JPS60111852A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPS60111852A
JPS60111852A JP58219076A JP21907683A JPS60111852A JP S60111852 A JPS60111852 A JP S60111852A JP 58219076 A JP58219076 A JP 58219076A JP 21907683 A JP21907683 A JP 21907683A JP S60111852 A JPS60111852 A JP S60111852A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pressure
temperature
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58219076A
Other languages
Japanese (ja)
Other versions
JPH0320664B2 (en
Inventor
今飯田 毅
伊坂 安生
武司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58219076A priority Critical patent/JPS60111852A/en
Publication of JPS60111852A publication Critical patent/JPS60111852A/en
Publication of JPH0320664B2 publication Critical patent/JPH0320664B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技も11分野〕 不発明は、空気調和機、冷蔵部、冷凍装置等における冷
凍ザイクルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Techniques of the invention also fall into 11 fields] The invention relates to refrigeration cycles in air conditioners, refrigeration units, refrigeration equipment, etc.

〔従来技術と七の問題点〕[Prior art and seven problems]

通常、空気調和機は最大負荷に近い負荷において十分な
空気調和を行ないうる能力全イ1°するものが選定され
るが、冷房期間全通してみると、最大負荷となる外気温
度を越える時間比率は僅かであり、大部分の時間は、そ
れ以下の外気温j更で運転される。第1図は室温を一定
に保つ場合の外気温度と冷房負荷の関係を示したもので
、外気温度35℃での冷房負荷をA1、冷房期間の平均
外気温度(本11PIJでは29℃としている)におけ
る冷房負荷k A 2 とすると、A2はAIに比べ通
常半分以下になり、AIの能力を持つ空気調和機は冷房
期間の大半に亘って過大な能力を有することに々る。そ
こで、従来サーモスタットにより室温を検知し、その信
号により圧縮機’z ON −OFF制御して室温が低
下しすぎないようにしている。W、2図はこの従来のも
のにおける室温と時間との関係を示したものである。
Normally, an air conditioner is selected that has the ability to perform sufficient air conditioning at a load close to the maximum load. is very small, and most of the time the vehicle is operated at an outside temperature below this temperature. Figure 1 shows the relationship between outside air temperature and cooling load when keeping the room temperature constant. A1 is the cooling load when the outside temperature is 35°C, and the average outside temperature during the cooling period (this 11 PIJ is 29°C). Assuming the cooling load k A 2 at , A2 is usually less than half of that of AI, and an air conditioner with the capacity of AI often has an excessive capacity for most of the cooling period. Therefore, conventionally, the room temperature is detected by a thermostat, and the compressor'z ON-OFF is controlled based on the detected signal to prevent the room temperature from dropping too much. Figure W, 2 shows the relationship between room temperature and time in this conventional device.

第2図において、右下り線は冷房運転中(圧縮機運転中
)、右」ニリ線は冷房停止中(圧縮機停止中)”を示す
。線りはザーモスタットの設定値27℃、サーモディフ
ァレンシャル4deg℃の場合を示す。この場合は室温
が25℃まで下った時点で圧縮機を停止し、ついで冷房
負荷により室温は上昇し29℃に達した時点で再び冷房
運転を再開する。緑Eはサーモスタットの設定f直が2
7℃でザーモディフ了しンシャルヲ1℃にした場合を示
す。この場合は室温は26.5℃と27.5℃の間全往
復するが、圧&i機の発停回数は線りの場合の4倍にな
る。
In Figure 2, the line down to the right indicates that the air conditioner is in operation (compressor is in operation), and the double line on the right indicates that the air conditioner is not in operation (compressor is in operation). The case of 4 degrees Celsius is shown. In this case, the compressor is stopped when the room temperature drops to 25 degrees Celsius, and then the room temperature rises due to the cooling load, and when it reaches 29 degrees Celsius, the cooling operation is restarted. Green E is Thermostat setting f is 2
The case is shown in which the thermodynamics was completed at 7°C and the temperature was changed to 1°C. In this case, the room temperature goes back and forth between 26.5°C and 27.5°C, but the number of times the pressure & i machine starts and stops is four times that of the line.

