置した空気調和機100の運転停止時の模式図であり、液主管21両端の温度差によって冷媒が低温側の熱交換器に移動しやすい一例である。なお、図5では、室外機10と室内機40は同じ高さに設定されており、液主管21は水平であるものとする。 FIG. 5 is a schematic diagram of the air conditioner 100 in which the outdoor unit 10 is arranged in an atmosphere of 17 ° C. and the indoor unit 40 is arranged in an atmosphere of 20 ° C. when the operation of the air conditioner 100 is stopped, and the temperature difference between both ends of the liquid main pipe 21. This is an example in which the refrigerant easily moves to the heat exchanger on the low temperature side. In FIG. 5, it is assumed that the outdoor unit 10 and the indoor unit 40 are set at the same height, and the liquid main pipe 21 is horizontal.

運転停止中であっても室内外の雰囲気温度に差があると、自然対流により空気調和機100内部の冷媒と空気で熱交換が発生し、冷媒移動がおきる。例えば、室外が17℃、室内が20℃の場合、時間はかかるが、室内熱交換器41内の液冷媒が蒸発し、室外熱交換器14内のガス冷媒が凝縮することで、室内機40の液冷媒が徐々に室外機10に溜まっていく。20℃の飽和圧力が1.45MPaであり、17℃の飽和圧力が1.35MPaであることから、図5に示す室内外の温度差3℃による飽和圧力の差圧は0.1MPaとなる。これは、図4に示した、高低差10mの液搬送力に相当し、無視できるものではない。従って、室内外の温度差が所定を超えた場合に、液主管21からの冷媒流出を防ぐため、低温側の膨張弁を閉じる制御を実施してもよい。 If there is a difference in the temperature of the atmosphere inside and outside the room even when the operation is stopped, heat exchange occurs between the refrigerant inside the air conditioner 100 and the air due to natural convection, and the refrigerant moves. For example, when the temperature is 17 ° C. outdoors and 20 ° C. indoors, it takes time, but the liquid refrigerant in the indoor heat exchanger 41 evaporates and the gas refrigerant in the outdoor heat exchanger 14 condenses, so that the indoor unit 40 The liquid refrigerant of No. 1 gradually accumulates in the outdoor unit 10. Since the saturation pressure at 20 ° C. is 1.45 MPa and the saturation pressure at 17 ° C. is 1.35 MPa, the differential pressure of the saturation pressure due to the indoor / outdoor temperature difference of 3 ° C. shown in FIG. 5 is 0.1 MPa. This corresponds to the liquid transporting force with a height difference of 10 m shown in FIG. 4, and cannot be ignored. Therefore, in order to prevent the outflow of the refrigerant from the liquid main pipe 21 when the temperature difference between the inside and outside of the room exceeds a predetermined value, control may be performed to close the expansion valve on the low temperature side.

図7は液配管が液冷媒で満たされた液封現象のイメージ図である。満液状態で配管両端の弁を封止した後、温度を上げると、液冷媒の圧力が上がり、配管の耐圧を超えると配管が破損し冷媒が漏洩する恐れがある。このため、図3のように、液主管21両端の室内膨張弁42と室外膨張弁15の両方を閉じる場合には、液主管21が満液ではないことを確認してから両端の弁を閉じるのが望ましい。例えば、暖房運転の場合、各々の室内熱交換器41の出口の過冷却度を吐出圧力検知センサ55、室内熱交換器液温度センサ46で検知し、全ての室内機40の出口温度が飽和温度である場合は、液主管21に二相冷媒が送られており、満液状態でない可能性が高いため、両端の弁をそのまま閉じても支障はない。また、高低差施工で凝縮器となる熱交換器が下にある場合や、液主管21の配管長が長い場合などは、液管末端で圧力が下がり二相冷媒となる可能性が高いため、冷媒状態に応じて両端の弁を閉じても支障ない。なお、液主管21内が二相冷媒であるかは、停止直前のサイクル状態、液管温度、液管圧力から推定してもよい。 FIG. 7 is an image diagram of a liquid sealing phenomenon in which the liquid pipe is filled with the liquid refrigerant. If the temperature is raised after sealing the valves at both ends of the pipe in a full state, the pressure of the liquid refrigerant rises, and if the pressure resistance of the pipe is exceeded, the pipe may be damaged and the refrigerant may leak. Therefore, as shown in FIG. 3, when closing both the indoor expansion valve 42 and the outdoor expansion valve 15 at both ends of the liquid main pipe 21, the valves at both ends are closed after confirming that the liquid main pipe 21 is not full. Is desirable. For example, in the case of heating operation, the degree of overcooling at the outlet of each indoor heat exchanger 41 is detected by the discharge pressure detection sensor 55 and the indoor heat exchanger liquid temperature sensor 46, and the outlet temperatures of all the indoor units 40 are saturated temperatures. In this case, since the two-phase refrigerant is sent to the liquid main pipe 21 and there is a high possibility that the liquid is not full, there is no problem even if the valves at both ends are closed as they are. In addition, if the heat exchanger that becomes the condenser in the height difference construction is underneath, or if the pipe length of the liquid main pipe 21 is long, the pressure drops at the end of the liquid pipe and there is a high possibility that it will become a two-phase refrigerant. There is no problem even if the valves at both ends are closed according to the refrigerant condition. Whether or not the inside of the liquid main pipe 21 is a two-phase refrigerant may be estimated from the cycle state immediately before the stop, the liquid pipe temperature, and the liquid pipe pressure.

図8は、図1、図2に示した、従来の停止時膨張弁制御を実施した場合の圧力挙動である。空気調和機100が運転を停止すると、吐出圧力と吸入圧力は同じ圧力になるように、徐々にバランスする。このとき、液主管21の一端の弁が開放されているため、液圧力は吐出圧力より低いかほぼ同等の圧力となる。ここで吐出圧力が液圧力より低くなると、液主管21内の冷媒が他の機器に移動して圧力が自然に下がる。その結果、図1、図2の説明中で紹介した種々の問題が生じる。 FIG. 8 shows the pressure behavior when the conventional stop expansion valve control shown in FIGS. 1 and 2 is performed. When the air conditioner 100 stops operating, the discharge pressure and the suction pressure are gradually balanced so as to be the same pressure. At this time, since the valve at one end of the liquid main pipe 21 is open, the liquid pressure is lower than or almost the same as the discharge pressure. Here, when the discharge pressure becomes lower than the liquid pressure, the refrigerant in the liquid main pipe 21 moves to another device and the pressure naturally drops. As a result, various problems introduced in the explanations of FIGS. 1 and 2 occur.

図9は、図3に示した、本実施例の停止時膨張弁閉止制御を実施した場合の圧力挙動である。図8と同様に、空気調和機100の停止後しばらくして吐出圧力が液圧力より低くなるが、ここでは、空気調和機100の停止後に液主管21の両端の弁が閉じられるため、液主管21内の液圧力は一定に保たれている。 FIG. 9 shows the pressure behavior when the expansion valve closing control at the time of stop of this embodiment is performed, which is shown in FIG. Similar to FIG. 8, the discharge pressure becomes lower than the liquid pressure shortly after the air conditioner 100 is stopped, but here, since the valves at both ends of the liquid main pipe 21 are closed after the air conditioner 100 is stopped, the liquid main pipe is closed. The liquid pressure in 21 is kept constant.

なお、空気調和機100の停止直後に、液主管21両端の膨張弁閉止すると、液圧力が高い状態で維持されるが、これに高低差の液ヘッドの影響や液配管雰囲気温度の上昇の影響が加わり液圧上昇し、液主管21の耐圧を超えるリスクを回避するために、停止後しばらく、例えば数分程度してから液主管21両端の膨張弁を閉じることにより、停止初期の液圧力を下げ、液圧上昇による液主管21破損のリスクを低減することができる。 If the expansion valves at both ends of the liquid main pipe 21 are closed immediately after the air conditioner 100 is stopped, the liquid pressure is maintained in a high state, but this is affected by the influence of the liquid head having a height difference and the influence of the rise in the liquid pipe atmosphere temperature. In order to avoid the risk that the hydraulic pressure will rise due to the addition of water and exceed the pressure resistance of the liquid main pipe 21, the liquid pressure at the initial stop will be increased by closing the expansion valves at both ends of the liquid main pipe 21 for a while after stopping, for example, about a few minutes. It is possible to reduce the risk of damage to the liquid main pipe 21 due to lowering and increasing the liquid pressure.

図10は停止時の膨張弁閉止制御を実施した場合の圧力挙動であり、図9よりも長い時間経過を対象とし、外気温度および液冷媒温度が上昇した場合の例である。液封でない場合は、昼間の温度上昇に伴い、飽和圧力相当の圧力で液圧力も上昇する。液封状態の液主管21で液圧が過剰に上昇した場合は、液主管21破損のおそれがあるため、室外熱交換器液温度センサ50で観測した液管温度、或いは、液主管21に取付けた液圧力検知装置71で観測した液圧力が所定の閾値を超えた場合に、閉じている膨張弁を一時的に開いて、液主管21の冷媒を他の機器に逃がすことで液主管21内の圧力を下げてもよい。ここで、液圧力検知装置71は圧力を測定する圧力センサでもよく、所定の圧力を超えると出力を発生する圧力スイッチのようなものでもよい。圧力センサの場合は、圧力を測定しているため、所定値以下に圧力が下がった場合に再び膨張弁を閉じてもよい。圧力スイッチの場合は、作動時から所定時間後に再び膨張弁を閉じてもよい。 FIG. 10 shows the pressure behavior when the expansion valve closing control at the time of stopping is performed, and is an example when the outside air temperature and the liquid refrigerant temperature rise for a longer time lapse than in FIG. If it is not liquid-sealed, the liquid pressure rises at a pressure equivalent to the saturation pressure as the temperature rises during the day. If the liquid pressure rises excessively in the liquid main pipe 21 in the liquid sealed state, the liquid main pipe 21 may be damaged. Therefore, the liquid pipe temperature observed by the outdoor heat exchanger liquid temperature sensor 50 or attached to the liquid main pipe 21. When the liquid pressure observed by the liquid pressure detecting device 71 exceeds a predetermined threshold value, the closed expansion valve is temporarily opened to let the liquid fluid of the liquid main pipe 21 escape to another device, thereby causing the inside of the liquid main pipe 21. You may reduce the pressure of. Here, the liquid pressure detecting device 71 may be a pressure sensor that measures the pressure, or may be something like a pressure switch that generates an output when a predetermined pressure is exceeded. In the case of the pressure sensor, since the pressure is measured, the expansion valve may be closed again when the pressure drops below a predetermined value. In the case of a pressure switch, the expansion valve may be closed again after a predetermined time from the time of operation.

次に、図11を用いて、本実施例で用いられる停止時膨張弁制御のフローチャートを説明する。なお、ここに示す停止時膨張弁制御は空気調和機100が停止した後の制御であるため、空気調和機100の動作中の膨張弁制御は省略している。 Next, the flowchart of the expansion valve control at the time of stop used in this Example will be described with reference to FIG. Since the stop expansion valve control shown here is the control after the air conditioner 100 is stopped, the expansion valve control during the operation of the air conditioner 100 is omitted.

先ず、ステップS1では、空気調和機100が運転中か停止中かを確認する。運転中であった場合は、停止するまでステップS1を繰り返す。 First, in step S1, it is confirmed whether the air conditioner 100 is operating or stopped. If it was in operation, step S1 is repeated until it stops.

ステップS2では、空気調和機100が停止してから所定時間経過したかを確認する。所定時間経過する前は、ステップS5に進み、通常停止開度での膨張弁制御、すなわち、図1または図2に示した、液主管21の両端の膨張弁の一方を閉じ他方を閉じない膨張弁制御を実行する。なお、ステップS2で、所定期間の経過を確認するのは、停止直後に図3に示した本実施例の停止時膨張弁制御を行うと、運転中の高い液圧力が維持されるため、ある程度の時間が経過し、液主管21内の液圧力がある程度低下してから、本実施例の停止時膨張弁制御を実行するのが望ましいからである。 In step S2, it is confirmed whether a predetermined time has elapsed since the air conditioner 100 was stopped. Before the lapse of a predetermined time, the process proceeds to step S5, and expansion valve control at a normal stop opening, that is, expansion in which one of the expansion valves at both ends of the liquid main pipe 21 is closed and the other is not closed as shown in FIG. 1 or FIG. Perform valve control. It should be noted that in step S2, the elapse of the predetermined period is confirmed to some extent because the high liquid pressure during operation is maintained when the expansion valve control at the time of stop of the present embodiment shown in FIG. 3 is performed immediately after the stop. This is because it is desirable to execute the stop expansion valve control of this embodiment after the time has elapsed and the liquid pressure in the liquid main pipe 21 has dropped to some extent.

ステップS2で所定時間の経過が確認されたときは、ステップS3に進み、液主管21内の液圧力が所定値以下であるかを確認する。液圧力が所定値より大きかった場合は、ステップS5に進み、通常停止開度での膨張弁制御を実行する。なお、ここで用いられる閾値は、液主管21の耐圧を考慮して定められるものであり、この閾値を液主管21の耐圧よりも低く設定しておくことで、本実施例の停止時膨張弁制御の実行後に、外気温度の上昇などに起因し、液主管21の液圧力が上昇した場合であっても、液主管21の破損を回避することができる。例えば、液主管21の耐圧が4MPaである場合、その半分である2MPaを閾値とすることができる。 When the passage of the predetermined time is confirmed in step S2, the process proceeds to step S3, and it is confirmed whether the liquid pressure in the liquid main pipe 21 is equal to or less than the predetermined value. If the liquid pressure is higher than the predetermined value, the process proceeds to step S5, and the expansion valve control at the normal stop opening degree is executed. The threshold value used here is determined in consideration of the pressure resistance of the liquid main pipe 21, and by setting this threshold value lower than the pressure resistance of the liquid main pipe 21, the expansion valve at the time of stop of this embodiment is set. Even when the liquid pressure of the liquid main pipe 21 rises due to an increase in the outside air temperature or the like after the execution of the control, it is possible to avoid damage to the liquid main pipe 21. For example, when the withstand voltage of the liquid main pipe 21 is 4 MPa, the threshold value can be 2 MPa, which is half of the withstand voltage.

ステップS3で液主管21の液圧力が所定値以下であることが確認されたときは、ステップS4に進み、液主管21が液封状態であるかを確認する。液封状態であったときは、本実施例の停止時膨張弁制御の実行後に、外気温度の上昇などに起因し、液主管21の液圧力が図7に示すように著しく上昇する恐れがあるため、ステップS5に進み、通常停止開度での膨張弁制御を実行する。なお、液封であるかは、液主管21内のガス冷媒有無の確認から判断できるが、高低差施工、配管長、暖房運転時の室内熱交換器出口液温度や過冷却度、冷房運転時の液管温度や過冷却度、停止中の外気温度と液冷媒温度などから総合的に判断してもよい。 When it is confirmed in step S3 that the liquid pressure of the liquid main pipe 21 is equal to or less than a predetermined value, the process proceeds to step S4, and it is confirmed whether the liquid main pipe 21 is in a liquid sealed state. When the liquid is sealed, the liquid pressure of the liquid main pipe 21 may rise significantly as shown in FIG. 7 due to an increase in the outside air temperature or the like after the execution of the expansion valve control at the stop of this embodiment. Therefore, the process proceeds to step S5, and the expansion valve control at the normal stop opening degree is executed. Whether or not the liquid is sealed can be determined by checking the presence or absence of gas refrigerant in the liquid main pipe 21, but the height difference construction, pipe length, indoor heat exchanger outlet liquid temperature and overcooling degree during heating operation, and cooling operation It may be judged comprehensively from the liquid pipe temperature, the degree of supercooling, the stopped outside air temperature, the liquid refrigerant temperature, and the like.

ステップS4で液封でないと判断された場合、図3に例示した、本実施例の停止時膨張弁制御を実施する。これにより、液主管21の両端の膨張弁が閉じると、液圧上昇による液主管21の破損を避けつつ、液主管21内の冷媒の他要素への流出を防止することができる。 If it is determined in step S4 that the liquid is not sealed, the stop expansion valve control of this embodiment as illustrated in FIG. 3 is performed. As a result, when the expansion valves at both ends of the liquid main pipe 21 are closed, it is possible to prevent the refrigerant in the liquid main pipe 21 from flowing out to other elements while avoiding damage to the liquid main pipe 21 due to an increase in the liquid pressure.

なお、一旦、ステップS6の停止時膨張弁制御に入っても、図10のように、外気温度上昇に伴う液圧上昇に対処する必要がある場合は、再びステップS5の通常停止開度による膨張弁制御に戻ってもよく、その後、液圧が再度下がれば、ステップS6の停止時膨張弁制御を実行しても良い。 Even if the expansion valve control at the time of stop in step S6 is started, if it is necessary to deal with the increase in the hydraulic pressure due to the increase in the outside air temperature as shown in FIG. 10, the expansion due to the normal stop opening in step S5 is performed again. The valve control may be returned, and then, if the hydraulic pressure drops again, the stop expansion valve control in step S6 may be executed.