快適な温度範囲はほぼ18℃〜28℃の間にあるとされ
、ているので27 Dは不快なゾーン(図の余1線部)
を有することとなるので、多くの場合サーモスタットの
置定敏が[pHえば26℃に下げられる。、第3図に一
定外気温度下での室温に対する冷房負荷との関係が示さ
れているが、サーモスタットの設定111¥1が27℃
から26℃に変更されると冷房負荷はMBからM171
0へと増加しその分だけ圧縮機運転時間比率が増大する
。第2シ1の線F(はサーモスタットの設定1直が26
℃、ザーモディファレンンヤル4 deg、℃の場合を
示し、線Fの場合は線りに比して運転時間が延長し、空
調機の消費エネルギーは増加する。
The comfortable temperature range is said to be approximately between 18℃ and 28℃, so 27D is the uncomfortable zone (the extra line in the diagram)
Therefore, in many cases, the setting sensitivity of the thermostat is lowered to 26°C. , Figure 3 shows the relationship between room temperature and cooling load under a constant outside temperature.
When the temperature is changed from MB to 26℃, the cooling load increases from MB to M171.
0, and the compressor operating time ratio increases accordingly. Line F of 2nd line 1 (is thermostat setting 1st shift is 26
℃、Thermodynamics 4 degrees、Case is shown. In the case of line F, the operating time is longer than in the case of line F, and the energy consumption of the air conditioner increases.

以上のように、快適かつ省エネルギー運転を行なうため
には、サーモディファレンシャルを小さくすることが大
すノである。
As mentioned above, in order to achieve comfortable and energy-saving operation, it is important to reduce the thermodifferential.

ザーモディファレンンヤルを小さくする場合、次の2つ
の重要な障害がある。その1は圧縮機の再起動の問題で
ある。即ち、圧縮機を停止した直後はその吐出管は高圧
に、吸入管は低圧になっており、圧縮機停止後、冷媒回
路中の絞り骨部等を冷媒が高圧側から1氏圧側に流入す
ることで均圧にされる。ところが、サーモディファレン
ンヤルを小さくすれば発停間隔が短くなるため、通常所
定時間(約3分)以内に、圧縮機の吐出側と吸入側は確
実に均圧されることが必要である。もし均圧されないと
、圧縮機は差圧に抗して起動することになり、起動不良
をおこし、再起動に失敗することがある。
There are two important obstacles when trying to reduce the size of thermodynamics. The first problem is restarting the compressor. In other words, immediately after the compressor is stopped, its discharge pipe is at high pressure and its suction pipe is at low pressure, and after the compressor is stopped, refrigerant flows from the high pressure side to the 1°C pressure side through the throttle bones in the refrigerant circuit. This equalizes the pressure. However, if the thermo-differential is made smaller, the start/stop interval becomes shorter, so it is necessary to ensure that the pressure on the discharge and suction sides of the compressor is equalized within a certain period of time (approximately 3 minutes). . If the pressure is not equalized, the compressor will start against the differential pressure, causing startup failure and possibly failing to restart.

その2は圧縮様の発停にともなう熱損失の間粗である。The second problem is the heat loss caused by compression-like start and stop.

第4図は空気調和機の冷媒回路の1列を示したものであ
るが、冷房時は、実線矢印の如く圧縮機lを出た高温高
圧ガス状の冷媒は四方切換弁2を通り、室外熱交換器3
で、凝縮して高温・高圧の液となり、絞り4全通る際に
減圧さルて低温低圧の液になり、室内熱交換器5に入っ
てここで蒸発する。この蒸発熱で室内空気を冷却して冷
房を行う。さらに室内熱交換器5で蒸発、気化した冷媒
はアキ−ムレ−タロを経て、再び圧縮機lに吸込まれる
Figure 4 shows one row of the refrigerant circuit of an air conditioner. During cooling, the high-temperature, high-pressure gaseous refrigerant that exits the compressor 1 passes through the four-way switching valve 2, as shown by the solid arrow, and goes outside. heat exchanger 3
Then, it condenses to become a high-temperature, high-pressure liquid, and when it passes through the throttle 4, it is depressurized and becomes a low-temperature, low-pressure liquid, which enters the indoor heat exchanger 5 and evaporates there. This heat of evaporation cools the indoor air for air conditioning. Further, the refrigerant evaporated and vaporized in the indoor heat exchanger 5 passes through the Achiemure Taro and is sucked into the compressor 1 again.