以上で説明した本実施例によれば、空気調和機の運転停止時の液主管から他要素への冷媒移動を抑制できるため、空気調和機の再起動時の暖房運転または冷房運転の立ち上りを早めることができ、快適性を向上させることができる。また、アキュムレータを大型化しなくても、圧縮機での液圧縮の可能性を低減できるため、製造コストを上昇させることなく、信頼性を向上させることができる。 According to the present embodiment described above, since the movement of the refrigerant from the liquid main pipe to other elements when the operation of the air conditioner is stopped can be suppressed, the start-up of the heating operation or the cooling operation when the air conditioner is restarted is accelerated. And can improve comfort. Further, since the possibility of liquid compression in the compressor can be reduced without increasing the size of the accumulator, the reliability can be improved without increasing the manufacturing cost.

次に、図12から図15を用いて、実施例2の空気調和機200を説明する。なお、実施例1と共通する点は重複説明を省略する。
<従来の停止時膨張弁制御>
図12は、冷暖同時マルチの空気調和機200に適用した従来の停止時膨張弁制御を示す冷凍サイクル系統図である。ここに示す空気調和機200は、室外機10と、室内機40(40a,40b,40c,40dの総称)と、室内機40と室外機10の間に存在する冷暖切替ユニット30(30a,30b,30c,30dの総称)を、液主管21、及び、高低圧ガス主管26、低圧ガス主管27等のガス管で接続したものであり、室内機40a~40dは夫々、暖房高圧停止、暖房低圧停止、冷房停止、送風(低圧停止)の状態である。なお、図12では、室外機10が一台、室内機40が四台の構成を例示しているが、これ以外の台数構成であってもよい。
Next, the air conditioner 200 of the second embodiment will be described with reference to FIGS. 12 to 15. It should be noted that the points common to the first embodiment will be omitted.
<Conventional expansion valve control when stopped>
FIG. 12 is a refrigeration cycle system diagram showing the conventional expansion valve control at the time of stop applied to the air conditioner 200 for simultaneous cooling and heating. The air conditioner 200 shown here includes an outdoor unit 10, an indoor unit 40 (general term for 40a, 40b, 40c, 40d), and a cooling / heating switching unit 30 (30a, 30b) existing between the indoor unit 40 and the outdoor unit 10. , 30c, 30d) are connected by gas pipes such as the liquid main pipe 21, the high and low pressure gas main pipe 26, and the low pressure gas main pipe 27. It is in the state of stop, cooling stop, and ventilation (low pressure stop). Although FIG. 12 illustrates a configuration in which one outdoor unit 10 and four indoor units 40 are used, a configuration other than this may be used.

室内機40の室内熱交換器41の一端は冷暖切替ユニット30を介して高低圧ガス主管26または低圧ガス主管27と接続され、他端は室内膨張弁42を介して液主管21に接続されている。 One end of the indoor heat exchanger 41 of the indoor unit 40 is connected to the high / low pressure gas main pipe 26 or the low pressure gas main pipe 27 via the cooling / heating switching unit 30, and the other end is connected to the liquid main pipe 21 via the indoor expansion valve 42. There is.

冷暖切替ユニット30は、室内機40を高低圧ガス主管26または低圧ガス主管27に選択的に接続する分岐回路であり、高低圧ガス管用膨張弁31(31a、31b、31c、31dの総称)と、低圧ガス管用膨張弁32(32a、32b、32c、32dの総称)を備えている。この高低圧ガス管用膨張弁31と低圧ガス管用膨張弁32の開閉を制御することにより、室内機40を通流する冷媒の方向を変え、室内膨張弁42(42a、42b、42c、42dの総称)の減圧絞りや開閉動作と連係して室内熱交換器41(41a、41b、41c、41dの総称)の蒸発器の作用と凝縮器の作用を切替える。 The cooling / heating switching unit 30 is a branch circuit that selectively connects the indoor unit 40 to the high / low pressure gas main pipe 26 or the low pressure gas main pipe 27, and is referred to as an expansion valve 31 for high / low pressure gas pipes 31 (general term for 31a, 31b, 31c, 31d). , A low-pressure gas pipe expansion valve 32 (general term for 32a, 32b, 32c, 32d) is provided. By controlling the opening and closing of the expansion valve 31 for high and low pressure gas pipes and the expansion valve 32 for low pressure gas pipes, the direction of the refrigerant flowing through the indoor unit 40 is changed, and the indoor expansion valves 42 (42a, 42b, 42c, 42d) are generically used. ), The action of the evaporator and the action of the condenser of the indoor heat exchanger 41 (general term for 41a, 41b, 41c, 41d) are switched in cooperation with the depressurization throttle and the opening / closing operation.

室外機10は、圧縮機11、熱交換器側四方弁12a、高低圧ガス管側四方弁12b、室外熱交換器14、室外膨張弁15、アキュムレータ18から構成される。そして、室外熱交換器14の一端は、室外膨張弁15を介して、液主管21に連通しており、他端は、熱交換器側四方弁12aにより、圧縮機11の吐出側と吸入側に選択的に接続される。また、高低圧ガス主管26は、高低圧ガス管側四方弁12bにより、圧縮機11の吐出側と吸入側に選択的に接続される。なお、図12では、高低圧ガス主管26、室外熱交換器14の双方が圧縮機11の吐出側に接続されているが、室内機40の運転状態や冷暖負荷比率によりそれぞれが吸入側につながる場合もある。 The outdoor unit 10 is composed of a compressor 11, a heat exchanger side four-way valve 12a, a high / low pressure gas pipe side four-way valve 12b, an outdoor heat exchanger 14, an outdoor expansion valve 15, and an accumulator 18. One end of the outdoor heat exchanger 14 communicates with the liquid main pipe 21 via the outdoor expansion valve 15, and the other end is the discharge side and the suction side of the compressor 11 by the heat exchanger side four-way valve 12a. Is selectively connected to. Further, the high / low pressure gas main pipe 26 is selectively connected to the discharge side and the suction side of the compressor 11 by the high / low pressure gas pipe side four-way valve 12b. In FIG. 12, both the high / low pressure gas main pipe 26 and the outdoor heat exchanger 14 are connected to the discharge side of the compressor 11, but each of them is connected to the suction side depending on the operating state of the indoor unit 40 and the cooling / heating load ratio. In some cases.

次に、運転中と停止時の冷媒の流れを説明する。運転中は、圧縮機11で圧縮された高温高圧ガス冷媒の一部が、高低圧ガス管側四方弁12b、高低圧ガス主管26、冷暖切替ユニット30aの高低圧ガス管用膨張弁31aを通って、暖房運転する室内機40aに送られる。室内機40aでは、室内熱交換器41aに流入したガス冷媒が、室内空気と熱交換して凝縮し、高圧二相冷媒あるいは高圧過冷却冷媒となり、室内膨張弁42、液主管21へ送られる。 Next, the flow of the refrigerant during operation and during stop will be described. During operation, a part of the high-temperature high-pressure gas refrigerant compressed by the compressor 11 passes through the high-low pressure gas pipe side four-way valve 12b, the high-low pressure gas main pipe 26, and the high-low pressure gas pipe expansion valve 31a of the cooling / heating switching unit 30a. , It is sent to the indoor unit 40a for heating operation. In the indoor unit 40a, the gas refrigerant flowing into the indoor heat exchanger 41a exchanges heat with the indoor air and condenses to become a high-pressure two-phase refrigerant or a high-pressure overcooling refrigerant, which is sent to the indoor expansion valve 42 and the liquid main pipe 21.

圧縮機11で圧縮された高温高圧ガス冷媒の残りは、熱交換器側四方弁12aを介して室外熱交換器14へ送られ、室外空気と熱交換して凝縮し、高圧二相冷媒あるいは高圧過冷却冷媒となり、室外膨張弁15を通り液主管21へ送られる。 The rest of the high-temperature high-pressure gas refrigerant compressed by the compressor 11 is sent to the outdoor heat exchanger 14 via the heat exchanger side four-way valve 12a, exchanges heat with the outdoor air and condenses, and is a high-pressure two-phase refrigerant or high pressure. It becomes an overcooling refrigerant and is sent to the liquid main pipe 21 through the outdoor expansion valve 15.

室内機40aと室外機10から液主管21へ送られ合流した液冷媒は、冷房運転する室内機40cへ送られ、室内膨張弁42cで流量調整され、室内熱交換器41cで室内空気と熱交換して蒸発し、低圧ガス冷媒となる。そして冷暖切替ユニット30c、低圧ガス管用膨張弁32c、低圧ガス主管27を介して圧縮機11へ送られ、冷凍サイクルが完成する。この運転中は、液主管21内はほぼ液冷媒で満たされており、高低圧ガス主管26内、低圧ガス主管27内はガス冷媒のみが存在している。 The liquid refrigerant sent from the indoor unit 40a and the outdoor unit 10 to the liquid main pipe 21 and merged is sent to the indoor unit 40c for cooling operation, the flow rate is adjusted by the indoor expansion valve 42c, and heat exchange with the indoor air by the indoor heat exchanger 41c. Evaporates and becomes a low-pressure gas refrigerant. Then, it is sent to the compressor 11 via the cooling / heating switching unit 30c, the expansion valve 32c for the low-pressure gas pipe, and the low-pressure gas main pipe 27, and the refrigeration cycle is completed. During this operation, the inside of the liquid main pipe 21 is substantially filled with the liquid refrigerant, and only the gas refrigerant is present in the high and low pressure gas main pipe 26 and the low pressure gas main pipe 27.

ここから停止に移行すると、図12に示すように、室内機40では、暖房停止の室内膨張弁42aは開、停止を継続する室内膨張弁42bは閉、冷房停止の室内膨張弁42cは閉、送風の室内膨張弁42dは閉となる。また、冷暖切替ユニット30では、室内機運転中のモードに合せて、冷暖切替ユニット30aの高低圧ガス管用膨張弁31aは開、低圧ガス管用膨張弁32bは閉を維持する。冷暖切替ユニット30b、30c、30dの高低圧ガス管用膨張弁31b、31c、31dは閉、低圧ガス管用膨張弁32b、32c、32dは開を維持する。さらに、室外機10では、室外膨張弁15は開を維持する。 When shifting to stop from here, as shown in FIG. 12, in the indoor unit 40, the indoor expansion valve 42a for heating stop is open, the indoor expansion valve 42b for continuing to stop is closed, and the indoor expansion valve 42c for cooling stop is closed. The indoor expansion valve 42d for ventilation is closed. Further, in the cooling / heating switching unit 30, the expansion valve 31a for the high / low pressure gas pipe of the cooling / heating switching unit 30a is kept open and the expansion valve 32b for the low pressure gas pipe is kept closed according to the mode during the operation of the indoor unit. The expansion valves 31b, 31c, 31d for high and low pressure gas pipes of the cooling / heating switching units 30b, 30c, 30d are kept closed, and the expansion valves 32b, 32c, 32d for low pressure gas pipes are kept open. Further, in the outdoor unit 10, the outdoor expansion valve 15 is kept open.

圧縮機11の停止直後に、その下流の室外熱交換器14と高低圧ガス主管26の圧力は低下し、ある程度時間が経過すると圧縮機11の吸入側圧力とバランスする。このバランス圧力が液主管21の圧力よりも下がると、液主管21内の液冷媒が室外膨張弁15を通って室外熱交換器14に移動したり、室内膨張弁42a、室内熱交換器41a、高低圧ガス管用膨張弁31aを通って高低圧ガス主管26に移動したりすることで、図6のような冷媒移動が生じる。また、熱交換器側四方弁12aや圧縮機逆止弁16などは完全密閉性ではないため、室外熱交換器14や高低圧ガス主管26内の冷媒が、アキュムレータ18に移動することもある。このように、液主管21内の冷媒が冷凍サイクル各所に分散してしまうと、次の起動時に、冷媒が冷凍サイクル各所に適正配分されるまで、運転効率が悪く、立ち上がりに時間がかかる。また、起動時の液戻り量が多くなり、アキュムレータでの液冷媒分離機能が低下し、圧縮機液圧縮のリスクが高くなる。これを防ぐにはアキュムレータ容積を大きくする必要があり、製造コストが増加してしまう。
<実施例2の停止時膨張弁制御>
図13は、図12と同構成の空気調和機200に適用した実施例2の停止時膨張弁制御を示す冷凍サイクル系統図である。ここに示すように、本実施例の停止時膨張弁制御では、圧縮機11の停止後に、全ての膨張弁、すなわち、室内膨張弁42の全て、高低圧ガス管用膨張弁31の全て、低圧ガス管用膨張弁32の全て、および、室外膨張弁15を閉じる。これにより、運転中に液主管21に溜まった液冷媒が他の場所に移動するのを防ぐことができ、冷暖同時マルチの空気調和機200においても、実施例1と同等の効果を得ることができる。
Immediately after the compressor 11 is stopped, the pressures of the outdoor heat exchanger 14 and the high / low pressure gas main pipe 26 downstream thereof decrease, and after a certain period of time, they balance with the suction side pressure of the compressor 11. When this balance pressure becomes lower than the pressure of the liquid main pipe 21, the liquid refrigerant in the liquid main pipe 21 moves to the outdoor heat exchanger 14 through the outdoor expansion valve 15, or the indoor expansion valve 42a, the indoor heat exchanger 41a, and the like. By moving to the high / low pressure gas main pipe 26 through the expansion valve 31a for the high / low pressure gas pipe, the refrigerant movement as shown in FIG. 6 occurs. Further, since the heat exchanger side four-way valve 12a and the compressor check valve 16 are not completely sealed, the refrigerant in the outdoor heat exchanger 14 and the high / low pressure gas main pipe 26 may move to the accumulator 18. As described above, if the refrigerant in the liquid main pipe 21 is dispersed in various parts of the refrigeration cycle, the operation efficiency is poor and it takes time to start up until the refrigerant is properly distributed in each part of the refrigeration cycle at the next start-up. In addition, the amount of liquid returned at startup increases, the liquid-refrigerant separation function of the accumulator deteriorates, and the risk of compressor liquid compression increases. To prevent this, it is necessary to increase the accumulator volume, which increases the manufacturing cost.
<Control of expansion valve when stopped in Example 2>
FIG. 13 is a refrigeration cycle system diagram showing the stop expansion valve control of the second embodiment applied to the air conditioner 200 having the same configuration as that of FIG. 12. As shown here, in the stop-time expansion valve control of this embodiment, after the compressor 11 is stopped, all the expansion valves, that is, all of the indoor expansion valves 42, all of the expansion valves 31 for high and low pressure gas pipes, and low pressure gas. All of the expansion valves 32 for pipes and the outdoor expansion valves 15 are closed. As a result, it is possible to prevent the liquid refrigerant accumulated in the liquid main pipe 21 from moving to another place during operation, and it is possible to obtain the same effect as that of the first embodiment even in the air conditioner 200 of the simultaneous cooling / heating multi. can.

図14は、実施例2の停止時膨張弁制御の変形例であり、圧縮機11の停止後に、室内膨張弁42の全てと、室外膨張弁15を閉じる停止時膨張弁制御である。これにより、運転中に液主管21に溜まった液冷媒が他の場所に移動するのを防ぐことができる。本変形例では、冷暖切替ユニット30の膨張弁制御が不要なため、図13に比べ、簡単に作りこむことができる。なお、本変形例では、暖房運転の室内熱交換器41aの冷媒が高低圧ガス管用膨張弁31aを介して高低圧ガス主管26に移動したり、冷房運転の室内熱交換器41cの冷媒が低圧ガス管用膨張弁32cを介して低圧ガス主管27に移動したりするが、移動する冷媒量は限定されるため、図13とほぼ同等の効果を得ることができる。 FIG. 14 is a modification of the stop expansion valve control of the second embodiment, which is a stop expansion valve control in which all the indoor expansion valves 42 and the outdoor expansion valve 15 are closed after the compressor 11 is stopped. This makes it possible to prevent the liquid refrigerant accumulated in the liquid main pipe 21 from moving to another place during operation. In this modification, since the expansion valve control of the cooling / heating switching unit 30 is not required, it can be easily manufactured as compared with FIG. In this modification, the refrigerant of the indoor heat exchanger 41a in the heating operation moves to the high / low pressure gas main pipe 26 via the expansion valve 31a for the high / low pressure gas pipe, and the refrigerant in the indoor heat exchanger 41c in the cooling operation has a low pressure. Although it moves to the low-pressure gas main pipe 27 via the expansion valve 32c for the gas pipe, since the amount of the moving refrigerant is limited, almost the same effect as in FIG. 13 can be obtained.