暖房時、冷媒は点線矢印のように流れる。今、この冷房
運転の途中に圧縮機1が停(トされるとする。絞り4及
び圧縮機If境界として室−内熱交換器5を含む低温・
低圧側と、室外熱交換器3を含む高温・高圧側の2つの
状態になっているので、絞り4を通って高圧側の冷媒は
低圧側へ流入する。このため低圧側の圧力及び温度は上
昇し高圧側の圧力・温度は降下していく。この冷媒の移
動は、高圧側と代圧側とが圧力的にパランヌに到るまで
、継続される。
During heating, the refrigerant flows as shown by the dotted arrow. Now, assume that the compressor 1 is stopped during this cooling operation.
Since there are two states: a low pressure side and a high temperature/high pressure side including the outdoor heat exchanger 3, the refrigerant on the high pressure side flows into the low pressure side through the throttle 4. Therefore, the pressure and temperature on the low-pressure side rise, and the pressure and temperature on the high-pressure side fall. This movement of the refrigerant continues until the pressures on the high pressure side and the substitute pressure side reach palanne.

しかしながら、上記従来の空気調和機は、以上のような
過程を経た後、次のような損失が生ずることが明らかに
なった。すhわち、冷凍サイクルに封入された冷媒は、
大半が液冷媒としてサイクル中に存在[7ており、定常
運転時には大半が凝縮器(冷房時は室外熱交換器3〕に
片寄って存在しており、特に凝縮器の中央から絞り4に
到る管路内に液冷媒として存在している。
However, it has become clear that the conventional air conditioner described above suffers the following losses after undergoing the above process. That is, the refrigerant sealed in the refrigeration cycle is
Most of the refrigerant exists in the cycle as a liquid refrigerant [7], and during steady operation, most of it exists in the condenser (in outdoor heat exchanger 3 during cooling), especially in the area from the center of the condenser to the throttle 4. It exists as a liquid refrigerant in the pipes.

圧縮機1の停止時には、凝縮器(冷房時は室外熱交換器
3)内の液冷媒が絞り4全通って蒸発器(冷房時は室内
熱交換器5〕側に流れるために、蒸発器に大半の液冷媒
が片寄って存在することになる。このような冷媒分布状
態で、圧縮手、沙Ji再起動した場合に、蒸発器の大半
の液冷媒は、アキュムレータ6に流れこむと共に、凝、
稲器内には十分な液冷媒が存在しないため、蒸発器に絞
り4を通って供給される冷媒は極めて少なくなる。この
結果として蒸発器には蒸発すべき液冷媒が存在せず、圧
縮機lを起動してもなかなか吹出空気の温j蔓が下がら
ず冷風が吹き出す捷でに2〜3分を要し、立上りの悪い
空調機となっていた。
When the compressor 1 is stopped, the liquid refrigerant in the condenser (outdoor heat exchanger 3 during cooling) passes through the throttle 4 and flows to the evaporator (indoor heat exchanger 5 during cooling). Most of the liquid refrigerant will be present in a concentrated manner.If the compressor is restarted in such a refrigerant distribution state, most of the liquid refrigerant in the evaporator will flow into the accumulator 6 and condense,
Since there is not enough liquid refrigerant in the rice bowl, the amount of refrigerant supplied to the evaporator through the throttle 4 is extremely small. As a result, there is no liquid refrigerant to evaporate in the evaporator, and even when the compressor is started, the temperature of the blown air does not come down easily, and it takes 2 to 3 minutes for the cold air to blow out. There was a bad air conditioner.