図15は、実施例2の停止時膨張弁制御の他の変形例であり、圧縮機11の停止後に、高低圧ガス管用膨張弁31の全て、低圧ガス管用膨張弁32の全て、および、室外膨張弁15を全て閉じる停止時膨張弁制御である。これにより、運転中に液主管21に溜まった液冷媒が他の場所に移動するのを防ぐことができる。本変形例では、室内膨張弁42の制御が不要なため、図13に比べ、簡単に作りこむことができる。なお、本変形例でも、暖房運転の室内膨張弁42aを介して、室内熱交換器41aや冷暖切替ユニット30aへ液主管21の液冷媒が移動するが、他の場所への移動を防ぐことができるので、図13、図14とほぼ同等の効果を得ることができる。 FIG. 15 is another modification of the expansion valve control at the time of stop of the second embodiment, and after the compressor 11 is stopped, all of the expansion valves 31 for high and low pressure gas pipes, all of the expansion valves 32 for low pressure gas pipes, and the outdoors. It is an expansion valve control at the time of stopping when all the expansion valves 15 are closed. This makes it possible to prevent the liquid refrigerant accumulated in the liquid main pipe 21 from moving to another place during operation. In this modification, since it is not necessary to control the indoor expansion valve 42, it can be easily manufactured as compared with FIG. Even in this modification, the liquid refrigerant of the liquid main pipe 21 moves to the indoor heat exchanger 41a and the cooling / heating switching unit 30a via the indoor expansion valve 42a of the heating operation, but it is possible to prevent the liquid refrigerant from moving to another place. Therefore, it is possible to obtain almost the same effect as in FIGS. 13 and 14.

次に、図16、図17を用いて、実施例3の空気調和機を説明する。なお、上述した実施例と共通する点は重複説明を省略する。
<従来の停止時膨張弁制御>
図16は、2管式冷暖同時マルチの空気調和機300に適用した従来の停止時膨張弁制御を示す冷凍サイクル系統図である。ここに示す空気調和機300は、室外機10と、室内機40(40a,40b,40c,40d)と、室内機40と室外機10の間に存在する冷暖切替ユニット30を、高圧主管28と低圧主管29で接続したものであり、室内機40は夫々、暖房高圧停止、暖房低圧停止、冷房停止、送風(低圧停止)の状態である。なお、図16では、室外機10が一台、室内機40が四台の構成を示しているが、これ以外の台数構成であってもよい。
Next, the air conditioner of the third embodiment will be described with reference to FIGS. 16 and 17. It should be noted that the points common to the above-described embodiment will be omitted.
<Conventional expansion valve control when stopped>
FIG. 16 is a refrigeration cycle system diagram showing a conventional expansion valve control at a stop, which is applied to an air conditioner 300 of a two-tube type simultaneous cooling / heating multi. The air conditioner 300 shown here includes an outdoor unit 10, an indoor unit 40 (40a, 40b, 40c, 40d), and a cooling / heating switching unit 30 existing between the indoor unit 40 and the outdoor unit 10 together with a high-pressure main pipe 28. The indoor units 40 are connected by a low-pressure main pipe 29, and are in a state of heating high-pressure stop, heating low-pressure stop, cooling stop, and air blowing (low-pressure stop), respectively. Although FIG. 16 shows a configuration in which one outdoor unit 10 and four indoor units 40 are used, the number of units may be other than this.

冷暖切替ユニット30は、気液分離器63、第一膨張弁64、第二膨張弁65、高圧管用切替弁61(61a、61b、61c、61dの総称)、低圧管用切替弁62(62a、62b、62c、62dの総称)から構成される。そして、室内機40の室内熱交換器41の一端は、高圧管用切替弁61と低圧管用切替弁62に接続され、他端は、室内膨張弁42を介して、気液分離器63の下部液配管に接続される。なお、ここでは、高圧管用切替弁61、低圧管用切替弁62に電磁弁を用いている。 The cooling / heating switching unit 30 includes a gas-liquid separator 63, a first expansion valve 64, a second expansion valve 65, a high-pressure pipe switching valve 61 (general term for 61a, 61b, 61c, 61d), and a low-pressure pipe switching valve 62 (62a, 62b). , 62c, 62d). One end of the indoor heat exchanger 41 of the indoor unit 40 is connected to the high-pressure pipe switching valve 61 and the low-pressure pipe switching valve 62, and the other end is the lower liquid of the gas-liquid separator 63 via the indoor expansion valve 42. Connected to the pipe. Here, a solenoid valve is used for the high-pressure pipe switching valve 61 and the low-pressure pipe switching valve 62.

また、冷暖切替ユニット30は、高圧管用切替弁61と低圧管用切替弁62の開閉を制御することにより、室内機40を通流する冷媒の方向を変え、室内膨張弁42の減圧絞りや開閉動作と連係して室内熱交換器41の蒸発器の作用と凝縮器の作用を切替える。 Further, the cooling / heating switching unit 30 changes the direction of the refrigerant flowing through the indoor unit 40 by controlling the opening and closing of the high-pressure pipe switching valve 61 and the low-pressure pipe switching valve 62, and reduces the pressure reducing and opening / closing operation of the indoor expansion valve 42. The action of the evaporator and the action of the condenser of the indoor heat exchanger 41 are switched in cooperation with the above.

室外機10は、圧縮機11、四方弁12、室外熱交換器用ファン13、室外熱交換器14、室外膨張弁15、圧縮機逆止弁16、アキュムレータ18から構成される。そして、室外熱交換器14の一端は、室外膨張弁15を介して、高圧主管28あるいは低圧主管29に連通する。何れの主管に連通するかは室外熱交換器14の圧力によって異なる。一般に高圧の場合は高圧主管28につながり、低圧の場合は、低圧主管29につながる。 The outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger fan 13, an outdoor heat exchanger 14, an outdoor expansion valve 15, a compressor check valve 16, and an accumulator 18. Then, one end of the outdoor heat exchanger 14 communicates with the high pressure main pipe 28 or the low pressure main pipe 29 via the outdoor expansion valve 15. Which main pipe is communicated depends on the pressure of the outdoor heat exchanger 14. Generally, in the case of high pressure, it is connected to the high pressure main pipe 28, and in the case of low pressure, it is connected to the low pressure main pipe 29.

次に、運転中と停止時の冷媒の流れを説明する。運転中は、圧縮機11で圧縮された高温高圧ガス冷媒が、四方弁12を介して、室外熱交換器14へ送られ、室外空気と熱交換して凝縮し、高圧二相冷媒となり、室外膨張弁15、逆止弁を通り、高圧主管28、冷暖切替ユニット30へ送られる。冷暖切替ユニット30に送られた高圧二相冷媒は、気液分離器63でガス冷媒と液冷媒に分離される。 Next, the flow of the refrigerant during operation and during stop will be described. During operation, the high-temperature high-pressure gas refrigerant compressed by the compressor 11 is sent to the outdoor heat exchanger 14 via the four-way valve 12, exchanges heat with the outdoor air and condenses to become a high-pressure two-phase refrigerant, and becomes an outdoor. It is sent to the high-pressure main pipe 28 and the cooling / heating switching unit 30 through the expansion valve 15 and the check valve. The high-pressure two-phase refrigerant sent to the cooling / heating switching unit 30 is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 63.

気液分離器63で分離された高圧ガス冷媒の一部は、高圧管用切替弁61aを通って暖房運転中の室内機40aに送られ、室内熱交換器41aで室内空気と熱交換して凝縮し、液冷媒となる。この液冷媒は、室内膨張弁42a、逆止弁を通り、気液分離器63の下部液配管に流れる。この下部液配管の圧力は気液分離器63の圧力より低い必要があるため、第一膨張弁64及び第二膨張弁65を制御して、下部液配管の圧力調整を行う。 A part of the high-pressure gas refrigerant separated by the gas-liquid separator 63 is sent to the indoor unit 40a during heating operation through the high-pressure pipe switching valve 61a, and heat exchanges with the indoor air in the indoor heat exchanger 41a to condense. It becomes a liquid refrigerant. This liquid refrigerant passes through the indoor expansion valve 42a and the check valve, and flows to the lower liquid pipe of the gas-liquid separator 63. Since the pressure of the lower liquid pipe needs to be lower than the pressure of the gas-liquid separator 63, the pressure of the lower liquid pipe is adjusted by controlling the first expansion valve 64 and the second expansion valve 65.

一方、気液分離器63で分離された液冷媒は、第一膨張弁を通り液配管に送られる。室内機40aと気液分離器63から送られた液冷媒は、冷房運転する室内機40cへ送られ、室内膨張弁42cで流量調整され、室内熱交換器41cで室内空気と熱交換して蒸発し、低圧ガス冷媒となる。この低圧ガス冷媒は、低圧管用切替弁62c、低圧主管29を介して、室外機10へ送られる。 On the other hand, the liquid refrigerant separated by the gas-liquid separator 63 is sent to the liquid pipe through the first expansion valve. The liquid refrigerant sent from the indoor unit 40a and the gas-liquid separator 63 is sent to the indoor unit 40c to be cooled, the flow rate is adjusted by the indoor expansion valve 42c, and the indoor heat exchanger 41c exchanges heat with the indoor air to evaporate. However, it becomes a low-pressure gas refrigerant. This low-pressure gas refrigerant is sent to the outdoor unit 10 via the low-pressure pipe switching valve 62c and the low-pressure main pipe 29.

室外機10へ送られた低圧ガス冷媒は、逆止弁、四方弁12、アキュムレータ18を介して、圧縮機11へ送られ、冷凍サイクルが完成する。この運転中は、高圧主管28や気液分離器63の下部液配管に液冷媒が多く存在している。 The low-pressure gas refrigerant sent to the outdoor unit 10 is sent to the compressor 11 via the check valve, the four-way valve 12, and the accumulator 18, and the refrigeration cycle is completed. During this operation, a large amount of liquid refrigerant is present in the high-pressure main pipe 28 and the lower liquid pipe of the gas-liquid separator 63.

ここから停止に移行すると、図16に示すように、室内機40では、暖房停止の室内膨張弁42aは開、停止を継続する室内膨張弁42bは閉、冷房停止の室内膨張弁42cは閉、送風の室内膨張弁42dは閉となる。また、冷暖切替ユニット30では、第一膨張弁64は開、第二膨張弁65は閉、高圧管用切替弁61a、低圧管用切替弁62bは閉となる。さらに、室外機10では、室外膨張弁15は開を維持する。 When shifting to stop from here, as shown in FIG. 16, in the indoor unit 40, the indoor expansion valve 42a for heating stop is open, the indoor expansion valve 42b for continuing to stop is closed, and the indoor expansion valve 42c for cooling stop is closed. The indoor expansion valve 42d for ventilation is closed. Further, in the cooling / heating switching unit 30, the first expansion valve 64 is opened, the second expansion valve 65 is closed, the high pressure pipe switching valve 61a, and the low pressure pipe switching valve 62b are closed. Further, in the outdoor unit 10, the outdoor expansion valve 15 is kept open.

圧縮機11の停止直後に、その下流の室外熱交換器14と高圧主管28の圧力は低下し、ある程度時間が経過すると圧縮機11の吸入側圧力とバランスする。ここで、室外機で使用する逆止弁などは完全密閉性はないため、室外熱交換器14や高圧主管28内の冷媒が、アキュムレータ18に移動することもある。このように、高圧主管28内の冷媒等がサイクル各所に分散してしまうと、次の起動時に、冷媒が冷凍サイクル各所に適正配分されるまで、運転効率が悪く、立ち上がりに時間がかかる。また、起動時の液戻り量が多くなり、アキュムレータでの液冷媒分離機能が低下し、圧縮機液圧縮のリスクが高くなる。これを防ぐにはアキュムレータ容積を大きくする必要があり、製造コストが増加してしまう。
<実施例3の停止時膨張弁制御>
図17は、図16と同構成の空気調和機300に適用した実施例3の停止時膨張弁制御を示す冷凍サイクル系統図である。ここに示すように、本実施例の停止時膨張弁制御では、圧縮機11の停止後に、全ての弁、すなわち、室内膨張弁42の全て、高圧管用切替弁61の全て、低圧管用切替弁62の全て、および、第一膨張弁64、第二膨張弁65、室外膨張弁15を閉じる。これにより、運転中に高圧主管28や気液分離器63の下部液配管に溜まった液冷媒が他の場所に移動するのを防ぐことができ、2管式冷暖同時マルチの空気調和機300においても、実施例1と同等の効果を得ることができる。
Immediately after the compressor 11 is stopped, the pressures of the outdoor heat exchanger 14 and the high-pressure main pipe 28 downstream thereof decrease, and after a certain period of time, they balance with the suction side pressure of the compressor 11. Here, since the check valve or the like used in the outdoor unit is not completely sealed, the refrigerant in the outdoor heat exchanger 14 or the high-pressure main pipe 28 may move to the accumulator 18. As described above, if the refrigerant or the like in the high-pressure main pipe 28 is dispersed in various parts of the cycle, the operation efficiency is poor and it takes time to start up until the refrigerant is properly distributed to each part of the refrigeration cycle at the next start-up. In addition, the amount of liquid returned at startup increases, the liquid-refrigerant separation function of the accumulator deteriorates, and the risk of compressor liquid compression increases. To prevent this, it is necessary to increase the accumulator volume, which increases the manufacturing cost.
<Control of expansion valve when stopped in Example 3>
FIG. 17 is a refrigeration cycle system diagram showing the stop expansion valve control of the third embodiment applied to the air conditioner 300 having the same configuration as that of FIG. As shown here, in the stop-time expansion valve control of this embodiment, after the compressor 11 is stopped, all the valves, that is, all of the indoor expansion valves 42, all of the high-pressure pipe switching valves 61, and the low-pressure pipe switching valves 62. All, and the first expansion valve 64, the second expansion valve 65, and the outdoor expansion valve 15 are closed. As a result, it is possible to prevent the liquid refrigerant accumulated in the high-pressure main pipe 28 and the lower liquid pipe of the gas-liquid separator 63 from moving to another place during operation, and in the air conditioner 300 of the two-tube type cooling / heating simultaneous multi. However, the same effect as that of Example 1 can be obtained.

次に、図18を用いて、実施例4の空気調和機を説明する。なお、上述の実施例と共通する点は重複説明を省略する。 Next, the air conditioner of the fourth embodiment will be described with reference to FIG. It should be noted that the points common to the above-described embodiment will be omitted.

図18は冷房運転時に過冷却熱交換器19を使用する例である。冷房運転時に凝縮した高圧液冷媒の一部で、室内に送る残りの液冷媒を冷やすことを目的とし、過冷却膨張弁20で一部の冷媒を過冷却熱交換器19に送り、残りの液冷媒を冷やしたのち、圧縮機吸入側に送られる。この場合、高低差施工で室外機が下、室内機が上にあっても、配管長が長くて液管の圧損が大きかったとしても、液管は満液になる。また、条件によっては外気温度より低い温度まで冷却できるため、そのまま液管前後の膨張弁を閉じると液封となる。外気により液冷媒温度が上昇すると、液冷媒の圧力が上がる恐れがある。 FIG. 18 is an example of using the supercooling heat exchanger 19 during the cooling operation. A part of the high-pressure liquid refrigerant condensed during the cooling operation is used to cool the remaining liquid refrigerant sent into the room. The supercooling expansion valve 20 sends a part of the refrigerant to the supercooling heat exchanger 19, and the remaining liquid. After cooling the refrigerant, it is sent to the suction side of the compressor. In this case, even if the outdoor unit is on the bottom and the indoor unit is on the top due to the height difference construction, the liquid pipe is full even if the pipe length is long and the pressure loss of the liquid pipe is large. Further, depending on the conditions, the temperature can be cooled to a temperature lower than the outside air temperature, so if the expansion valves before and after the liquid pipe are closed as it is, the liquid is sealed. If the temperature of the liquid refrigerant rises due to the outside air, the pressure of the liquid refrigerant may rise.

冷房時に過冷却熱交換器19を使う場合には、不用意に弁を閉じるべきではない。液管温度が上昇した後で閉じるか、ある程度液管内の冷媒が他の機器に移動した後で閉じるとよい。圧力や冷媒移動の挙動は停止中の液管温度、圧力から推定してもよい。 If the supercooled heat exchanger 19 is used during cooling, the valve should not be closed carelessly. It is recommended to close after the temperature of the liquid pipe rises, or after the refrigerant in the liquid pipe has moved to other equipment to some extent. The pressure and the behavior of the refrigerant movement may be estimated from the temperature and pressure of the liquid pipe during stop.