このような従来列にて、冷房運転で圧縮機lが再起動し
た時の空調機の吸込温度、吹出温度、蒸発器中央部の温
度の変化の実験列全第5図に示す。同図中Gは空調機の
吸込空気温度、Hは空調機の吹出空気温度、■は蒸発器
(室内熱交換器5)の中央部の温度全示す。圧縮機lが
再起動すると、蒸発器内の圧力は低下するため、蒸発器
の温度はいったん低下するが、凝縮器から液冷媒が絞り
4を通じて供給されないため、逆に吸込空気で加熱され
て上昇し、その後低下していく現象を示している。この
ため吹出温度Hはなかなか(戊ギせず、冷風が定常的に
吹出すまでに2〜3分’z9する結果を示している。
FIG. 5 shows an experimental series of changes in the air conditioner suction temperature, outlet temperature, and temperature at the center of the evaporator when the compressor 1 is restarted during cooling operation in such a conventional series. In the figure, G indicates the intake air temperature of the air conditioner, H indicates the outlet air temperature of the air conditioner, and ■ indicates the total temperature at the center of the evaporator (indoor heat exchanger 5). When the compressor 1 is restarted, the pressure inside the evaporator decreases, so the temperature of the evaporator once decreases, but since liquid refrigerant is not supplied from the condenser through the throttle 4, it is heated by the suction air and rises. The figure shows a phenomenon in which the value decreases after that. For this reason, the blowing temperature H does not slow down and it takes 2 to 3 minutes for the cold air to steadily blow out.

以上の熱損失は、圧縮機の発停回数が増加するとともに
増加し、空気調和機の年間エネルギー効率を大さく低下
をせる原因となっている。
The above heat loss increases as the number of times the compressor starts and stops increases, and becomes a cause of a significant decrease in the annual energy efficiency of the air conditioner.

以上はI暖房時でも冷媒の流れが異なり、温度・圧力の
高低が逆になるが同様である0 〔発明の目的〕 不発明は上記の点に鑑みてなされたもので、冷媒か圧縮
機、凝縮機、絞り、蒸発器をこの順に循環する冷媒回路
を具えた冷凍サイクルにおいて、前記紋りを含んで前記
蒸発器に到る冷媒回路の適当な位置に連結管を介して冷
媒貯蔵容器を連結し、同冷媒貯蔵容器と前記圧縮機の吸
入管と全熱交換させると共に前記連結管中に前記圧縮機
の起動・停止に対応して開閉する弁を設けたこと全要旨
とし、熱損失2低減すると共に、圧縮機の再起動時に圧
縮機吐出管と吸入管に差圧が生じない様な冷凍サイクル
を提供すること金目r白とする。
The above is the same even during heating, although the flow of the refrigerant is different and the temperature and pressure are reversed.0 [Object of the Invention] The invention was made in view of the above points, In a refrigeration cycle equipped with a refrigerant circuit that circulates through a condenser, a throttle, and an evaporator in this order, a refrigerant storage container is connected via a connecting pipe to an appropriate position of the refrigerant circuit that includes the ridge and reaches the evaporator. In addition, total heat is exchanged between the refrigerant storage container and the suction pipe of the compressor, and a valve that opens and closes in response to the start and stop of the compressor is provided in the connecting pipe, thereby reducing heat loss by 2. At the same time, it is important to provide a refrigeration cycle in which no pressure difference occurs between the compressor discharge pipe and the suction pipe when the compressor is restarted.