100、200、300、400 空気調和機、
10 室外機、
11 圧縮機、
12 四方弁、
12a 熱交換器側四方弁、
12b 高低圧ガス管側四方弁、
13 室外熱交換器用ファン、
14 室外熱交換器、
15 室外膨張弁、
16 圧縮機逆止弁、
18 アキュムレータ、
19 過冷却熱交換器、
20 過冷却膨張弁、
21 液主管、
24 ガス主管、
26 高低圧ガス主管、
27 低圧ガス主管、
28 高圧主管、
29 低圧主管、
30、30a、30b、30c、30d 冷暖切替ユニット、
31、31a、31b、31c、31d 高低圧ガス管用膨張弁、
32、32a、32b、32c、32d 低圧ガス管用膨張弁、
40、40a、40b、40c、40d 室内機、
41、41a、41b、41c、41d 室内熱交換器、
42、42a、42b、42c、42d 室内膨張弁、
45、45a、45b、45c、45d 室内熱交換器ガス温度センサ、
46、46a、46b、46c、46d 室内熱交換器液温度センサ、
47 吐出温度センサ、
49、49a、49b、49c、49d 室内熱交換器用ファン、
50 室外熱交換器液温度センサ、
51 室外熱交換器ガス温度センサ、
52 液管温度センサ、
55 吐出圧力検知センサ、
56 吸入圧力検知センサ、
61、61a、61b、61c、61d 高圧管用切替弁、
62、62a、62b、62c、62d 低圧管用切替弁、
63 気液分離器、
64 第一膨張弁、
65 第二膨張弁、
71 液圧力検知装置、
72 外気温度センサ、
73、73a、73b、73c、73d 室内温度センサ
100, 200, 300, 400 air conditioner,
10 outdoor unit,
11 Compressor,
12 four-way valve,
12a heat exchanger side four-way valve,
12b High / low pressure gas pipe side four-way valve,
13 Outdoor heat exchanger fan,
14 Outdoor heat exchanger,
15 Outdoor expansion valve,
16 Compressor check valve,
18 accumulator,
19 Supercooled heat exchanger,
20 Supercooled expansion valve,
21 liquid main pipe,
24 gas main,
26 High and low pressure gas main,
27 Low pressure gas main,
28 High-pressure main pipe,
29 Low pressure main pipe,
30, 30a, 30b, 30c, 30d cooling / heating switching unit,
31, 31a, 31b, 31c, 31d Expansion valve for high and low pressure gas pipes,
32, 32a, 32b, 32c, 32d Expansion valve for low pressure gas pipe,
40, 40a, 40b, 40c, 40d indoor unit,
41, 41a, 41b, 41c, 41d indoor heat exchanger,
42, 42a, 42b, 42c, 42d indoor expansion valve,
45, 45a, 45b, 45c, 45d Indoor heat exchanger gas temperature sensor,
46, 46a, 46b, 46c, 46d Indoor heat exchanger liquid temperature sensor,
47 Discharge temperature sensor,
49, 49a, 49b, 49c, 49d Indoor heat exchanger fan,
50 Outdoor heat exchanger liquid temperature sensor,
51 Outdoor heat exchanger gas temperature sensor,
52 Liquid tube temperature sensor,
55 Discharge pressure detection sensor,
56 Inhalation pressure detection sensor,
61, 61a, 61b, 61c, 61d switching valve for high pressure pipe,
62, 62a, 62b, 62c, 62d switching valve for low pressure pipe,
63 Gas-liquid separator,
64 First expansion valve,
65 Second expansion valve,
71 Liquid pressure detector,
72 Outside air temperature sensor,
73, 73a, 73b, 73c, 73d Indoor temperature sensor

Claims (7)

圧縮機、室外熱交換器、室外膨張弁を有する室外機と、
室内熱交換器、室内膨張弁を有する室内機と、
前記室外機と前記室内機を接続する液管と、
前記室外機と前記室内機を接続するガス管と、
を備えた空気調和機であって、
前記室外熱交換器の一端は前記室外膨張弁を介して前記液管に連結され、
前記室内熱交換器の一端は前記室内膨張弁を介して前記液管に連結されており、
前記圧縮機の停止から所定時間経過して停止初期の液圧力を低下させた後に、前記室外膨張弁及び前記室内膨張弁の両方を閉じ、この閉じた状態を次回起動時まで保持することを特徴とする空気調和機。
A compressor, an outdoor heat exchanger, an outdoor unit with an outdoor expansion valve, and
Indoor heat exchanger, indoor unit with indoor expansion valve,
The liquid pipe connecting the outdoor unit and the indoor unit,
A gas pipe connecting the outdoor unit and the indoor unit,
It is an air conditioner equipped with
One end of the outdoor heat exchanger is connected to the liquid pipe via the outdoor expansion valve.
One end of the indoor heat exchanger is connected to the liquid pipe via the indoor expansion valve.
After a predetermined time has elapsed from the stop of the compressor and the liquid pressure at the initial stop is lowered , both the outdoor expansion valve and the indoor expansion valve are closed , and this closed state is maintained until the next start-up . Characterized air conditioner.
圧縮機、室外熱交換器、室外膨張弁を有する室外機と、
室内熱交換器、室内膨張弁を有する室内機と、
高低圧ガス管切替弁と低圧ガス管切替弁を有する冷暖切替ユニットと、
前記室外機と前記室内機を接続する液管と、
前記室外機と前記高低圧ガス管切替弁を接続する高低圧ガス管と、
前記室外機と前記低圧ガス管切替弁を接続する低圧ガス管と、
前記室内機と前記冷暖切替ユニットを接続するガス管と、
を備えた空気調和機であって、
前記室外熱交換器の一端は前記室外膨張弁を介して前記液管に連結され、
前記室内熱交換器の一端は前記室内膨張弁を介して前記液管に連結されており、
前記圧縮機の停止から所定時間経過して停止初期の液圧力を低下させた後に、
前記室外膨張弁と前記室内膨張弁の両方を閉じるか、
前記室外膨張弁と前記高低圧ガス管切替弁と前記低圧ガス管切替弁の全てを閉じ、この閉じた状態を次回起動時まで保持することを特徴とする空気調和機。
A compressor, an outdoor heat exchanger, an outdoor unit with an outdoor expansion valve, and
Indoor heat exchanger, indoor unit with indoor expansion valve,
A cooling / heating switching unit having a high / low pressure gas pipe switching valve and a low pressure gas pipe switching valve,
The liquid pipe connecting the outdoor unit and the indoor unit,
A high-low pressure gas pipe connecting the outdoor unit and the high-low pressure gas pipe switching valve,
A low-pressure gas pipe connecting the outdoor unit and the low-pressure gas pipe switching valve,
A gas pipe connecting the indoor unit and the cooling / heating switching unit,
It is an air conditioner equipped with
One end of the outdoor heat exchanger is connected to the liquid pipe via the outdoor expansion valve.
One end of the indoor heat exchanger is connected to the liquid pipe via the indoor expansion valve.
After a predetermined time has passed since the compressor was stopped and the liquid pressure at the initial stage of the stop was lowered ,
Either close both the outdoor expansion valve and the indoor expansion valve,
An air conditioner characterized in that all of the outdoor expansion valve, the high / low pressure gas pipe switching valve, and the low pressure gas pipe switching valve are closed , and the closed state is maintained until the next start -up.
圧縮機、室外熱交換器、室外膨張弁を有する室外機と、
室内熱交換器、室内膨張弁を有する室内機と、
気液分離器、高圧管用切替弁、低圧管用切替弁、液圧調整弁を有する冷暖切替ユニットと、
前記室外機と前記冷暖切替ユニットを連結する高圧管と、
前記室外機と前記冷暖切替ユニットを連結する低圧管と、
前記室内機と前記冷暖切替ユニットを連結するガス管と、
前記室内機と前記冷暖切替ユニットを連結する液管と、
を備えた空気調和機であって、
前記室外熱交換器の一端は前記室外膨張弁を介して前記高圧管に連結され、
前記室内熱交換器の一端は前記室内膨張弁を介して前記液管に連結されており、
前記圧縮機の停止から所定時間経過して停止初期の液圧力を低下させた後に、
前記室外膨張弁、前記室内膨張弁、前記高圧管用切替弁、前記低圧管用切替弁、前記液圧調整弁の全てを閉じ、この閉じた状態を次回起動時まで保持することを特徴とする空気調和機。
A compressor, an outdoor heat exchanger, an outdoor unit with an outdoor expansion valve, and
Indoor heat exchanger, indoor unit with indoor expansion valve,
A cooling / heating switching unit with a gas-liquid separator, a switching valve for high-pressure pipes, a switching valve for low-pressure pipes, and a hydraulic pressure adjusting valve,
A high-pressure pipe connecting the outdoor unit and the cooling / heating switching unit,
A low-pressure pipe connecting the outdoor unit and the cooling / heating switching unit,
A gas pipe connecting the indoor unit and the cooling / heating switching unit,
A liquid pipe connecting the indoor unit and the cooling / heating switching unit,
It is an air conditioner equipped with
One end of the outdoor heat exchanger is connected to the high pressure pipe via the outdoor expansion valve.
One end of the indoor heat exchanger is connected to the liquid pipe via the indoor expansion valve.
After a predetermined time has passed since the compressor was stopped and the liquid pressure at the initial stage of the stop was lowered ,
The air is characterized in that all of the outdoor expansion valve, the indoor expansion valve, the high pressure pipe switching valve, the low pressure pipe switching valve, and the hydraulic pressure adjusting valve are closed , and this closed state is maintained until the next start-up. Harmony machine.
請求項1~3の何れか一項に記載の空気調和機において、
前記液管内の液圧が所定値以下になった場合に所定の弁を閉じることを特徴とする空気調和機。
In the air conditioner according to any one of claims 1 to 3, the air conditioner
An air conditioner characterized in that a predetermined valve is closed when the hydraulic pressure in the liquid pipe becomes a predetermined value or less.
請求項1~3の何れか一項に記載の空気調和機において、
前記液管内が液封ではない場合に所定の弁を閉じることを特徴とする空気調和機。
In the air conditioner according to any one of claims 1 to 3, the air conditioner
An air conditioner characterized in that a predetermined valve is closed when the inside of the liquid pipe is not a liquid seal.
請求項1~3の何れか一項に記載の空気調和機において、
所定の弁を閉じた後に前記液管内の液圧が上昇した場合、何れかの弁を開くことを特徴とする空気調和機。
In the air conditioner according to any one of claims 1 to 3, the air conditioner
An air conditioner characterized in that when the hydraulic pressure in the liquid pipe rises after closing a predetermined valve, any of the valves is opened.
請求項5に記載の空気調和機において、
前記液管内の液圧の検知は、冷凍サイクル過程に設置した温度センサ、圧力センサ、または、前記室外機に設置した外気温度センサの出力に基づいて推定することを特徴とする空気調和機。
In the air conditioner according to claim 5,
An air conditioner characterized in that the detection of the hydraulic pressure in the liquid pipe is estimated based on the output of a temperature sensor, a pressure sensor installed in the refrigeration cycle process, or an outside air temperature sensor installed in the outdoor unit.
JP2017116727A 2017-06-14 2017-06-14 Air conditioner Active JP7002227B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017116727A JP7002227B2 (en) 2017-06-14 2017-06-14 Air conditioner
US15/996,588 US20180363961A1 (en) 2017-06-14 2018-06-04 Air conditioner
CN201810582780.3A CN109084392B (en) 2017-06-14 2018-06-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116727A JP7002227B2 (en) 2017-06-14 2017-06-14 Air conditioner

Publications (2)

Publication Number Publication Date
JP2019002620A JP2019002620A (en) 2019-01-10
JP7002227B2 true JP7002227B2 (en) 2022-01-20

Family

ID=64657946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116727A Active JP7002227B2 (en) 2017-06-14 2017-06-14 Air conditioner

Country Status (3)

Country Link
US (1) US20180363961A1 (en)
JP (1) JP7002227B2 (en)
CN (1) CN109084392B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904395B2 (en) * 2019-09-30 2021-07-14 ダイキン工業株式会社 Refrigeration equipment and heat source unit
CN111426009B (en) * 2020-04-03 2021-06-18 广东美的暖通设备有限公司 Control method of air conditioning system, air conditioning system and computer storage medium
CN112361641A (en) * 2020-11-19 2021-02-12 南京天加环境科技有限公司 Anti-leakage control method for refrigerant inside parallel multi-connected unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262382A (en) 2002-03-11 2003-09-19 Mitsubishi Electric Corp Dehumidifier
JP2005291555A (en) 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Air conditioner
WO2010050004A1 (en) 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP2014052105A (en) 2012-09-06 2014-03-20 Sharp Corp Refrigerator

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111852A (en) * 1983-11-21 1985-06-18 三菱重工業株式会社 Refrigeration cycle
JP2917631B2 (en) * 1991-12-03 1999-07-12 松下電器産業株式会社 Air conditioner equipped with refrigerant heating device
JPH08136112A (en) * 1994-11-01 1996-05-31 Matsushita Refrig Co Ltd Refrigerator
JPH0921570A (en) * 1995-07-05 1997-01-21 Hitachi Ltd Refrigerator and operation control system therefor
JPH09133413A (en) * 1995-11-10 1997-05-20 Hitachi Ltd Freezing cycle of refrigerant
JP3744774B2 (en) * 2000-06-12 2006-02-15 三洋電機株式会社 Heat pump air conditioner
US20030010832A1 (en) * 2001-07-12 2003-01-16 Eaton Corporation. Reducing flow noise in a refrigerant expansion valve
US6530528B2 (en) * 2001-07-27 2003-03-11 Parker-Hannifin Corporation Refrigerant expansion valve having electrically operated inlet shutoff with improved armature dampening
DE10158385A1 (en) * 2001-11-28 2003-06-12 Bosch Gmbh Robert air conditioning
KR100457569B1 (en) * 2002-11-22 2004-11-18 엘지전자 주식회사 a linear expansion valve's control method for a heat pump system
DE10351302A1 (en) * 2002-12-20 2004-08-26 Behr Gmbh & Co. Kg Operating air conditioning system for vehicle involves controlling circuit so suction pressure of compressor at least partly exceeds saturation pressure in circuit caused by ambient pressure
CN100412470C (en) * 2003-04-02 2008-08-20 大金工业株式会社 Refrigeration device
US7895850B2 (en) * 2005-04-15 2011-03-01 Comforture, L.P. Modulating proportioning reversing valve
WO2007046810A2 (en) * 2005-10-20 2007-04-26 Carrier Corporation Economized refrigerant system with vapor injection at low pressure
JP4734161B2 (en) * 2006-04-19 2011-07-27 日立アプライアンス株式会社 Refrigeration cycle apparatus and air conditioner
JP5711448B2 (en) * 2009-02-24 2015-04-30 ダイキン工業株式会社 Heat pump system
JP4751940B2 (en) * 2009-03-31 2011-08-17 日立アプライアンス株式会社 Air conditioner
JP5465491B2 (en) * 2009-08-31 2014-04-09 三洋電機株式会社 Air conditioner
JP6086213B2 (en) * 2013-01-30 2017-03-01 三浦工業株式会社 Chiller using refrigerator
CN104976809A (en) * 2014-04-14 2015-10-14 大金工业株式会社 Refrigerating device
CN104457054B (en) * 2014-11-17 2017-02-22 广东美的制冷设备有限公司 Method and device for recovering air conditioner coolants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262382A (en) 2002-03-11 2003-09-19 Mitsubishi Electric Corp Dehumidifier
JP2005291555A (en) 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Air conditioner
WO2010050004A1 (en) 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP2014052105A (en) 2012-09-06 2014-03-20 Sharp Corp Refrigerator

Also Published As

Publication number Publication date
JP2019002620A (en) 2019-01-10
CN109084392A (en) 2018-12-25
CN109084392B (en) 2021-05-18
US20180363961A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
US7918097B2 (en) Air conditioning system
JP6479162B2 (en) Air conditioner
KR101402158B1 (en) Air conditioning system
KR101588204B1 (en) Air conditioner and method for controlling air conditioner
KR100772217B1 (en) Control method of air conditioner
US9651288B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP7002227B2 (en) Air conditioner
KR101639837B1 (en) Air conditioner
KR20150070894A (en) Control method for air conditioner
US20120167604A1 (en) Refrigeration cycle apparatus
KR101359088B1 (en) Air conditioner
WO2017138108A1 (en) Air conditioning device
KR101336720B1 (en) Air conditioning system
KR101450543B1 (en) Air conditioning system
US8205463B2 (en) Air conditioner and method of controlling the same
JP2011158118A (en) Multi-type air conditioner
KR100845847B1 (en) Control Metheod for Airconditioner
KR20110062455A (en) Air conditioning system
KR102008710B1 (en) An air conditioner and a control method the same
KR20090068972A (en) Air conditioning system
JP7236606B2 (en) refrigeration cycle equipment
JPWO2020008590A1 (en) Refrigeration cycle equipment
KR101329753B1 (en) Air conditioning system
KR101442108B1 (en) Air conditioner and the control method of the same
KR20070031653A (en) Process for preventing rising of pressure in multi type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7002227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150