〔発明の実施l!/!l ) 以下不発明の詳細を第6図に示す実施図11を参照して
説明する。第6図において、11は圧縮機、12は四方
切換弁、13は室外側熱交換器、14は絞り、I5は室
内側熱交換器、16はアキュムレータ、ノアは冷媒貯蔵
容器、18は冷媒貯蔵容器J7と冷媒回路を結ぶ連結管
、19は連結管ノ8に設置された開閉弁、20は冷媒貯
蔵容器17と熱交換している冷媒配管である。
[Practice of the invention! /! l) The details of the invention will be explained below with reference to the embodiment diagram 11 shown in FIG. In Fig. 6, 11 is a compressor, 12 is a four-way switching valve, 13 is an outdoor heat exchanger, 14 is a throttle, I5 is an indoor heat exchanger, 16 is an accumulator, Noah is a refrigerant storage container, and 18 is a refrigerant storage A connecting pipe 19 connects the container J7 and the refrigerant circuit, 19 is an on-off valve installed in the connecting pipe 8, and 20 is a refrigerant pipe exchanging heat with the refrigerant storage container 17.

本発明では、冷媒貯蔵容器17が圧縮器11の冷媒配v
20と熱交換するように配設されている。さらに、上記
容器17は、連結管18により冷媒回路と結ばれている
。その連結箇所は絞り14全含んで蒸発器に到る配管の
適当な位置と接続されている。この場合、蒸発器とは、
冷房運転時には室内側熱交換器15であり暖房運転時は
室外側熱交換器13に該当する。さらに連結管18には
、開閉弁19が設置されており、この開閉弁19は、圧
wi機11を起動した時には開き圧縮機11’j(停止
した時には閉じる様になっている。
In the present invention, the refrigerant storage container 17 is the refrigerant distribution container of the compressor 11.
It is arranged so as to exchange heat with 20. Further, the container 17 is connected to a refrigerant circuit by a connecting pipe 18. The connecting point is connected to an appropriate position of the piping including the entire throttle 14 and leading to the evaporator. In this case, the evaporator is
It corresponds to the indoor heat exchanger 15 during cooling operation, and corresponds to the outdoor heat exchanger 13 during heating operation. Furthermore, an on-off valve 19 is installed in the connecting pipe 18, and this on-off valve 19 opens when the compressor 11 is started and closes when the compressor 11'j is stopped.

次に上記実施列の動作について説明する。冷房時は一1
実線午印の如く、圧縮機11’z出た高温、高圧のガス
状冷媒は、四方切換弁12を通り、室外側熱交換”+!
’L l 3で凝縮して、高温高圧の液となり絞りl 
4 f、7通る際に減圧され、低温低圧の液になり、室
内側熱交換器15に人ってここで蒸発する。この蒸発熱
で室内空気を冷却してQ)かを行う。さらに室内側熱交
換器15で蒸発、気化した冷媒は四方切換弁ノ2、配管
2o、アキュムレータ16を経て再び圧縮機1ノに吸込
捷れる。
Next, the operation of the above implementation column will be explained. 11 when cooling
As indicated by the solid line, the high-temperature, high-pressure gaseous refrigerant from the compressor 11'z passes through the four-way switching valve 12 and undergoes heat exchange on the outdoor side.
'L l 3 condenses and becomes a high temperature and high pressure liquid.
4F, 7, the pressure is reduced and the liquid becomes a low temperature and low pressure liquid, which is transferred to the indoor heat exchanger 15 and evaporated there. This heat of evaporation cools the indoor air and performs Q). Further, the refrigerant evaporated and vaporized in the indoor heat exchanger 15 passes through the four-way switching valve 2, the piping 2o, and the accumulator 16, and is sucked into the compressor 1 again.

さらに、冷媒貯蔵容器17内は、連結管18と、冷媒回
路の連結点(編6図J点)に対応した圧力となっている
。圧縮機1ノが定常状態で運転されている時に、5点の
圧力は、圧縮機1ノの吸入圧力(低圧)から冷媒の流動
に伴う圧力損失分を加えた中間圧力状態になっている。
Further, the pressure inside the refrigerant storage container 17 corresponds to the connection point between the connecting pipe 18 and the refrigerant circuit (point J in Figure 6). When the compressor 1 is operating in a steady state, the pressure at the 5 points is an intermediate pressure obtained by adding the pressure loss due to the flow of refrigerant from the suction pressure (low pressure) of the compressor 1.

従って冷媒貯蔵容器lZ中には、開閉弁19が開いてお
り、中間圧状態の冷媒ガスが人ってくる〇一方、上記容
器17は、低温・低圧の冷媒が流れる配管2θにより冷
と11されている。このため冷媒貯蔵容器17中の冷媒
は冷やされて凝縮し、中間圧7]状態の液冷媒が溜才る
ことになる。
Therefore, the on-off valve 19 is open in the refrigerant storage container lZ, and refrigerant gas in an intermediate pressure state comes into the refrigerant storage container lZ.On the other hand, the container 17 is cooled by the pipe 2θ through which low-temperature, low-pressure refrigerant flows. has been done. Therefore, the refrigerant in the refrigerant storage container 17 is cooled and condensed, and the liquid refrigerant at the intermediate pressure 7 is stored.

今、この冷房運転の途中に圧縮機1ノが停止されるとす
ると、開閉弁ノリ1d、閉じられ、冷媒貯蔵容器17内
には中間圧の液冷媒が閉じこめられる。冷媒回路は、絞
りI4および圧縮機1ノを境界として室内側熱交換器1
5を含む低温・低圧側と室外側熱交換器13i含む晶温
高圧側の2つの状態になっているので、絞り14ケ通っ
て高圧側の冷媒は低圧側へ流入する。この冷媒の移動は
、高圧側と低圧側が圧力的にバランスするまで継続され
、確実に均圧される。
Now, if the compressor 1 is stopped during this cooling operation, the on-off valve 1d is closed and intermediate-pressure liquid refrigerant is confined in the refrigerant storage container 17. The refrigerant circuit connects the indoor heat exchanger 1 with the aperture I4 and the compressor 1 as boundaries.
Since the refrigerant on the high pressure side passes through the 14 throttles and flows into the low pressure side, the refrigerant flows into the low pressure side through the 14 throttles. This movement of the refrigerant continues until the pressures on the high-pressure side and the low-pressure side are balanced, and the pressures are reliably equalized.

次に、圧縮機1ノを再起動したとすれば、圧縮機ノ1の
吐出管と吸入管は、停止中に絞り14を通る冷媒の移動
により均圧されているため、確実に起動できる。この圧
縮機Iノの起動と同時に、開閉弁19が開けられる。起
動直後は、圧縮機11の吸入圧力(低圧〕は、定常運転
時よりも低く、さらに冷媒循環量も少いため冷媒の流動
に伴う圧力損失分も定常運転時より少い。このため連結
管ノ8と冷媒回路の連結点(5点)の圧力は、圧縮機I
Jの起動直後は、定常時に比べて低い。従って冷媒貯蔵
容器lz中の液冷媒は、冷媒回路中に押し出され、絞り
14の一部を通って蒸発器として作用している室内側熱
交換器15に供給され、ここで蒸発する。この声め、圧
縮機11の起動直後でも、蒸発器に冷媒が供給はれ、冷
風が早く吹き出される。
Next, if the compressor 1 is restarted, the pressure in the discharge pipe and suction pipe of the compressor 1 is equalized by the movement of the refrigerant through the throttle 14 during the stop, so that the restart can be ensured. Simultaneously with starting the compressor I, the on-off valve 19 is opened. Immediately after startup, the suction pressure (low pressure) of the compressor 11 is lower than during steady operation, and the amount of refrigerant circulation is also small, so the pressure loss due to the flow of refrigerant is also smaller than during steady operation. The pressure at the connection point (point 5) between compressor I and the refrigerant circuit is
Immediately after J starts up, it is lower than during normal operation. The liquid refrigerant in the refrigerant storage vessel lz is therefore forced into the refrigerant circuit and is fed through a portion of the throttle 14 to the indoor heat exchanger 15 acting as an evaporator, where it is evaporated. Even immediately after starting the compressor 11, refrigerant is supplied to the evaporator and cold air is quickly blown out.

さらに運転が継続されて、定常運転になると冷媒循環量
も増し、再び上述の如く冷媒貯蔵容器17内には中間圧
の液冷媒が溜まりこむ。
As the operation continues further and becomes steady operation, the amount of refrigerant circulation increases, and the intermediate pressure liquid refrigerant accumulates in the refrigerant storage container 17 again as described above.

以上は冷房運転について説明したが、暖房時は冷媒の流
れが点線矢印の如くなり、凝縮器として室内側熱交換器
15、蒸発器として室外側熱交換器13が作動するが、
その他の作用は冷房時と同一である。
The above explanation has been about cooling operation, but during heating, the flow of refrigerant is as shown by the dotted arrow, and the indoor heat exchanger 15 operates as a condenser and the outdoor heat exchanger 13 operates as an evaporator.
Other effects are the same as during cooling.

〔発明の効果〕 上述の如く本発明では、冷媒貯蔵容器17f設け、圧縮
機11の定常運転中に、中間圧力状態の液冷媒全該容器
J7に溜めておき、圧縮機停止時も開閉弁19f閉じる
ことでこの状態を保持している。圧縮機停止F時の圧縮
機1ノの吐出側と吸入側の圧力バランスは、絞り14で
均圧させ、再起動時に差圧が生じない様にしである。圧
縮機再起動時には、冷媒貯蔵茶器17と冷媒回路の連結
箇所の圧力が、定常状態より低いこと全利用して、開閉
弁19全開けることにより、容器中の液冷媒を冷媒回路
中に押し出し、起動後すぐに蒸発器に液冷媒を供給する
様にしている。このためこの液冷媒が蒸発器で蒸発する
ようになり、立上り性能を良好にすることができる。こ
れにより圧縮機1ノの発停回数が増大しても、年間エネ
ルギ効率の良い空調機の実現が可能になった。
[Effects of the Invention] As described above, in the present invention, the refrigerant storage container 17f is provided, and during steady operation of the compressor 11, all of the liquid refrigerant in an intermediate pressure state is stored in the container J7, and the on-off valve 19f is kept open even when the compressor is stopped. This state is maintained by closing. The pressure balance between the discharge side and the suction side of the compressor 1 when the compressor is stopped is equalized by the throttle 14 so that no pressure difference occurs when the compressor is restarted. When restarting the compressor, the liquid refrigerant in the container is pushed out into the refrigerant circuit by fully opening the on-off valve 19, taking full advantage of the fact that the pressure at the connection point between the refrigerant storage tea appliance 17 and the refrigerant circuit is lower than the steady state. Liquid refrigerant is supplied to the evaporator immediately after startup. Therefore, this liquid refrigerant is evaporated in the evaporator, and the start-up performance can be improved. This makes it possible to realize an air conditioner with good annual energy efficiency even if the number of times the compressor starts and stops increases.

なお、上d己実施しリでは、空気調和機に実施した場合
についてボしたが、その他、列えは冷蔵庫、冷凍装置等
においても同様にして実施し得るものである。
In addition, in the above description, we have discussed the case where the method is applied to an air conditioner, but the arrangement can also be implemented in the same way in other refrigerators, refrigeration equipment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第5図は従来における空気調
和機の動作特性を示す図、第4図は従来の空気調和機の
冷媒回路を示す図、第6Nは本発明の一実施例を示す冷
媒回路図である。 11・・・圧縮機、12・・・四方切換弁、13・・・
室外側熱交換器、14・・・絞り、15・・・室内側熱
交換器、16・・・アキームレータ、17・・・冷媒貯
蔵容器、1B・・・連結管、19・・・開閉弁、20・
・・冷媒配管。
Figures 1, 2, 3, and 5 are diagrams showing the operating characteristics of a conventional air conditioner, Figure 4 is a diagram showing a refrigerant circuit of a conventional air conditioner, and Figure 6N is a diagram showing the refrigerant circuit of a conventional air conditioner. It is a refrigerant circuit diagram showing one example. 11... Compressor, 12... Four-way switching valve, 13...
Outdoor heat exchanger, 14... Throttle, 15... Indoor heat exchanger, 16... Achimulator, 17... Refrigerant storage container, 1B... Connection pipe, 19... Open/close valve , 20・
・Refrigerant piping.

Claims (1)

【特許請求の範囲】[Claims] 冷媒が圧縮機、凝縮機、絞り、蒸発器をこの順に循環す
る冷媒回路を具えた冷凍サイクルにおいて、前記絞りを
含んで前記蒸発器に到る冷媒回路の適当な位置に連結管
を介して冷媒貯蔵茶器を連結し、同冷媒貯蔵容器と前記
圧縮機の吸入管と全熱交換させると共に前記連結を中に
前記圧縮機の起動、停止に対応して開閉する弁を設けた
ことを特クシとする冷凍サイクル。
In a refrigeration cycle equipped with a refrigerant circuit in which refrigerant circulates through a compressor, a condenser, an aperture, and an evaporator in this order, the refrigerant is passed through a connecting pipe to an appropriate position in the refrigerant circuit that includes the aperture and reaches the evaporator. It is particularly preferable that the storage tea utensils are connected to exchange total heat with the refrigerant storage container and the suction pipe of the compressor, and a valve is provided in the connection to open and close in response to starting and stopping of the compressor. refrigeration cycle.
JP58219076A 1983-11-21 1983-11-21 Refrigeration cycle Granted JPS60111852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219076A JPS60111852A (en) 1983-11-21 1983-11-21 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219076A JPS60111852A (en) 1983-11-21 1983-11-21 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS60111852A true JPS60111852A (en) 1985-06-18
JPH0320664B2 JPH0320664B2 (en) 1991-03-19

Family

ID=16729880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219076A Granted JPS60111852A (en) 1983-11-21 1983-11-21 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS60111852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002620A (en) * 2017-06-14 2019-01-10 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849868A (en) * 1981-09-18 1983-03-24 株式会社日立製作所 Air conditioner
JPS5851155U (en) * 1981-09-30 1983-04-06 ゼネラル・エアコン株式会社 Air conditioner refrigeration cycle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851155B2 (en) * 1978-09-11 1983-11-15 三菱電機株式会社 Electronic ignition control device for internal combustion engines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849868A (en) * 1981-09-18 1983-03-24 株式会社日立製作所 Air conditioner
JPS5851155U (en) * 1981-09-30 1983-04-06 ゼネラル・エアコン株式会社 Air conditioner refrigeration cycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002620A (en) * 2017-06-14 2019-01-10 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH0320664B2 (en) 1991-03-19

Similar Documents

Publication Publication Date Title
CN112344461B (en) Water system air conditioner
JP2003004321A (en) Refrigerating air conditioner
JP2002107000A (en) Air conditioner
JP4178646B2 (en) refrigerator
JPS60111852A (en) Refrigeration cycle
JPH078999Y2 (en) Air source heat pump
CN111578450A (en) Air conditioning system and defrosting method thereof
CN219640473U (en) Air conditioning system
JPH07848Y2 (en) Heat pump type air conditioner
CN210951964U (en) Air-cooled heat pump unit
JPS5852460Y2 (en) Refrigeration equipment
JPH0341744B2 (en)
JPH0319469B2 (en)
JPS632859Y2 (en)
JPS60211271A (en) Refrigeration cycle
JPS6243249Y2 (en)
JPH0285660A (en) Heat pump type air conditioner
CN114413406A (en) Air conditioner with heat storage device
JPS637811Y2 (en)
CN115183394A (en) Air conditioner and self-cleaning control method thereof
KR200298357Y1 (en) temperature-control structure between receiver tank and accumulator
JP2002089934A (en) Air conditioner
CN113915896A (en) Refrigerator and refrigerating method thereof
JPS6039720Y2 (en) Heat pump air conditioner
JPH0429345Y2 (en)